
TetraMAX® ATPG
User Guide
Version K-2015.06-SP4, December 2015

TetraMAX ATPG User Guide K-2015.06-SP4

Copyright Notice and Proprietary Information
Copyright © 2015 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and
proprietary information that is the property of Synopsys, Inc. The software and documentation are furnished
under a license agreement and may be used or copied only in accordance with the terms of the license
agreement. No part of the software and documentation may be reproduced, transmitted, or translated, in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of
Synopsys, Inc., or as expressly provided by the license agreement.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of
America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s
responsibility to determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NOWARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
http://www.synopsys.com/Company/Pages/Trademarks.aspx. All other product or company names may be
trademarks of their respective owners. Inc.

Third-Party Links
Any links to third-party websites included in this document are for your convenience only. Synopsys does not
endorse and is not responsible for such websites and their practices, including privacy practices, availability,
and content.

Synopsys, Inc.
700 E. Middlefield Road
Mountain View, CA 94043
www.synopsys.com

ii

http://www.synopsys.com/Company/Pages/Trademarks.aspx
http://www.synopsys.com/

TetraMAX ATPG User Guide K-2015.06-SP4

Contents
About This User Guide xliii

Audience xliii

Related Publications xliii

Release Notes xliv

Conventions xlv

Customer Support xlv

Accessing SolvNet xlv

Contacting the Synopsys Technical Support Center xlvi

1 TetraMAX Overview 1-1

Key TetraMAX Features 1-2

Benefits and Features: AnOverview 1-2

See Also 1-2

ATPGCapabilities 1-3

See Also 1-3

ATPGModes 1-3

See Also 1-4

CommandModes 1-4

See Also 1-4

Supported Fault Models 1-5

See Also 1-5

Design Flow Using DFT Compiler and TetraMAX 1-5

iii

TetraMAX ATPG User Guide K-2015.06-SP4

See Also 1-9

2 Running TetraMAX 2-1

Installation 2-2

Specifying the Location for TetraMAX Installation 2-2

Invoking TetraMAX 2-3

Command-Line Syntax 2-3

Methods for Invoking TetraMAX 2-4

Specifying Environment Variables 2-5

Specifying a Command File 2-5

Running Background Jobs 2-6

Predefined Aliases 2-6

Debugging Dual Process Issues 2-6

See Also 2-6

Command Files 2-6

Batch Files 2-7

Setup Command Files 2-7

Using Variables 2-8

Tcl Mode 2-9

NativeMode 2-9

Controlling TetraMAX Processes 2-10

Starting and Stopping the TetraMAX GUI 2-10

Interrupting a Long Process 2-10

Discarding PendingOutput 2-11

Adjusting theWorkspace Size 2-11

Saving Preferences 2-12

Setting Preferences 2-12

See Also 2-14

iv

TetraMAX ATPG User Guide K-2015.06-SP4

SavingGUI Preferences 2-14

See Also 2-14

Licensing 2-14

Licensing Overview 2-15

Product Licenses 2-15

Checking Out Licenses 2-16

Examples 2-17

LicensesReport 2-17

Standard Format 2-17

License Keys for Features 2-17

3 Command Interface 3-1

TetraMAX GUI MainWindow 3-2

See Also 3-3

Command Entry 3-3

Menu Bar 3-3

Command Toolbar andGSV Toolbar 3-3

Command-LineWindow 3-4

CommandMode Indicator 3-4

Command-Line Entry Field 3-5

CommandContinuation 3-5

CommandHistory 3-5

Stop Button 3-6

Commands From aCommand File 3-6

Command Logging 3-6

Transcript Window 3-7

Setting the Keyboard Focus 3-8

Using the Transcript Text 3-8

v

TetraMAX ATPG User Guide K-2015.06-SP4

Selecting Text in the Transcript 3-9

Copying Text From the Transcript 3-9

Finding Commands andMessages in the Transcript 3-9

Saving or Printing the Transcript 3-10

Clearing the Transcript Window 3-10

Online Help 3-11

Text-Only Help 3-11

Browser-Based Help 3-12

LaunchingOnline Help 3-12

Basic Components of Help 3-14

4 ATPG Design Flow 4-1

ATPGDesign Flow Overview 4-2

Running the Basic ATPGDesign Flow 4-4

See Also 4-5

Using Command Files 4-5

See Also 4-6

Preparing a Netlist 4-7

Options for Preparing to Read a Netlist 4-7

See Also 4-8

Reading a Netlist 4-8

Options for Reading a Netlist 4-8

See Also 4-9

Reading LibraryModels 4-9

Options for Reading LibraryModels 4-10

See Also 4-10

Setting Up and Building the ATPGModel 4-10

Controlling the ATPGModel Build Process 4-11

vi

TetraMAX ATPG User Guide K-2015.06-SP4

Setting Parameters for Building an ATPGModel 4-11

See Also 4-12

Setting Parameters for Learning 4-12

Learned Behavior Types 4-12

Controlling the ATPGLearning Algorithm 4-13

Building the ATPGModel 4-14

Options for Building the ATPGModel 4-14

See Also 4-15

Performing Test Design Rule Checking (DRC) 4-15

Specifying STIL Procedures 4-15

Specifying DRC Settings 4-16

Options for Specifying DRC Settings 4-17

See Also 4-17

Starting Test DRC 4-17

Reviewing the DRC Results 4-19

See Also 4-20

Understanding Rule Violations 4-20

Viewing DRC Violations in the GSV 4-21

See Also 4-22

Preparing for ATPG 4-23

See Also 4-23

Specifying General ATPGSettings 4-23

Options for Specifying ATPGSettings 4-23

Specifying Fault Lists 4-25

Selecting an Existing Fault List File 4-25

Generating a Fault List Containing All Fault Sites 4-26

Including Specific Faults in a Fault List 4-26

vii

TetraMAX ATPG User Guide K-2015.06-SP4

Writing Faults to a File 4-27

Example Fault Lists 4-27

See Also 4-28

Specifying Fault Models 4-28

Selecting a Fault Model 4-29

Specifying the Pattern Source 4-30

Scan and Nonscan Functional Patterns 4-31

STIL Functional Pattern Input 4-31

Verilog Functional Pattern Input 4-33

WGL Functional Pattern Input 4-36

VCDE Functional Pattern Input 4-38

Options for Selecting the Pattern Source 4-39

Specifying the ATPGMode 4-40

Basic ScanMode Settings 4-41

Fast-Sequential Mode Settings 4-42

Setting Full-Sequential Mode 4-43

Running ATPG 4-43

Running ATPG in Basic Scan, Fast-Sequential, or Full-Sequential Mode 4-44

Using AutomaticMode to Generate Optimized Patterns 4-45

Setting AutomaticMode 4-46

Quickly Estimating Test Coverage 4-47

Examples 4-47

Specifying a Test Coverage Target Value 4-49

Increasing ATPGEffort Over Multiple Passes 4-49

Multiple Session Test Pattern Generation 4-50

Splitting Patterns 4-50

Extracting a Pattern Sub-Range 4-51

viii

TetraMAX ATPG User Guide K-2015.06-SP4

MergingMultiple Pattern Files 4-51

Using Pattern FilesGenerated Separately 4-51

Compressing Patterns 4-52

Balancing Pattern Compaction and CPU Runtime 4-53

Compression Reports 4-53

Analyzing ATPGOutput 4-55

Standard Format 4-56

Expert Format 4-57

Verbose Format with Merge (without -auto_compression) 4-58

Verbose Format with Merge and -auto_compression 4-60

Reviewing Test Coverage 4-62

Writing ATPGPatterns 4-63

5 Using Tcl With TetraMAX 5-1

Converting TetraMAX Command Files to Tcl Mode 5-2

Converting a Collection to a List in Tcl Mode 5-2

Tcl Syntax and TetraMAX Commands 5-3

Specifying Lists in Tcl Mode 5-3

Tcl Mode and Backslashes 5-4

Using Positional Arguments 5-4

Abbreviating Commands andOptions in Tcl Mode 5-4

Using Tcl Special Characters 5-5

Using the Result of a Tcl Command 5-6

Using Built-In Tcl Commands 5-6

TetraMAX Extensions and Restrictions in Tcl Mode 5-6

Redirecting Output in Tcl Mode 5-7

Using the redirect Command in Tcl Mode 5-7

Getting the Result of Redirected Tcl Commands 5-8

ix

TetraMAX ATPG User Guide K-2015.06-SP4

Using Redirection Operators in Tcl Mode 5-8

Using Command Aliases in Tcl Mode 5-9

Interrupting Tcl Commands 5-9

Using Command Files in Tcl Mode 5-10

Adding Comments 5-10

Controlling Command ProcessingWhen ErrorsOccur 5-10

Using a Setup Command File 5-11

6 Using the Graphical Schematic Viewer 6-1

Getting StartedWith the GSV 6-2

Using the SHOWButton to Start the GSV 6-2

Starting the GSV From aDRC Violation or Specific Fault 6-3

See Also 6-6

Navigating, Selecting, Hiding, and Finding Data 6-6

NavigatingWithin the GSV 6-6

Selecting Objects in the GSV Schematic 6-6

Hiding Objects in the GSV Schematic 6-7

Using the Block ID Window 6-7

Expanding the Display FromNet Connections 6-8

See Also 6-9

Hiding Buffers and Inverters in the GSV Schematic 6-9

ATPGModel Primitives 6-10

Tied Pins 6-11

Primary Inputs andOutputs 6-11

BasicGate Primitives 6-12

Additional Visual Characteristics 6-13

RAMandROMPrimitives 6-14

See Also 6-15

x

TetraMAX ATPG User Guide K-2015.06-SP4

Displaying Symbols in Primitive or Design View 6-16

Displaying Instance Path Names 6-16

See Also 6-16

Displaying Pin Data 6-16

Using the Setup Dialog Box to Display Pin Data 6-17

Pin Data Types 6-18

Displaying ClockCone Data 6-20

Displaying ClockOff Data 6-20

Displaying Constrain Values 6-21

Displaying Load Data 6-22

Displaying Shift Data 6-23

Displaying Test Setup Data 6-24

Displaying Pattern Data 6-24

Displaying Tie Data 6-26

Analyzing a Feedback Path 6-26

Checking Controllability andObservability 6-27

Using the Run Justification Dialog Box 6-27

Using the run_justification Command 6-28

See Also 6-28

Analyzing DRC Violations in the GSV 6-28

Troubleshooting a Scan Chain Blockage 6-29

Troubleshooting a Bidirectional Contention Problem 6-31

Analyzing Buses 6-33

BUS Contention Status 6-33

See Also 6-34

Understanding the Contention Checking Report 6-34

Reducing Aborted Bus andWire Gates 6-34

xi

TetraMAX ATPG User Guide K-2015.06-SP4

Using the Analyze BusesDialog Box 6-35

Using the set_atpg and analyze_busesCommands 6-35

Causes of BusContention 6-35

Analyzing ATPGProblems 6-37

Analyzing an AN Fault 6-37

Analyzing a UB Fault 6-38

Analyzing a NOFault 6-39

Printing a Schematic to a File 6-40

7 Using the Hierarchy Browser 7-1

Launching the Hierarchy Browser 7-2

See Also 7-3

Basic Components of the Hierarchy Browser 7-4

Using the Hierarchy Pane 7-4

Viewing Data in the Instance Pane 7-6

Copying an Instance Name 7-8

Viewing Data in the Lib Cells/TreeMap Pane 7-9

Performing Fault Coverage Analysis 7-12

Understanding the Types of Coverage Data 7-12

See Also 7-13

Expanding the Design Hierarchy 7-13

Viewing Library Cell Data 7-16

Adjusting the Threshold Slider Bar 7-17

Identifying Fault Causes 7-18

Displaying Instance Information in the GSV 7-20

Exiting the Hierarchy Browser 7-22

See Also 7-22

8 Using the Simulation Waveform Viewer 8-1

xii

TetraMAX ATPG User Guide K-2015.06-SP4

Getting StartedWith the SWV 8-2

Supported Pin Data Types and Definitions 8-2

See Also 8-4

Invoking the SWV 8-4

Using the SWV Interface 8-6

Understanding the SWV Layout 8-6

Refreshing the View 8-7

Manipulating Signals 8-7

Using the Signal List Pane 8-7

Adding Signals 8-7

Deleting Signals 8-8

Inserting Signals 8-8

Identifying Signal Types in the Graphical Pane 8-10

Using the Time Scales 8-10

Using theMarker Header Area 8-11

Adding and Deleting Pointers 8-12

Moving aMarker Pointer 8-12

Measuring Between Two Pointers 8-13

Using the SWVWith the GSV 8-13

Using the SWVWithout the GSV 8-15

Example Flow 8-15

Example 2 8-16

Example 3 8-16

SWV Inputs andOutputs 8-16

Analyzing Violations 8-16

9 Design Netlists and Libraries 9-1

Netlist Format Requirements 9-2

xiii

TetraMAX ATPG User Guide K-2015.06-SP4

EDIF Netlist Requirements 9-2

Logic 1/0 UsingGlobal Nets 9-2

Logic 1/0 by Special Library Cell 9-2

Verilog Netlist Requirements 9-3

See Also 9-3

VHDLNetlist Requirements 9-3

UsingWildcards to Read Netlists 9-4

Controlling Case-Sensitivity 9-4

Processes That Occur When Building the ATPG Model 9-5

Flattening Optimization for Hierarchical Designs 9-6

IdentifyingMissingModules 9-11

Removing Unused Logic 9-13

Using Black Box and Empty BoxModels 9-16

See Also 9-16

Declaring Black Boxes and Empty Boxes 9-16

Behavior of RAMBlack Boxes 9-18

Case 1 9-18

Case 2 9-18

Case 3 9-19

Case 4 9-19

Case 5 9-20

Case 6 9-20

Troubleshooting Unexplained Behavior 9-21

Handling DuplicateModule Definitions 9-22

MemoryModeling 9-23

MemoryModel Functions 9-23

BasicMemoryModeling Template 9-24

xiv

TetraMAX ATPG User Guide K-2015.06-SP4

Initializing RAMandROMContents 9-24

TheMemory Initialization File 9-24

Default Initialization 9-25

Instance-Specific Initialization 9-26

Improving Test Coverage for RAMs 9-26

Creating CustomATPGModels 9-27

Condensing ATPGLibraries 9-28

10 STIL Procedures 10-1

STIL Procedure File Guidelines 10-2

Creating a New STIL Procedure File 10-3

See Also 10-4

Declaring Primary Input Constraints 10-4

Using the Add PI Constraints Dialog Box 10-5

Using the add_pi_constraints Command 10-5

Declaring Clocks 10-5

Using the Edit ClocksDialog Box 10-6

Using the add_clocksCommand 10-6

Asynchronous Set and Reset Ports 10-6

Declaring Scan Chains and Scan Enables 10-7

Using the DRC Dialog Box 10-7

Declaring Scan Chains at the Command Line 10-7

Writing the SPF Template 10-8

Example SPF Template File 10-8

Defining STIL Procedures 10-10

Defining Scan Chains 10-11

Defining the load_unload Procedure 10-12

See Also 10-13

xv

TetraMAX ATPG User Guide K-2015.06-SP4

Controlling Bidirectional Ports 10-13

Defining the Shift Procedure 10-15

Defining the test_setup Procedure 10-15

Using Loop Statements 10-16

Predefined Signal Groups in STIL 10-17

Defining Basic Signal Timing 10-18

Defining Pulsed Ports 10-20

Selecting Strobed or WindowedMeasures in STIL 10-21

Supporting ClockON Patterns in STIL 10-22

Defining the End-of-CycleMeasure 10-24

Defining Capture Procedures in STIL 10-26

Limiting ClockUsage 10-27

Defining Constrained Primary Inputs 10-27

Defining Equivalent Primary Inputs 10-28

Defining POMasks 10-28

Defining SystemCapture Procedures 10-30

Creating Generic Capture Procedures 10-31

See Also 10-32

Generating Generic Capture Procedures 10-32

WaveformTables 10-32

Generating QuickSTIL File Flows 10-33

ControllingMultiple ClockCapture 10-35

Multiple ClockCapture for a Single Vector 10-35

Multiple ClockCapture for Multiple Vectors 10-36

UsingMultiple Capture Procedures 10-36

Using Allclock Procedures 10-37

Specifying a Typical Allclock Procedure 10-38

xvi

TetraMAX ATPG User Guide K-2015.06-SP4

Interaction of the Allclock andMultiple Clock Procedures 10-38

Interaction of Allclock Procedures and NamedWaveform Tables 10-38

Using load_unload for Last Shift-Launch Transition 10-38

Example Post-Scan Protocol 10-39

Generic Capture Procedures Limitations 10-40

Defining Sequential Capture Procedures 10-40

Using Default Capture Procedures 10-41

Using a Sequential Capture Procedure 10-41

Sequential Capture Procedure Syntax 10-41

Defining Reflective I/OCapture Procedures 10-42

Using themaster_observe Procedure 10-43

Using the shadow_observe Procedure 10-44

Using the delay_capture_start Procedure 10-45

Using the delay_capture_end Procedure 10-47

Using the test_end Procedure 10-48

Scan Padding Behavior 10-48

Using the Condition Statement in STIL 10-50

Excluding Vectors FromSimulation 10-51

Using the DontSimulate Statement for Loops and Reference Clocks 10-51

Syntax and Example for Excluding Vectors 10-51

See Also 10-52

Defining Internal Clocks for PLL Support 10-52

Specifying anOn-Chip ClockController Inserted byDFT Compiler 10-54

Specifying SynchronizedMulti Frequency Internal Clocks for anOCC Controller 10-56

ClockTiming Block Syntax 10-56

Timing and Clock Pulse Overlapping 10-58

Controlling Latency for the PLLStructures Block 10-59

xvii

TetraMAX ATPG User Guide K-2015.06-SP4

ClockTiming Block Selection 10-59

ClockTiming Block Example 10-59

Specifying Internal Clocking Procedures 10-61

ClockConstraints and ClockTiming Block Syntax 10-61

Specifying the Clock Instruction Register 10-64

Specifying External Clocks 10-64

Example 1 10-64

Example 2 10-65

See Also 10-66

JTAG/TAP Controller Variations for the load_unload Procedure 10-67

Multiple ScanGroups 10-67

DFTMAX Compression with Serializer 10-74

11 Design Rule Checking 11-1

Understanding the DRC Process 11-3

Contention Analysis 11-3

BUS Contention Ability Checking 11-4

BUS Z State Ability Checking 11-4

Contention Prevention Checking 11-5

Simulation Contention Detection 11-5

ATPGContention Prevention 11-5

Post-Capture Contention Checking 11-5

Settings for Contention Checking 11-6

Using the Set Contention Dialog Box 11-6

Using the set_contention Command 11-6

See Also 11-6

Scan Chain Tracing 11-6

See Also 11-7

xviii

TetraMAX ATPG User Guide K-2015.06-SP4

ClockGrouping 11-7

Reducing the Pattern Count Through ClockGrouping 11-7

ClockGrouping Analysis 11-8

Generating a ClockGroup Report 11-10

ClockGrouping Limitations 11-10

Declaring Equivalent and Differential Input Ports 11-11

Using the Add PI EquivalencesDialog Box 11-11

Using the add_pi_equivalencesCommand 11-11

See Also 11-12

CellsWith Asynchronous Set/Reset Inputs 11-12

See Also 11-12

Masking Input andOutput Ports 11-13

Masking Scan Cell Inputs andOutputs 11-13

Specifying Cell Constraints Locations and Scan Cell Controls 11-13

Using the Add Cell Constraints Dialog Box 11-14

Using the add_cell_constraints Command 11-14

Previewing Potential Scan Cells 11-14

Using the Set Scan Ability Dialog Box 11-15

Using the set_scan_ability Command 11-15

Transparent Latches 11-15

Shadow Register Analysis 11-16

Feedback Paths Analysis 11-16

See Also 11-16

Procedure Simulation 11-16

Changing the Design Rule Severity 11-17

Using the Set RulesDialog Box 11-17

Using the set_rules Command 11-17

xix

TetraMAX ATPG User Guide K-2015.06-SP4

Understanding the DRC SummaryReport 11-18

Binary Image Files 11-21

Creating and Reading Image Files 11-22

Creating a Non-Secure Image File 11-23

Creating a Secure Image File 11-23

Save/Restore in TESTMode 11-25

12 Fault Lists and Faults 12-1

Working with Fault Lists 12-2

See Also 12-3

Using Fault List Files 12-3

Collapsed and Uncollapsed Fault Lists 12-3

RandomFault Sampling 12-4

Fault Dictionary 12-5

Fault Categories and Classes 12-5

Fault ClassHierarchy 12-5

DT (Detected) = DR + DS + DI + D2 + TP 12-6

PT (Possibly Detected) = AP + NP + P0 + P1 12-7

UD (Undetectable) = UU + UO+ UT + UB + UR 12-7

AU (ATPGUntestable) = AN 12-8

ND (Not Detected) = NC + NO 12-9

Fault SummaryReports 12-9

Fault SummaryReport Examples 12-9

Test Coverage 12-11

Fault Coverage 12-11

ATPGEffectiveness 12-12

See Also 12-12

Using ClockDomain-Based Faults 12-12

xx

TetraMAX ATPG User Guide K-2015.06-SP4

Using Signals That Conflict With Reserved Keywords 12-16

Finding Particular Untested Faults Per ClockDomain 12-16

13 Optimizing ATPG 13-1

Using ATPGConstraints 13-2

Usage Example 1 13-2

Usage Example 2 13-3

Using the RandomDecision Option 13-3

See Also 13-3

Obtaining Target Test Coverage Using Fewer Patterns 13-4

Maximizing Test Coverage Using Fewer Patterns 13-4

Improving Test CoverageWith Test Points 13-5

Test Points Analysis Options 13-5

Running the Test Points Analysis Flow 13-5

Limitation 13-6

Optimizing Basic Scan Patterns 13-6

Limiting the Number of Patterns 13-7

Limiting the Number of Aborted Decisions 13-8

Creating Test Patterns for Diagnosing Scan Chain Failures 13-8

Understanding DFTMAX UnloadModes and Chain Diagnosis Patterns 13-9

Generating Pattern Sets 13-10

See Also 13-11

Creating End-of-CycleMeasures in ATPGPatterns 13-11

Drawbacks of Using End-of-CycleMeasures 13-11

Requirements Needed to Produce End-of-CycleMeasures 13-12

See Also 13-13

Deleting Top-Level Ports FromOutput Patterns 13-13

Detecting FaultsMultiple TimesUsing N-Detect 13-13

xxi

TetraMAX ATPG User Guide K-2015.06-SP4

See Also 13-13

WGLPattern Generation Options 13-14

See Also 13-14

Creating LSI-CompatibleWGLPatterns 13-14

See Also 13-16

Creating NEC-CompatibleWGLPatterns 13-16

See Also 13-17

WGLScan Chain Padding 13-17

See Also 13-18

WGLScan Chain Definitions 13-18

See Also 13-18

Macro Usage inWGL 13-19

See Also 13-21

Grouping Bidirectional Port Data inWGL 13-21

See Also 13-21

Controlling Port Data Order inWGL 13-22

See Also 13-22

SpecifyingWindowedMeasures inWGL 13-22

See Also 13-23

Delayed Input Force Timing and Force Prior inWGL 13-23

See Also 13-24

Balancing Vector and Scan Statements inWGL 13-24

See Also 13-25

Mapping Bidirectional PortsWithin Vector Statements inWGL 13-25

See Also 13-28

Mapping Bidirectional PortsWithin Scan Statements inWGL 13-28

See Also 13-29

xxii

TetraMAX ATPG User Guide K-2015.06-SP4

Adjusting Pattern Data for Serial Versus Parallel Interpretation inWGL 13-30

See Also 13-30

Selecting Scan Chain Inversion Reference inWGL 13-31

See Also 13-32

Effect of CELLDEFINE inWGL 13-32

See Also 13-33

Ambiguity of theMaster Cell inWGL 13-33

See Also 13-34

RunningMulticore ATPG 13-34

See Also 13-34

ComparingMulticore ATPGandDistributed ATPG 13-34

InvokingMulticore ATPG 13-35

Multicore Interrupt Handling 13-35

Understanding the Processes SummaryReport 13-36

Multicore Limitations 13-37

Running Logic Simulation 13-37

Comparing Simulated and Expected Values 13-37

Patterns in the Simulation Buffer 13-38

Sequential Simulation Data 13-39

Single-Point Failure Simulation 13-39

GSV Display of a Single-Point Failure 13-39

Data Volume and Test Application TimeReduction Calculations 13-40

Test Data VolumeCalculations 13-40

Test Application TimeCalculations 13-41

See Also 13-42

14 Fault Simulation 14-1

Fault Simulation Design Flow 14-2

xxiii

TetraMAX ATPG User Guide K-2015.06-SP4

Preparing Functional Test Patterns for Fault Simulation 14-4

Pattern Compliance with ATE 14-4

Checking Patterns for Timing Insensitivity 14-4

Timing Sensitivity 14-5

Preparing Your Design for Fault Simulation 14-6

Preprocessing the Netlist 14-6

Reading the Design and Libraries 14-6

Building the ATPGDesignModel 14-6

Declaring Clocks 14-7

Running DRC 14-7

DRC for NonscanOperation 14-7

DRC for ScanOperation 14-8

Reading Functional Test Patterns 14-9

Using the Set PatternsDialog Box 14-9

Using the set_patternsCommand 14-9

Specifying Strobes for VCDE Pattern Input 14-10

Initializing the Fault List 14-12

Using the Add Faults Dialog Box 14-12

Using the add_faults Command 14-12

PerformingGoodMachine Simulation 14-12

Using the Run Simulation Dialog Box 14-13

Using the set_simulation and run_simulation Commands 14-13

Performing Fault Simulation 14-13

Using the Run Fault Simulation Dialog Box 14-14

Using the run_fault_simCommand 14-14

Writing the Fault List 14-14

Combining ATPGand Functional Test Patterns 14-15

xxiv

TetraMAX ATPG User Guide K-2015.06-SP4

Creating Independent Functional and ATPGPatterns 14-15

Creating ATPGPatterns After Functional Patterns 14-15

Creating Functional Patterns After ATPGPatterns 14-16

RunningMulticore Simulation 14-17

InvokingMulticore Simulation 14-18

Interrupt Handling 14-18

Understanding the Processes SummaryReport 14-18

Resimulating ATPGPatterns 14-20

Limitations 14-20

See Also 14-20

Per-Cycle PatternMasking 14-20

Flow Options 14-21

Masks File 14-21

Running the Flow 14-22

Limitations 14-23

15 On-Chip Clocking Support 15-1

OCC Background 15-2

OCC Definitions, Supported Flows, Supported Patterns 15-2

OCC Limitations 15-3

DFT Compiler to TetraMAX Flow 15-5

OCC Support in TetraMAX 15-8

Design Set Up 15-8

OCC Scan ATPGFlow 15-9

Waveform and Capture Cycle Example 15-9

Using SynchronizedMulti Frequency Internal Clocks 15-9

Enabling Internal Clock Synchronization 15-10

ClockChain Reordering 15-10

xxv

TetraMAX ATPG User Guide K-2015.06-SP4

ClockChain Resequencing 15-11

Finding ClockChain Bit Requirements 15-12

Reporting Clocks 15-13

Reporting Patterns 15-14

Using Internal Clocking Procedures 15-15

Enabling Internal Clocking Procedures 15-15

Performing DRC with Internal Clocking Procedures 15-15

Reporting Clocks 15-16

Performing ATPGwith Internal Clocking Procedures 15-17

Grouping Patterns ByClockingProcedure Blocks 15-17

Forcing a Single Group Per Clocking Procedure 15-18

Enabling ATPG to Achieve Better Efficiency 15-18

Writing PatternsGrouped byClocking Procedure 15-18

Reporting Patterns 15-19

Limitations 15-19

See Also 15-20

OCC-Specific DRC Rules 15-20

16 Path Delay Fault and Hold Time Testing 16-1

Path Delay Fault Theory 16-2

Path Delay Fault TermDefinitions 16-2

Models for Manufacturing Tests 16-4

Models for Characterization Tests 16-5

Testing I/OPaths 16-6

Path Delay Testing Flow 16-7

Obtaining Delay or Hold Time Paths 16-9

Importing PrimeTime Path Lists 16-9

Path Definition Syntax 16-11

xxvi

TetraMAX ATPG User Guide K-2015.06-SP4

Translating Timing Exceptions 16-12

Hold Time ATPGTest Flow 16-13

Generating Path Delay Tests 16-15

Flow for Generating Path Delay Tests 16-16

Using set_delayOptions 16-16

Reading and Reporting Path Lists 16-17

Analyzing Path Rule Violations 16-17

Viewing Delay Paths 16-17

Path Delay ATPGOptions 16-17

Internal Loopback and False/Multicycle Paths 16-17

Creating At-SpeedWaveformTables 16-18

Maintaining At-SpeedWaveform Table Information 16-21

MUXClock Support for Path Delay Patterns 16-21

EnablingMUXClock Functionality 16-21

Delay Test Vector Format 16-22

Limitations of MUXClock Support for Path Delay Patterns 16-23

ATPGRequirements to Support MUXClock 16-24

Handling Untested Paths 16-24

Understanding False Paths 16-24

Understanding Untestable Paths 16-25

Reporting Untestable Paths 16-25

Analyzing Untestable Faults 16-26

TetraMAX Commands for Path Delay Fault Testing Example 16-27

17 Quiescence Test Pattern Generation 17-1

WhyDo IDDQTesting? 17-2

CMOS Circuit Characteristics 17-2

IDDQTestingMethodology 17-3

xxvii

TetraMAX ATPG User Guide K-2015.06-SP4

Types of Defects Detected 17-4

Number of IDDQStrobes 17-5

About IDDQPattern Generation 17-5

IDDQLimitations 17-7

Fault Models 17-7

DRC Rule Violations 17-7

Generating IDDQTest Patterns 17-9

IDDQTest Pattern Generation Flow 17-9

Using the iddq_capture Procedure 17-10

Off-Chip IDDQMonitor Support 17-11

Specifying Additional Signals in the Netlist 17-11

Defining the iddq_capture Procedure to Support Additional Signals 17-12

Using IDDQCommands 17-15

Using the set_faults Command 17-15

Using the set_iddq Command 17-15

Using the add_atpg_constraints Command 17-16

IDDQBridging 17-16

Design Principles for IDDQTestability 17-17

I/OPads 17-18

Buses 17-18

RAMs and Analog Blocks 17-18

Free-RunningOscillators 17-19

Circuit Design 17-19

Power andGround 17-19

ModelsWith Switch/FET Primitives 17-19

Connections 17-20

IDDQDesign-for-Test Rule Summary 17-20

xxviii

TetraMAX ATPG User Guide K-2015.06-SP4

Additional System-on-a-Chip Rules 17-21

18 Transition-Delay Fault ATPG 18-1

Using the Transition-Delay Fault Model 18-2

Transition-Delay Fault ATPG Flow 18-2

Transition-Delay Fault ATPGTimingModes 18-3

Launch-On Shift Mode Versus SystemClock LaunchMode 18-4

Using Launch-On Extra Shift Timing 18-6

See Also 18-7

STIL Protocol for Transition Faults 18-7

See Also 18-7

Creating Transition Fault Waveform Tables 18-8

See Also 18-9

DRC for Transition Faults 18-9

Limitations of Transition-Delay Fault ATPG 18-10

Specifying Transition-Delay Faults 18-10

Selecting the Fault Model 18-11

Adding Faults to the Fault List 18-11

Reading a Fault List File 18-11

Pattern Generation for Transition-Delay Faults 18-12

Using the set_atpg Command 18-12

Using the set_delay Command 18-12

Using the run_atpg Command 18-13

Pattern Compression for Transition Faults 18-13

Using the report_faults Command 18-14

Using the write_faults Command 18-14

Pattern Formatting for Transition-Delay Faults 18-14

MUXClock Support for Transition Patterns 18-16

xxix

TetraMAX ATPG User Guide K-2015.06-SP4

Specifying Timing Exceptions From an SDC File 18-16

Reading an SDC File 18-16

Interpreting an SDC File 18-17

How TetraMAX Interprets SDC Commands 18-17

Controlling Clock Timing 18-18

Controlling ATPG Interpretation 18-18

Controlling Timing Exceptions Simulation for Stuck-at Faults 18-18

Reporting SDC Results 18-18

Limitation 18-19

Slack-Based Transition Fault Testing 18-19

Basic Usage Flow 18-19

Extracting SlackData fromPrimeTime 18-19

Utilizing SlackData in the TetraMAX Flow 18-20

How TetraMAX Integrates SlackData 18-20

Command Support 18-20

Special Elements of Slack-Based Transition Fault Testing 18-23

Allowing Variation From theMinimum-Slack Path 18-23

Defining Faults of Interest 18-23

Reporting Faults 18-24

Limitations 18-24

Engine and Flow Limitations 18-24

ATPGLimitations 18-25

Limitations in Support for BusDrivers 18-25

19 Running Distributed ATPG 19-1

See Also 19-1

Command Summary 19-2

Identifying aWorkDirectory 19-2

xxx

TetraMAX ATPG User Guide K-2015.06-SP4

AddingMachines to the Distributed Processor List 19-2

Removing aMachine From the Distributed Processor List 19-2

Controlling Timeouts 19-3

Reporting Current SlaveMachines 19-3

Starting Distributed ATPG 19-3

Distributed Processing Flow 19-3

Verifying Your Environment 19-4

Remote Shell Considerations 19-5

Tuning Your .cshrc File 19-5

Checking the Load Sharing Setup 19-5

Using Distributed Processing: Step ByStep 19-6

Building the Design and Running DRC 19-6

Example Script 19-6

Selecting the Fault Model and Creating the Fault List 19-6

Distributed Fault Simulation 19-6

Distributed ATPG 19-6

Example Scripts for Selecting Fault Models 19-7

Setting Up the Distributed Environment 19-7

Setting Up a Distributed EnvironmentWith Load Sharing 19-8

Starting Distributed Fault Simulation 19-10

Events After Starting A Distributed Run 19-11

Interpreting Distributed Fault Simulation Results 19-11

Starting Distributed ATPG 19-12

Saving Results 19-15

Distributed Processor Log Files 19-15

Distributed ATPGLimitations 19-16

20 Persistent Fault Model Support 20-1

xxxi

TetraMAX ATPG User Guide K-2015.06-SP4

Persistent Fault Model Overview 20-2

See Also 20-2

Persistent Fault Model Operations 20-2

See Also 20-2

Switching Fault Models 20-3

WorkingWith Internal Pattern Sets 20-3

Manipulating Fault Lists 20-3

Automatically Saving Fault Lists 20-4

Automatically Restoring Fault Lists 20-4

Removing Fault Lists 20-5

Adding Faults 20-5

Reporting Persistent Fault Models 20-6

Direct Fault Crediting 20-8

See Also 20-9

Example CommandsUsed in Persistent Fault Model Flow 20-10

21 Diagnosing Manufacturing Test Failures 21-1

Diagnostics Flow Overview 21-2

Running the Diagnostics Flow 21-4

Writing and Reading Binary Images 21-5

Reading Pattern Files 21-5

See Also 21-6

Reading Patterns 21-6

See Also 21-6

ReadingMultiple Pattern Files 21-6

See Also 21-7

Translating DFTMAX Compressed Patterns Into Normal Scan Patterns 21-7

Example Flow 21-7

xxxii

TetraMAX ATPG User Guide K-2015.06-SP4

Translation Limitations 21-8

See Also 21-8

Failure Data Files 21-8

Pattern-Based Failure Data File 21-9

Pattern-Based Failure Data File for DFTMAX Serialized Adaptive Scan 21-10

Cycle-Based Failure Data File 21-11

Cycle-Based Failure Data File Format 21-12

Cycle-Based Failure Data File for DFTMAX Serialized Adaptive Scan 21-12

Failure Data File Extensions 21-13

Adding Header Information to a Failure Data File 21-14

Creating a Header Section 21-15

Updating the Header Section 21-16

Creating a Header Schema File 21-16

Examples 21-17

Example A: Header Schema File for Split Pattern SetWith Two Pattern Files 21-17

Example B: Header Schema File for Split Pattern SetWith Three Pattern Files21-18

Example C: Flow for Handling CustomColumns in the EDCT File 21-19

Failure Data File Limitations 21-20

Running Diagnostics 21-20

Using the RunDiagnosis Dialog Box 21-20

Using the run_diagnosis Command 21-20

Performing Scan Chain Diagnostics 21-20

Running Scan Chain Diagnostics 21-21

Understanding the Scan Chain Diagnosis Report 21-21

Diagnosing Defects Related to Power Issues 21-22

Diagnosing Internal Cell Defects 21-22

Detecting and Classifying Internal Cell Defects 21-22

xxxiii

TetraMAX ATPG User Guide K-2015.06-SP4

Examples of Reporting Internal Cell Defects 21-23

Parallel Diagnostics 21-23

See Also 21-23

Specifying Parallel Diagnostics 21-24

Converting Serial Scripts to Parallel Scripts 21-25

Using Split Datalogs to PerformParallel Diagnostics for Split Patterns 21-25

See Also 21-26

Diagnosis Log Files 21-26

Parallel Diagnostics Limitations 21-28

Understanding the Diagnosis Report 21-29

Standard Format 21-29

DFTMAX Format 21-32

Verbose Format 21-33

Standard Report with Net Data 21-34

Standard Report with Composite Fault Model Data 21-34

PHDS Physical Diagnosis Report 21-37

Scan Chain Diagnosis Format 21-39

22 Using Physical Data for Diagnostics 22-1

Physical Diagnostics Flow Overview 22-2

See Also 22-3

Using TetraMAX to Create a PHDS Database 22-3

Translating a LEF/DEF Database into a PHDS Database 22-3

See Also 22-4

Reading a PHDS Database 22-4

See Also 22-5

Starting and Stopping the DAP Server Process 22-5

Setting Up a Connection to the PHDS Database 22-7

xxxiv

TetraMAX ATPG User Guide K-2015.06-SP4

NameMatching Using a PHDS Database 22-8

NameMatching Overview 22-8

Understanding the NameMatching Coverage Report 22-9

Reporting the NameMatching Coverage 22-10

Using NameMatching Results for Diagnostics 22-11

Setting Up and Running Physical Diagnostics 22-12

Running Physical Diagnostics 22-12

See Also 22-13

Static Subnet Extraction Using a PHDS Database 22-13

Writing Physical Data for Yield Explorer 22-15

See Also 22-15

23 Bridging Fault ATPG 23-1

See Also 23-1

Detecting Bridging Faults 23-2

How Bridging Faults are Defined 23-2

Bridge Locations 23-2

Strength-Based Patterns 23-3

Bridging Fault Flows 23-4

Bridging Faults and theOverall TetraMAX Flow 23-4

Bridging Fault Flow in TetraMAX 23-4

Setup 23-5

Input Faults 23-5

Manipulating the Fault List 23-5

Examining the Fault List 23-6

Fault Simulation 23-6

Running ATPG 23-6

Analysis 23-6

xxxv

TetraMAX ATPG User Guide K-2015.06-SP4

Example Script 23-7

Using StarRC to Generate a Bridge Fault List 23-8

TCAD Characterization 23-8

Generating a Resistance and Capacitance (GRD) Model. 23-9

Extracting Capacitance 23-9

Running StarRC in GUI or BatchMode 23-9

Coupling Capacitance Report 23-11

Running TetraMAX 23-11

Bridging Fault Model Limitations 23-12

Running the Dynamic Bridging Fault ATPGFlow 23-12

Understanding the Dynamic Bridging Fault Model 23-12

Preparing to Run Dynamic Bridging Fault ATPG 23-13

Specifying a List of Input Faults 23-13

Manipulating the Fault List 23-14

Examining the Fault List 23-14

Fault Simulation 23-14

Running ATPG 23-15

Analyzing Fault Detection 23-15

Example Script 23-16

Limitations 23-16

24 Power Aware ATPG 24-1

Input Data Requirements 24-2

Setting a Power Budget 24-2

Preparing Your Design 24-2

Reporting Clock-Gating Cells 24-3

Setting a Strict Power Budget 24-4

Setting ToggleWeights 24-4

xxxvi

TetraMAX ATPG User Guide K-2015.06-SP4

Running Power Aware ATPG 24-5

Applying Quiet Chain Test Patterns 24-5

Testing with Asynchronous Primary Inputs 24-6

Power Reporting ByClockDomain 24-6

Setting a Capture Budget for Individual Clocks 24-10

Retention Cell Testing 24-11

Creating the chain_capture Procedure 24-11

Identifying Retention Cells 24-12

Performing Test DRC 24-12

Generating the Patterns 24-13

Running Fault Simulation 24-13

Limitations 24-13

Power Aware ATPGLimitations 24-14

25 Using TetraMAX and DFTMAX Ultra Compression 25-1

Generating Patterns for DFTMAX Ultra Designs 25-2

Pattern TypesRequired byDFTMAX Ultra 25-2

Script Example for Generating Patterns for DFTMAX Ultra 25-2

Manipulating Patterns for DFTMAX Ultra 25-4

Controlling the Peak and Average Power During Shifting 25-4

Increasing theMaximumShift Length of Patterns 25-4

Optimizing Padding Patterns 25-5

Performing Padding Pattern Optimization 25-6

Removing and Reordering Patterns 25-6

High Resolution Pattern Flow for DFTMAX Ultra Chain Diagnostics 25-7

Identifying Defective Chains 25-7

Generating High Resolution Patterns 25-7

Rerunning Diagnostics Using the High Resolution Patterns 25-8

xxxvii

TetraMAX ATPG User Guide K-2015.06-SP4

Flow Example 25-8

See Also 25-9

Test Validation and VCS Simulation for DFTMAX Ultra Designs 25-9

Limitations for Using DFTMAX Ultra 25-9

26 Troubleshooting 26-1

Reporting Port Names 26-2

Reviewing aModule Representation 26-2

Rerunning Design Rule Checking 26-4

Troubleshooting Netlists 26-4

Troubleshooting STIL Procedures 26-5

Opening the STL Procedure File 26-5

STIL load_unload Procedure 26-6

STIL Shift Procedure 26-6

STIL test_setupMacro 26-7

Correcting DRC Violations byChanging the Design 26-8

Analyzing the Cause of Low Test Coverage 26-8

Where Are the Faults Located? 26-8

WhyAre the Faults Untestable or Difficult to Test? 26-9

Using Justification 26-10

Completing an Aborted Bus Analysis 26-11

A Test Concepts A-1

WhyPerformManufacturing Testing? A-2

Understanding Fault Models A-2

Stuck-At Fault Models A-3

Detecting Stuck-At Faults A-3

Using Fault Models to Determine Test Coverage A-4

IDDQFault Model A-5

xxxviii

TetraMAX ATPG User Guide K-2015.06-SP4

Fault Simulation A-5

Automatic Test Pattern Generation A-6

Translation for theManufacturing Test Environment A-6

What Is Internal Scan? A-7

Example A-7

Applying Test Patterns A-8

Scan Design Requirements A-9

Controllability of Sequential Cells A-9

Observability of Sequential Cells A-9

Full-Scan Design A-10

Partial-Scan ATPGDesign A-10

What Is Boundary Scan? A-11

B ATPG Design Guidelines B-1

ATPGDesignGuidelines B-2

Internally Generated Pulsed Signals B-2

ClockControl B-6

Pulsed Signals to Sequential Devices B-9

Multidriver Nets B-10

Bidirectional Port Controls B-12

Exception B-13

Clocking Scan Chains: Clock Sources, Trees, and Edges B-13

Clock Trees B-15

Clock Flip-Flops B-16

XNOR Clock Inversion and Clock Trees B-18

Protection of RAMsDuring Scan Shifting B-19

RAMandROMControllability During ATPG B-20

Pulsed Signal to RAMs and ROMs B-22

xxxix

TetraMAX ATPG User Guide K-2015.06-SP4

BusKeepers B-23

Non-Z State on aMultidriver Net B-24

Non-Clocked Events B-25

Bus Keepers B-26

Non-Z State on aMultidriver Net B-27

Non-Clocked Events B-27

Checklists for Quick Reference B-28

ATPGDesignGuideline Checklist B-28

Ports for Test I/OChecklist B-29

C Importing Designs From DFT Compiler C-1

D Utilities D-1

Ltran Translation Utility D-2

Ltran in the Shell Mode D-2

FTDL, TDL91, and TSTL2Configuration Files D-3

Understanding the Configuration File D-4

Customizing the FTDLConfiguration File D-4

Customizing the TDL91Configuration File D-5

Customizing the TSTL2Configuration File D-6

Additional Controls D-6

Support for Other Formats D-7

Configuration File Syntax D-8

OVF_BLOCK Statements D-8

PROC_BLOCK Statements D-9

TVF_BLOCK Statements D-10

Generating PrimeTimeConstraints D-11

Input Requirements D-12

Starting the Tcl Command Parser Mode D-12

xl

TetraMAX ATPG User Guide K-2015.06-SP4

Setting Up TetraMAX D-12

Making Adjustments for OCC Controllers D-15

Performing an Analysis for EachMode D-16

Implementation D-18

Converting Timing Violations Into Timing Exceptions D-20

report_diagnosis Tcl Procedure D-22

Using report_diagnosis D-22

TablesReported by report_diagnosis D-24

Diagnostics Candidate Table D-25

Defect Information Table D-26

Results Summary Table D-27

Failure Log File Table D-28

Netlist Data Table D-28

Physical Data Table D-30

Cycle to Pattern Conversion Table D-32

FailureMapping Summary Table D-33

FailureMapping Detailed Table D-33

Performance Table D-34

Example Report from report_diagnosis D-35

E STIL Language Support E-1

STIL Overview E-2

IEEE Std. 1450-1999 E-2

IEEE Std. 1450.1 Design Extensions to STIL E-3

TetraMAX ATPGand STIL E-3

STIL Conventions in TetraMAX E-4

Use of STIL Procedures E-4

Context of Partial Signal Sets in Procedure Definitions E-5

xli

TetraMAX ATPG User Guide K-2015.06-SP4

Use of STIL SignalGroups E-5

WaveFormCharacter Interpretation E-6

IEEE Std. 1450.1 ExtensionsUsed in TetraMAX E-8

Vector DataMapping Using \m E-8

Syntax E-9

Example E-10

Vector DataMapping Using \j E-10

Syntax E-10

General Example E-10

Usage Example E-12

Signal Constraints Using Fixed and Equivalent E-13

ScanStructures Block E-14

Elements of STIL Not Used by TetraMAX E-14

TetraMAX STIL Output E-14

TetraMAX STIL Input E-16

F STIL99 Versus STIL F-1

G Defective Chain Masking for DFTMAX G-1

Introduction G-2

Running the Flow G-2

Placing Constraints on the Defective Chain G-2

Generating Patterns G-3

Regenerating Patterns G-3

Examples G-4

Limitation G-6

xlii

Preface
This preface is comprised of the following sections:

l About ThisManual
l Customer Support

About This User Guide
The TetraMAX ATPGUser Guide describes TetraMAX ATPGusage andmethodology.
TetraMAX ATPG is used to check testability design rules and to automatically generate
manufacturing test vectors for a logic design.
Thismanual provides some backgroundmaterial on design-for-test (DFT) cone timepts,
especially test terminology and scan design techniques. You can obtain more information on
TetraMAX ATPG features and commands by accessing TetraMAX Help.

Audience
Thismanual is intended for design engineers who have ASIC design experience and some
exposure to testability cone timepts and strategies.
Thismanual is also useful for test engineers who incorporate the test vectors produced by
TetraMAX ATPG into test programs for a particular tester or who work with DFT netlists.

Related Publications
For additional information about TetraMAX ATPG, see Documentation on theWeb, which is
available through SolvNet® at the following address:
https://solvnet.synopsys.com/DocsOnWeb
Youmight also want to read the documentation for the following related Synopsys products:
DFTMAX™ andDesign Compiler®.

xliii

https://solvnet.synopsys.com/DocsOnWeb

TetraMAX ATPG User Guide K-2015.06-SP4

Release Notes
Information about new features, enhancements, changes, known limitations, and resolved
Synopsys Technical Action Requests (STARs) is available in the TetraMAX ATPGRelease
Notes on the SolvNet site.

To see the TetraMAX ATPGRelease Notes:

1. Go to the SolvNet Download Center located at the following address:

https://solvnet.synopsys.com/DownloadCenter

2. Select TetraMAX ATPG, and then select a release in the list that appears.

About This User Guide xliv

https://solvnet.synopsys.com/DownloadCenter

TetraMAX ATPG User Guide K-2015.06-SP4

Conventions
The following conventions are used in Synopsys documentation.

Convention Description

Courier Indicates command syntax.

Courier italic Indicates a user-defined value in Synopsys syntax, such as
object_name. (A user-defined value that is not Synopsys
syntax, such as a user-defined value in a Verilog or VHDL
statement, is indicated by regular text font italic.)

Courier bold Indicates user input—text you type verbatim—in Synopsys
syntax and examples. (User input that is not Synopsys
syntax, such as a user name or password you enter in a GUI,
is indicated by regular text font bold.)

[] Denotes optional parameters, such as pin1 [pin2 ... pinN]

| Indicates a choice among alternatives, such as low | medium |
high. (This example indicates that you can enter one of three
possible values for an option: low, medium, or high.)

_ Connects terms that are read as a single term by the
system, such as set_environment_viewer

Control-c Indicates a keyboard combination, such as holding down the
Control key and pressing c.

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Edit > Copy Indicates a path to a menu command, such as opening the
Edit menu and choosing Copy.

Customer Support
Customer support is available through SolvNet online customer support and through contacting
the Synopsys Technical Support Center.

Accessing SolvNet
The SolvNet site includes an electronic knowledge base of technical articles and answers to
frequently asked questions about Synopsys tools. The SolvNet site also gives you access to a

Customer Support xlv

TetraMAX ATPG User Guide K-2015.06-SP4

wide range of Synopsys online services including software downloads, documentation on the
Web, and technical support.
To access the SolvNet site, go to the following address:
https://solvnet.synopsys.com
If prompted, enter your user name and password. If you do not have a Synopsys user name and
password, follow the instructions to register with SolvNet.
If you need help using the SolvNet site, click HELP in the top-right menu bar.

Contacting the Synopsys Technical Support Center
If you have problems, questions, or suggestions, you can contact the Synopsys Technical
Support Center in the following ways:

l Open a support case to your local support center online by signing in to the SolvNet site at
http://solvnet.synopsys.com, clicking Support, and then clicking “Open a Support Case.”

l Send an e-mail message to your local support center.
l E-mail support_center@synopsys.com fromwithin North America.
l Find other local support center e-mail addresses at
http://www.synopsys.com/Support/GlobalSupportCenters/Pages

l Telephone your local support center.
l Call (800) 245-8005 fromwithin the continental United States.
l Call (650) 584-4200 fromCanada.
l Find other local support center telephone numbers at:
http://www.synopsys.com/Support/GlobalSupportCenter/Pages

Customer Support xlvi

https://solvnet.synopsys.com/
http://solvnet.synopsys.com/
http://www.synopsys.com/Support/GlobalSupportCenters/Pages
http://www.synopsys.com/Support/GlobalSupportCenters/Pages

1
TetraMAX Overview
TetraMAX ATPG is a high-speed, high-capacity automatic test pattern generation (ATPG) tool.
It can generate test patterns that maximize test coverage while using aminimumnumber of test
vectors for a wide variety of design types and design flows. It is suitable for designs of all sizes up
tomillions of gates.
The following sections provide an overview of TetraMAX:

l TetraMAX Features
l Design Flow Using DFT Compiler and TetraMAX

1-1

TetraMAX ATPG User Guide K-2015.06-SP4

Key TetraMAX Features
The following sections describe the key TetraMAX ATPG features:

l Benefits and Features: AnOverview
l ATPGCapabilities
l ATPGModes
l Supported Fault Models

Benefits and Features: An Overview
TetraMAX ATPGprovides the following benefits and key features:

l Increases product quality with power aware test patterns for high defect detection. For
more information, see "Power Aware ATPG."

l Reduces testing costs through the use of advanced pattern compaction techniques. For
more information, see "Compressing Patterns."

l Increases designer productivity by leveraging integration with SynopsysDFTMAX
compression. For more information, see theDFT Compiler, DFTMAX, and DFTMAX User
Guide.

l Multicore support for faster runtime. For more information, see "RunningMulticore ATPG"
and "RunningMulticore Simulation."

l Integrated graphical user interface and simulation waveform viewer. For more information,
see "Using theGraphical Schematic Viewer," "Using the Hierarchy Browser," and "Using
the SimulationWaveformViewer."

l Comprehensive scan design rule checking. For more information, see "Performing Test
Design Rule Checking (DRC)."

l Generates patterns targeting specific defect mechanisms. For more information, see
"Supported Fault Models."

l Supports on-chip clocking using phase-lock loops (PLLs). For more information, see "On-
Chip Clocking Support."

l Supports quiescent test validation. For more information, see "Quiescence Test Pattern
Generation."

l Integrated fault simulator for functional vectors. For more information, see "Fault
Simulation."

l Yield Diagnostics with automatic defect isolation. For more information, see "Diagnosing
Manufacturing Test Failures."

See Also
ATPG Capabilities
ATPG Modes
Supported Fault Models

Key TetraMAX Features 1-2

TetraMAX ATPG User Guide K-2015.06-SP4

ATPG Capabilities
TetraMAX ATPGsupports a wide variety of ATPG functionality, and has the following
capabilities:

l Reads design netlists in Verilog, VHDL, and EDIF formats; and test protocol information in
STIL format

l Writes test pattern files in a variety of standard and proprietary formats: WGL, STIL, Fujitsu
TDL, TI TDL91, and Toshiba TSTL2

l Offers a choice of the following ATPGmodes:
l Basic-Scan ATPG, an efficient combinational-onlymode for full-scan designs
l Fast-Sequential ATPG for limited support of partial-scan designs
l Full-Sequential ATPG for maximum test coverage in partial-scan designs

l Supports the following design-for-test (DFT) styles:
l Various scan flip-flop types (multiplexed flip-flop, master, slave, transparent latch,
and so on)

l Internal, non-decoded three-state buses
l Bus keepers
l RAMandROMmodels
l Proprietary and standard test controllers (such as IEEE 1149.1-compliant boundary
scan)

l Produces and verifies ATPGpatterns that avoid bus contention and float conditions
l Offers interactive analysis and debugging with the graphical schematic viewer (GSV), for
easy analysis of design rule violations and other conditions found in the design

l Provides links to Verilog and VHDL simulators
l Provides an integrated fault simulator that supports fault simulation of functional patterns
l Can perform direct automated test equipment (ATE) diagnostics, allowing you to quickly
map a test failure to a fault site in the design

See Also
ATPG Modes
Supported Fault Models

ATPG Modes
TetraMAX ATPGoffers three different ATPGmodes:

l Basic-Scan ATPG
In basic-scanmode, TetraMAX ATPGoperates as a full-scan, combinational-only ATPG
tool. To get high test coverage, the sequential elements need to be scan elements.
Combinational ROMs can be used to gain coverage of circuitry in their shadows in this
mode.

Key TetraMAX Features 1-3

TetraMAX ATPG User Guide K-2015.06-SP4

l Fast-Sequential ATPG
Fast-sequential ATPGprovides limited support for partial-scan designs. In thismode,
multiple capture procedures are allowed between scan load and scan unload, allowing
data to be propagated through nonscan sequential elements in the design such as
functional latches, nonscan flops, and RAMs and ROMs. However, all clock and reset
signals to these nonscan elementsmust still be directly controllable at the primary inputs of
the device. You enable the Fast-Sequential mode and specify its effort level by using the -
capture_cycles option of the set_atpg command.

l Full-Sequential ATPG
Full-sequential ATPG, like fast-sequential ATPG, supportsmultiple capture cycles
between scan load and unload, thus increasing test coverage in partial-scan designs.
Clock and reset signals to the nonscan elements do not need to be controllable at the
primary inputs; and there is no specific limit on the number of capture cycles used between
scan load and unload. You enable the Full-Sequential mode by using the -full_seq_
atpg option of the set_atpg command. The full-sequential mode supports an optional
feature called Sequential Capture. Defining a sequential capture procedure in the STIL file
lets you compose a customized capture clock sequence applied to the device during Full-
Sequential ATPG. For example, you can define the clocking sequence for a two-phase
latch design, where CLKP1 is followed byCLKP2. This feature is enabled by the -clock
-seq_capture option of the set_drc command. Otherwise, the tool creates its own
sequence of clocks and other signals to target the as-yet-undetected faults in the design.

See Also
ATPG Capabilities
Supported Fault Models

Command Modes
For each TetraMAX session, you progress through a series of commandmodes. Eachmode
reflects the types of processes you can perform:

l BUILD Mode
This is the initial mode in which you read in your design netlists and libraries, and create
and read ATPGsimulationmodels in preparation for design rule checking.

l DRC Mode
In thismode, you perform design rule checking (DRC), which analyzes your design against
a set of predefined rules, and reports any anomalies.

l TEST Mode
In thismode, you performATPG, fault simulation, and fault diagnosis, and write simulation
testbenches.

See Also
ATPG Capabilities
Supported Fault Models

Key TetraMAX Features 1-4

TetraMAX ATPG User Guide K-2015.06-SP4

Supported Fault Models
TetraMAX ATPGsupports test pattern generation for five types of fault models:

l Stuck-At
The stuck-at fault model is the standardmodel for test pattern generation. Thismodel
assumes that a circuit defect behaves as a node stuck at either 0 or 1. The test pattern
generator attempts to propagate the effects of these faults to the primary outputs and scan
cells of the device, where they can be observed at a device output or captured in a scan
chain. For more information on stuck-at faults, see "Understanding Fault Models"

l Transition
The transition delay fault model is used to generate test patterns to detect single-node
slow-to-rise and slow-to-fall faults. For thismodel, TetraMAX ATPG launches a logical
transition upon completion of a scan load operation and uses a capture clock procedure to
observe the transition results. This feature is licensed separately. For more information,
see "Transition-Delay Fault ATPG.”

l Path Delay
The path delay fault model tests and characterizes critical timing paths in a design. Path
delay fault tests exercise the critical paths at-speed (the full operating speed of the chip) to
detect whether the path is too slow because of manufacturing defects or variations. For
more information, see "Path Delay Fault and Hold Time Testing.”

l IDDQ
The IDDQ fault model assumes that a circuit defect will cause excessive current drain due
to an internal short circuit from a node to ground or to a power supply. For thismodel,
TetraMAX ATPGdoes not attempt to observe the logical results at the device outputs.
Instead, it tries to toggle asmany nodes as possible into both states while avoiding
conditions that violate quiescence, so that defects can be detected by the excessive
current drain that they cause. For more information, see "Quiesence Test Pattern
Generation."

See Also
Fault Lists and Faults
Fault Simulation
Persistent Fault Model Support
What Are Fault Models?

Design Flow Using DFT Compiler and TetraMAX
TetraMAX ATPG is compatible with a wide range of design-for-test tools, such asDFT
Compiler.
Figure 1 shows how TetraMAX ATPG fits into the DFT Compiler design-for-test flow for a
module or amedium-sized design of less than 750K gates.

Design Flow Using DFT Compiler and TetraMAX 1-5

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1 Design Flow for aModule or Medium-Sized Design

The design flow shown in Figure 1 is as follows:

1. Starting with an HDL netlist at the register transfer level (RTL) within DFT Compiler, run a
test-ready compilation, which integrates logic optimization and scan replacement.

Design Flow Using DFT Compiler and TetraMAX 1-6

TetraMAX ATPG User Guide K-2015.06-SP4

The compile -scan commandmaps all sequential cells directly to their scan
equivalents. At this point, you still don’t know whether the sequential cellsmeet the test
design rules.

2. Perform test design rule checking; the check_scan command reports any sequential
cells that violate test design rules.

3. After you resolve the DRC violations, run the preview_scan command to examine the
scan architecture that is synthesized by the insert_scan command. Repeat this
procedure until you are satisfied with the scan architecture, then run the insert_scan
command, which implements the scan architecture.

4. Rerun the check_scan command to identify any remaining DRC violations and to infer a
test protocol. For details about the DFT Compiler design flow through completion of the
scan design, see theDFT Compiler Scan Synthesis User Guide.

5. When your netlist is free of DRC violations, it is ready for ATPG. For medium-sized and
smaller designs, DFT Compiler provides the write_test_protocol command, which
allows you to write out a STL procedure file. TetraMAX ATPG reads the STL procedure
file and design netlist.

For details of the TetraMAX ATPGportion of the design flow, see “ATPGDesign Flow.”
Figure 2 shows the design flow for a design that is too large for test protocol file generation from
a single netlist (about 750K gates or larger).

Design Flow Using DFT Compiler and TetraMAX 1-7

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 2 Design Flow for a Very Large Design

For large designs, you initially follow the design flow shown in Figure 1 at themodule level, using
modules of 200K gates or fewer, to get the completed scan design for eachmodule.
Then, as shown in Figure 2, you start with the completed scan design for eachmodule. You
write the netlists, combine and link the netlists, andmake the final scan chain connections, thus
generating a combined netlist for the entire design. A test protocol file is created automatically.

Design Flow Using DFT Compiler and TetraMAX 1-8

TetraMAX ATPG User Guide K-2015.06-SP4

For information on creating a test procedure file, see “STIL Procedure Files.” You use the
combined netlist and themanually generated test protocol file as inputs to TetraMAX ATPG.

See Also
ATPGDesign Flow

Design Flow Using DFT Compiler and TetraMAX 1-9

2
Running TetraMAX
The following sections describe the basic steps for starting and operating TetraMAX ATPG :

l Installation
l Invoking TetraMAX
l Command Files
l Setup Command Files
l Variables
l Controlling TetraMAX Processes
l Licensing

2-1

TetraMAX ATPG User Guide K-2015.06-SP4

Installation
To obtain the TetraMAX ATPG installation files, download them fromSynopsys using electronic
software transfer (EST) or File Transfer Protocol (FTP).
TetraMAX ATPGcan be installed as a standalone product or over an existing Synopsys product
installation (an “overlay” installation). An overlay installation shares certain support and licensing
files with other Synopsys tools, whereas a standalone installation has its own independent set of
support files. You specify the type of installation you want when you install the product.
An environment variable called SYNOPSYS specifies the location for the TetraMAX ATPG
installation. You need to explicitly set this environment variable.
Complete installation instructions are provided in the Installation Guide that comeswith each
release of TetraMAX ATPG .

Specifying the Location for TetraMAX Installation
TetraMAX ATPG requires the SYNOPSYS environment variable, a variable typically used with all
Synopsys products. For backward compatibility, SYNOPSYS_TMAX can be used instead of the
SYNOPSYS variable. However, TetraMAX ATPG looks for SYNOPSYS and if not found, then
looks for SYNOPSYS_TMAX. If SYNOPSYS_TMAX is found, then it overrides SYNOPSYS and
issues a warning that there are differences between them.
The conditions and rules are as follows:

l SYNOPSYS is set and SYNOPSYS_TMAX is not set. This is the preferred and
recommended condition.

l SYNOPSYS_TMAX is set and SYNOPSYS is not set. The tool will set SYNOPSYS using the
value of SYNOPSYS_TMAX and continue.

l Both SYNOPSYS and SYNOPSYS_TMAX are set. SYNOPSYS_TMAX will take precedence
and SYNOPSYS is set to match before invoking the kernel.

l Both SYNOPSYS and SYNOPSYS_TMAX are set, and are of different values, then a
warningmessage is generated similar to the following:
WARNING: $SYNOPSYS and $SYNOPSYS_TMAX are set differently,
using $SYNOPSYS_TMAX
WARNING: SYNOPSYS_TMAX = /mount/groucho/joeuser/tmax
WARNING: SYNOPSYS = /mount/harpo/production/synopsys
WARNING: Use of SYNOPSYS_TMAX is outdated and support for this
will be removed in a future release. Use SYNOPSYS instead.

Installation 2-2

TetraMAX ATPG User Guide K-2015.06-SP4

Invoking TetraMAX
The following sections describe how to invoke TetraMAX ATPG :

l Command-Line Syntax
l Methods for Invoking TetraMAX
l Running Background Jobs
l Predefined Aliases
l Debugging Dual Process Issues

Before you invoke TetraMAX ATPG , make sure your PATH environment variable includes the
path to the Synopsys tools, which is typically $SYNOPSYS/bin.

Command-Line Syntax
The command-line syntax for invoking TetraMAX ATPG is as follows:
tmax [command_file] [-env SYM value]... [-shell | -gui] [-
iconify] [-nostartup] [-notcl | -tcl] [-man | -help | -usage | -
version] [-root path_to_install_dir] [-debug]

You can also abbreviatemost command options using the first character or first three
characters; for example, -v or -ver for -version.
Table 1 shows detailed descriptions of all tmax command syntax items.

Table 1: tmax Command SyntaxDescriptions

Argument Description

command_file Specifies the path name to the file that contains the
commands to be run. If specified with a “>“ redirection
symbol, reads commands from the specified command_file
one command at a time.

-env SYM value Enables the definition of an environment variable used in
commands. Multiple variables can be defined by repeating -
env SYM value. In Tcl mode, you must use the getenv
command to return the value of the variable. In native mode,
this environment variable is only recognized in commands
that use it at the beginning of file path names. Note that SYM
is the symbol name and value is the string value to use any
place $SYM is used in a file path name. This restriction does
not apply to Tcl mode.

Invoking TetraMAX 2-3

TetraMAX ATPG User Guide K-2015.06-SP4

Argument Description

-shell | -gui The -shell option, when used with command_file, executes the
command file when you invoke TetraMAX ATPG . Only a command-line
interface is provided. You can also define an environment variable
TMSHELL=1, which is equivalent to using -shell. For example, to run
a batch script as a background process that is also immune to hangups,
enter the following:
% tmax -shell run.scr >& /dev/null &

The -gui option (the default), forces use of the windows version of the
tool. Overrides the environment variable TMSHELL if it is defined.
Launches two executables—one for the kernel and one for the
graphical interface.

-man | -help |
-usage | -
version

The -help option prints the description of this command. The
-man option invokes Online Help to view the online man
pages (does not consume a license). The -usage option
prints a summary of command switches and arguments. The
-version option reports the product version.

-iconify For the graphical version of the tool, this option iconifies the
window after invoking. It has no effect on the shell version.
You can also define the environment variable TMAX_ICONIFY
to any non-null string to always start the window process in
an iconified mode.

-nostartup Disables the automatic execution of setup files. Startup files
are searched for in a number of locations including the install
area of TetraMAX, the user's home directory, the current
working directory, and as specified by the TMAXRC
environment variable.

-notcl | -tcl The -notcl option elects the native mode command-line
parser as the default command processor. By default,
TetraMAX is invoked in Tcl mode.

-debug Prints setup and internal information before invoking the
executable.

Methods for Invoking TetraMAX
Table 2 shows the variousmethods you can use to invoke TetraMAX ATPG.

Invoking TetraMAX 2-4

TetraMAX ATPG User Guide K-2015.06-SP4

Table 2 TetraMAX InvocationMethods

Invoke With1 You Get Process List

tmax 64-bit kernel plus
GUI

tmax, tmaxgui

tmax -shell 64-bit kernel tmax

tmax -man Online help tmax, HTML browser

tmax -help List of options
1 - The order of switches is not important.
2 - The tmax process invokes the shell. The CPU is idle after the kernel launches, but remains
open so that the kernel has a transcript window in which to display output.
The following example starts TetraMAX ATPG in shell mode:

% tmax -shell

Specifying Environment Variables
You can specify the TMAX_SHELL variable to avoid the need to constantly specify the -shell
switch, as shown in the following example:
% setenv TMAX_SHELL

If the TMAX_SHELL environment variable is defined, you can override it by invoking:
% tmax -gui // overrides TMAX_SHELL=1

Specifying a Command File
You can use an ASCII command file containing a sequence of TetraMAX commands that
automatically run when you invoke TetraMAX ATPG. There are several ways you can specify a
command file:

l % tmax command_file [other_args]...
l % tmax [other_args]... command_file

l Within a script as a “here” document:
#!/bin/sh
tmax [other_args] -shell <<!
source command_file
exit -force
!

l % tmax [other_args]
BUILD-T> source command_file

For more information on using command files, see "Command Files."

Invoking TetraMAX 2-5

TetraMAX ATPG User Guide K-2015.06-SP4

Running Background Jobs
Make sure you put the set_commands noabort command at the top of the command file
when TetraMAX ATPG is running in backgroundmode, such as the following:
% tmax command_file [other_args]... -shell &

The command file should end with the exit -force command. If this command isn't
specified, and a problem occurs during the processing of the command file causing the
command file to halt, TetraMAX ATPGstops and waits for additional input. Because there is no
standard-in connected to the background process, TetraMAX ATPGhalts indefinitely and you
have tomanually kill the process.

Predefined Aliases
A set of aliases are predefined automatically when TetraMAX ATPG is invoked by the
Synopsys-supplied setup file:
$SYNOPSYS/admin/setup/tmax.rc

This setup file is similar in operation to the .synopsys_dc.setup file for Design Compiler.
For more information on TetraMAX setup files, see "Setup Command Files."

Debugging Dual Process Issues
In the dual process (or split-GUI) model, two independent processes simultaneously run and
communicate with each other. As a result, the following scenarios can occur:

l The kernel process ends, but the GUI is still running
l TheGUI process ends, but the kernel is still running

Either process can detect when the other process ismissing and to try to perform the safest
function. When the kernel process ends, the GUI notifies you that no communication with the
kernel is possible. You should then exit the GUI process. If the GUI process end, the kernel
should also exit. You can check the process list with a command such as ps and terminate the
kernel started with a GUI.

See Also
Setup Command Files
Variables

Command Files
A command file is a simple ASCII text file containing any command accepted by
TetraMAX ATPG. You can placemultiple commands into a file and execute them sequentially by
running the name of the command file using the source command_file_name command.

Command Files 2-6

TetraMAX ATPG User Guide K-2015.06-SP4

You can use the abort, noabort, or exit options of the set_commands command to
specify the command file execution to stop or continue when TetraMAX ATPGencounters an
error.
You can specify whether comments and command output will appear in the transcript or log files
using the set_messages command.
You can reference one command file fromwithin another by nesting source command_
file_name commands.
You can specify a command file to be executed when you invoke TetraMAX ATPGon aUNIX or
NTmachine running a command shell. The syntax is:
 % tmax command_file
 % tmax command_file -shell

Use of the optional -shell argument runs the non-GUI form of TetraMAX ATPG. Thismight
bemore convenient if no user interaction or interactive debugging is expected, or when you are
running TetraMAX ATPG from a remote telnet session or other environment where a graphic
display is not available.
Note: You can condition TetraMAX ATPG to pause by invoking it with the -shellargument
followed by a command file specification; for example:
 % tmax -shell
 % source command_file

For more information on command files, see "Using Command Files."

Batch Files
Note:When you operate TetraMAX ATPG in batchmode using command files,you should use
the set_commands noabort command at the beginning and the exit -force command
at the end of each command file. Then you can safely use commands such as the following at
the shell prompt:

 % tmax batch_command_file -shell &

Without these commands at the beginning and end of a command file, the situation could arise
where the tool encounters an error, but there is no way tomake it exit.

Setup Command Files
A setup command file is similar to a command file, except that it is executed automatically when
TetraMAX starts. You can include any commands in a setup command file that are used in a
command file.
TetraMAX ATPG includes a tmaxtcl.rc setup file (for Tcl mode) or a tmax.rc setup file (for legacy
mode).

Setup Command Files 2-7

TetraMAX ATPG User Guide K-2015.06-SP4

Upon startup, TetraMAX ATPGautomatically executes command files frommultiple locations
based upon the following order:

1. $SYNOPSYS/admin/setup/tmax.rc
2. $TMAXRC, if defined (intended for use by ASIC vendors)
3. $HOME/.tmaxrc or $HOME/.tmaxtclrc
4. tmaxrc, tmax.rc, .tmaxtclrc, or tmaxtcl.rc in the current working directory

Setup command files are executed before any command files specified in the TetraMAX ATPG
invocation line. You can specify a command file using any of the following techniques:
% tmax command_file [other_args]...

% tmax [other_args]... command_file

Within a script as a "here" document:
 #!/bin/sh
 tmax [other_args] -shell <<!
 source command_file
 exit -force
 !
 % tmax [other_args]
 BUILD> source command_file

By default, commands in a command setup file are not echoed to the transcript. To see the
commands as they are executed, place a set_messages -display command at the
beginning of the command setup file.
To invoke TetraMAX ATPGwithout using a setup command file, use the -nostartup switch:
 % tmax -nostartup

Using Variables
TetraMAX ATPGsupports limited use of variables in commands and command files. Variables
are accepted only as the prefix (or first) string of a file path name argument. No other arguments
or options of commands support the use of variables.
A variable is recognized by the leading dollar sign ($), followed by the variable name, as shown
in the following examples:
set_messages log $specLOG -replace

read_netlist $LIBDIR/cmos/verilog/*.v

write_patterns $tmp/testbench.v -format verilog -replace

TetraMAX supports two types of variables:
l UNIX environment variables
These variables are typically defined using the setenv command, or the set and
export commands.

Using Variables 2-8

TetraMAX ATPG User Guide K-2015.06-SP4

l User-defined environment variables
These variables are defined in the TetraMAX invocation line as shown in the following
example:
% tmax -env specLOG save/tmax.log -env tmp /tmp

You can definemultiple variables by repeating the -env argument of the tmax command. To
view the current setting of any user-defined environment variable, specify the report_
settings command. A variable defined with -env will override any existing environment
variable with the same name.
TetraMAX ATPG recognizesUNIX environment variables specified within a command. You can
also set variables in a script using the set or setenv commands. The set command can be
used for most commands; the setenv commandmakes the variable available for programs
called from the TetraMAX shell.

For example:

setenv LTRAN_SHELL 1

setenv SNPSLMD_QUEUE

There are several differences in behavior between Tcl mode and nativemodewhen using
variables.

Tcl Mode
In Tcl mode, you can use the getenv or get_unix_variable commands to return the value
of the variable. You can also use the $env(VAR) syntax.

Some usage examples are as follows:

set_messages –log [get_env LOG_DIR]/tmax.log

report_rules –fail > [getenv RPTS]/violations.rpt

set_atpg –num_processes [get_env cpu]

source $env(SYNOPSYS)/auxx/syn/tmax/tmax2pt.tcl

For more information on Tcl mode, see "Using TclWith TetraMAX ."

Native Mode
In nativemode, you can use variables only at the beginning of the path file names, as shown in
the following examples:.

set messages log $specLOG -replace
read netlist $LIBDIR/cmos/verilog/*.v
write patterns $tmp/testbench.v -format verilog -replace

Using Variables 2-9

TetraMAX ATPG User Guide K-2015.06-SP4

Controlling TetraMAX Processes
The following sections describe the various TetraMAX ATPGprocesses you can control:

l Starting and Stopping the TetraMAX GUI
l Interrupting a Long Process
l Adjusting theWorkspace Size
l SavingGUI Preferences

Starting and Stopping the TetraMAX GUI
If you are in shell mode, you can display the TetraMAX GUI in its current state by entering the
gui_start command:
BUILD-T> gui_start

This command switches the context to listen-only in the GUI console.
After you start the TetraMAX GUI (using the gui_start command), enter the gui_stop
command to exit the GUI:
BUILD-T> gui_stop

This command stops the TetraMAX GUI session and reverts to the TetraMAX shell command
prompt. If you did not use the gui_start command to start the GUI, the gui_stop command
exits the TetraMAX application. You can also use the gui_stop command from the pull-down
menu: File > Exit GUI. If you use the gui_stop command before invoking TetraMAX ATPG
using the gui_start command to start the GUI, the gui_stop command exits the TetraMAX
application.

Interrupting a Long Process
While TetraMAX ATPG is processing commands, the Submit button in the TetraMAX window
changes to a Stop button. To stop a process, click the Stop button. (Depending on the type of
platform you are using, Control-c and Control-Breakmay also perform the Stop function.)
Note: The Stop button usually workswithin a few seconds. However, interrupting a large file I/O
processmight take longer.
You can use the Stop function to interrupt the following types of processes:

l Reading netlists
l Running ATPG, simulation, or fault simulation
l Reporting faults to the screen
l Running design rule checking (DRC)
l Building the design-level ATPGmodel
l Learning following an ATPGbuild
l Compressing patterns

Controlling TetraMAX Processes 2-10

TetraMAX ATPG User Guide K-2015.06-SP4

l Writing patterns to a file
l Reading or writing fault lists from files
l Reporting scan cells
l Executing command files

When you use the Stop function to stop execution of a command file, TetraMAX ATPGnormally
stops execution of the entire file, unless the file contains the following line:
set_commands noabort

In that case, TetraMAX ATPGstops execution of only the current command in the file and
continues execution of any commands following the stopped command. The set_commands
noabort command is useful when you want a file to continue command file execution even
though an error might occur.

Discarding Pending Output
There are timeswhen the Stop button doesn't interrupt lengthy output from TetraMAX ATPG.
This occurs, for example, if you enter the following command:
report_atpg_constraints -all

To discard pending output, you can use the "Discard pending output" button located at the
bottom of the TetraMAX console. This button is visible only after an interrupt (via the Stop button
or ESC key) is detected, as shown in Figure 1.

Figure 1: Discard PendingOutput Button

Note that the Stop button will always be enabled and operational if the kernel is still processing
the current command.

Adjusting the Workspace Size
In TetraMAX ATPG, you can set themaximum line length, maximum string length, and
maximumnumber of decisions allowed during test pattern generation. If you encounter
messages indicating that the limits for the line or string lengths have been reached, on themenu

Controlling TetraMAX Processes 2-11

TetraMAX ATPG User Guide K-2015.06-SP4

bar, choose Edit > Environment to display the Environment dialog box. Then click Kernel and
increase the limits.
For information about the other options available to this command, seeOnline Help for the set_
workspace_sizes command.
As an alternative to the Environment dialog box, you can use the set_workspace_sizes
command to change the workspace size settings.

Saving Preferences
TetraMAX ATPGenables you to save theseGUI preferences so that the settings persist the
next time you invoke TetraMAX ATPG.
When you invoke the TetraMAX GUI, it reads some of the default GSV preferences from the
tmax.rc file. The TetraMAX GUI has a Preferences dialog box to change the default settings
to control the appearance and behavior of the GUI. These default settings control the size of
main window, window geometry, application font, size, GSV preferences and other preferences.
If you change the appearance and behavior of the GUI using the Preferences dialog box,
TetraMAX ATPGsaves your changes in the $(HOME)
/.config/Synopsys/tmaxgui.conf file before it exits. The next time you invoke
TetraMAX ATPG, it does the following:

l Reads the default preferences from the tmax.rc file.
l Reads the preferences from the $(HOME)/.config/Synopsys/tmaxgui.conf
file. For the preferences that are listed in the tmax.rc file, the $(HOME)
/.config/Synopsys/tmaxgui.conf file has precedence over the tmax.rc file.
For all other GUI preferences, TetraMAX ATPGuses the values from the tmaxgui.rc
file to define the appearance and behavior of the GUI.

Setting Preferences
You can adjust settings suchmessage formatting, workspace size, aliases, GUI font and color
display, and schematic display options. To access the Preference dialog box, select Edit ->
Preferences, as shown in Figure 1.

Controlling TetraMAX Processes 2-12

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1 PreferencesDialog Box

Table 1 describes the various Preferences settings:

Category Description

Messages Directs output messages to a log file, formatsmessageswith a prefix,
displays comments, setsmessage levl to standard or expert.

Kernel Sets maximum workspace sizes for ATPG gates, decisions,
file line length, string line length, connectors.

Aliases Adds, removes, and modifies alias names and text.

GUI Sets the display of the toolbar, the default font size and
type, and the default font color for commands and error
messages.

Schematic Sets the default color scheme, the hierarchy display, the
display of gates and instance names, and the pin data
length.

Table 1: TetraMAX GUI Prerences

To save any Preferences specifications youmade, select Edit -> Save Preferences or Edit ->
Autosave Preferences.

Controlling TetraMAX Processes 2-13

TetraMAX ATPG User Guide K-2015.06-SP4

Note: As an alternative to the Preferences dialog box, you can use the set_workspace_
sizes command to change the workspace size settings.

See Also
Displaying Symbols in Primitive or Design View

Saving GUI Preferences
You can saveGUI preferences so that the settings are used the next time you invoke TetraMAX
ATPG.
When you invoke the TetraMAX GUI, it reads some of the default graphical schematic viewer
(GSV) preferences from the tmax.rc file. The TetraMAX GUI has a Preferences dialog box to
change the default settings to control the appearance and behavior of the GUI. These default
settings control the size of main window, window geometry, application font, size, GSV
preferences and other preferences. If you change the appearance and behavior of the GUI
using the Preferences dialog box, TetraMAX ATPGsaves your changes in the $(HOME)
/.config/Synopsys/tmaxgui.conf file before it exits. The next time you invoke
TetraMAX ATPG, it does the following:

l Reads the default preferences from the tmax.rc file.
l Reads the preferences from the $(HOME)/.config/Synopsys/tmaxgui.conf
file. For the preferences that are listed in the tmax.rc file, the $(HOME)
/.config/Synopsys/tmaxgui.conf file has precedence over the tmax.rc file.
For all other GUI preferences, TetraMAX ATPGuses the values from the tmaxgui.rc
file to define the appearance and behavior of the GUI.

See Also
TetraMAX GUI Main Window
Using the Graphical Schematic Viewer

Licensing
To use TetraMAX ATPG, youmust have a valid license key file on your machine. The license
key file authorizes you to run TetraMAX ATPG (and other licensed Synopsys tools) for a specific
calendar time period. The full path name of the file is specified by the environment variable
SYNOPSYS_KEY_FILE. The license file is keyed to the host ID of themachine, so the key is
valid only on that machine.
The following sections describe licensing in TetraMAX:

l Licensing Overview
l Product Licenses and Features
l Checking out Licenses
l LicensesReport
l License Keys for Features

Licensing 2-14

TetraMAX ATPG User Guide K-2015.06-SP4

Licensing Overview
TetraMAX ATPGautomatically checks out a required license each time you invoke the program
or execute a command that requires a specific license. All licenses are automatically released
when you exit the program. Therefore, you do not need to be cone timerned about checking out
or checking in licenses unless there are conflicting needs betweenmultiple users.
The standard capabilities licensed for TetraMAX ATPGare as follows:

l Design compilation, design rule checking, and vector formatting
l Test vector generation and vector diagnosis
l Functional vector fault simulation

You can generate a report showing the licenses currently in use by TetraMAX ATPGusing the
report_licenses command, as shown in the following example:
BUILD-T> report_licenses
 test-fault-max
 test-power

Tomanually check out a specific license (to reserve the license for yourself), use the get_
licenses command, as shown in the following example:
get_licenses test-faultsim

To release a specific license without exiting from TetraMAX ATPG (tomake the license available
to others), use the remove_licenses command:
remove_licenses test-faultsim

Youmust retain at least one TetraMAX license when running the tool.
TetraMAX ATPGcan check out a DFT Compiler license if you set the one these environment
variables:

l TMAX_USE_DFT_LICENSE - will always check out Test-Compiler
l TMAX_USE_ATPG_LICENSE - always check out Test-Compile

TetraMAX ATPGsupports license queuing, which allows the tool to wait for licenses that are
temporarily unavailable. To enable this feature, youmust set the SNPSLMD_QUEUE
environment variable to a non-empty arbitrary value (“1”, “TRUE”, “ON”, “SET”, etc.) before
invoking TetraMAX ATPG:
unix> setenv SNPSLMD_QUEUE

Product Licenses
The following table describes the commands and product licenses required for running various
features in TetraMAX ATPG:

Licensing 2-15

TetraMAX ATPG User Guide K-2015.06-SP4

COMMAND Required Products

TetraMAX ATPG,
DFT Compiler, or
DFTMAX
Compression

TetraMAX
ATPG

TetraMAX
ATPGand
DSMTest

TetraMAX
ATPGand
DFTMAX
Compression

Invoking TetraMAX X

run_build_model X

run_drc X

run_atpg[1] X

run_fault_sim[1] X

run_atpg with
advanced fault model[2]
and power aware [4]

X

run_fault_sim
with advanced fault
model[2]

X

run_atpg with scan
compression[3]

X

run_fault_sim
with scan compression
[3]

X

run_simulation X

run_diagnosis X

[1]An additional TetraMAX ATPG license is required to run onmore than four cores or four
distributed processors.
[2]Transition, path_delay, hold_time, bridging or dynamic_bridging fault model. An additional
DSMTest license is required to run onmore than four cores or four distributed processors.
[3]DSMTest is also required with an advanced fault model. An additional DFTMAX license is
required to run onmore than four cores or four distributed processors.
[4]Power budget or power effort is set.

Checking Out Licenses
TetraMAX ATPGwill use a Test-Compile license first before attempting to use a Test-Compiler
license. You can configure TetraMAX ATPG to check out the Test-Compile only or Test-
Compiler only licenses. This is accomplished by using one of the two environment variables:

Licensing 2-16

TetraMAX ATPG User Guide K-2015.06-SP4

TMAX_USE_DFT_LICENSE -- Will always check out the Test-Compiler license.
TMAX_USE_ATPG_LICENSE -- Will always check out the Test-Compile license.

Examples
% setenv TMAX_USE_DFT_LICENSE 1
% setenv TMAX_USE_ATPG_LICENSE 1

If you set the TMAX_USE_DFT_LICENSE variable, and you have used up all your "Test-
Compiler" licenses (even if you have a "Test-Compile" license available), TetraMAX ATPGwill
not launch because of your current environment variable setting. The tool will retain at least one
Test-Compile(r) license when TetraMAX ATPG is invoked. You cannot remove a primary
license -- i.e., a license that TetraMAX ATPG requires to start.
TetraMAX ATPGsupports license queuing, which allows the tool to wait for licenses that are
temporarily unavailable. To enable this feature, youmust set the SNPSLMD_QUEUE
environment variable to a non-empty arbitrary value (“1”, “TRUE”, “ON”, “SET”, etc.) before
invoking TetraMAX ATPG:
% setenv SNPSLMD_QUEUE

Licenses Report
You can run the report_licenses command to view a list of all licenses currently checked
out by TetraMAX ATPG. The syntax for this command is as follows:

report_licenses

Standard Format
TEST> report_licenses
 Test-Analysis
 Test-Faultsim
 Test-Map

License Keys for Features
This section describes the use of license keys for specific features in TetraMAX ATPG.
You can use the report_licenses command to see what licenses are checked out in the
current session. All license keys are checked back in when the current session terminates.
The following table describes the commands and license keys required for running various
features in TetraMAX ATPG:

COMMAND FUNCTION LICENSE KEY PRODUCT

tmax Invokes TetraMAX ATPG. Test-Compile TetraMAX ATPG

run_drc Checks design rules. Test-Analysis TetraMAX ATPG

Licensing 2-17

TetraMAX ATPG User Guide K-2015.06-SP4

analyze_test_
points

Reports optimal observe
and control test points.

Test-
Compression-
ATPG

DFTMAX
Compression

read_timing Usesminimum slacks for
small delay defect ATPG.

Test-SDD-Timing DSMTest

run_atpg Generates ATPGpatterns. Test-ATPG-Max
Test-Faultsim

TetraMAX ATPG

run_fault_sim Runs fault simulation. Test-Faultsim TetraMAX ATPG

run_atpg

run_fault_sim

When transition, path_
delay, hold_time, bridging,
or dynamic bridging fault
model is enabled.

Test-Fault-Max DSMTest

run_atpg

report_power

When a power budget or
power effort is enabled.

Reports pattern switching
activity.

Test-Power DSMTest

run_atpg

run_fault_sim

When load or unload
compressors are defined.

Test-Compression-
ATPG

DFTMAX
Compression

read_layout Uses physical information
for diagnosis.

Test-Physical TetraMAX ATPG

run_diagnosis Diagnoses a failing device. Test-Diagnosis
Test-Faultsim

TetraMAX ATPG

Licensing 2-18

3
Command Interface
TetraMAX ATPGprovides an interactive command interface, and a command language that
you can use to execute command sequences in batchmode. Online Help is available on
commands, error messages, design flows, andmany other TetraMAX topics.
The following sections describe the TetraMAX command interface:

l TetraMAX GUI MainWindow
l Command Entry
l Transcript Window
l Online Help

3-1

TetraMAX ATPG User Guide K-2015.06-SP4

TetraMAX GUI Main Window
Figure 1 shows themain window of the TetraMAX graphical user interface (GUI). Themajor
components in this window are (from top to bottom): themenu bar, the quick access buttons, the
command toolbar, the graphical schematic viewer (GSV) toolbar and window, the transcript
window, the command-line text field, and the status bar.

Figure 1: TetraMAX GUI MainWindow

TheGSV window is not displayed when you start TetraMAX ATPG. It first appears when you
execute a command that requests a schematic display. For more information on theGSV
window, see “Using theGraphical Schematic Viewer."
The status bar, located at the very bottom of themain window, contains the STOP button and
displays the state of TetraMAX ATPG (Kernel Busy/Ready), pin/block reference data, Pin Data
details, red/green signal indicating the kernel busy/ready status, and the commandmode
indicator. For more information, see “CommandMode Indicator."

TetraMAX GUI Main Window 3-2

TetraMAX ATPG User Guide K-2015.06-SP4

See Also
Using the Graphical Schematic Viewer
Using the Hierarchy Browser
Using the Simulation Waveform Viewer

Command Entry
Themain window provides three ways to interactively enter commands:

l Select from pull-downmenus at the top of themain window.
l Use the command buttons in the command toolbar or the graphical schematic viewer
(GSV) toolbar.

l Type commands in the command-line window.
The pull-downmenus and command buttons let you specify the command options in dialog
boxes. The command-line window uses a command-line-based entrymethod.
The following sections describe how to perform command entry:

l Menu Bar
l Command Toolbar andGSV Toolbar
l Command-LineWindow
l Commands From aCommand File
l Command Logging

Menu Bar
Themenu bar consists of a set of pull-downmenus you use to select a required action. These
menus provide themost comprehensive set of command selections.
Figure 1 shows themenu bar.

Figure 1: Menu Bar

Command Toolbar and GSV Toolbar
The command toolbar is a collection of buttons you use to run TetraMAX commands. These
buttons provide a fast and convenient alternative to using the pull-downmenus or command-line
window. Similarly, the GSV toolbar provides a fast way to control the contents of the GSV
window.
Figure 2 shows the command toolbar andGSV toolbar.

Command Entry 3-3

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 2: Command Toolbar andGSV Toolbar

By default, the command toolbar is displayed at the top of themain window, just below themenu
bar. TheGSV toolbar is displayed on the left side of the GSV window. Both toolbars are
“dockable” — that is, you canmove and “dock” them to any four sides of the GSV window, or use
them as free-standing windows.
Tomove the toolbar, position the pointer on the border of the toolbar (outside any of the
buttons), press and hold themouse button, drag the toolbar to the required location, and release
themouse button.

Command-Line Window
The command-line window is located between the transcript window and the status bar . The
following components comprise the command-line window:

l CommandMode Indicator
l Command-Line Entry Field
l CommandContinuation
l CommandHistory
l Stop Button

Figure 3 shows the command-line window.

Figure 3: Command-LineWindow

Command Mode Indicator
The commandmode indicator, located to the left of the status bar, displays either BUILD-T>,
DRC-T>, or TEST-T>, depending on the operatingmode currently enabled.
To change the commandmode, use the Build, DRC, and Test buttons, located a the far right.
The buttons are dimmed if you cannot change to that mode in the current context. To change to
one of thesemodes, click the corresponding button. If an attempt to change the current mode
fails, the command-line window remains unchanged and an error message appears in the
transcript window.

Command Entry 3-4

TetraMAX ATPG User Guide K-2015.06-SP4

Command-Line Entry Field
You type TetraMAX commands in the command-line text field at the bottom of the screen. To
enter a command, click in the text field, type the command, and either click Submit or press
Enter. After it has been entered, the command is echoed to the transcript, stored in the
command history, and sent to TetraMAX ATPG for execution.
You can use the editing featuresCut (Control-x), Copy (Control-c), and Paste (Control-v) in the
command-line text field. If the command is too long for the text field, the text field automatically
scrolls so that you can continue to see the end of the command entry.
The command line supportsmultiple commands. You can enter more than one command on the
command line by separating commandswith a semicolon.
You can enter two exclamation characters (!!) to repeat the last command. Entering !!xyz
repeats themost recent command that begins with the string xyz.
You can use the arrow keys to queue the command line. If you are in Tcl mode, TetraMAX
ATPG includes automatic command completion feature. This feature also applies to directory
and file name completion in both nativemode and Tcl mode.

Command Continuation
To continue a long command line over multiple lines, place at least one space followed by a
backslash character (\) at the end of each line.
Example 1 shows an example of the add_atpg_primitives command in Tcl mode. This
command defines an ATPGprimitive connected tomultiple pins. Note the use of curly brackets
in Tcl mode for specifying lists. Each pin path name is presented on a separate line using the
backslash character. All five lines are treated as a single command. Example 2 shows the same
command example in nativemode.

Example 1: Command continuation acrossmultiple lines (Tcl mode)
BUILD-T> add_atpg_primitives spec_atpg_prim1 equiv \
{ /BLASTER/MAIN/CPU/TP/CYCL/CDEC/U1936/in1 \
/BLASTER/MAIN/ALU_CORE/TP/CYCL/CDEC/U1936/in1 \
/BLASTER/MAIN/ALU_CORE/TP/CYCL/CDEC/U16/in2 \
/BLASTER/MAIN/ALU_CORE/TP/CYCL/CDEC/U13/in0 }

Example 2: Command continuation acrossmultiple lines (nativemode)
BUILD> add atpg primitives spec_atpg_prim1 equiv \
/BLASTER/MAIN/CPU/TP/CYCL/CDEC/U1936/in1 \
/BLASTER/MAIN/ALU_CORE/TP/CYCL/CDEC/U1936/in1 \
/BLASTER/MAIN/ALU_CORE/TP/CYCL/CDEC/U16/in2 \
/BLASTER/MAIN/ALU_CORE/TP/CYCL/CDEC/U13/in0

Command History
The command history contains commands you have entered at the command line. To run a
previous command, use the arrow keys to highlight the required command, and then press
Enter.

Command Entry 3-5

TetraMAX ATPG User Guide K-2015.06-SP4

Another way to view a list of recent commands is to use the report_commands -history
command.

Stop Button
The Stop button is located to the right of the status bar. If TetraMAX ATPG is idle, the Stop
button is dimmed. If TetraMAX ATPG is busy processing a command (and the commandmode
indicator displays <Busy>), the button is active and is labeled "Stop." Click this button to halt
processing of the current command. TetraMAX ATPGmight take several seconds to halt the
activity.
You can interrupt amulticore ATPGprocess by clicking the Stop button. At this point, themaster
process sends an abort signal to the slave processes and waits for the slaves to finish any
ongoing interval tasks. If this takes an extended period of time, you can click the Stop button
twice; this action causes themaster process to send a kill signal to the slaves, and the prompt will
immediately return. Note that the clicking the Stop button twice will terminate all slave processes
without saving any data gathered since the last communication with themaster. For more
information onmulticore ATPG, see "RunningMulticore ATPG."

Commands From a Command File
You can submit a list of commands as a file and have TetraMAX ATPGexecute those
commands in batchmode. In Tcl mode, any line starting with # is treated as a comment and is
ignored. In nativemode, any line starting with a double-slash (//) is ignored.
Although a command file can have any legal file name, for easy identification, youmight want to
use the standard extension .cmd (for example, specfile .cmd).
To run a command file, click the Cmd File button in the command toolbar, or enter the following
in the command-line window:
> source filename

Command files can be nested. In other words, a command file can contain a source command
that invokes another command file.
For an example of a command file, see “Using Command Files."
Note: The history list shows only the source filename command, not the commands executed in
the command file.

Command Logging
Commands that you enter throughmenus, buttons, and the command-line window can be
logged to a file along with all information reported to the transcript. By default, the command log
contains the same information as the saved transcript. In addition, the command log contains
comments from any command files that were used.
To turn on command logging (also calledmessage logging), click the Set Msg button in the
command toolbar to open the Set Messages dialog box, or type the following command:
> set_messages log spec_logfile.log

Command Entry 3-6

TetraMAX ATPG User Guide K-2015.06-SP4

If the log file already exists, an error message is displayed unless you add the optional -replace
or -append options, as follows:
> set_messages log spec_logfile.log -replace
> set_messages log spec_logfile.log -append

If you intend to use the log file as an executable command file, use the -leading_comment
option of the set_messages command. In this case, TetraMAX ATPGwrites out the comment
lines starting with either a pound sign(#) in Tcl mode, or a double slash in Nativemode, so that
those lines are ignored when you use the log file as a command file.

Transcript Window
The transcript window is a read-only, scrollable window that displays the session transcript,
including text produced by TetraMAX ATPGand commands entered in the command line and
from theGUI. The transcript provides a record of all activities carried out in the TetraMAX
session.
The following sections describe the transcript window:

l Setting the Keyboard Focus
l Using the Transcript Text
l Selecting Text in the Transcript
l Copying Text From the Transcript
l Finding Commands andMessages in the Transcript
l Saving or Printing the Transcript
l Clearing the Transcript Window

Transcript Window 3-7

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1: Transcript Window

Setting the Keyboard Focus
Setting the keyboard focus in the transcript window allows you to use keyboard shortcuts and
some keypad keys in the transcript window. You set the keyboard focus by clicking anywhere in
the transcript window. A blinking vertical-bar cursor appears in the text where you have set the
focus.

Using the Transcript Text
The transcript window has the editing featuresCopy, Find, Find Next, Save, Print, and Clear. If
the cursor is in the transcript window, you can use keyboard shortcuts for these editing features.
Otherwise, open the transcript window pop-upmenu by clicking anywhere in the transcript
window with the right mouse button.
You can look at any part of the entire transcript by using the horizontal and vertical scroll bars.
Notice that if you scroll up, you will not be able to see new text being added to the bottom of the
transcript.
If the cursor is in the transcript window, you can use the following keypad keys:

l Up / Down arrow -- Moves the cursor up or down one line.
l Left / Right arrow -- Moves the cursor left or right one character position.
l Page Up / Page Down -- Scrolls the transcript up or down one page. A “page” is the
amount of text that can be displayed in the transcript window at one time.

l Home / End -- Moves the cursor to the beginning or end of the current line.
l Control-Page Up / Control-Page Down -- Moves the cursor to the top or bottom of the
current transcript page.

Transcript Window 3-8

TetraMAX ATPG User Guide K-2015.06-SP4

l Control-Home -- Moves the cursor to the beginning of the first line in the transcript.
l Control-End -- Moves the cursor to the end of the last line in the transcript.

Selecting Text in the Transcript
To select part or all of the text in the transcript window, press the left mouse button at the
beginning of the required text, drag to the end of the required text, and release themouse
button. The selected text is highlighted.

Copying Text From the Transcript
You can copy selected text from the transcript window to the Clipboard. Use the keyboard
shortcut Control-c, or choose Copy from the pop-upmenu that appears when you press the right
mouse button. The Copy command is disabled if no text has been selected.

Finding Commands and Messages in the Transcript
To find commands andmessages in the transcript window, right-click inside the Transcript
window, and then click the box or boxes that reference the type of search you want to perform
(i.e., Wrap Search, Search Commands, Search Error Messages, Search Informational
Messages). Click “Find Next” to find the next occurrence of a command or message in the
transcript after the current cursor position or “Find Previous” to find the previous occurrence of a
command or message.
Figure 2 shows how to find text in the transcript.

Transcript Window 3-9

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 2: Finding Text in the Transcript

Saving or Printing the Transcript
To save selected text from the transcript window, select the text you want to save, then right-
click anywhere in the Transcript window, and choose “Save Selection As...” in the pop-up dialog.
To save the entire contents of the Transcript, right-click in the Transcript window, and choose
“Save Contents As...” To print the transcript, use the keyboard shortcut Control-p.

Clearing the Transcript Window
To clear the transcript window, choose Edit> Clear All. If the cursor is in the transcript window,
you can use the keyboard shortcut Control-Delete. This removes all of the existing text from the
window.

Transcript Window 3-10

TetraMAX ATPG User Guide K-2015.06-SP4

Online Help
TetraMAX ATPGprovidesOnline Help in the following forms:

l Text-only Help on TetraMAX commands, displayed in the transcript window. In Tcl mode,
enter the command name, followed by the -help option. In non-Tcl (native) mode, use
the help command in the command-line window.

l Browser-Based Help on commands, design flows, error messages, design rules, fault
classes, andmany other topics.

Text-Only Help
To obtain text-only help on a command in Tcl mode, enter the name of the command, followed
by the -help option of the command-line window. In non-Tcl (native) mode, use the help
command, followed by the name of the command.
A Tcl mode text-only help example is as follows:
BUILD-T> set_workspace_sizes -help
Usage: set_workspace_sizes Set WOrkspace Sizes
[-connectors] (maximum number of fanout connections supported)
[-decisions] (maximum active decisions)
[-drc_buffer_size] (maximum DRC buffer size)
[-line] (maximum line length)
[-string] (maximum string length)
[-command_line] (command line length)
[-command_words] (command line words)

A nativemode text-only help example is as follows:
BUILD> help set workspace sizes
Set WOrkspace Sizes [-Atpg_gates d]
[-CONnectors d] [-Decisions d] [-DRC_buffer_size d] [-Line d]
[-String d] [-COMMAND_Line d] [-COMMAND_Words d]

For a list of available command help topics, type the following command in the command-line
window:
BUILD-T> report_commands -all
add_atpg_constraints add_atpg_primitives
add_capture_masks add_cell_constraints
add_clocks add_display_proc
add_delay_paths add_display_gates
add_distributed_processors add_equivalent_nofaults
add_faults add_net_connections
add_nofaults add_pi_constraints
...

Online Help 3-11

TetraMAX ATPG User Guide K-2015.06-SP4

Browser-Based Help
You can view detailed help on a wide range of TetraMAX topics by using browser-basedOnline
Help. This section describes the following topics related to Online Help:

l LaunchingOnline Help
l Basic Components of Help

Launching Online Help
You can launch TetraMAX Help by doing any of the following:
Selecting GUI HelpMenu
From themenu bar in the GUI, choose Help > Table of Contents, or select a particular topic to
open (i.e., Command Summary, Getting Started, Fault Classes, etc.). See Figure 1.

Figure 1: Accessing Help Through theGUI Menu Bar

Entering Command in GUI Text Field
In the command-line text field of the GUI, use the following syntax to open a topic related to
either a specific commad (set_drc) or amessage (i.e., M401):
> man command | message_id

See Figure 2 for an example.

Online Help 3-12

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 2: Opening a Specific Topic in TetraMAX Help From the Command-line Text Field

Right-Clicking On aCommandOr Message
Right-click a particular command or message in the console window, then select Help Topic.
The Help topic for the command onmessage will appear. See Figure 3 for an example.

Figure 3: Right-Clicking on aMessage (i.e., S30) to Bring UpOnline Help

Click the Help Button in Dialog Box
Click the Help button within a dialog box to bring up a Help topic that describes the active dialog
box. See Figure 4.

Online Help 3-13

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 4: Accessing Help From aDialog Box

Basic Components of Help
The TetraMAX Help system is displayed in a frameset that consists of threemain components:

l Themenu and button bars at the top.
l The navigation frame (for the table of contents, index, bookmarks, and full-text search)
below the button bar on the left.

l The contents frame (where Help topics are displayed) below the button bar on the right.

Online Help 3-14

4
ATPG Design Flow
The ATPGprocess creates a sequence of test patterns that enable an ATE to distinguish
between the correct circuit behavior and the faulty circuit behavior caused by the defects. The
generated patterns are used to test devices and to determine the cause of failure. ATPG
effectiveness ismeasured by the amount of modeled defects, or fault models, that are detected
and the number of generated patterns.
The following sections describe the basic ATPGdesign flow:

l ATPGDesign Flow Overview
l Preparing a Netlist
l Reading a Netlist
l Reading LibraryModels
l Setting Up and Building the ATPGModel
l Performing Test Design Rule Checking (DRC)
l Preparing for ATPG
l Running ATPG
l Analyzing ATPGOutput
l Reviewing Test Coverage
l Writing ATPGPatterns

4-1

TetraMAX ATPG User Guide K-2015.06-SP4

ATPG Design Flow Overview
The basic ATPG flow applies tomost designs. To get started running ATPG, youmust provide a
supported netlist, a model library, and a set of STIL procedures used for design rule checking.
STIL procedures are usually provided via a STIL procedures file generated from the
DFT Compiler tool or an equivalent tool. You can also providemany of the parameters via
TetraMAX commands. For complete information on STIL procedures, see "STIL Procedures.”
Figure 1 shows the basic ATPGdesign flow. For a step-by-step overview of the ATPGdesign
flow, see "Running the Basic ATPGDesign Flow."

ATPG Design Flow Overview 4-2

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1 Basic ATPGDesign Flow

If you encounter problemswith your design, see “Using theGSV for Review and Analysis,”
which provides information on graphical analysis and troubleshooting.

ATPG Design Flow Overview 4-3

TetraMAX ATPG User Guide K-2015.06-SP4

Running the Basic ATPG Design Flow
The basic ATPGdesign flow consists of the following steps:

1. Prepare your netlist or netlists (see "Preparing a Netlist").
2. Read the netlist (see "Reading a Netlist").
3. Read the librarymodels (see "Reading LibraryModules")
4. Build the ATPGdesignmodel (see "Setting Up and Building the ATPGModel")
5. Perform test DRC andmake any necessary corrections (see "Performing Test Design

Rule Checking").
6. Prepare the design for ATPG, set up the fault list, analyze buses for contention, and set

the ATPGoptions (see "Preparing for ATPG").
7. Run automatic test pattern generation (see "Running ATPG").
8. Analyze the ATPGpattern generation output (see "Analyze ATPGOutput").
9. Review the test coverage (see "Reviewing Test Coverage").
10. Rerun ATPG, as needed.
11. Write and save the test patterns (see "Writing ATPGPatterns").

For an example of a typical command file used for running a basic ATPGdesign flow in
TetraMAX ATPG, see "Using Command Files."

Figure 2 shows a typical ATPGdesign flowchart.

ATPG Design Flow Overview 4-4

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 2 ATPG Design Flowchart

See Also
Design Flow Using DFT Compiler and TetraMAX
ATPG Design Guidelines

Using Command Files
A command file is a simple ASCII text file containing any command accepted by
TetraMAX ATPG. You can accomplishmany of the tasks described in "ATPGDesign Flow"
using a command file. The following example launches TetraMAX ATPGusing a command file:
% tmax -shell spec_command_file.cmd

Example 1 shows a typical command file, which reads in a design that has been debugged to
eliminate DRC problems. The commands in this file create and store ATPGpatterns and fault
lists while saving the execution log.

Using Command Files 4-5

TetraMAX ATPG User Guide K-2015.06-SP4

Example 1: Typical Command File
--- basic ATPG command sequence
#
set_messages log last_run.log -replace
#
--- read design and libraries
#
read_netlist spec_design.v -delete
read_netlist /home/vendor_A/tech_B/verilog/*.v -noabort
report_modules -summary
report_modules -error
#
--- build design model
#
run_build_model spec_top_level_name
report_rules -fail
#
--- define clocks and pin constraints
#
add_clocks 1 CLK MCLK SCLK
add_clocks 0 resetn iosc14m
add_pi_constraints 1 testmode
#
--- define scan chains & STIL procedures, perform DRC checks
#
run_drc spec_design.spf
report_rules -fail
report_nonscan_cells -summary
report_buses -summary
report_feedback_paths -summary
#
--- create patterns
#
set_atpg -abort 20 -pat 1500 -merge high
add_faults -all
run_atpg -auto_compression
report_summaries
#
--- save fault list and patterns
#
report_faults -level 5 64 -class au -collapse -verbose
write_faults faults.all -all -replace
write_patterns patterns.v -format verilog -parallel 2 -replace
#
exit
#

See Also
Command Files

Using Command Files 4-6

TetraMAX ATPG User Guide K-2015.06-SP4

Using Command Files in Tcl Mode
Command Entry
Invoking TetraMAX

Preparing a Netlist
TetraMAX ATPGaccepts netlists in Verilog, EDIF, and VHDL formats. For more information on
these formats, see "Netlist Format Requirements."
Netlists can be flat or hierarchical and can be in standard ASCII format or GZIP format.
TetraMAX ATPGautomatically detects compressed files and decompresses them during the
read operation.
Before reading in a netlist or librarymodels, you should compare the names of themodules in
your netlist to the names of the Verilog librarymodels you are using. If there are duplicate
module definitions, TetraMAX ATPGuses the last definition it encounters. If you read in your
netlist and then read in librarymodels, themodules in your netlist are overwritten by any library
models using the same names.
You can specify the following options in preparation for reading a netlist:

l Set themaximumnumber of parsing errors allowed before terminating the parsing of the
current netlist file

l Use the last module read if your design has duplicatemodules. This allows
TetraMAX ATPG to reread a file if you edit a module or readmultiple files if there is a
duplication of module definitions.

l Accept or ignore the 'celldefine, 'enable_portfaults, and 'supress_faults Verilog compiler
directives

l Set check and warning behavior for reading netlists and designs
l Specify if conservative or combinational MUX gates are extracted from conservative UDP
models of aMUX

l Set parameters for handling dominance behavior between set, reset, and clock pins
l Specify behavior for escape characters, redefinedmodules, scalar nets, and X modeling

For complete descriptions of these options, see the description of the set_netlist command
in TetraMAX Help.

Options for Preparing to Read a Netlist
You can use either the set_netlist command or the Set Netlist dialog box or Read Netlist
dialog box to specify options for reading a netlist into TetraMAX ATPG.
The following example shows how to use the set_netlist command to allow amaximumof
15 parsing errors, extract combinational MUX Gates from conservativeMUX UDPmodels, and
use the remaining default parameters for reading a netlist:
BUILD> set_netlist -max_errors 15 -conservative_mux combo_udp

Preparing a Netlist 4-7

TetraMAX ATPG User Guide K-2015.06-SP4

To use the TetraMAX GUI to set the parameters specified in the previous example:

1. Do one of the following:
l From themenu bar, select Netlist > Set Netlist Options.
The Set Netlist dialog box appears.

l From the command toolbar, click the Netlist button.
The Read Netlist dialog box appears.

2. In either the Set Netlist dialog box or the Read Netlist dialog box, enter 15 in theMaximum
Errors text field, and select Combinational UPD in the ConversativeMUX drop-down
menu.

3. ClickOK.

For a complete description of the requirements and contents of netlists used for
TetraMAX ATPG, see "Design Netlists and Libraries."

See Also
Reading a Netlist

Reading a Netlist
TetraMAX ATPGautomatically determines the format of the referenced netlist and reads the file
in hierarchical order, starting with the library leaf cells and ending with the top-level module.
You can specify the following optionswhen reading a netlist:

l By default, TetraMAX ATPG treats Verilog netlists as case-sensitive, and EDIF and VHDL
netlists as case-insensitive. You can override the default by running the -sensitive or -
insensitive option of the read_netlist command or by selecting Sensitive or
Insensitive in the Case sensitivity drop-downmenu in the Read Netlist dialog box.

l TetraMAX ATPG issues a warning if a module is definedmore than one time, and uses the
module definition from the last netlist read. You can you can identify amodule as amaster
module and it will not be replaced if another module is encountered with the same name.

l You can define any variable function, or expression. This option is equivalent to the 'define
Verilog statement.

l You can delete previously read netlists currently stored inmemory.
l You can prevent TetraMAX ATPG from terminating if it encounters an error when reading
multiple netlists.

For complete information on these options, see the description of the read_netlist
command in TetraMAX Help.

Options for Reading a Netlist
You can read one or more netlists associated with your design using the read_netlist
command or the Read Netlist dialog box in the TetraMAX GUI.

Reading a Netlist 4-8

TetraMAX ATPG User Guide K-2015.06-SP4

You can specify asmany read_netlist commands as necessary to read in all portions of a
design. You can readmultiple files from the same directory using wildcards (for example, *.v).
For more information, see "UsingWildcards to Read Netlists."
The following example specifies the read_netlist command to read in all Verilog netlists in
the /tech directory:
BUILD-T> read_netlist /tech/*.v

To read a netlist using the Read Netlist dialog box:

1. Do one of the following:
l From themenu bar, select Netlist > Read Netlist.
l From the command toolbar, click the Netlist button.

In both cases, the Read Netlist dialog box appears with the selected default values.
2. Change or select any values tomeet your requirements. The options in the Read Netlist

dialog box are equivalent to the options for the read_netlist command (see the
description in TetraMAX Help).

3. ClickOK.

For complete information on netlists accepted by TetraMAX ATPG, see "Working with Design
Netlists andModels."

See Also
Netlist Requirements
Reading the Library Models

Reading Library Models
TetraMAX ATPGcreates ATPGmodels based on the functional portion of Verilog simulation
models. Thesemodels include user-defined primitives (UDPs), which are essential for
describing particular library cells. Behavioral models are not recognized.
TetraMAX ATPG recognizes the following Verilog language attributes:
`define
`ifdef
`include
`celldefine
`suppress_faults
`enable_portfaults

For complete details on how TetraMAX ATPGhandles librarymodels, includingmemory
models, see "Working with Design Netlists and Libraries."
Youmust read in all librarymodels referenced by your design. You can read in onemodel at a
time, or you can read in the entire library with a single command. If your design already contains
amodule that has the same name as one of the librarymodules, when you read in the library, the
librarymodel overwrites your module.

Reading Library Models 4-9

TetraMAX ATPG User Guide K-2015.06-SP4

Options for Reading Library Models
To read librarymodels, use the Read Netlist dialog box or the read_netlist command.
You can specify asmany read_netlist commands as necessary to read in all portions of a
design. You can readmultiple files from the same directory using wildcards (for example, *.v).
For more information, see "UsingWildcards to Read Netlists."
The following example uses the read_netlist command to read in all Verilog librarymodel
files in the /proj1234/shared_verilog directory and to not terminate the process if there is an error
reported for amodel:
BUILD-T> read_netlist /proj1234/shared_verilog/*.v -noabort

To read librarymodels using the Read Netlist dialog box:

1. Do one of the following:
l From themenu bar, select Netlist > Read Netlist.
l From the command toolbar, click the Netlist button.

In both cases, the Read Netlist dialog box appears with the selected default values.
2. Change or select any values tomeet your requirements. To duplicate the previous

command line example, make sure the Abort on Error check box is not selected. The
options in the Read Netlist dialog box are equivalent to the options for the
read_netlist command (see the description in TetraMAX Help).

3. ClickOK.

See Also
Reading the Netlist
Building the ATPG Model

Setting Up and Building the ATPG Model
TetraMAX ATPGbuilds the ATPGdesignmodel as an in-memory image containing design
modules you read in using the read_netlist command or Read Netlist dialog box. For
details on reading the design, see "Reading the Netlist" and "Reading LibaryModels."
TetraMAX automatically selects the top-level module to begin the build process, but you can
specify any intermediate level module as a basis for the designmodel.
The following sections describe how to set up and build the ATPGdesignmodel:

l Controlling the ATPGModel Build Process
l Setting Parameters for Learning
l Building the ATPG Model

Figure 1 shows the process for building the ATPGmodel:

Setting Up and Building the ATPG Model 4-10

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1 Building the ATPGDesignModel

Controlling the ATPG Model Build Process
You can specify several parameters that control and optimize the process of building an ATPG
model, including:

l Add a buffer gate between any latch or flip-flop gate directly connected to another latch or
flip-flop gate

l Specify and removemodules designated as black boxes, empty boxes, design library cells
l Preserve pin names of models that would normally be flattened
l Add pulldown and pullup drivers and bus keepers to BUS gates
l Keep or delete unused gates
l Specify an alternate hierarchical delimiter
l Modify or replace selected instances
l Define certain input signals in the top-level module as bidirectional signals
l Limit the number of fanouts for gates
l Specify variousmodel flattening optimization algorithms
l Specify how net connections affect the flattened ATPGmodel
l Specify parameters for modeling undriven bidirectional nets

For details on these options, see the description of the set_build command in
TetraMAX Help.

Setting Parameters for Building an ATPGModel
You can use either the set_build command or the Set Build dialog box to control the process
of building an ATPGmodel.

Setting Up and Building the ATPG Model 4-11

TetraMAX ATPG User Guide K-2015.06-SP4

The following example uses the set_build command to set the parameters to build an ATPG
model. In this case, it specifies TetraMAX ATPG to use a period (.) as a hierarchical delimiter
and to not to delete any unused gates:
DRC-T> set_build -hierarchical_delimiter . -nodelete_unused_gates

You canmake the same settings from the previous example using the Set Build dialog box, as
shown in the following steps:

1. Do one of the following:
l From themenu bar, select Netlist > Set Build Options.
l From the command toolbar, click the Build button.When the Build Model dialog box
appears, click the Set Build Options button.
In both cases, the Set Build dialog box appears with the selected default values.

2. Change or select the values in the Set Build dialog box tomeet your requirements.
The options in this dialog box are equivalent to the options for the set_build command
(see the description in TetraMAX Help). Tomatch the options specified in the previous
example, enter a period (.) in the Hierarchical text field and unselect the Delete Unused
Gates checkbox.

3. ClickOK.

See Also
Building the ATPGModel

Setting Parameters for Learning
When TetraMAX ATPGbuilds an ATPGmodel, it also performs a circuit learning process to
determine information useful for performing simulation and test generation.
This learning process performs the following tasks:

l Identifies feedback paths
l Orders gates and feedback networks by rank
l Identifies easiest-to-control input and easiest-to-observe fanout for all gates
l Identifies equivalence relationships between gates
l Identifies the potential functional behavior of circuit fragments
l Identifies tied value gates and fault blockages that result from tied gates
l Identifies tied gates and blockages that result from gateswhose inputs come from a
common or equivalent source

l Identifies equivalent DFF and DLAT devices (those with identical inputs)
l Identifies implication relationships between gates

Learned Behavior Types
During the learning process, each gate is assigned a learned behavior. The possible types of
learned behavior are as follows:
Blocked - A gate whose fault effects are blocked from detection by tied circuitry.

Setting Up and Building the ATPG Model 4-12

TetraMAX ATPG User Guide K-2015.06-SP4

Common Input - A gate that has a common source for two or more of its inputs.
Common Tied Input - A gate that is equivalent to a tied gate due to some logical relationship
between its inputs. For example, an XOR gate with both inputs attached to the same net is
equivalent to a tied-to-0; or an AND gate with a net and its inverted value as inputs will also be
equivalent to a tied-to-0.
Constrained - A gate with an input constraint resulting in an output that can never achieve a 0,
1, or Z, or some combinations of these logic values.
Constrained Blocked - A gate whose fault effects are blocked from detection by constraints.
Equivalence - Two gateswhose outputs are equivalent or complementary to each other at all
times. For example, a NAND and an AND gate with the same input connections always have
opposite values on their outputs.
Implications - Two gateswhose behavior has been learned to have an implied relationship, such
as "gate A at value J implies gate B at value K".
Inverted Inputs - A gate that has an inverted input function. In other words, an inverter has
beenmerged into the input of an otherwise standard gate such as AND, NAND, OR, or NOR.
Learn BUF - A gate whose function is equivalent to a BUF, such as an AND gate with its inputs
tied together.
Learn INV - A gate whose function is equivalent to an INV, such as a NAND gate with its inputs
tied together.
Learn Tied Gate - A gate whose function is equivalent to a tied 0/1/Z/X gate.
Tied - Any gate learned to be always tied to 0/1/Z/X.
Weak - Any gate with aWEAK input. This is generally a BUS device.

You can view most learned data for a given gate by setting the -verbose option for the
set_pindata command and running the report_primitives command for the selected
gate.

Controlling the ATPG Learning Algorithm
You can control the ATPG learning algorithms using the set_learning command or the Run
Build Model dialog box.
The following example uses the set_learning command to specify the ATPGequivalence
algorithm for learning:
BUILD-T> set_learning -atpg_equivalence

To use the Run Build Model dialog box to control the learning algorithms:

1. From the command toolbar, click the Build button.
The Run Build Model dialog box appears.

2. Select or enter the appropriate options in the Set Learning section. For descriptions of
these controls, see the description of the set_learning command in TetraMAX Help.

3. ClickOK.

Setting Up and Building the ATPG Model 4-13

TetraMAX ATPG User Guide K-2015.06-SP4

Building the ATPG Model
To build the ATPGmodel, TetraMAX ATPGcompiles a set of netlist and librarymodels into a
single in-memory image. For more information on reading netlists and librarymodels, see
"Reading a Netlist" and "Reading a LibraryModel."
When you build an ATPGmodel of a hierarchical design, TetraMAX ATPG flattens the hierarchy
tomake a single-level, in-memorymodel of the design. Several different optimizationmethods
are used to reduce the number of gates and simplify the design. You can control many of these
processes using the set_build command, as described in "Controlling the Build Process."
During the process of building amodel, TetraMAX ATPGalso performs a circuit learning
process to determine information useful for performing simulation and test generation. The
parameters you can set for this learning process are described in "Setting Parameters for
Learning."

Options for Building the ATPGModel
You can use the run_build_model command or the Run Build dialog box to build the ATPG
model.
TetraMAX ATPGbuilds amodel based on the last unreferencedmodule read by the read_
netlist command or the Read Netlist dialog box. Thismeans you do not need to specify any
optionswith the run_build_model command, as shown in the following example:
BUILD-T> run_build_model

You can also specify a particular module, as shown in the following example, which includes the
command transcript:
BUILD-T> run_build_model spec_asic
--
Begin build model for topcut = spec_asic ...
--
End build model: #primitives=101004, CPU_time=13.90 sec,
Memory=34702381
--
Begin learning analyses...
End learning analyses, total learning CPU time=33.02
--

To use the Run Build Model dialog box:

1. Do one of the following:
l From themenu bar, select Netlist > Run Build Model.
l From the command toolbar, click the Build button.

In both cases, the Run Build dialog box appears with the selected default values.
2. Change or select the additional values in the Run Build dialog box tomeet your

requirements. The options in this dialog box are equivalent to the options for the run_
build_model command and the set_learning command (see the descriptions for

Setting Up and Building the ATPG Model 4-14

TetraMAX ATPG User Guide K-2015.06-SP4

both commands in TetraMAX Help). Tomatch the option specified in the previous
example, enter spec_asic in the TopModule name text field.

3. ClickOK.
The build model process begins.

See Also
Processes That Occur When Building the ATPGModel

Performing Test Design Rule Checking (DRC)
During DRC, TetraMAX ATPGperforms a set of checks to ensure that the scan structure is
correct and to determine how to use the scan structure for test generation and fault simulation.
These checks include ensuring that the scan chains operate properly, identifying scan cells,
identifying nonscan cell behavior, and ensuring that clocks obey the required rules.

The following sections describe how to prepare for and performDRC:
l Specifying STIL Procedures
l Specifying DRC Settings
l Starting Test DRC
l Reviewing the DRC Results
l Understanding Rule Violations
l Viewing Violations in the GSV

Specifying STIL Procedures
The STIL language describes scan-shifting protocol, test procedures, and ATPGsignal, timing,
and data information. STIL procedures provide information TetraMAX ATPGuses as a basis to
perform design rule checking (DRC).

TetraMAX ATPGsupports a subset of STIL syntax that describe:

l Scan chain inputs and outputs
l Pin constraints for test modes
l Clock ports and waveform definitions
l Shifting and capturing protocols
l Initialization sequences

There are several ways you can provide STIL procedures to TetraMAX for DRC:

l Create an SPF using Synopsys' DFT Compiler tool. For details, see "Pre-DFT Test
Design Rule Checking" in theDFT Compiler, DFTMAX, and DFTMAX Ultra User Guide.

l Create an SPF template file using the write_drc_file command. For details, see
"Creating a New SPF."

Performing Test Design Rule Checking (DRC) 4-15

https://solvnet.synopsys.com/dow_retrieve/latest/dftug/dftc_prescan_drc.html
https://solvnet.synopsys.com/dow_retrieve/latest/dftug/dftc_prescan_drc.html

TetraMAX ATPG User Guide K-2015.06-SP4

l Use theQuickSTIL tab in the DRC dialog box of the TetraMAX GUI.
l Use TetraMAX commands, such as add_clocks, add_scan_chains, and
add_pi_constraints."

Figure 1 provides a brief description of themajor sections of a STIL procedures file.

Figure 1 STIL Procedures File

Specifying DRC Settings
Prior to performing DRC, make sure you specified a set of STIL procedures as described in
"Specifying STIL Procedures." These procedures provide key information that TetraMAX ATPG
needs to performDRC.
You can set a variety of parameters that control the DRC process, including:

l Specify clock grouping and skew values
l Set the number of simulation passes before oscillation
l Define restrictions on clock usage for pattern generation
l Specify DLAT clock checks and DRC violation parameters for DFF and DLAT deviceswith
unstable sets or resets

l Display primitives in scan chains that were sensitized during scan chain tracing
l Generate patternswith capture cycles that always have clock pulses from a controller clock
l Limit the reporting of shadows
l Specify the top-level port that globally enables or disables bidirectional pins

Performing Test Design Rule Checking (DRC) 4-16

TetraMAX ATPG User Guide K-2015.06-SP4

l Define the number of PLL clock pulses supported per load and the number of pulses to
extend the simulation of the load procedure

l Allow patterns to havemore than one capture clock procedure per load
l Store simulated time periods of the test_setup procedure, stability patterns, and unload
mode data

Options for Specifying DRC Settings
You can use the set_drc command or the DRC dialog box to specify DRC parameters.
The following example shows how to specify the set_drc command:
DRC-T> set_drc -oscillation 200 -clock -any

This example uses the -oscillation option to specify that 200 simulation passes are
allowed during DRC simulation before oscillation is declared. It also uses the
-clock -any setting to allow pattern generation using any single clock, including patterns that
don't use clocks.

To use the RunDRC dialog box to set DRC parameters:

1. Do one of the following:
l From themenu bar, select Rules > RunDRC
l From the command toolbar, click the DRC button

In both cases, the DRC dialog box appears with the Run tab active.
2. In the Set field of the DRC dialog box, specify the options you want to apply to the DRC

process. To duplicate the settings of the set_drc command in the previous example:
a. Enter 200 in the Oscillation Passes text field
b. Select -Any from the Capture Clock drop-downmenu.

3. Click the Set button to save your settings.

For more information on specifying DRC options, see "Design Rule Checking."

See Also
Starting Test DRC
Reviewing the DRC Results

Starting Test DRC
Before starting DRC, make sure you specified the appropriate STIL procedures (see
"Specifying STIL Procedures") and DRC settings (see "Specifying DRC Settings").
To start DRC, use the run_drc command or the RunDRC dialog box in the TetraMAX GUI.
The following example uses the run_drc command to start DRC:
BUILD-T> run_drc spec_stil_file.spf

The argument in the example, spec_stil_file.spf, is the name of the STIL procedure file.

Performing Test Design Rule Checking (DRC) 4-17

TetraMAX ATPG User Guide K-2015.06-SP4

To use the RunDRC dialog box to performDRC:

1. Do one of the following:
l From themenu bar, select Rules > RunDRC.
l From the command toolbar, click the DRC button

In both cases, the DRC dialog box appears with Run tab active.

2. In the Test Protocol File Name field, enter the path name of the STIL procedure file
previously created, or use the Browse button to navigate and select the file.

3. Click Run.

As TetraMAX performs the DRC checks, it produces a status report and lists the DRC
violations, as shown in Example 1.
See"DRC Rules" in TetraMAX Help for a list of the rule categories, including links to each
category.

Example 1 Typical DRC Run

BUILD-T> run_drc spec_stil_file.spf
--
Begin scan design rule checking...
--
Begin reading test protocol file lander.spf...
End parsing STIL file lander.spf with 0 errors.
Test protocol file reading completed, CPU time=0.10 sec.
--
Begin Bus/Wire contention ability checking...
Bus summary: #bus_gates=40, #bidi=40, #weak=0, #pull=0,
#keepers=0
Contention status: #pass=0, #bidi=40, #fail=0, #abort=0,
#not_analyzed=0
Z-state status : #pass=0, #bidi=40, #fail=0, #abort=0,
#not_analyzed=0
Bus/Wire contention ability checking completed, CPU time=0.04 sec.
--
Begin simulating test protocol procedures...
Nonscan cell constant value results: #constant0 = 4, #constant1 =
7
Nonscan cell load value results : #load0 = 4, #load1 = 7
Warning: Rule Z4 (bus contention in test procedure) failed 48
times.
Test protocol simulation completed, CPU time=0.14 sec.
--
Begin scan chain operation checking...
Chain c1 successfully traced with 31 scan_cells.
Chain c2 successfully traced with 31 scan_cells.
Scan chain operation checking completed, CPU time=0.34 sec.
--
Begin clock rules checking...
Warning: Rule C17 (clock connected to PO) failed 16 times.

Performing Test Design Rule Checking (DRC) 4-18

TetraMAX ATPG User Guide K-2015.06-SP4

Warning: Rule C19 (clock connected to non-contention-free BUS)
failed 1 times.
Clock rules checking completed, CPU time=0.14 sec.
--
Begin nonscan rules checking...
Nonscan cell summary: #DFF=201 #DLAT=0 tla_usage_type=none
Nonscan behavior: #C0=4 #C1=7 #LE=11 #TE=179
Nonscan rules checking completed, CPU time=0.05 sec.
--
Begin contention prevention rules checking...
26 scan cells are connected to bidirectional BUS gates.
Warning: Rule Z9 (bidi bus driver enable affected by scan cell)
failed 24 times.
Contention prevention checking completed, CPU time=0.02 sec.
--
Begin DRC dependent learning...
DRC dependent learning completed, CPU time=0.97 sec.
--
DRC Summary Report
--
Warning: Rule C17 (clock connected to PO) failed 16 times.
Warning: Rule Z4 (bus contention in test procedure) failed 48
times.
Warning: Rule Z9 (bidi bus driver enable affected by scan cell)
failed 24 times.
There were 72 violations that occurred during DRC process.
Design rules checking was successful, total CPU time=2.01 sec.
--

Reviewing the DRC Results
After you run DRC (see "Starting Test DRC"), TetraMAX ATPGgenerates a summary report
that provides a starting point for reviewing the DRC results. To view a description of the
summary report, see "Understanding the DRC SummaryReport."
You should inspect and correct all DRC violations that are classified as errors. If you ignore or
overlook these violations, the ATPGpatternsmight fail in simulation or on the real device. For
more information about DRC rule violations and how to fix them, see "Understanding DRC Rule
Violations."
To view descriptions of specific violations and how to fix them, see "DRC Rules byCategory" in
TetraMAX Help).
If you want to view a summary of failing rule messages, enter the following command:
DRC-T> report_rules -fail

TheDRC summary report in Example 2 shows one class of clock rule warnings (C17) and two
classes of bus rule warnings (Z4 and Z9).
Example 2 shows an example of the report_rules -fail output.

Example 2 Reporting Rules That Fail
TEST-T> report_rules -fail

Performing Test Design Rule Checking (DRC) 4-19

TetraMAX ATPG User Guide K-2015.06-SP4

// C16: #fails=190 severity=warning
// C17: #fails=16 severity=warning
// C19: #fails=1 severity=warning
// Z4: #fails=128 severity=warning
// Z9: #fails=24 severity=warning

For more detailed information about specific DRC violations in the design, use the report_
violations command. You can identify a single violation, all violations of a single type, all
violationswithin a class, or all violations, as in the following examples:
DRC-T> report_violations c17-2
DRC-T> report_violations c17
DRC-T> report_violations c
DRC-T> report_violations -all

See Also
Understanding run_drc Output
Starting Test DRC
Viewing Violations in the GSV

Understanding Rule Violations
The test design rules are organized by category. Each rule has an identification code (rule ID)
consisting of a single character followed by a number. The first character defines themajor
category of the rule.
The rules are organized functionally into ninemajor categories:

l B (Build rules)
l C (Clock rules)
l N (Netlist rules)
l P (Path Delay rules)
l S (Scan Chain rules)
l V (Vector rules)
l X (X-state rules)
l Z (Tristate rules)

Links to descriptions of individual rules are provided in the "Rules ViolationMessages" topic in
TetraMAX Help.

When a rule is violated, each violation is assigned a unique violation ID, which is the rule ID
followed by a dash and then a sequence number. For example, the rule violation ID for the 24th
violation of a Z4 rule is Z4-24. You can use this number to identify a specific violation for
reporting or analysis.
Some violation IDs show an abort indicator suffix, which appears as Z7-12.A or Z6-3 (Abort).
Thismeans that the ATPGanalysis of the violation was aborted. In such cases, youmight want
to increase the ATPGabort limit.

Performing Test Design Rule Checking (DRC) 4-20

TetraMAX ATPG User Guide K-2015.06-SP4

Each rule violation also includes a brief description of what is checked by the rule. For example,
a B8 rule violation explains that the circuit contains an unconnectedmodule input pin.
The effects of a rule violation vary depending on the rule’s severity level. For example, rule N5,
“redefinedmodule,” has a default Warning severity level and inmost cases notifies you that a
module was defined and then redefined, and that the last definition encountered is being used.
In contrast, the rule S1, “scan chain blockage,” has a default Fatal severity level. The scan chain
is not usable in its current state, and youmust correct the problem before trying further pattern
generation.

The default severity level for each rule reflects a conservative approach to ATPGefforts. When
an error or warning is produced, review the potential problem and determine whether you need
to change the design or the ATPGprocedures. Youmight be able to adjust the severity level
downward and continue ATPG.

TetraMAX Help provides a complete description of each rule violation. The "What Next" section
in the description for a rule suggests an action you can take to analyze the cause of the rule
violation and determine whether the violationmay be fixed by changing a procedure or setup, or
whether the designmay have to be changed.

For rule violationswith an error severity, the occurrencemessage is displayed when the rule
violation occurs. For rule violationswith a warning severity, the summarymessage is displayed
at the end of the process. You can selectively display the occurrencemessages for a warning
using the report_violations command.

Viewing DRC Violations in the GSV
You can visually inspect many of the rule violations using the graphical schematic viewer (GSV).
TheGSV displays a subset of the design showing the logic gates involved in the DRC violation,
along with appropriate diagnostic data such as logic values, constrained ports, or clock cones.
For more information on using theGSV, see “Using theGraphical Schematic Viewer.”
To analyze a warningmessage in the GSV:

1. Click the Analyze button in the command toolbar at the top of the TetraMAX GUI main
window.
The Analyze dialog box appears.

2. Click the Rules tab if it is not already active.
A dialog lists all themost recent violations. All violations are numbered. For example, Z4-
1:12means there are 12 violations of rule Z4, designated Z4-1 through Z4-12.

3. Select a violation from the list or type a specific violation occurrence number in the Rule
Violation field.

4. ClickOK.
TheGSV opens and displays the violation. The transcript window also displays the error
message.

Performing Test Design Rule Checking (DRC) 4-21

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1 Schematic Display of DRC Violation

An example Z4 violationmessage is shown in the following example:
Warning: Bus contention on /bixcr (17373) occurred at time 0 of
test_setup procedure. (Z4-1)

A simple and fast way to view the schematic for a violationmessage is to point to the red-
highlighted error message in the transcript window, click the right mouse button, and select
Analyze in the pop-upmenu.
Figure 1 shows the gates involved in the Z4 violation, along with the logic values resulting from
simulation of the test_setupmacro. The test_setupmacro is described inmore detail in
the section “Defining the test_setupMacro."
In this example, most of the logic values are X (unknown). The violationmight be caused by
failing to force a Z on a bidirectional port called IO[0] in the test_setup procedure. You can
choose to ignore or correct this violation. If you choose to ignore it, fault coverage is lowered
because the ATPGalgorithmwill not generate any pattern that would cause contention.
Somemessages can be safely ignored. Others can be resolved through adjustment of a
procedure definition; and others require a change to the design.

See Also
Using the Graphical Schematic Viewer

Performing Test Design Rule Checking (DRC) 4-22

TetraMAX ATPG User Guide K-2015.06-SP4

Preparing for ATPG
ATPGcreates a sequence of test patterns that enable an ATE to distinguish between the correct
circuit behavior and the faulty circuit behavior caused by the defects. The generated patterns are
used to test devices and to determine the cause of failure.
To prepare for ATPG, you can specify general ATPGsettings, set up the fault list, select the fault
model (stuck-at, IDDQ, path delay, hold time, transition, or bridging), select the pattern source
(internal, external, or random patterns), and select the ATPGmode (basic-scan, fast-sequential,
or full-sequential).
The following tasks show you how to prepare for ATPG:

l Specifying General ATPGSettings
l Specifying Fault Lists
l Specifying Fault Models
l Specifying the Pattern Source
l Specifying the ATPGMode

See Also
Running ATPG

Specifying General ATPG Settings
There are a variety of general parameters you can use to control pattern generation by
TetraMAX ATPG. For example, you can:

l Specify themaximumnumber of patterns to generate before terminating ATPG
l Set themaximumCPU time allowed per fault before terminating fault detection
l Limit themaximum coverage for ATPG to attain before terminating
l Set theminimumnumber of system cycles for each pattern
l Use fill options for running internal scan and compressed scan patterns
l Establish checkpoints to save patterns and fault lists to files

For complete details on these settings and all other settings that control ATPG, see "ATPG
Settings"

Options for Specifying ATPG Settings
You can specify several types of general settings for ATPGusing the set_atpg command or
the TetraMAX GUI, as shown in the following examples:

l The following command specifies TetraMAX ATPG to generate amaximumof 500
patterns and to terminate ATPGwhen the coverage reaches 98 percent:
set_atpg -patterns 500 -coverage 98

l The following command specifies that each patternmust haveminimumof 5 system cycles

Preparing for ATPG 4-23

TetraMAX ATPG User Guide K-2015.06-SP4

and to report extrasmessages during the patternmerge operation:
set_atpg -min_ateclock_cycles 5 -verbose

l The following command specifies TetraMAX to use the random decisionmethod when
compressing patterns and to save patterns to the chkp_patt file every 360 CPU seconds:
set_atpg -checkpoint {360 chkp_patt}

The following stepsmake the same settings specified in the previous examples using the Run
ATPGdialog box:

1. Do one of the following:
l Select Run > Run ATPG
l Click the ATPGbutton in command bar

In both cases, the Run ATPGdialog box appears.

2. Click the General ATPGSettings tab, then do the following:
a. Enter 500 in theMax patterns text field.
b. Enter 98 in the Coverage% text field.
c. Enter 5 in theMin. system cycles per pattern text field.
d. Click the Verbose check box.
e. Click the Random fill check box.
f. Click the Check point check box. In the Set Check Point dialog box, enter chkp_patt

in the Pattern file name text field and 360 in the Time interval text field.
g. ClickOK.

Figure 1 shows the appearance of the Run ATPGdialog box after entering the specifications
from the previous steps (note that the default settings are also selected).

Preparing for ATPG 4-24

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1 General Pattern Generation Options in the Run ATPGDialog Box

Specifying Fault Lists
TetraMAX ATPGmaintains a list of potential faults for a design. You can specify TetraMAX
ATPG to use an existing fault list provided in a formatted ASCII file, create a fault list, or use only
particular faults.
For complete information on using faults and fault lists, see "Working with Faults and Fault Lists."
The following sections show several methods for specifying and creating fault lists:

l Selecting an Existing Fault List File
l Generating a Fault List Containing All Fault Sites
l Including Specific Faults in a Fault List
l Writing Faults to a File
l Example Fault Lists

Selecting an Existing Fault List File
To specify TetraMAX ATPG to use an existing fault list file, do one of the following:

l Use the read_faults command, as shown in the following example:
TEST-T> read_faults spec_faults.all

Preparing for ATPG 4-25

TetraMAX ATPG User Guide K-2015.06-SP4

l Use the Add Faults dialog box by doing the following:
1. Select Faults > Add Faults

The Add Faults dialog box appears.
2. Click the Read File button, and enter or browse and select the name of the fault file.
3. ClickOK

Generating a Fault List Containing All Fault Sites
To generate a fault list that includes all possible fault sites in the ATPGdesignmodel, do one of
the following:

l Specify the add_faults command, as shown in the following example:
TEST-T> add_faults -all

l Use the Add Faults dialog box by doing the following:
1. Select Faults > Add Faults

The Add Faults dialog box appears.
2. Click the All button.
3. ClickOK

Including Specific Faults in a Fault List
You can exclude specific blocks, instances, gates, or pins from the fault list using any of the
followingmethods:

l Specify objects to be excluded using the add_nofaults command and then execute the
add_faults -all command, as shown in the following example:
TEST-T> add_nofaults /sub_block_A/adder
TEST-T> add_nofaults /io/demux/alu
TEST-T> add_faults -all

l Remove faults based on fault locations in a fault list file specified by the add_faults
-all command, as shown in the following example:
TEST-T> add_faults -all
TEST-T> read_faults fault_list_file -delete

l Remove faults using the remove_faults command after executing the add_faults
-all command, as shown in the following example:
TEST-T> add_faults -all
TEST-T> remove_faults /sub_block_A/adder
TEST-T> remove_faults /io/demux/alu

l If you have a small number of faults, you can add them explicitly using the add_faults
command:
TEST-T> remove_faults -all
TEST-T> add_faults /proc/io
TEST-T> add_faults /demux
TEST-T> add_faults /reg_bank/bank2/reg5/Q

Preparing for ATPG 4-26

TetraMAX ATPG User Guide K-2015.06-SP4

Note: You can perform these same tasks in the TetraMAX GUI using the Add Faults, Add No
Faults, Remove Faults dialog boxes.

Writing Faults to a File
You can use the write_faults command or the Report Faults dialog box to write a fault list to
a file for analysis or to read back in for future ATPGsessions:

l Write a fault list containing only AU class faults, as shown in the following example:
TEST-T> write_faults faults.AU -class au -replace

l Write a fault list for all faults:
TEST-T> write_faults filename -all -replace

l Write only the undetectable blocked (UB) and undetectable redundant (UR) fault classes:
TEST-T> write_faults filename -class UB -class UR -replace

l Write only the faults down one hierarchical path:
TEST-T> write_faults filename /top/demux/core/mul8x8 -replace

l By default, the list of faults is either collapsed or uncollapsed as determined by the last
set_faults -report command. The following command overrides the default by
using the -collapsed option:
TEST-T> write_faults filename -all -replace -collapsed

l Generate a fault list using the Report Faults dialog box:
1. From themenu bar, choose Faults > Report Faults.

The Report Faults dialog box appears.
2. Use the Report Type list box to select the type of fault report that you want. A set of

additional optionsmight appear to the right of the Report Type list box, depending on
your selection.

3. Select the options you want.
4. ClickOK.

Example Fault Lists
Example 1 shows a typical uncollapsed fault list. The equivalent faults always immediately follow
the primary fault and are identified by two dashes (--) in the second column.

Example 1 Uncollapsed Fault List
sa0 NP /moby/bus/Logic0206/N01
sa0 -- /moby/bus/Logic0206/H01
sa0 -- /xyz_nwr
sa0 NP /moby/i278/N01
sa0 -- /moby/i278/H01
sa0 -- /moby/i337/N01
sa0 -- /moby/i337/H02
sa1 -- /moby/i337/H01
sa0 -- /moby/i222/N01
sa0 -- /moby/i222/H01

Preparing for ATPG 4-27

TetraMAX ATPG User Guide K-2015.06-SP4

sa0 -- /moby/i222/H02
sa0 NP /moby/core/PER/PRT_1/POUTMUX_1/i411/N01
sa0 -- /moby/core/PER/PRT_1/POUTMUX_1/i411/H03
sa0 -- /moby/core/PER/PRT_1/POUTMUX_1/i411/H04
sa1 -- /moby/core/PER/PRT_1/POUTMUX_1/i411/H01
sa1 -- /moby/core/PER/PRT_1/POUTMUX_1/i411/H02

For comparison, Example 2 shows the same fault list written with the -collapsed option
specified.

Example 2 Collapsed Fault List
sa0 NP /moby/bus/Logic0206/N01
sa0 NP /moby/i278/N01
sa0 NP /moby/core/PER/PRT_1/POUTMUX_1/i411/N01

See Also
Fault Lists and Faults

Specifying Fault Models
Effective testing requires an accurate behavioral description of a design containing defects.
Fault models represent how amanufacturing defect affects a design, and are crucial in
identifying target faults and performing fault analysis. You can run TetraMAX ATPGusing any of
the following fault models:

l Stuck-At—This is the default model used by TetraMAX ATPG, and is the industry
standardmodel used for generating test patterns. Thismodel assumes that a circuit defect
behaves as a node stuck at either 0 or 1. The test pattern generator attempts to propagate
the effects of these faults to the primary outputs and scan cells of the device, where they
can be observed at a device output or captured in a scan chain. For more information on
the stuck-at fault model and fault models in general, see "Understanding Fault Models"

l Transition Delay—Generates test patterns to detect single-node slow-to-rise and slow-
to-fall faults. Using thismodel, TetraMAX ATPG launches a logical transition upon
completion of a scan load operation and uses a capture clock procedure to observe the
transition results. For more information, see "Transition-Delay Fault ATPG.”

l Path Delay—Tests and characterizes critical timing paths in a design. Path delay fault
tests exercise the critical paths at-speed (the full operating speed of the chip) to detect
whether the path is too slow because of manufacturing defects or variations. For more
information, see "Path Delay Fault and Hold Time Testing.”

l Hold Time— Thismodel is similar to the transition delay and path delaymodels, except
that it detects a fault through the shortest possible path to increase the probability of finding
small delay defects or process variations. For more information, see "Hold Time ATPG
Test Flow."

Preparing for ATPG 4-28

TetraMAX ATPG User Guide K-2015.06-SP4

l IDDQ—Assumes that a circuit defect causes excessive current drain due to an internal
short circuit from a node to ground or to a power supply. For thismodel, TetraMAX ATPG
does not attempt to observe the logical results at the device outputs. Instead, it tries to
toggle asmany nodes as possible into both states while avoiding conditions that violate
quiescence, so that defects can be detected by the excessive current drain that they cause.
For more information, see "Quiesence Test Pattern Generation."

l Bridging—Detects shorts that cause a connection between two normally unconnected
signals. These defects can be detected if one of the nets (the aggressor) causes the other
net (the victim) to take on a faulty value, which can then be propagated to an observable
location. For more information, see "Bridging Fault ATPG."

l IDDQ Bridging—Uses the IDDQmodel to generate additional patterns and increase the
IDDQcoverage. The IDDQbridgingmodel uses only the toggle version of the standard
IDDQmodel, whichmeans that the fault site at a gate input does not require propagation to
an output of the same gate to be identified as a fault. For more information, see "IDDQ
Bridging."

l Dynamic Bridging—Combines components of the static bridging fault model and the
transition fault model to analyze transition effects in the presence of a specified value on a
bridge aggressor node. For more information, see "Running the Dynamic Bridging Fault
ATPGFlow."

Selecting a Fault Model
TetraMAX ATPGuses the stuck-at fault model by default. You can select any supported fault
model using the -model option of the set_faults command or the Set Faults or Run ATPG
dialog boxes.

The following example shows how to use the set_faults command to specify the transition-
delay fault model:

TEST-T > set_faults -model transition

The following table shows the keywords used with the -model option to specify the various fault
models:

Keyword Fault Model

stuck Stuck-At

iddq IDDQ

iddq_bridging IDDQ Bridging

transition Transition-Delay

path_delay Path Delay

hold_time Hold Time

bridging Bridging

Preparing for ATPG 4-29

TetraMAX ATPG User Guide K-2015.06-SP4

Keyword Fault Model

dynamic_bridging Dynamic Bridging

The following sets of steps show you how to specify a fault model using the Set Faults dialog
box:

1. Select Faults > Set Fault Options from themenu bar.
The Set Faults dialog box appears.

2. In theModel section, click the button associated with the fault model you want to use.
3. ClickOK.

To use the Run ATPGdialog box to specify a fault model:

1. Do one of the following:
l Select Run > Run ATPG from themenu bar
l Click the ATPGbutton in the command toolbar

In both cases, the Run ATPGdialog box appears.
2. In the Fault model section, click the button associated with the fault model you want to

use.
3. Click the Set button to save your specification.

Specifying the Pattern Source
You can configure TetraMAX ATPG to use the following pattern sources:

l Internal patterns - These patterns are stored inmemory and generated internally by
TetraMAX ATPG. You can identify internal patterns by running the report_patterns
command.

l External patterns - These patterns are stored in a file. TetraMAX ATPGcan read
external pattern files in several formats, including Verilog, VHDL, STIL, andWGL. These
patternsmust use the same syntax TetraMAX useswhen it writes patterns.

l Random patterns - These patterns are defined by parameters set by the
set_random_patterns command)

Patterns should be stored in a binary file, if possible. TheWGL and STIL formats are unable to
accurately store all the pattern data required by TetraMAX ATPG.When you read back a STIL
or WGL pattern file, the fast-sequential patternsmight be interpreted as a full-sequential
patterns, and errors are reported. Do not assume that TetraMAX ATPGcan correctly read STIL
or WGL patterns created by tools other than TetraMAX ATPG.
The following sections describe the pattern types and formats accepted by TetraMAX ATPG,
including how to select the pattern source:

l Scan and Nonscan Functional Patterns
l STIL Functional Pattern Format
l Verilog Functional Pattern Format
l WGLFunctional Pattern Format

Preparing for ATPG 4-30

TetraMAX ATPG User Guide K-2015.06-SP4

l VCDE Functional Pattern Format
l Options for Selecting the Pattern Source

Scan and Nonscan Functional Patterns
TetraMAX ATPGaccepts two primary types of functional pattern files:

l Scan functional patterns - These patterns contain scan chain load and unload
sequences and define structures and procedures that can be recognized as scan-chain
related. Theymust use the same style and format that TetraMAX ATPGuses to write
ATPGpatterns. All scan chains, clocks, and primary input constraintsmust match the
usage in the patterns. The load_unload, Shift, and other test proceduresmust be
consistent with the patterns.

l Nonscan functional patterns - These patterns have no recognizable structure and do
not contain procedures of a standard scan pattern. Nonscan patternsmay exercise scan
chains, may be completely functional, or may perform a combination of scan chain and
functional testing. Theymust use a simple, sequential application of input stimulus and
output measures and heymust not define scan chains or any ATPG-related procedures
(for example, load_unload or Shift).

If the functional nonscan patterns do not contain timing information, you can use a STIL
procedure file to define pin timing, and reference the STL procedure file using the run_drc
command or the RunDRC dialog box. The following steps describe this process:

1. For your current design, use the add_clocks command or the Add Clock dialog box to
define as clocks all ports in the input data that function as clocks or pulsed ports.
Note that defining the clocks is optional. Some clock violations found during the run_drc
process can affect the simulator and it might be necessary to remove add_clocks
commands.

2. Switch to TESTmodewithout the use of an STL procedure file. Typically, youmust
change the severity of many of the rules from their defaults to either warning or ignore.

3. After you achieve TESTmode, execute run_atpg to generate at least one pattern.
4. Write out a few patterns. Because no scan chains have been defined, this pattern file

represents a template for nonscan functional pattern input.

STIL Functional Pattern Input
TetraMAX ATPGaccepts pattern input in STIL format using some limited variations of the
example shown in Example 1.
The supported format has the following characteristics:

l The Header block is optional.
l The Signals block is required.
l The SignalGroups block is optional.
l The Timing block, with at least one WaveformTable, is required to define the point in
the cycle where the clocks pulse and the outputs aremeasured.

l The PatternBurst, PatternExec, and Pattern blocks are used to set up a

Preparing for ATPG 4-31

TetraMAX ATPG User Guide K-2015.06-SP4

single block of functional patterns.
l The Pattern block consists only of W and V statements.

Example 1 Functional Pattern Input in STIL
STIL 0.23;
Header { Title "Functional Patterns for Design-X"; }
Signals {

d11 In; d10 In; d9 In; d8 In; d7 In;
d6 In; d5 In; d4 In; d3 In; d2 In;
d1 In; d0 In; i3 In; i2 In; i1 In;
i0 In; oe In; rld In; ccen In; ci In;
cp In; cc In; sdi1 In; sdi2 In; se In;
tsel In; y11 Out; y10 Out; y9 Out; y8 Out;
y7 Out; y6 Out; y5 Out; y4 Out; y3 Out;
y2 Out; y1 Out; y0 Out; full Out; pl Out;
map Out; vect Out; sdo1 Out; sdo2 Out; tout Out;
vcoctl Out;

}
SignalGroups {
 input_ports = 'd11 + d10 + d9 + d8 + d7 + d6 + d5 + d4 + d3 + d2

+ d1 + d0 + i3 + i2 + i1 + i0 + oe + rld + ccen + ci
+ cp + cc + sdi1 + sdi2 + se + tsel';

 output_ports = 'y11 + y10 + y9 + y8 + y7 + y6 + y5 + y4 + y3 +
y2

+ y1 + y0 + full + pl + map + vect + sdo1 + sdo2 + tout

+ vcoctl';
}
Timing {
 WaveformTable TSET1 {
 Period '250ns';
 Waveforms {
 input_ports { 01Z { '0ns' D/U/Z; } }
 cp { P { '0ns' D; '62ns' U; '187ns' D; } }
 output_ports { X { '0ns' X; } }
 output_ports { LHT { '0ns' X; '240ns' L/H/T; } }
 }
 }
}
PatternBurst functional_burst { FUNC_BLOCK_1; }
PatternExec { Timing; PatternBurst functional_burst; }
Pattern FUNC_BLOCK_1 {
 W TSET1;
 V {

d1=0; d9=0; sdo2=X; sdi2=0; y9=X; y1=X; d6=0; cp=0; i3=0; cc=0;

vcoctl=X; y6=X; ci=1; d3=0; i0=0; d11=0; y3=X; y11=X; oe=0;
d0=0;

Preparing for ATPG 4-32

TetraMAX ATPG User Guide K-2015.06-SP4

d8=0;vect=H; map=H; y8=X; y0=X; i2=0; d5=0; sdo1=X;
y5=X;sdi1=0;

tout=X; d2=0; y2=X; d7=0; d10=0; full=X; y7=X; tsel=0; ccen=0;
se=0;

y10=X;rld=0; i1=0; d4=0; y4=X; }
 V {tsel=1; tout=T;}
 V {d3=1;y3=H;map=L;i1=1;}
 V {sdo2=L; d3=0; i0=0; y0=H;i2=1;}
 V {sdo2=H; y1=L; i0=1; y3=L; i2=0; d4=1; y4=H;}
 V {y1=H; i3=0; cc=1; y0=L; d4=0;}
 V {y0=H; d10=1;}
 V {sdo2=L; y1=H; i0=0; i2=1;}
 V {y0=H;}
 V {y0=H;}
 V {y1=H; y0=L;}
 V {y0=H;}
 V {y1=L; y3=H; y0=L; sdo1=L; y2=L;}
 V {y0=H; full=L;}
 V {y1=L; y0=L; y2=H;}
 V {y1=H; y0=L;}
 V {y1=L; y3=L; y0=L; y2=L; y4=H;}
 V {y0=H;}
}

Verilog Functional Pattern Input
TetraMAX ATPGaccepts pattern input in Verilog format using some limited variations of the
example shown in Example 2.
The supported format has the following characteristics:

l ‘timescale is optional.
l A vector is used for primary outputs, expected data, andmask.
l Each clock capture cycle that can perform ameasure is defined in an event procedure.
l Cycleswith ameasure and no clocks are defined in event procedures.
l Cycleswith a clock and nomeasures are defined in event procedures.
l The data stream occurs within an initial/end block.
l Assignment to the variable pattern allows TetraMAX ATPG to track the pattern
boundaries.

Example 2 Functional Pattern Input in Verilog
`timescale 1 ns / 100 ps
module amd2910_test;

reg [0:8*9] POnames [19:0];
integer nofails, bit, pattern;
wire [11:0] d;
wire [3:0] i;
wire oe, tsel, ci, rld, ccen, cc, sdi1, sdi2, se, cp;
wire [11:0] y;
wire full, pl, map, vect, tout, vcoctl, sdo1, sdo2;
wire [19:0] PO; // primary output vector

Preparing for ATPG 4-33

TetraMAX ATPG User Guide K-2015.06-SP4

reg [19:0] XPCT; // expected data vector
reg [19:0] MASK; // compare mask vector
assign PO[0] = y[0];
assign PO[1] = y[1];
assign PO[2] = y[2];
assign PO[3] = y[3];
assign PO[4] = y[4];
assign PO[5] = y[5];
assign PO[6] = y[6];
assign PO[7] = y[7];
assign PO[8] = y[8];
assign PO[9] = y[9];
assign PO[10] = y[10];
assign PO[11] = y[11];
assign PO[12] = full;
assign PO[13] = pl;
assign PO[14] = map;
assign PO[15] = vect;
assign PO[16] = tout;
assign PO[17] = vcoctl;
assign PO[18] = sdo1;
assign PO[19] = sdo2;

// instantiate the device under test

amd2910 dut (.o_y11(y[11]), .o_y10(y[10]), .o_y9(y[9]),
 .o_y8(y[8]), .o_y7(y[7]), .o_y6(y[6]), .o_y5(y[5]),
 .o_y4(y[4]), .o_y3(y[3]), .o_y2(y[2]), .o_y1(y[1]),
 .o_y0(y[0]), .o_full(full), .o_pl(pl), .o_map(map),
 .o_vect(vect), .o_sdo1(sdo1), .o_sdo2(sdo2), .tout(tout),
 .vcoctl(vcoctl), .i_d11(d[11]), .i_d10(d[10]), .i_d9(
d[9]),
 .i_d8(d[8]), .i_d7(d[7]), .i_d6(d[6]), .i_d5(d[5]),
 .i_d4(d[4]), .i_d3(d[3]), .i_d2(d[2]), .i_d1(d[1]),
 .i_d0(d[0]), .i_i3(i[3]), .i_i2(i[2]), .i_i1(i[1]),
 .i_i0(i[0]), .i_oe(oe), .i_rld(rld), .i_ccen(ccen),
 .i_ci(ci), .i_cp(cp), .i_cc(cc), .i_sdi1(sdi1),
.i_sdi2(sdi2),
 .i_se(se), .tsel(tsel));

// define pulse on "i_cp"
event pulse_i_cp;
always @ pulse_i_cp begin

 #500 cp = 1;
 #100 cp = 0;

end

// define capture event without a clock
event capture;
always @ capture begin

 #0;

Preparing for ATPG 4-34

TetraMAX ATPG User Guide K-2015.06-SP4

 #950; ->measurePO;
end

// define how to measure outputs
event measurePO;
always @ measurePO begin

 if ((XPCT&MASK) !== (PO&MASK)) begin
$display($time," ----- ERROR(S) during pattern %0d ---

--",pattern);
for (bit = 0; bit < 20; bit=bit + 1) begin

 if((XPCT[bit]&MASK[bit]) !== (PO[bit]&MASK[bit]))
begin

$display($time, " : %0s (output %0d), expected %b,
got %b",
 POnames[bit], bit, XPCT[bit],
PO[bit]);

nofails = nofails + 1;
 end

end
 end

end

event capture_i_cp;
always @ capture_i_cp begin

 #0;
 #500 cp = 1; // i_cp
 #100 cp = 0;
 #350; ->measurePO;

end

initial begin
 nofails = 0;
// --- initalize port name table
 POnames[0] = "Y0"; POnames[1] = "Y1"; POnames[2] = "Y2";
 POnames[3] = "Y3"; POnames[4] = "Y4"; POnames[5] = "Y5";
 POnames[6] = "Y6"; POnames[7] = "Y7"; POnames[8] = "Y8";
 POnames[9] = "Y9"; POnames[10] = "Y10"; POnames[11] = "Y11";
 POnames[12] = "full"; POnames[13] = "pl"; POnames[14] = "map";

 POnames[15] = "vect"; POnames[16] = "tout"; POnames[17] =
"vcoctl";
 POnames[18] = "sdo1"; POnames[19] = "sdo2";

#0; pattern= 0;
se=0; sdi2=0; sdi1=0; cc=0; ccen=0; ci=0; tsel=0; oe=0;
cp = 0; i=4'b0010; rld=1; d=12'b000000000111;
XPCT=20'bXXXX1011000000000001; MASK=20'b00000000000000000000;
->pulse_i_cp;

#1000; pattern= 1; i=4'b1110; d=12'b000000000000;
->pulse_i_cp;

Preparing for ATPG 4-35

TetraMAX ATPG User Guide K-2015.06-SP4

#1000; pattern= 2; i=4'b0000; oe=0;
->capture;

#1000; pattern= 3; i=4'b0010; oe=1;
d=12'b000000000001; XPCT=20'bXXXX1011000000000001;
MASK=20'b00001111111111111111;
->capture_i_cp;

#1000; pattern= 4;
d=12'b000000000010; XPCT=20'bXXXX1011000000000010;
MASK=20'b00001111111111111111;
->capture_i_cp;

#1000; pattern= 5;
d=12'b000000000100; XPCT=20'bXXXX1011000000000100;
MASK=20'b00001111111111111111;
->capture_i_cp;

#1000;
$display("Simulation of %0d cycles completed with %0d errors",

pattern, nofails);
$finish;
end
endmodule

WGL Functional Pattern Input
TetraMAX ATPGaccepts pattern input inWGL format using some limited variations of the
example shown in Example 3.
The supported format has the following characteristics:

l The waveform function is required.
l The pmode function is optional.
l The signal block is required.
l The timeplate block is required.
l The pattern block consists of simple vectors applied sequentially.

Example 3 Functional Pattern Input inWGL
waveform funct_1
pmode[last_drive];
signal
 TEST : input; RESET_B : input; EXTS1 : input; EXTS0 : input;
 LOBAT : input; SS_B : input; SCK : input; MOSI : input;
 EXTAL : input; TOUTEN : input; TOUTSEL : input;
 XTAL : output; MISO : output; READY_B : output;
 CLKOUT : output; SYMCLK : output; S7 : output;
 S6 : output; S5 : output; S4 : output;
 S3 : output; S2 : output; S1 : output;
 S0 : output; TOUT3 : output; TOUT2 : output;

Preparing for ATPG 4-36

TetraMAX ATPG User Guide K-2015.06-SP4

 TOUT1 : output; TOUT0 : output;
end

timeplate tts0 period 500nS
 TEST := input[0pS:P, 200nS:S];
 RESET_B := input[0pS:P, 200nS:S];
 EXTS1 := input[0pS:P, 200nS:S];
 EXTS0 := input[0pS:P, 200nS:S];
 LOBAT := input[0pS:P, 200nS:S];
 SS_B := input[0pS:P, 200nS:S];
 SCK := input[0pS:P, 200nS:S];
 MOSI := input[0pS:P, 200nS:S];
 EXTAL := input[0pS:P, 100nS:S];
 TOUTEN := input[0pS:P, 200nS:S];
 TOUTSEL := input[0pS:P, 200nS:S];
 XTAL := output[0pS:X, 450nS:Q, 451nS:X];
 MISO := output[0pS:X, 450nS:Q, 451nS:X];
 READY_B := output[0pS:X, 450nS:Q, 451nS:X];
 CLKOUT := output[0pS:X, 450nS:Q, 451nS:X];
 SYMCLK := output[0pS:X, 450nS:Q, 451nS:X];
 S7 := output[0pS:X, 450nS:Q, 451nS:X];
 S6 := output[0pS:X, 450nS:Q, 451nS:X];
 S5 := output[0pS:X, 450nS:Q, 451nS:X];
 S4 := output[0pS:X, 450nS:Q, 451nS:X];
 S3 := output[0pS:X, 450nS:Q, 451nS:X];
 S2 := output[0pS:X, 450nS:Q, 451nS:X];
 S1 := output[0pS:X, 450nS:Q, 451nS:X];
 S0 := output[0pS:X, 450nS:Q, 451nS:X];
 TOUT3 := output[0pS:X, 450nS:Q, 451nS:X];
 TOUT2 := output[0pS:X, 450nS:Q, 451nS:X];
 TOUT1 := output[0pS:X, 450nS:Q, 451nS:X];
 TOUT0 := output[0pS:X, 450nS:Q, 451nS:X];
end

pattern group_ALL (TEST,RESET_B,EXTS1,EXTS0,LOBAT,SS_B,
SCK,MOSI,EXTAL,TOUTEN,TOUTSEL,XTAL,
MISO,READY_B,CLKOUT,SYMCLK,S7,S6,
S5,S4,S3,S2,S1,S0,TOUT3,TOUT2,
TOUT1,TOUT0)

 vector(0, 0pS, tts0) := [0 0 0 0 0 0 0 0 0 0 0 X X X X X X X
X X X X X X X X X X] (0pS);
 vector(1, 500nS, tts0) := [0 0 0 0 0 0 0 0 0 0 0 X X X X X X X X
X X X
X X

X X X X] (500nS);
 vector(2, 1uS, tts0) := [0 0 0 0 0 0 0 0 0 0 0 1 0 1 X 0 Z Z
Z Z Z Z Z Z Z Z Z Z] (1uS);
 vector(3, 1.5uS, tts0) := [0 0 0 0 0 0 0 0 0 0 0 1 0 1 X 0 Z Z Z
Z Z Z
Z Z

Z Z Z Z] (1.5uS);

Preparing for ATPG 4-37

TetraMAX ATPG User Guide K-2015.06-SP4

 vector(4, 2uS, tts0) := [0 0 0 0 0 0 0 0 0 1 0 0 0 1 X 0 Z Z
Z Z Z Z Z Z Z Z Z Z] (2uS);
 vector(5, 2.5uS, tts0) := [0 0 0 0 0 0 0 0 0 1 0 0 0 1 X 0 Z Z Z
Z Z Z
Z Z

Z Z Z Z] (2.5uS);
 vector(6, 3uS, tts0) := [0 0 0 0 0 0 0 0 0 1 0 0 0 1 X 0 Z Z
Z Z Z Z Z Z Z Z Z Z] (3uS);
 vector(7, 3.5uS, tts0) := [0 0 0 0 0 0 0 0 0 1 0 0 0 1 X 0 Z Z Z
Z Z Z
Z Z

Z Z Z Z] (3.5uS);
 vector(8, 4uS, tts0) := [0 0 0 0 0 0 0 0 0 1 0 0 0 1 X 0 Z Z
Z Z Z Z Z Z Z Z Z Z] (4uS);
 vector(9, 4.5uS, tts0) := [0 0 0 0 0 0 0 0 0 1 0 0 0 1 X 0 Z Z Z
Z Z Z
Z Z

Z Z Z Z] (4.5uS);
 vector(10, 5uS, tts0) := [0 0 0 0 0 0 0 0 0 1 0 0 0 1 X 0 Z Z
Z Z Z Z Z Z Z Z Z Z] (5uS);
end
end

VCDE Functional Pattern Input
TetraMAX ATPGcan read patterns in extended VCD (VCDE) format. This format is not the
same as traditional VCD. To create a VCDE data file, you need a Verilog-compatible simulator
that supports the IEEE draft definition of VCDE. (For details, refer to IEEE P1364.1-1999,Draft
Standard for Verilog Register Transfer Level Synthesis.) The Synopsys VCS simulator, version
5.1 or later, supports this standard.
Creating a VCDE data file is fairly simple for most Verilog simulators. You need to add a single
$dumpports() system task to the initial block of the top-level module. The syntax is
similar to the following:
initial begin
 //
 // --- other variable inits here
 //
 $dumpports(testbench.DUT, "vcde_output_file");
 ...
end

In this example, the simulator captures all of the I/O events for the simulation instance
testbench.DUT into a file called vcde_output_file. If your simulation is performed
directly on your design, the path to this file may be DUT. If your design is instantiated in a
testbench, then this path ismore likely to betestbench.DUT, wheretestbench is the top-
level module name and DUT is the instance name of the design found within themodule
testbench.
If you want to generate a VCDE file from a TetraMAX Verilog testbench, you can use the
+define+tmax_vcde variable to help generate that file. Do this by adding the

Preparing for ATPG 4-38

TetraMAX ATPG User Guide K-2015.06-SP4

+define+tmax_vcde variable to your VCS command line when you simulate the TetraMAX
ATPG-generated Verilog testbench. An VCDE file called sim_vcde.out is automatically
created.
Do not create a VCDE file with complex timing events. Themost efficient functional patterns are
thosemost closely resembling what would be applied on a tester. Within a cycle, use as few
separate events as possible as in the following sequence:

1. Force all inputs at the same time.
2. Pulse the clock.
3. Measure all outputs at the same time.

Functional patterns in VCDE format do not need to have anymeasures defined. TetraMAX
ATPGdecideswhat values to expect on output and bidirectional pins by keeping a running tally
of themost recently reported values in the VCDE event stream. For an output port, all values
other than X aremeasurable. For a bidirectional port, the values L, H, T, l, and h are
measurable; the value X is not measured; and the values 0, 1, and Z indicate input mode (which
is not measurable).
In TetraMAX ATPG, when you read in VCDE patterns, you specify the cycle period and
measure points within each cycle. TetraMAX ATPGuses this information to construct internal
measure points and expected data. For more information, see "Specifying Strobes for VCDE
Pattern Input."

Options for Selecting the Pattern Source
You can select the pattern source using the set_patterns command, the Set Patterns dialog
box, or the Run ATPGdialog box. In addition, you can specify various options that affect how
TetraMAX ATPGuses the patterns.
The following examples show how to use the set_patterns command to specify the pattern
source:

l To use internal patterns, specify the -internal option, as shown in the following
example:
TEST-T> set_patterns -internal

l To use external patterns, specify the -external option and the name of the file
containing the patterns (in the following example, the file name is b010.vi1). You can also
use the -append option to append the external patterns to any existing internal patterns,
and use the -load_summary option to enable the report_summaries command to
display the total number of scan loads used by the basic-scan and fast-sequential patterns,
as shown in the following example:
TEST-T> set_patterns -external b010.vi1 -append -load_summary

l To use random patterns, do the following:
1. Specify the parameters for defining the random patterns using the

set_random_patterns command, as shown in the following example:
TEST-T> set_random_patterns -length 3000 -observe_master

2. Specify the -random option of the set_patterns command, as shown in the

Preparing for ATPG 4-39

TetraMAX ATPG User Guide K-2015.06-SP4

following example:
TEST-T> set_patterns -random

The Set Patterns dialog box generally uses the same options specified by the set_patterns
command. To select the pattern source using the Set Patterns dialog box:

1. From themenu bar, choose Patterns > Set Pattern Options.
The Set Patterns dialog box appears.

2. Do one of the following:
l To select internal patterns as the pattern source, click the Internal button in Pattern
source section.

l To select external patterns, do the following:
a. Click the External button in the Pattern source section.
b. Enter the pattern file name you want to use as the pattern source, or use the

Browse button to navigate and select the file.
l To select random patterns, click the Random button.

3. Select or enter any applicable options in the Set Patterns dialog box.
4. ClickOK.

To select the pattern source using the Run ATPGdialog box:

1. Click the ATPGbutton in the command toolbar.
The Run ATPGdialog box appears.

2. Do one of the following:
l To select internal patterns as the pattern source, click the Internal button in Pattern
source section.

l To select external patterns, do the following:
a. Click the External button in the Pattern source section.
b. Enter the pattern file name you want to use as the pattern source, or use the

Browse button to navigate and select the file.
l To select random patterns, click the Random button.

3. Select or enter any applicable options in the Set Patterns dialog box.
4. ClickOK.

Specifying the ATPG Mode
TetraMAX ATPGcan use three different modeswhen performing pattern generation. Each
mode provides different types and levels of optimization. Since ATPGnormally requiresmultiple
runs, themode you select depends on your particular pattern generation goals and where you
are in the ATPG process.
TetraMAX ATPGsupports the following ATPGmodes:

l Basic Scan Mode - This is the default mode for TetraMAX ATPG, and is usually the first
mode you run. It enables TetraMAX ATPG to operate as a full-scan, combinational-only
ATPG tool. To get high test coverage, the sequential elementsmust be scan elements.

Preparing for ATPG 4-40

TetraMAX ATPG User Guide K-2015.06-SP4

l Fast-Sequential Mode - Thismode provides limited support for partial-scan designs, and
accommodatesmultiple capture procedures between scan load and scan unload. Fast-
sequential mode allows data to be propagated through nonscan sequential elements in the
design, such as functional latches, nonscan flops, and RAMs and ROMs. However, all
clock and reset signals to these nonscan elementsmust be directly controllable at the
primary inputs of the device.

l Full-Sequential Mode - Thismode supportsmultiple capture cycles between scan load
and unload, which increases test coverage in partial-scan designs. Clock and reset signals
to the nonscan elements do not need to be controllable at the primary inputs and there is
no specific limit on the number of capture cycles used between scan load and unload.

Eachmode is described inmore detail in the following sections:

l Setting Basic ScanMode
l Setting Fast-Sequential Mode
l Setting Full-Sequential Mode

Basic Scan Mode Settings
The basic scanmode is the default mode for running ATPG. Thismode uses the combinational
ATPGmethod, which tests the individual nodes (or flip-flops) of a logic circuit without cone
timern to the overall operation of the circuit. During test, basic-scanmode forces a simplified
connection of flip-flops that effectively bypasses their normal interconnections. This allows
TetraMAX ATPG to use a relatively simple vector matrix to quickly test all the comprising flip-
flops and to trace failures to specific flip-flops.
You can use the set_atpg command or the Run ATPG dialog box to set several options
specific to basic-scanmode. For example, you can do the following:

l Specify the -abort_limit option to set themaximumnumber of remade decisions
before terminating a basic-scan test generation effort.

l Specify the -resim_atpg_patterns option to enable and disable the resimulation of
patterns generated by basic-scan ATPG to increase the robustness of patterns.

The following example shows how to specify both options:

TEST> set_atpg -abort_limit 8 -resim_atpg_patterns nofault_sim

To perform these same tasks using the Run ATPGdialog box:

1. Do one of the following:
l Select Run > Run ATPG from the commandmenu
l Click the ATPGbutton in the command toolbar.

In both cases, the Run ATPGdialog box appears.

2. Click the Basic Scan Settings tab.
3. Enter 8 in the Abort limit field, and select Mask in the drop-downmenu of the Resim basic

scan patterns field.
4. Click the Set button.

Preparing for ATPG 4-41

TetraMAX ATPG User Guide K-2015.06-SP4

After making the appropriate settings, you can run ATPG in basic scanmode. For details on this
process, see "Running TetraMAX in Basic Scan, Fast-Sequential, or Full-Sequential Mode."

Fast-Sequential Mode Settings
Fast-sequential ATPGprovides limited support for partial-scan designs (designs containing
some nonscan sequential elements). Thismode is particularly useful when there are AU
(ATPG Undetectable) faults remaining after you run ATPG in basic-scanmode.
You can use the -capture_cycles option of the set_atpg command to specify an integer
between 2 and 10 . This specification sets the level of effort used by the ATPGalgorithm based
on the number of capture procedures allowed between scan load and unload.
You should not set the -capture_cycles option value too high since it can cause excessive
runtimes. In most cases, you should use a starting value of 4 (the default), and generate an initial
set of patterns. You can then incrementally increase the value following each pattern generation
until you achieve your required coverage.
You can use the sequential_depths options of the report_summaries command to
identify themaximumdepth for controlling, observing , and detecting faults, as shown in the
following example:
TEST> report_summaries sequential_depths
 type depth gate_id
 ------- ----- -------
 Control 1 21569
 Observe 2 6866
 Detect 3 6859

Based on this report, to obtain optimal runtime you should set the -capture_cycles option to
3 as shown in the following example:
TEST> set_atpg -capture_cycles 3

For optimal coverage, set the -capture_cycles option to 10:
TEST> set_atpg -capture_cycles 10

To perform these same tasks using the TetraMAX GUI:

1. Do one of the following:
l Select Report > Report Summaries from the commandmenu
l Click the Summary button in the command toolbar.

In both cases, the Report Summaries dialog box appears.
2. Select the Sequential depths button.
3. In the Output to section, select either the Report window, Transcript, or File.
4. ClickOK

TheReport Summaries dialog prints a report that shows the sequential depths.

5. Do one of the following:
l Select Run > Run ATPG from the commandmenu
l Click the ATPGbutton in the command toolbar.

Preparing for ATPG 4-42

TetraMAX ATPG User Guide K-2015.06-SP4

In both cases, the Run ATPGdialog box appears.
6. Click the Fast Sequential Settings tab.
7. Enter a value in the Capture cycle field (for example, enter 4).
8. Click the Set button.

Setting Full-Sequential Mode
Full-sequential ATPGsupportsmultiple capture cycles between scan load and unload, and
supports RAMandROMmodels, which increases the test coverage in partial-scan designs
(similar to fast-sequential ATPG). However, in full-sequential mode, clock and reset signals to
the nonscan elements do not need to be controllable at the primary inputs and there is no
specific limit on the number of capture cycles used between scan load and unload.

To enable TetraMAX ATPG to use the full-sequential mode, specify the -full_seq_atpg
option of the set_atpg command, as shown in the following example:
TEST-T> set_atpg -full_seq_atpg

Full-sequential mode supports a feature called sequential capture. If you define a sequential
capture procedure in the STIL procedure file, you can customize the capture clock sequence
applied to the device during full-sequential ATPG. For example, you can define the clocking
sequence for a two-phase latch design, in which CLKP1 is followed byCLKP2. Otherwise, the
tool creates its own sequence of clocks and other signals to target the as-yet-undetected faults in
the design. For more information, see “Defining a Sequential Capture Procedure”.
The following limitations apply to full-sequential ATPG:

l It supports stuck-at faults, transition faults, and path delay faults, but not IDDQor bridging
faults.

l It does not support the -fault_contention option of the set_buses command.
l It does not support the -nocapture, -nopreclock, and -retain_bidi options of
the set_contention command.

l Patterns generated by Full-Sequential ATPGare not compatible with failure diagnosis
using the run_diagnosis command.

l The following options of the set_simulation command are not implemented for Full-
Sequential simulation:
-bidi_fill | -strong_bidi_fill -measure <sim|pat>

-oscillation

Running ATPG
ATPGgenerates a sequence of test patterns that enable an ATE to distinguish between the
correct circuit behavior and the faulty circuit behavior caused by the defects. You use these
patterns to test devices and to determine the cause of failure. Before running ATPG, make sure
you have completed the recommended the processes described in "Preparing for ATPG."

Running ATPG 4-43

TetraMAX ATPG User Guide K-2015.06-SP4

Basic scanmode (the default) is usually the first mode first you run in the ATPGprocess,
followed by fast-sequential mode, then full-sequential mode. For detailed descriptions of various
settings for thesemodes, see "ATPG Modes."
After running ATPG, you can review a set of output reports that provide coverage information on
primitives, faults, patterns, library cells, memories, and other data relevant to ATPG. Based on
these reports, you canmake incremental adjustments tomeet your ATPGgoals, such as
obtaining a good balance between pattern compaction and execution speed.
The following sections describe how to run ATPG:

l Running ATPG in Basic Scan, Fast-Sequential, or Full-Sequential Mode
l Using AutomaticMode to Generate Optimized Patterns
l Quickly Estimating Test Coverage
l Specifying a Test Coverage Target Value
l Increasing Effort Over Multiple Passes
l UsingMultiple-Session Test Generation
l Compressing Patterns

Note: You can also set a variety of optimization parameters for running ATPG. For details on
these settings, see "Optimizing ATPG."

Running ATPG in Basic Scan, Fast-Sequential, or Full-Sequential
Mode
You can run ATPGusing either the run_atpg command or the Run ATPGdialog box. This
topic explains how to run ATPG in the basic scan, fast-sequential, or full-sequential modes. You
can also run ATPG in automaticmode, which automatically selects the best settings and
algorithms to provide reasonably good results. For details on automaticmode, see "Using
AutomaticMode to Generate Optimized Patterns."
To run ATPGusing the basic scanmode (the default), specify the run_atpg commandwithout
any options. Thismode uses default two-clock transition ATPGwhen running distributed ATPG
for system clock transition, and is usually the first mode you use during the ATPGprocess. The
following example runs ATPG in basic scanmode:
TEST-T> run_atpg

For information on specifying settings for basic scanmode, see "Basic ScanMode Settings."
You can run ATPG in fast-sequential mode using the fast_sequential_only option of the
run_atpg command. Thismode provides limited support for partial-scan designs, and
accommodatesmultiple capture procedures between scan load and scan unload. The following
example runs ATPG in fast-sequential mode:
TEST-T> run_atpg fast_sequential_only

You can also use the -capture_cycles option of the set_atpg command to set a level of
effort used by fast-sequential mode. For information on specifying settings for fast-sequential
mode, see "Fast-Sequential Mode Settings."
You can set ATPG to run full-sequential mode using the full_sequential_only option of
the run_atpg command. Thismode supportsmultiple capture cycles between scan load and

Running ATPG 4-44

TetraMAX ATPG User Guide K-2015.06-SP4

unload, which increases test coverage in partial-scan designs. The following example runs
ATPG in full-sequential mode:

TEST-T> run_atpg full_sequential_only

You can also set full-sequential mode using the -full_seq_atpg option of the set_atpg
command. In this case, you can run full-sequential mode by running the run_atpg command
without using the full_sequential_only option. For information on specifying setting for
full-sequential mode, see "Full-Sequential Mode Settings."

To use the Run ATPGdialog box to specify the ATPGmode and start the ATPGprocess, do the
following:

1. Do one of the following:
l Select ATPG> Run ATPG
l Click the ATPGbutton

In both cases, the Run ATPGdialog box appears.

2. On the right side of the Run ATPGdialog box, click the button associated with the ATPG
mode you want to run:

l To run basic scanmode, click the Basic Scan button.
l To run fast-sequential mode, click the Fast-Seq button.
l To run full-sequential mode, click the Full-Seq button .

Using Automatic Mode to Generate Optimized Patterns
You can specify TetraMAX ATPG to use an automaticmode that optimally generates compact
sets of ATPGpatterns. Thismode automatically selects the best settings and algorithms to
provide reasonably good results. Automaticmode is a good starting point for most ATPG flows.
Although thismode uses a set of default parameters, you can still makemanual adjustments as
necessary.
Automatic pattern compression uses a combination of algorithms to achieve optimal results: a
fast test generation algorithm that results in a lower pattern count and a secondary algorithm that
produces excellent fault detection results in a slower runtime.

TetraMAX ATPGperforms the following tasks in automaticmode:
l Fault Population
If there is no existing fault population, TetraMAX ATPGautomatically populates a fault list
(the same as running the add_faults -all command). If a fault population exists, the
faults are left undisturbed and used for the remainder of the automaticmode process. For
more information, on setting the fault population, see "Specifying Fault Lists."

l Pattern Source
Internal patterns are used as the pattern source (the default). For more information on
internal patterns, see "Setting the Pattern Source."

l Pattern Generation

Running ATPG 4-45

TetraMAX ATPG User Guide K-2015.06-SP4

TetraMAX ATPGautomatically uses basic-scanmode (the default) to generate an initial
set of patterns. All patterns are stored and dynamicmerge is enabled. Themerge effort is
automatically set to high, unless you have set themerge parameter to some other value.
TetraMAX ATPGadheres to any other set_atpg command settings you specified (see
"Specifying General ATPGSettings" for details). If you set the -capture_cycles option
of the set_atpg command to a value greater than 1, fast-sequential ATPG is performed
after basic-scan ATPG. Also, if you set the -full_seq_atpg option of the set_atpg
command, full-sequential ATPG is performed after basic-scan ATPGor fast-sequential
ATPG.

l Reports
After TetraMAX ATPGgenerates the patterns, it produces a fault summaries report, a test
coverage report, and a pattern count report. In addition, the total CPU time is reported.

l Restoration
After completing the automaticmode process, TetraMAX ATPG restores all settings to
their original values.

Setting Automatic Mode

To run ATPG in automaticmode:

1. Use the set_atpg command or the Run ATPGDialog box to select the ATPGabort
limit, ATPGverbosemode, and the ATPGmerge effort, if necessary. You can also create
a non-default fault population, or you can use defaults for any or all of these settings. For
more information, see "Specifying General ATPGSettings."

2. Do one of the following to initiate automaticmode:

l Specify the -auto_compression option of the run_atpg command, as shown
in the following example:

run_atpg -auto_compression

l Use the Run ATPGdialog box, as shown in the following steps:

a. Do one of the following:
l Select ATPG> Run ATPG
l Click the ATPGbutton

In both cases, the Run ATPGdialog box appears.

b. Click the Auto button.

Note the following:
l Multiple fault sensitization is only available if you use the -auto_compression option.
l You can use the -optimize_patterns option of the run_atpg command to produce
a very compact set of patternswith high test coverage. The trade-off is a longer runtime.
For details, seeOptimizing Patterns during the run_atpg Process.

Running ATPG 4-46

TetraMAX ATPG User Guide K-2015.06-SP4

Quickly Estimating Test Coverage
You can quickly estimate the final test coverage by setting a low abort limit and low merge effort
before running ATPG.
To quickly estimate coverage, use the -abort_limit and -merge option of the
set_atpg command, as shown in the following example:
TEST-T> set_atpg -abort_limit 5 -merge off
TEST-T> run_atpg

To estimate coverage using the Run ATPGdialog box:

1. Select ATPG> Run ATPGor click the ATPGbutton in the command toolbar.
The Run ATPGdialog box appears.

2. Set the Abort Limit to 5.
3. Set theMerge Effort to Off.
4. Click Set.
5. For details about these and other settings, see the description of the set_atpg and

run_atpg commands in TetraMAX Help.
6. Click Run.

Examples
Example 1 shows a transcript produced by these commands. The reported test coverage is
usually within 1 percent of the final answer, and the number of patternswith merge effort turned
off is usually two to three times the number of patterns produced by a final pattern generation run
with themerge effort set to high.

Example 1: Run ATPGTranscript, Merge Effort TurnedOff
TEST-T> set_atpg -abort 5 -merge off
TEST-T> run_atpg
ATPG performed for 71800 faults using internal pattern source.
--
#patterns #faults #ATPG faults test process
stored detect/active red/au/abort coverage CPU time
--------- ------------- ------------ -------- --------
32 41288 30512 0/0/2 60.92% 1.35
64 7135 23377 0/0/3 69.04% 2.17
96 3231 20146 0/0/6 72.73% 2.81
128 2643 17503 0/0/7 75.74% 3.33
160 1976 15527 0/0/11 78.00% 3.91
192 1977 13550 0/0/13 80.26% 4.43
224 1450 12100 0/0/16 81.92% 4.85
256 1246 10854 0/0/21 83.35% 5.32
288 1101 9753 0/0/24 84.61% 5.77
319 683 9070 0/0/26 85.39% 6.13
351 748 8322 0/0/27 86.24% 6.46
383 620 7702 0/0/29 86.95% 6.77
: : : : : : : :

Running ATPG 4-47

TetraMAX ATPG User Guide K-2015.06-SP4

1617 41 348 0/0/170 95.37% 22.02
1648 51 297 0/0/171 95.43% 22.34
1652 12 285 0/0/171 95.45% 22.43
TEST-T>

For comparison, Example 2 shows a transcript from an ATPG run on the same design with the
merge effort set to high.

Example 2: Run ATPGTranscript, Merge Effort Set to High
TEST-T> set_atpg -abort 5 -merge high
TEST-T> run_atpg
ATPG performed for 71800 faults using internal pattern source.
--
#patterns #faults #ATPG faults test process
stored detect/active red/au/abort coverage CPU time
--------- ------------- ------------ -------- --------
Begin deterministic ATPG: abort_limit = 5...
32 52694 19106 0/0/2 73.93% 39.05
64 6363 12743 0/0/6 81.21% 58.29
96 3200 9543 0/0/10 84.88% 74.35
128 2082 7461 0/0/13 87.26% 91.86
160 1234 6227 0/0/15 88.65% 105.62
192 1182 5045 0/0/17 90.00% 117.14
224 849 4196 0/0/21 90.97% 127.18
256 610 3586 0/0/25 91.67% 136.52
288 572 3014 0/0/29 92.32% 145.44
320 514 2500 0/0/34 92.91% 154.06
352 420 2080 0/0/37 93.39% 161.81
383 327 1753 0/0/43 93.77% 169.07
415 320 1433 0/0/49 94.13% 176.13
447 253 1180 0/0/72 94.42% 183.10
479 212 968 0/0/80 94.67% 189.54
511 176 792 0/0/90 94.87% 195.15
543 110 682 0/0/111 94.99% 200.98
575 97 585 0/0/133 95.11% 205.85
607 60 525 0/0/145 95.17% 210.38
639 90 435 0/0/175 95.28% 214.81
671 84 351 0/0/177 95.37% 218.10
695 46 305 0/0/177 95.43% 220.55
TEST-T>

The columns in the Run ATPG transcript are described as follows:
l #patterns stored – The total cumulative number of stored patterns (patterns that
TetraMAX ATPGkeeps).

l #faults detect – The number of faults detected by the current group of 32 patterns
l #faults active – The number of faults remaining active
l #ATPG faults red/au/abort – The cumulative number of faults found to be
redundant, ATPGuntestable, or aborted

Running ATPG 4-48

TetraMAX ATPG User Guide K-2015.06-SP4

l test coverage – The cumulative test coverage
l process CPU time – The cumulative CPU runtime, in seconds
Withmerge effort turned off, the design example produced the following results:

l Test coverage = 95.45 percent
l Number of patterns stored = 1652
l CPU time = 22 seconds

Withmerge effort set to high, the same design produced the following results:
l Test coverage = 95.43 percent
l Number of patterns stored = 695
l CPU time = 221 seconds

For a compromise between pattern compactness and CPU runtime, you can use the -auto_
compression option of the run_atpg command. This option selects an automatic algorithm
designed to produce reasonably compact patterns and high test coverage, with very little user
effort and a reasonable amount of CPU time. To use this option, the fault sourcemust be
internal.

Specifying a Test Coverage Target Value
By default, TetraMAX ATPGprocesses faults and generates patterns in an attempt to achieve
100 percent test coverage. You can specify a lower test coverage target value by entering a
decimal number between 0 and 100.0 in the Coverage% field of the Run ATPGdialog box or by
issuing a command similar to the following example:
TEST-T> set_atpg -coverage 88.5

Youmight want to specify a test coverage lower than 100 percent if you want to produce fewer
patterns, your design requirements are satisfied with a lower coverage, or you want an
alternative to using a pattern limit for decreasing CPU time.

Increasing ATPG Effort Over Multiple Passes
Determining an appropriate setting for the abort limit is an iterative process. The following
multipass approach produces reasonable results without using excessive CPU time:

1. Set the abort limit to 10 or less.
2. Set themerge effort to Off.
3. Generate test patterns (run_atpg).
4. Examine the results. If there are toomanyND (not detected) faults remaining, increase

the abort limit and generate test patterns again.
5. Repeat as necessary to determine theminimumabort limit necessary to achieve the

required results.

The following example sequence shows how to specify these settings:
TEST-T> set_atpg -abort_limit 10 -merge off
TEST-T> run_atpg
TEST-T> set_atpg -abort 50

Running ATPG 4-49

TetraMAX ATPG User Guide K-2015.06-SP4

TEST-T> run_atpg
TEST-T> set_atpg -abort 250
TEST-T> run_atpg

Note: Increasing the abort limit might decrease the number of ND faults, but it will not decrease
the number of AU (ATPGuntestable) faults.

Multiple Session Test Pattern Generation
You can create patterns usingmultiple sessions aswell as usingmultiple passes. For an
example of usingmultiple passes, see "Increasing Effort Over Multiple Passes."
The following examples describe situationswhere youmight usemultiple sessions:

l Your pattern set is too large for the tester, so you try an additional compression effort. If
that is unsuccessful, you truncate the pattern set to a size that fits the tester.

l Your pattern set is too large for the tester, so you split the pattern set into two or more
smaller sets.

l You have 2,000 patterns and a simulation failure occurs around pattern 1,800. You want to
look at the problem inmore detail but do not want to take the time to resimulate 1,799
patterns, so you read in the original patterns and write out the pattern with the error, plus
one pattern before and after for goodmeasure.

l You have three separate pattern files from previous attempts, and you want to merge them
all into a single pattern file that eliminates duplications.

l Your design has asymmetrical scan chains or other irregularities, and you want to create
separate pattern files with different environments of scan chains, clocks, and PI
constraints.

l You have changed the conditions under which your existing patternswere generated (for
example, by using a different fault list). You want to see how the existing patterns perform
with the new fault list.

These examples are explained inmore detail in the following sections:
l Splitting Patterns
l Extracting a Pattern Sub-Range
l MergingMultiple Pattern Files
l Using Pattern FilesGenerated Separately

Splitting Patterns
To split patterns, reestablish the exact environment under which the patternswere generated.
You do not need to restore a fault list. After achieving test mode, you can split the patterns at the
500-patternmark by using a command sequence similar to the following example:
TEST-T> set_patterns -external session_1_patterns
TEST-T> write_patterns pat_file1 -last 499 -external
TEST-T> write_patterns pat_file2 -first 500 -external

Running ATPG 4-50

TetraMAX ATPG User Guide K-2015.06-SP4

Extracting a Pattern Sub-Range
To extract part of the pattern, you use the same environment setup rules as for splitting patterns,
except that you use the -first and -last options of the write_patterns command
whenwriting patterns. After achieving test mode, you can extract a subrange of three patterns
using a command sequence similar to the following example:
TEST-T> set_patterns -external session_1_patterns
TEST-T> write_patterns subset_file -first 198 -last 200 -ext

Merging Multiple Pattern Files
You canmergemultiple pattern files only if all the files were generated under the same
conditions of clocks and constraints and have identical scan chains. The fault lists do not have to
match. To accomplish themerge, reestablish the environment and choose the final fault list to be
used. Patterns in the external files are eliminated during themerge effort if they do not detect any
new faults based on the current fault list.
After you achieve test mode and initialize a starting fault list, execute commands similar to the
following example:
TEST-T> set_patterns -external patterns_1
TEST-T> run_atpg
TEST-T> set_patterns -external patterns_2
TEST-T> run_atpg
TEST-T> set_patterns -external patterns_3
TEST-T> run_atpg
TEST-T> report_summaries

Alternatively, if you want to avoid running ATPG repeatedly or want to avoid potentially dropping
patterns, then you can replace the run_atpg commandswith run_simulation -store
commands:
TEST-T> set_patterns -delete
TEST-T> set_patterns -external patterns_1
TEST-T> run_simulation -store
TEST-T> set_patterns -external patterns_2
TEST-T> run_simulation -store
TEST-T> set_patterns -external patterns_3
TEST-T> run_simulation -store
TEST-T> report_summaries

This alternative approach copies and appends the patterns from an external buffer into an
internal one without performing ATPGandwithout any potential dropping of patterns.

Using Pattern Files Generated Separately
Usingmultiple sessions to generate patterns, you can use different definitions for clocks, PI
constraints, or even scan chains to obtain two or more separate sets of ATPGpatterns that
achieve a cumulative test coverage effect. The key to determining cumulative test coverage is
sharing and reusing the fault list from one session to another.

Running ATPG 4-51

TetraMAX ATPG User Guide K-2015.06-SP4

For example, suppose that you want to create separate pattern files for a design that has the
following characteristics:

l 20 scan chains, evenly distributed so that they all are between 240 and 250 bits in length
l 1 boundary scan chain that is 400 bits in length
l 1,500 patterns that have been run through ATPGand produced 98 percent test coverage
l A tester cycle budget of 500,000 cycles

Some rough calculations indicate that the 1,500 patterns require approximately 600,000 tester
cycles (400*1,500), which exceeds the tester cycle budget. One possible solution is to set up two
different environments, one that uses all scan chains and another that eliminates the definition of
the 400-bit long scan chain.
Your two ATPGsessions are organized in the followingmanner:

l Session 1: You create an STL procedure file that defines all scan chains except the 400-bit
chain. You proceed to generatemaximum coverage usingminimumpatterns. After saving
the patterns and before exiting, you save the final fault list, as in the following command:
TEST-T> write_faults sess1_faults.gz -all -uncollapsed -
compress gzip

l Session 2: You create an STL procedure file that defines all scan chains. You read in the
fault list saved in Session 1, as in the following command:
TEST-T> read_faults sess1_faults.gz -retain_code

The first session probably achieves less than the original 98 percent coverage, but still
consumes approximately 1,500 patterns. More important, the combination of the two sessions
matches the original 98 percent test coverage but generates fewer than 20 percent of the
original patterns for the second session (about 300 patterns). The total test cycles for both sets
of patterns are now as follows:
(1,500*250) + (300*400) = 495,000 tester cycles

The number of patterns has increased from 1,500 to 1,800, but the number of tester cycles has
decreased bymore than 100,000 and the original test coverage has beenmaintained.
Note:When you pass a fault list from one session to another and perform pattern compression,
you will see different test coverage results before and after pattern compression. Pattern
compression performs a fault grade on the patterns that exist only at that point in time. After
pattern compression, the test coverage statistics reflect the coverage of the current set of
patterns. The correct cumulative test coverage for both sessions is the output from the last
report_summaries command executed before any pattern compression.

Compressing Patterns
Test patterns produced by ATPG techniques usually have some amount of redundancy. You
can usually reduce the number of patterns significantly by compressing them, whichmeans
eliminating some patterns that provide no additional test coverage beyond what has been
achieved by other patterns.

Running ATPG 4-52

TetraMAX ATPG User Guide K-2015.06-SP4

Dynamic pattern compression is performedwhile patterns are being created.With this
technique, each time a new pattern is created, an attempt ismade tomerge the pattern with one
of the existing patternswithin the current cluster of 32 patterns in the pattern simulation buffer.
To enable dynamic pattern compression, use the -merge option of the set_atpg command or
the equivalent options in the Run ATPGdialog box.
The following sections describe the process for compressing patterns:

l Balancing Pattern Compaction and CPU Runtime
l Compression Reports

Balancing Pattern Compaction and CPU Runtime
Normally, a reasonable number of passes of static compression produces a smaller number of
patterns. However, this reduced pattern count results in a CPU runtime penalty.
For a compromise between pattern compactness and CPU runtime, you can use the -auto_
compression option of the run_atpg command. This option selects an automatic algorithm
designed to produce reasonably compact patterns and high test coverage, using a reasonable
amount of CPU time. For more information, look in the online help under the index topic
“Automatic ATPG.”
To obtain themaximum test coverage while achieving a reasonable balance of CPU time and
patterns:

1. Obtain an estimate of test coverage using theQuick Test Coverage technique (see
“Quickly Estimating Test Coverage”). If you are not satisfied with the estimate, determine
the cause of the problem and obtain satisfactory test coverage before you attempt to
achieveminimumpatterns.

2. Set Abort Limit to 100–300.
3. Set Merge Effort to High.
4. Specify the run_atpg -auto_compression command.
5. Examine the results. If there are still someNC or NO faults remaining, increase the Abort

Limit by a factor of 2 and execute run_atpg again.

Compression Reports
Example 1 shows a dynamic compression report generated using the -verbose option of the
set_atpg command. The -verbose option produces the following additional information:

l The pattern number within the current group of 32 patterns
l The number of fault detections successfullymerged into the pattern (#merges)
l The number of faults that were attempted but could not bemerged into the current pattern,
whichmatches themerge iteration limit unless the number of faults remaining is less than
this limit (#failed_merges)

l The number of faults remaining in the active fault list (#faults)
l TheCPU time used in themerge process

If youmonitor the verbose information, you will eventually see a point at which the number of
merges approaches zero. At this point, stop the process and reduce themerge effort or disable it
because the effect is not producing sufficient benefit to justify the CPU effort expended.

Running ATPG 4-53

TetraMAX ATPG User Guide K-2015.06-SP4

Example 1 Verbose Dynamic Compression Report
TEST-T> set_atpg -patterns 150 -merge medium -verbose
TEST-T> run_atpg
ATPG performed for 72440 faults using internal pattern source.
--
#patterns #faults #ATPG faults test process
stored detect/active red/au/abort coverage CPU time
--------- ------------- ------------ -------- --------
Begin deterministic ATPG: abort_limit = 5...
Patn 0: #merges=452 #failed_merges=100 #faults=40083 CPU=1.51 sec

Patn 1: #merges=637 #failed_merges=100 #faults=33938 CPU=2.82 sec

Patn 2: #merges=380 #failed_merges=100 #faults=30325 CPU=3.67 sec

Patn 3: #merges=211 #failed_merges=100 #faults=27403 CPU=4.52 sec

Patn 4: #merges=115 #failed_merges=100 #faults=25827 CPU=5.16 sec

Patn 5: #merges=798 #failed_merges=100 #faults=24633 CPU=6.66 sec

Patn 6: #merges=97 #failed_merges=100 #faults=23436 CPU=7.19 sec

Patn 7: #merges=82 #failed_merges=100 #faults=22431 CPU=7.69 sec

Patn 8: #merges=73 #failed_merges=100 #faults=21348 CPU=8.27 sec

Patn 9: #merges=77 #failed_merges=100 #faults=20340 CPU=8.83 sec

Patn 10: #merges=58 #failed_merges=100 #faults=19906 CPU=9.34 sec

Patn 11: #merges=65 #failed_merges=100 #faults=18231 CPU=9.97 sec

Patn 12: #merges=39 #failed_merges=100 #faults=17414 CPU=10.44 sec

Patn 13: #merges=50 #failed_merges=100 #faults=16759 CPU=10.96 sec

Patn 14: #merges=35 #failed_merges=100 #faults=16383 CPU=11.28 sec

Patn 15: #merges=36 #failed_merges=100 #faults=15994 CPU=11.62 sec

Patn 16: #merges=29 #failed_merges=100 #faults=15588 CPU=11.99 sec

Patn 17: #merges=28 #failed_merges=100 #faults=15112 CPU=12.36 sec

Patn 18: #merges=36 #failed_merges=100 #faults=14763 CPU=12.69 sec

Patn 19: #merges=34 #failed_merges=100 #faults=14510 CPU=13.02 sec

Running ATPG 4-54

TetraMAX ATPG User Guide K-2015.06-SP4

Patn 20: #merges=21 #failed_merges=100 #faults=14289 CPU=13.35 sec

Patn 21: #merges=342 #failed_merges=100#faults=13933 CPU=14.18 sec

Patn 22: #merges=37 #failed_merges=100 #faults=13711 CPU=14.50 sec

Patn 23: #merges=24 #failed_merges=100 #faults=13570 CPU=14.79 sec

Patn 24: #merges=24 #failed_merges=100 #faults=13438 CPU=15.05 sec

Patn 25: #merges=20 #failed_merges=100 #faults=13294 CPU=15.32 sec

Patn 26: #merges=23 #failed_merges=100 #faults=13145 CPU=15.59 sec

Patn 27: #merges=134 #failed_merges=57 #faults=12687 CPU=16.93 sec

Patn 28: #merges=27 #failed_merges=100 #faults=12552 CPU=17.28 sec

Patn 29: #merges=23 #failed_merges=100 #faults=12410 CPU=17.54 sec

Patn 30: #merges=29 #failed_merges=100 #faults=12296 CPU=17.82 sec

Patn 31: #merges=22 #failed_merges=100 #faults=12202 CPU=18.09 sec

32 51756 20684 0/0/1 72.80% 19.37
Patn 0: #merges=19 #failed_merges=100 #faults=11909 CPU=19.65 sec

Patn 1: #merges=34 #failed_merges=100 #faults=11755 CPU=19.93 sec

Patn 2: #merges=17 #failed_merges=100 #faults=11666 CPU=20.22 sec

Analyzing ATPG Output
You can analyze ATPGpattern generation output from the run_atpg command. This output
includes the following formats:

l Standard Format
l Expert Format
l Verbose Format with MergeWithout -auto_compression
l Verbose Format with MergeWithout -auto_compression

Running ATPG 4-55

TetraMAX ATPG User Guide K-2015.06-SP4

Standard Format
 TEST> run_atpg
ATPG performed for 72436 faults using internal pattern source.
--
#patterns #faults #ATPG faults test process
stored detect/active red/au/abort coverage CPU time
--------- ------------- ------------ -------- --------
Begin deterministic ATPG: abort_limit = 5...
32 49465 22971 0/0/1 70.05% 6.50
64 6808 16163 0/0/3 77.82% 10.52
96 3779 12380 1/1/4 82.13% 13.48
128 2220 10156 2/2/6 84.66% 16.02
160 1264 8890 4/2/7 86.11% 18.54
192 1415 7474 4/3/11 87.73% 20.87
224 1021 6450 6/4/13 88.89% 23.04
256 835 5610 9/6/17 89.85% 25.17
288 722 4881 13/8/19 90.68% 27.20
320 653 4223 15/11/21 91.43% 29.16
352 572 3648 16/13/26 92.08% 31.15
: : : : : : : :
831 78 378 176/105/132 95.69% 62.35
862 73 295 184/107/142 95.78% 64.08
889 49 212 205/113/143 95.87% 65.35

#patterns stored
This indicates the current number of patterns which are stored in the internal
pattern set. These patterns were created during the ATPG process and are
selected only if they are required for fault detection.

#faults detect/active
The first field indicates the number of faults that were detected in the current
simulation pass. The second field indicates the number of faults that still
remain active in the fault list. Depending on the fault-report setting, the fault
counts may be either uncollapsed (default) or collapsed.

#ATPG faults red/au/abort
The first field indicates the cumulative number of faults identified as redundant
in the current ATPG process. The second field indicates the cumulative number
of faults identified as ATPG untestable in the current ATPG process. The third
field indicates the cumulative number of faults that were aborted in the current
ATPG process. All of these fault counts are collapsed fault counts.

test coverage
This indicates the current value of the test coverage considering the current
fault list and patterns previously evaluated. There is a user selectable credit
given for possible-detected faults (default 50%) and ATPG untestable faults
(default 0%). Depending on the fault-report setting, the test coverage is

Running ATPG 4-56

TetraMAX ATPG User Guide K-2015.06-SP4

calculated using fault counts which are either uncollapsed (default) or
collapsed.

process CPU time
This indicates the cumulative number of CPU seconds that have been used up
to this point in the current ATPG process.

Expert Format
 TEST> run_atpg
ATPG performed for stuck fault model using internal pattern source.
Fast-seq simulation is used to verify Basic-Scan patterns.
--
#patterns #patterns #faults #ATPG faults test process
simulated eff/total detect/active red/au/abort coverage CPU time
--------- --------- ------------- ------------ -------- --------
Begin deterministic ATPG: #uncollapsed_faults=72346, abort_limit=10...
32 32 32 49273 23072 1/0/1 69.89% 7.40
64 32 64 6890 16182 1/0/2 77.75% 11.59
96 32 96 3233 12948 2/0/6 81.45% 15.06
128 32 128 2295 10651 3/1/7 84.07% 18.04
160 32 160 1986 8662 4/2/7 86.33% 20.80
192 32 192 1256 7403 6/3/7 87.77% 23.37
224 32 224 971 6429 8/4/8 88.88% 25.76
256 32 256 842 5583 10/6/10 89.84% 28.12
288 32 288 702 4875 14/7/12 90.65% 30.44
320 32 320 639 4235 14/8/13 91.38% 32.73
352 32 352 514 3718 16/9/16 91.97% 35.02
: : : : : : : :
832 32 830 80 294 143/92/58 95.78% 68.51
864 32 862 59 212 163/93/65 95.87% 70.85
896 32 894 58 133 179/94/70 95.96% 72.91
909 13 907 29 83 197/96/70 96.01% 73.72
Begin fast-seq ATPG: #uncollapsed_faults=179, abort_limit=10, depth=4...
910 1 908 5 174 0/0/9 96.02% 73.87
911 1 909 1 172 0/1/38 96.02% 74.43
912 1 910 1 171 0/1/47 96.02% 74.61
913 1 911 2 169 0/1/48 96.02% 74.67

This form is generated when set messages-level expert is in effect.
#patterns eff/total

This report is identical to the Standard Form with the exception that an
additional information appears as the 2nd and 3rd columns. The 2nd column is
the number of patterns in the current working group of 32 which were effective
and kept. The 3rd column is the cumulative total number of patterns kept.

Running ATPG 4-57

TetraMAX ATPG User Guide K-2015.06-SP4

Verbose Format with Merge (without -auto_compression)
 run_atpg
ATPG performed for stuck fault model using internal pattern source.

 Fast-seq simulation is used to verify Basic-Scan patterns.
 --
 #patterns #patterns #faults #ATPG faults test process
simulated eff/total detect/active red/au/abort coverage CPU time
--------- --------- ------------- ------------ -------- --------
Begin deterministic ATPG: #uncollapsed_faults=266012, abort_limit=10...
Patn 1: #merges=537 #failed_merges=20 #faults=154875 #det=8693 CPU=1.14 sec
Patn 2: #merges=316 #failed_merges=20 #faults=124914 #det=53161 CPU=1.71sec
Patn 3: #merges=256 #failed_merges=20 #faults=107012 #det=29741 CPU=2.19sec
Patn 4: #merges=83 #failed_merges=20 #faults=95837 #det=17827 CPU=2.48sec
Patn 5: #merges=235 #failed_merges=20 #faults=85826 #det=15586 CPU=2.92sec
...................
Patn 28: #merges=40 #failed_merges=20 #faults=34518 #det=1181 CPU=9.10 sec
Patn 29: #merges=44 #failed_merges=20 #faults=33872 #det=959 CPU=9.28 sec
Patn 30: #merges=56 #failed_merges=20 #faults=33223 #det=1009 CPU=9.47 sec
Patn 31: #merges=32 #failed_merges=20 #faults=32730 #det=829 CPU=9.63 sec
32 32
32 210799 55209 2/0/0 80.42% 10.23
Patn 0: #merges=43 #failed_merges=20 #faults=32127 #det=1179 CPU=10.39sec
Patn 1: #merges=28 #failed_merges=20 #faults=31515 #det=1059 CPU=10.54 sec
.................
Patn 31: #merges=33 #failed_merges=20 #faults=21284 #det=353
CPU=15.18 sec
64 32 64 18839 36366 4/0/0 86.43% 15.43
Patn 0: #merges=18 #failed_merges=20 #faults=21145 #det=232
CPU=15.55 sec
............
Patn 31: #merges=32 #failed_merges=20 #faults=15576 #det=225
CPU=19.81 sec
96 32 96 9508 26846 7/0/2 89.47% 20.02

This form is generated when set_atpg -verbose -merge is in effect.
#merges

This indicates the number of additional patterns merged with the original
pattern. Each pattern successfully detects a fault on at least one target fault
(primary fault). The combined pattern can also detect additional faults
(secondary faults). A merge count of 10 means the single pattern is doing the
work of 11 patterns and it will detect at least the 11 target faults (primary
faults) and might also detect many more faults that were not the original
targets (secondary faults).

#failed_merges
This indicates the number of faults for which a pattern was generated but that
new pattern could not be merged with the existing pattern for the primary fault
site. When the count is less than the merge limit (low=20, medium=100,

Running ATPG 4-58

TetraMAX ATPG User Guide K-2015.06-SP4

high=500) then TetraMAX ATPG ran out of active faults/patterns to merge into
the primary pattern before it reached the iteration limit. When the count is
equal to the merge limit, then the limit was reached and there were still faults
that could have attempted to be merged.
When you see the merge limit being reached over and over again, there can be
value in increasing the merge effort using the -merge option of the set_atpg
command. However, this increase in merge effort will come at a cost of
additional CPU time.
When the failed merge count is consistently less than the limit on each pattern
attempt, then the optimal setting for the merge effort is just higher than the
maximum failure count.
If you assume in the previous example that the merge effort was 300, then the
majority of patterns showed a #failed_merges count less than 300 and this
value is reasonably good. Increasing the merge effort to 400 or 500 can
improve the number of patterns merged for patterns 0, 1, and 4 in the first
group of 32, but at a cost of increased runtime. The optimal value for merge
effort often requires repeated ATPG runs and seeking the optimal value can
often take more time is efficient. One shortcut approach is to set the merge
effort high, say 3000, and then watch the progress for the first 32 patterns and
then stop the run. Using the information learned in the first 32 patterns to set
the merge effort for a more complete run. When -auto_compression is not
used, only the first parameter of set_atpg -merge is in effect.

#faults
If single-pattern fault simulation is performed, this number represents the
number of faults detected by the pattern. If single-pattern fault simulation is
not performed, this number represents the number of faults targeted by the
test generator (i.e., primary, secondary and side-path detection faults). In
either case, fault simulation at the end of the interval ultimately decides which
faults are truly detected and which are not.
A heuristic algorithm is used to decide whether or not to perform single-pattern
fault simulation. This algorithm attempts to simultaneously maximize coverage
and minimize pattern count and CPU time.
In some cases, single-pattern fault simulation is performed on some patterns
in an interval (thus the #faults can be high). But simulation may not be
performed on other patterns (thus the #faults is low). This does not indicate
incorrect behavior and is not a cause for cone timern.

CPU=
This indicates the cumulative number of CPU seconds that have been used up
to this point in the current ATPG process.

Running ATPG 4-59

TetraMAX ATPG User Guide K-2015.06-SP4

Verbose Format with Merge and -auto_compression
 run_atpg -auto_compression
ATPG performed for stuck fault model using internal pattern

source.
Fast-seq simulation is used to verify Basic-Scan patterns.
--
#patterns #patterns #faults #ATPG faults test process
simulated eff/total detect/active red/au/abort coverage CPU time
--------- --------- ------------- ------------ -------- --------
Begin deterministic ATPG: #uncollapsed_faults=3199364, abort_

limit=10...
Patn 1: #merges=0/922(0%) #failed_merges=0/34 #faults=1783833

#det=14023 CPU=32.58 sec clocks=

Patn 2: #merges=0/86808(3%) #failed_merges=0/3484 #faults=1435411
#det=642019 CPU=58.32 sec clocks= cclk pclk

Patn 3: #merges=0/46986(0%) #failed_merges=0/125 #faults=1366319
#det=101465 CPU=81.48 sec clocks= cclk crst_ pclk
...........
Patn 31: #merges=0/2110(0%) #failed_merges=0/272 #faults=411938

#det=12251 CPU=324.24 sec clocks= pclk
Warning: 3 (4) basic-scan patterns failed current pass simulation
check and is treated as ignored measures. (M212)
32 32 32 2492119 707234 2/4/6 77.30% 362.76
Local redundancy analysis results: #redundant_faults=4398, CPU_

time=3.00 sec

Patn 0: #merges=0/1761(0%) #failed_merges=0/242 #faults=400847
#det=9765 CPU=370.68 sec clocks= cclk pclk
...........
Patn 31: #merges=0/869(0%) #failed_merges=0/62 #faults=276129

#det=3269 CPU=484.81 sec clocks= ZXIN ZADCK
Warning: 1 (1) basic-scan patterns failed current pass simulation
check and is treated as ignored measures. (M212)
64 32 64 238165 462910 3/6/10 83.51% 499.63

Patn 0: #merges=0/1437(0%) #failed_merges=0/231 #faults=272195
#det=6860 CPU=502.74 sec clocks= inclk zxin ad[0]

Patn 1: #merges=0/1253(0%) #failed_merges=0/155 #faults=268677
#det=6429 CPU=505.99 sec clocks= clk inclk crst_ pclk
..........
Patn 31: #merges=0/568(0%) #failed_merges=0/39 #faults=221584

#det=2037 CPU=587.17 sec clocks= inclk

Running ATPG 4-60

TetraMAX ATPG User Guide K-2015.06-SP4

This form is generated when set atpg -verbose -merge is in effect.
#merges=d1/d2(d3%)

This indicates the number of additional patterns merged with the original
pattern. Each pattern successfully detects a fault on at least one target fault
(primary fault). The combined pattern can also detect additional faults
(secondary faults). A merge count of 10 means the single pattern is doing the
work of 11 patterns and it will detect at least the 11 target faults (primary
faults) and may also detect many more faults that were not the original
targets.
o d1 is number of secondary faults detected and merged into the pattern.
o d2 is number of faults detected and merged through multiple fault
sensitization.
o d3 is the percentage of of multiple fault sensitization merges that did not
detect any faults (d2 and d3 are printed only when using -auto_compression
and verbose mode is turned on)
The first and second values passed to the set_atpg -merge command control
the secondary fault merge effort and multiple fault sensitization merge effort,
respectively.

#failed_merges=d4/d5
Where d4 is the number of failed merges of secondary faults and d5 is the
number of failed merges of multiple fault sensitization (d5 is printed only when
-auto_compression is used and verbose mode is turned on)

#faults
This indicates the calculated number of collapsed faults that are still active in
the fault list.

#detects
This indicates the number detected faults.

CPU=
This indicates the cumulative number of CPU seconds that have been used up
to this point in the current ATPG process.

clock=s
This is a list of clocks pulsed during the capture cycle. With dynamic clock
grouping, you can have multiple clocks pulsing together in the same capture
cycle, which results in a considerable reduction in the pattern count. This field
is printed only when -auto_compression is used.

Note: For d3, #faults and #detects, youmight sometimes see "---". When the design is large and
onlymultiple fault sensitization is in progress, it ismore efficient and productive to run fault
simulation at the end of an interval (that is, 32 patterns). For these conditions, because each
pattern is not fault simulated as soon as it is generated, some information required in verbose
messages is not available.

Running ATPG 4-61

TetraMAX ATPG User Guide K-2015.06-SP4

Reviewing Test Coverage
You can view the results of the test coverage and the number of patterns generated using the
report_summaries command or the Report Summaries dialog box.
The following example shows how to generate a fault summary report using the report_
summaries command:
TEST-T> report_summaries

For the complete syntax and option descriptions, see the description of the report_
summaries command in TetraMAX Help.

To use the Report Summaries dialog box to generate a fault summary report:

1. From the command toolbar, click the Summary button. The Report Summaries dialog box
appears.

2. Select the appropriate summary settings.
For details about available settings, see the description of the report_summaries
command in TetraMAX Help.

3. ClickOK.

An example output report showing the fault counts and the test coverage obtained by using the
uncollapsed fault list is shown in Example 3. A detailed description of each fault class is shown in
“Fault Lists and Faults.”

Example 3: Uncollapsed Fault SummaryReport
TEST-T> report_summaries
Uncollapsed Fault Summary Report

fault class code #faults
------------------------------ ---- ---------
Detected DT 83348
Possibly detected PT 324
Undetectable UD 1071
ATPG untestable AU 3453
Not detected ND 212

total faults 88408
test coverage 95.62%

Pattern Summary Report

#internal patterns 1636

Example 4 shows the same report with collapsed fault reporting. Notice that there are fewer total
faults, and fewer individual fault categories.

Example 4: Collapsed Fault SummaryReport
TEST-T> set_faults -report collapsed

Running ATPG 4-62

TetraMAX ATPG User Guide K-2015.06-SP4

TEST-T> report_summaries
Collapsed Fault Summary Report

fault class code #faults
------------------------------ ---- ---------
Detected DT 50993
Possibly detected PT 214
Undetectable UD 1035
ATPG untestable AU 2370
Not detected ND 122

total faults 54734
test coverage 95.16%

Pattern Summary Report

#internal patterns 1636

To find out where the faults are located in the design, see “Analyzing the Cause of Low Test
Coverage”

Writing ATPG Patterns
TetraMAX ATPGcanwrite pattern files in binary, STIL, andWGL. By default, TetraMAX ATPG
generates new internal patterns. To save the test patterns, you can you can use the write_
patterns command or theWrite Patterns dialog box.

Note: For information on translating adaptive scan patterns into normal scan-mode patterns,
see "Reading Pattern Files."
By default, TetraMAX ATPGwrites parallel patterns in the unified STIL flow format when the -
format option of the write_patterns command is specified with the stil or stil99
arguments.
The following examples show how to use the write_patterns command to write serial STIL
patterns:
write_patterns patterns.stil -serial -format stil

The following example writes patterns in a proprietary binary format that can be read by
TetraMAX ATPG:
write_patterns patterns.bin -format binary -replace

To use theWrite Patterns dialog box to format and save test patterns:

1. From the command toolbar, click theWrite Pat button.
TheWrite Patterns dialog box appears.

2. In the Pattern File Name field, enter the name of the pattern file to be written or use the
Browse button to find the directory you want to use or to view a list of existing files.

Writing ATPG Patterns 4-63

TetraMAX ATPG User Guide K-2015.06-SP4

3. Accept the default settings unless you requiremore.
4. ClickOK.

For descriptions of all the options for writing patterns, see the description of the
write_patterns command in TetraMAX Help.
For information on generating patterns for DFTMAX Ultra, see "Pattern Types Accepted by
DFTMAX Ultra."

Writing ATPG Patterns 4-64

5
Using Tcl With TetraMAX
The following sections describe how to use the TetraMAX Tcl command interface:

l Converting TetraMAX Command Files to Tcl
l Converting a Collection to a List
l Tcl Syntax and TetraMAX Commands
l Redirecting Output
l Using Command Aliases
l Interrupting Commands
l Using Command Files

For a general guide on how to use Tcl with Synopsys tools, seeUsing TclWith Synopsys Tools,
available through SolvNet at the following URL:
https://solvnet.synopsys.com/dow_retrieve/latest/tclug/tclug.html
Note: In Tcl Mode, it is possible to use Tcl API commands to access, and thenmanipulate
TetraMAX data. For a complete description, see “An Introduction to the TetraMAX Tcl API” in
TetraMAX Online Help.

5-1

https://solvnet.synopsys.com/dow_retrieve/latest/tclug/tclug.html

TetraMAX ATPG User Guide K-2015.06-SP4

Converting TetraMAX Command Files to Tcl Mode
You can use the native2tcl.pl translation script to convert existing nativemode TetraMAX
command files to Tcl mode TetraMAX command files. This script is in the installation tree at the
following location:
$SYNOPSYS/auxx/syn/tmax/native2tcl.pl

Two database files are provided with the tmax_cmd.perl script: tmax_cmd.grm and tmax_
cmd.db.
Usage:
native2tcl.pl [-t ext] [- | -r dir]

Argument Description

[-t ext] Identifies the file extension to assign the converted files; for
example, TCL.

[- | -r dir] Accepts input from STDIN or from the specified directory
path.

For example, assuming that the nativemode script to be converted is located under
/user/TMAX, the command-line entry would appear as follows:
native2tcl.pl -t .TCL -r /user/TMAX

Converting a Collection to a List in Tcl Mode
TetraMAX Tcl API netlist query commands, such as get_clocks and get_ports, return a
collection of design objects, but not a Tcl list of named objects. You can use the get_object_
name procedure to convert a collection to a Tcl list. For example, you can convert a collection of
ports to a list of port names.
You can define the get_object_name procedure using the following command:
source [getenv SYNOPSYS]/auxx/syn/tmax/get_object_name.tcl

After the get_object_name procedure is sourced within the Tcl environment, it is available
for use with various TetraMAX collections. An example is as follows:
TEST-T> set coll [get_ports test_si*]
{test_si1 test_si2 test_si3 test_si4 test_si5 test_si6 test_si7}

TEST-T> echo $coll
_sel2

TEST-T> set tcllist [get_object_name $coll]
test_si1 test_si2 test_si3 test_si4 test_si5 test_si6 test_si7

Converting TetraMAX Command Files to Tcl Mode 5-2

TetraMAX ATPG User Guide K-2015.06-SP4

Tcl Syntax and TetraMAX Commands
The TetraMAX user interface is based on Tcl version 8.4. Using Tcl, you can extend the
TetraMAX command language bywriting reusable procedures.
The Tcl language has a straightforward syntax. Every Tcl script is viewed as a series of
commands, separated by a new-line character or semicolon. Each command consists of a
command name and a series of arguments.
There are two types of TetraMAX commands:

l Application commands
l Built-in commands

Each type is described in the following sections. Other aspects of Tcl version 8.4 are also
described.
If you needmore information about the Tcl language, consult books on the subject in the
engineering section of your local bookstore or library.
The following sections describe Tcl syntax and TetraMAX Commands:

l Specifying Lists in Tcl Mode
l Abbreviating Commands andOptions in Tcl Mode
l Using Tcl Special Characters
l Using the Result of a Tcl Command
l Using Built-In Tcl Commands
l TetraMAX Extensions and Restrictions in Tcl Mode

Specifying Lists in Tcl Mode
In Tcl mode, you can specify lists in commandswithin curly braces ({ }), or within brackets ([
]) if preceded by the list keyword.
In the following example, curly braces are used in the add_pi_constraints command to
specify a list of ports:
DRC-T> add_pi_constraints 1 {TEST_MODE TICK CLK}
DRC-T> report_pi_constraints
port_name constrain_value
---------- ---------------
/TEST_MODE 1
/TICK 1
/CLK 1

Alternatively, you can specify a list of ports in the add_pi_constraints command using the
keyword list and brackets:
DRC-T> add_pi_constraints 1 [list TEST_MODE TICK CLK]
DRC-T> report_pi_constraints
port_name constrain_value
---------- ---------------

Tcl Syntax and TetraMAX Commands 5-3

TetraMAX ATPG User Guide K-2015.06-SP4

/TEST_MODE 1
/TICK 1
/CLK 1

Note: In Tcl mode, a list format is required whenmultiple arguments follow an option. For
example:
set_build -instance_modify {specbuffer TIEX}

Tcl Mode and Backslashes
In Tcl mode, a backslash character (\) specified at the end of a line represents a line
continuation. Any single backslash specified in themiddle of a word escapes the character
following it. The following examples show how to overcome this situation when you want to
specify a backslash within a Tcl list:
Use a double-backslash, for example:
add_clocks 0 {\\A[0] \\B[0]}

Use two levels of curly braces, for example:
add_clocks 0 {{\A[0]} {\B[0]}}

As an alternative, you can remove backslashes entirely. In this case, TetraMAX commands
automaticallymatch specified identifiers that have no backslashes to identifiers in the database
that have backslashes.

The following examples show variousmethods for specifying escaped names for a list
argument:

add_faults {{\abccdef/hij/U1/A}}
add_faults {\\abccdef/hij/U1/A}
add_faults {abccdef/hij/U1/A}
add_faults [list {\abccdef/hij/U1/A}]
add_faults [list \\abccdef/hij/U1/A]
add_faults [list abccdef/hij/U1/A]

Using Positional Arguments
Positional argumentsmust be specified within a Tcl list using curly braces. For example:
run_simulation -pin { ucore/freg/u540 01 }

However, if multiple specifications of the same argument are required, youmust use a separate
set of lists, as shown in the following example:
run_simulation -pin { ucore/freg/u540 0 } –pin { ucore/alu/u27 1 }

Abbreviating Commands and Options in Tcl Mode
Application commands are specific to TetraMAX ATPG. You can abbreviate application
command names and options to the shortest unambiguous (unique) string. For example, you
can abbreviate the add_pi_constraints command to add_pi_c or the report_faults
command option -collapsed to -co. Conversely, you cannot abbreviatemost built-in
commands.

Tcl Syntax and TetraMAX Commands 5-4

TetraMAX ATPG User Guide K-2015.06-SP4

Command abbreviation ismeant as an interactive convenience. You should not use command
or option abbreviations in script files, however, because script files are then susceptible to
command changes in subsequent versions of the application. Such changes canmake
abbreviations ambiguous.
The variable sh_command_abbrev_mode determineswhere and whether command
abbreviation is enabled. Although the default is Anywhere, in the site setup file for the
application, you can set this variable to Command-Line-Only . To disable abbreviation, set sh_
command_abbrev_mode to None.
If you enter an ambiguous command, TetraMAX ATPGattempts to help you find the correct
command.
For example, the following command is ambiguous:
> report_scan_c
Error: ambiguous command ‘report_scan_c’ matched 2 commands:
(report_scan_cells, report_scan_chains) (CMD-006).

TetraMAX ATPG lists up to three of the ambiguous commands in its error message. To list all
the commands that match the ambiguous abbreviation, use the help function with a wildcard
pattern. For example,
> help report_scan_c_*
report_scan_cells # Reports scan cell information for selected
scan cells
report_scan_chains # Reports scan chain information.

Using Tcl Special Characters
The characters listed in Table 1 have special meaning for Tcl in certain contexts.

Table 1: Special Characters

Character Description

$ Dereferences a variable.

() Used for grouping expressions.

[] Denotes a nested command.

\ Used for escape quoting.

"" Denotes weak quoting. Nested commands and
variable substitutions still occur.

{ } Denotes rigid quoting. There are no substitutions.

; Ends a command.

Begins a comment.

Tcl Syntax and TetraMAX Commands 5-5

TetraMAX ATPG User Guide K-2015.06-SP4

Using the Result of a Tcl Command
TetraMAX commands return a result, which is interpreted by other commands as strings,
Boolean values, integers, and so forth. With nested commands, the result can be used as

l A conditional statement in a control structure
l An argument to a procedure
l A value to which a variable is set

The following example uses a result:
if {[expr $a + 11] <= $b} {
echo "Done"
return $b
}

Using Built-In Tcl Commands
Most built-in commands are intrinsic to Tcl. Their arguments do not necessarily conform to the
TetraMAX argument syntax. For example, many Tcl commands have options that do not begin
with a dash, but do have a value argument.
For example, the Tcl string command has a compare option that you use as follows:
string compare string1 string2

A log file of the TetraMAX session can be created using the set_messages -log <file>
command, aswith nativemode. However, some Tcl built-in commandsmight not be able to
write to the log file. For example, the puts command cannot write to the TetraMAX log file; use
the echo command instead.

TetraMAX Extensions and Restrictions in Tcl Mode
Generally, TetraMAX ATPG implements all the Tcl built-in commands. However, TetraMAX
ATPGadds semantics to some Tcl built-in commands and imposes restrictions on some
elements of the language. The differences are as follows:

l The Tcl rename command is limited to procedures you have created.
l The Tcl load command is not supported.
l You cannot create a command called unknown.
l The auto exec feature found in tclsh is not supported. However, autoload is supported.
l The Tcl source command has additional options: -echo and -verbose, which are non-
standard to Tcl.

l The history command has additional options, -h and -r, nonstandard to Tcl, and the
form history <n>. For example, history 5 lists the last five commands.

l The TetraMAX command processor processeswords that look like bus (array) notation
(words that have square brackets, such as a[0]), so that Tcl does not try to execute the
index as a nested command.Without this processing, you would need to rigidly quote such
array references, as in {a[0]}.

Tcl Syntax and TetraMAX Commands 5-6

TetraMAX ATPG User Guide K-2015.06-SP4

l Always use braces ({ }) around all control structures and procedure argument lists. For
example, quote the if condition as follows:
if {! ($a > 2) } {
echo "hello world"
}

Redirecting Output in Tcl Mode
You can direct the output of a command, procedure, or a script to a specified file using the
redirect command or by using the traditional UNIX redirection operators (> and >>)
The UNIX style redirection operators cannot be used with built-in commands. Youmust use the
redirect commandwhen using built-in commands.
You can use either of the following two commands to redirect command output to a file:
redirect temp.out {report_nets n56}
report_nets n56 > temp.out

You can use either of the following two commands to append command output to a file:
redirect -append temp.out {report_nets n56}
report_nets n56 >> temp.out

Note: The Tcl built-in command puts does not respond to redirection of any kind. Instead, use
the TetraMAX command echo, which responds to redirection.
The following sections describe in detail how to redirect output:

l Using the redirect Command in Tcl Mode
l Getting the Result of Redirected Tcl Commands
l Using Redirection Operators in Tcl Mode

Using the redirect Command in Tcl Mode
In an interactive session, the result of a redirected command that does not generate a Tcl error is
an empty string, as shown in the following example:
> redirect -append temp.out { history -h }
> set value [redirect blk.out {plus 12 34}]
> echo "Value is <$value>"
Value is <>

Screen output from a redirected command occurs only when there is an error, as shown in the
following example:
> redirect t.out { report_commands -history 5.0 }
Error: Errors detected during redirect
Use error_info for more info. (CMD-013)

This command had a syntax error because 5.0 is not an integer. The error is in the redirect file.
> exec cat t.out
Error: value '5.0' for option '-history' not of type

Redirecting Output in Tcl Mode 5-7

TetraMAX ATPG User Guide K-2015.06-SP4

'integer'
(CMD-009)

The redirect command ismore flexible than traditional UNIX redirection operators. The
UNIX style redirect operators > and >> are not part of Tcl and cannot be used with built-in
commands. Youmust use the redirect commandwith built-in commands.
For example, you can redirect expr $a > 0 only with the following command:
redirect file {expr $a > 0}

With redirect you can redirect multiple commands or an entire script. As a simple example,
you can redirect multiple echo commands:
redirect e.out {
 echo -n "Hello"
 echo "world"
}

Getting the Result of Redirected Tcl Commands
Although the result of a successful redirect command is an empty string, you can get and use the
result of the command you redirected. You do this by constructing a set command in which you
set a variable to the result of your command, and then redirecting the set command. The variable
holds the result of your command. You can then use that variable in a conditional expression.
An example is as follows:
redirect p.out {
 set rnet [catch {read_netlist h4c.lib }]
}
if {$rnet == 1} {
 echo "read_netlist failed! Returning..."
 return
}

Using Redirection Operators in Tcl Mode
Because Tcl is a command-driven language, traditional operators usually have no special
meaning unless a particular command (such as expr) imposes somemeaning. TetraMAX
commands respond to > and >> but, unlike UNIX, TetraMAX ATPG treats the > and >> as
arguments to the command. Therefore, youmust use white space to separate these arguments
from the command and the redirected file name, as shown in the following example:
echo $spec_variable >> file.out; # Right
echo $spec_variable>>file.out; # Wrong!

Keep inmind that the result of a command that does not generate a Tcl error is an empty string.
To use the result of commands you are redirecting, youmust use the redirect command.
The UNIX style redirect operators > and >> are not part of Tcl and cannot be used with built-in
commands. Youmust use the redirect commandwith built-in commands.

Redirecting Output in Tcl Mode 5-8

TetraMAX ATPG User Guide K-2015.06-SP4

Using Command Aliases in Tcl Mode
You can use aliases to create short forms for the commands you commonly use. For example,
the following command duplicates the function of the dc_shell include commandwhen using
TetraMAX ATPG:
> alias include "source -echo -verbose"

After creating the alias in the previous example, you can use it by entering the following
command:
> include commands.cmd

When you use aliases, keep the following points in mind:
l TetraMAX ATPG recognizes an alias only when it is the first word of a command.
l An alias definition takes effect immediately, but only lasts until you exit the TetraMAX
session.

l You cannot use an existing command name as an alias name; however, aliases can refer
to other aliases.

l Aliases cannot be syntax checked. They look like undefined procedures.

Interrupting Tcl Commands
If you enter the wrong options for a command or enter the wrong command, you can usually
interrupt command processing by pressing Control-c.
The time the command takes to respond to an interrupt (to stop what it is doing and return to the
prompt) depends on the size of the design and the function of the command being interrupted.
Some commandsmight take awhile before responding to an interrupt request, but TetraMAX
commandswill eventually respond to the interruption.
If TetraMAX ATPG is processing a command file (see “Using Command Files”), and you
interrupt one of the file’s commands, script processing is interrupted and TetraMAX ATPGdoes
not process anymore commands in the file.
If you pressControl-c three times before a command responds to your interrupt, TetraMAX
ATPG is interrupted and exits with the followingmessage:
Information: Process terminated by interrupt.

There are a few exceptions to this behavior, which are documented with the applicable
commands.

Using Command Aliases in Tcl Mode 5-9

TetraMAX ATPG User Guide K-2015.06-SP4

Using Command Files in Tcl Mode
You can use the source command to execute scripts in TetraMAX ATPG. A script file, also called
a command file, is a sequence of commands in a text file.
The syntax is as follows:
> source [-echo] [-verbose] cmd_file_name

By default, the source command executes the specified command file without showing the
commands or the system response to the commands. The -echo option causes each command
in the file to be displayed as it is executed. The -verbose option causes the system response to
each command to be displayed.
Within a command file you can execute any TetraMAX command. The file can be simple ASCII
or gzip compressed.
The following sections describe how to use command files:

l Adding Comments
l Controlling Command ProcessingWhen ErrorsOccur
l Using a Setup Command File

Adding Comments
You can add block comments to command files by beginning comment lineswith the pound sign
(#).
Add inline comments using a semicolon to end the command, followed by the pound sign to
begin the comment, as shown in the following example:
#
Set the new string
#
set newstr "New"; # This is a comment.

Controlling Command Processing When Errors Occur
By default, when a syntax or semantic error occurs while executing a command in a command
file, TetraMAX ATPGdiscontinues processing the file. There are two variables you can use to
change the default behavior: sh_continue_on_error and sh_script_stop_
severity.
To force TetraMAX ATPG to continue processing the command file nomatter what, set sh_
continue_on_error to true. This is usually not recommended, because the remainder of
the file might not perform as expected if a command fails due to syntax or semantic errors (for
example, an invalid option).
Note: The sh_script_stop_severity variable has no effect if the sh_continue_on_
error variable is set to true.

Using Command Files in Tcl Mode 5-10

TetraMAX ATPG User Guide K-2015.06-SP4

To get TetraMAX ATPG to stop the command file when certain kinds of messages are issued,
use the sh_script_stop_severity variable. This is set to none by default. Set it to E to
get the file to stop on anymessage with error severity. Set it to W to get the file to stop on any
message with warning severity.

Using a Setup Command File
You can use a command file as a setup file so that TetraMAX ATPGwill automatically execute it
at startup. The default setup file is located in the following directory:
$SYNOPSYS_TMAX/admin/setup/tmaxtcl.rc

To use a setup command file in the Tcl interface, youmust name it either .tmaxtclrc or
tmaxtcl.rc, and place it in the directory where TetraMAX ATPGwas started or in your home
directory.

Using Command Files in Tcl Mode 5-11

6
Using the Graphical Schematic Viewer
The graphical schematic viewer (GSV) displays design information in schematic form for review
and analysis. It selectively displays a portion of the design related to a test design rule violation, a
particular fault, or some other design-for-test (DFT) condition. You use theGSV to find out how
to correct violations and debug the design.
The following sections describe how to use theGSV for interactive analysis and correction of
test design rule checking (DRC) violations and test pattern generation problems:

l Getting StartedWith the GSV
l Displaying Symbols in Primitive or Design View
l Displaying Instance Path Names
l Displaying Pin Data
l Analyzing a Feedback Path
l Checking Controllability andObservability
l Analyzing DRC Violations
l Analyzing Buses
l Analyzing ATPGProblems
l Printing a Schematic to a File

6-1

TetraMAX ATPG User Guide K-2015.06-SP4

Getting Started With the GSV
The following sections describe how to get started using theGSV:

l Using the SHOWButton to Start the GSV
l Starting the GSV From aDRC Violation or Specific Fault
l Navigating, Selecting, Hiding, and Finding Data
l Expanding the Display FromNet Connections
l Hiding Buffers and Inverters in the GSV Schematic
l ATPGModel Primitives

Using the SHOW Button to Start the GSV
The following steps describe how to start the GSV and display a particular part of the design:

1. Click the SHOW button.
The SHOWmenu appears, which lets you choose what to show: a named object, trace,
scan path, and so on.

2. To display a named object, select Named.
The Show Block dialog box appears.

3. In the Block ID/PinPath Name text field, enter a primitive ID, instance, or pin path name to
the object to display. (If you do not know what instance or pin names are available, enter
0; this is the primitive ID of the first primary input port to the top level.)
For information on the design’s port names and hierarchy, review the list of top-level ports
using the report_primitives -ports command.

4. Click the Add button.
Your entry is added to the list box.

5. Repeat steps 3 and 4 to add all the parts of the design that you want to view.
6. ClickOK

Figure 1 shows the TetraMAX GUI main window split by themovable divider. The top window
shows aGSV schematic containing the specified objects. The bottomwindow contains the
transcript.

Getting Started With the GSV 6-2

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1: GSV in the TetraMAX GUI MainWindow

Starting the GSV From a DRC Violation or Specific Fault
You can start the GSV and view a specific DRC violation by using the Analyze dialog box, as
shown in the following steps:

1. Click the ANALYZE button in the GSV toolbar.
The Analyze dialog box appears as shown in Figure 1.

Getting Started With the GSV 6-3

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1: Analyze and Fill Faults Dialog Boxes

2. Click the Faults tab if it is not already active.
3. Select the Pin Pathname option, if it is not already selected.
4. Click the Fill button.

The Fill Faults dialog box opens.
5. Using the Class field, select the class of faults that you would like to see listed, such as

“NO: not-observed.” You can also specify the range of faults within that class that are to
be listed.

6. ClickOK to fill in the list box in the Analyze window, as shown in Figure 2.
7. From the list, select the specific fault you would like displayed, such as “0 /core/CTL_

2/U351/X”.
The fields at the top of the dialog box are filled in automatically from your selection.

8. ClickOK.

Getting Started With the GSV 6-4

TetraMAX ATPG User Guide K-2015.06-SP4

The Analyze dialog box closes and theGSV displays the logic associated with the
selected fault location.

Figure 2 shows the schematic displayed for a selected fault. The title at the top of the GSV
window indicates the fault location displayed and appears on any printouts of the GSV.

Figure 2: GSVWindowWith a Fault Displayed

The command-line equivalent to the Analyze dialog box is the analyze_faults command.
This command and the resulting report appear in the transcript window, as shown in Example 1.

Example 1: Transcript of Not-Observed Analysis
TEST-T> analyze_faults /core/CTL_2/U351/X -stuck 0 -display

Fault analysis performed for /core/CTL_2/U351/X stuck at 0 (output
of AND gate 178).
Current fault classification = NO (not-observed).

Connection data: to=CLKPO,MASTER from=CLOCK
Fault site control to 1 was successful (data placed in parallel
pattern 0).
Observe_pt=any test generation was unsuccessful due to abort.
Observe_pt=181(AND) test generation was successful (data placed in
parallel pattern 1).
Observe_pt=273(NAND) test generation was successful (data placed
in parallel pattern 2).

Getting Started With the GSV 6-5

TetraMAX ATPG User Guide K-2015.06-SP4

Observe_pt=309(NAND) test generation was successful (data placed
in parallel pattern 3).
Observe_pt=391(TSD) test generation was successful (data placed in
parallel pattern 4).
Observe_pt=395(BUS) test generation was successful (data placed in
parallel pattern 5).
Observe_pt=55(PIO) test generation was unsuccessful due to atpg_
untestable.
Warning: 1 patterns rejected due to 16 bus preclock contentions

(ID=394, pat1=0). (M181)
The gate_report data is now set to "pattern:5".

The details of this type of report are described in the Example: Analyzing a NOFault section.

See Also
Performing Design Rule Checking
Fault Lists and Faults

Navigating, Selecting, Hiding, and Finding Data
Within the GSV, you can navigate to different locations and views, select objects, hide objects,
and find specific data for various objects. The following sections describe each of these actions:

l NavigatingWithin the GSV
l Selecting Objects in the GSV Schematic
l Hiding Objects in the GSV Schematic
l Using the Block ID Window

Navigating Within the GSV
To navigate within the GSV window, use the horizontal or vertical slider; the arrow keys on the
keyboard; and the ZM IN, ZMOUT, ZMRESET, ZMFULL, and ZMBOX buttons.
To zoom in to a specific area, click the ZMBOX button and then drag a box around the area to be
magnified.

Selecting Objects in the GSV Schematic
To select an object, click it. The selected object color changes to red. The net or instance name
of the selected object appears in the lower status bar, as shown in Figure 1.
To deselect the object, click it again. To select more than one object, hold down the Shift key and
click each object.

Getting Started With the GSV 6-6

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1: SelectedObject Name

Hiding Objects in the GSV Schematic
The following steps describe how to hide an object in the GSV:

1. Select the object by clicking it.
2. Click the HIDE button.

The HIDE menu appears.
3. Choose Selected.

The selected object is hidden. Alternatively, you can choose Named to hide a named
object, or All to hide all objects. You can also press the Delete key to hide selected objects.

Using the Block ID Window
You can find out the instance name, parent module, and connection data for any displayed
object using the Block ID window. The following steps show you how to open the Block
ID window:

1. Click the object of interest; the object color changes to red.
2. With the right mouse button, click the object again.

A menu appears.
3. With the left mouse button, click the DisplayGate Info option of themenu.

The Block ID window appears with information about the selected object.

Getting Started With the GSV 6-7

TetraMAX ATPG User Guide K-2015.06-SP4

4. To display information for other objects, with the Block ID window still open, click each
object with the right mouse button while holding down the Control key.

Expanding the Display From Net Connections
In the schematic display, net connections to undisplayed nets appear with one of two termination
symbols, as shown in Figure 1:

l The diamond symbol represents a unidirectional net connection
l The bow tie symbol represents a bidirectional net connection

Figure 1: Net Expansion Symbols: Diamond and Bow Tie

To expand the display from a specific connection, click the diamond or bow tie that represents
the connection of interest. The schematic expands to include the next gate or component
forward or backward from the selected connection. Each click adds one component to the
display. If a net hasmultiple additional components, you can click repeatedly and displaymore
components until the diamond or bow tie no longer appears.
The following steps show an example of the results obtained by clicking the diamond and bow tie
connection points:

1. Click the diamond.

2. Click the boxtie on gate 17454.

Getting Started With the GSV 6-8

TetraMAX ATPG User Guide K-2015.06-SP4

3. Click three times on diamond on gate 17454.

The following steps describe how to traverse a specific route from output pin to input pin without
displaying all the fanout connections:

1. Right-click the net diamond.
2. From the pop-upmenu, select Show Unconnected Fanout.

The Unconnected Fanout dialog box appears, which lists all of the paths from the net that
are not currently shown in the schematic.

3. Select from the list the path you want to traverse.
4. ClickOK. TheGSV adds the selected path to the GSV display.

See Also
add_net_connections

Hiding Buffers and Inverters in the GSV Schematic
When you display a design at the primitive level, you can save display space by removing the
buffer and inverter gates and instead display them as double slashes and bubbles.
The following steps describe how to hide buffer and inverter gates:

1. Click the SETUP button on theGSV toolbar.
TheGSV Setup dialog box appears. The Hierarchy selection lets you specify whether to
display primitives or design components. (For a discussion of primitives, see “ATPG
Model Primitives.")

2. Select the BUF/INVs check box in the Hide section.

Getting Started With the GSV 6-9

TetraMAX ATPG User Guide K-2015.06-SP4

3. ClickOK.
TetraMAX ATPG redraws the schematic without the usual buffer and inverter symbols.

As you redraw items in the schematic, the buffers and inverters are displayed as double slashes
and bubbles, as shown in Figure 1. Double slashes across the net represent a hidden gate with
no logic inversion; double slashes around a bubble represent a hidden gate with logic inversion.
When you look at schematics that contain hidden gates, be aware of any hidden gates that invert
logic.

Figure 1: SchematicWith Buffers and Inverters Hidden

ATPG Model Primitives
This section describes the set of TetraMAX primitives that are used in GSV displayswhen
Primitive is selected in the GSV Setup dialog box. If Design is selected, see “Displaying Symbols
in Primitive or Design View."
The primitives include the following:

l Tied Pins
l Primary Inputs andOutputs

Getting Started With the GSV 6-10

TetraMAX ATPG User Guide K-2015.06-SP4

l BasicGate Primitives
l Additional Visual Characteristics
l RAMandROMPrimitives

Tied Pins
A pin can be tied to 0, 1, X, or Z and can be represented in one of the following two ways:

l By an oval containing the label T0, T1, TX, or TZ connected to the pin. For example, in
Figure 1, the DFF on the left has two of its input pins connected to ovals labeled TX,
indicating that the two pins are tied to X (unknown).

l By a separate connection to a TIE primitive. For example, in Figure 1, the DFF on the right
has two of its input pins connected to the TIE0 primitive, indicating that the two pins are tied
to 0.

Figure 1: GSV Representation of Tied Pins

Primary Inputs and Outputs
Primary (top-level) inputs and outputs are identified in the following ways:

l Primary inputs are identified with the symbol shown for gates 67 and 250 in Figure 2.
Primary input ports always appear at the left of the schematic, and the symbol contains the
port label (for example, iihclk and test_se).

l Primary outputs are identified with the symbol shown for gate 94018 in Figure 2. Primary
outputs always appear at the right of the schematic, and the symbol contains the port label
(for example, cpu_clk).

l Primary bidirectional ports are identified with the symbol shown for gate 305 in Figure 2.
Primary bidirectional ports can appear anywhere in the schematic, and the symbol
contains the port label (for example, owe_). The two bidirectional triangular wedges on
bidirectional nets distinguish them from unidirectional nets.

Getting Started With the GSV 6-11

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 2: Primary I/O and Bidirectional Port Symbols

Basic Gate Primitives
Figure 3 shows representative symbols for many of themore commonly used TetraMAX
primitives. The combinational gates AND, OR, NOR, XOR, and XNOR are shownwith two
inputs, but can have any number of inputs. For a complete list, refer to the Online Help reference
topic “ATPGSimulation Primitives.”

Getting Started With the GSV 6-12

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 3: Some BasicGate Primitives

Additional Visual Characteristics
Some additional visual characteristics of ATPGprimitives are described as follows:

l Merged inverters: Inverters can bemerged into the drawn symbol to make the schematic
more compact. For example, in Figure 3, the AND gate (ID 40449) shows an inversion
bubble on the A input, indicating that an inverter that preceded this pin has beenmerged
into the AND gate.

Getting Started With the GSV 6-13

TetraMAX ATPG User Guide K-2015.06-SP4

l Merged resistors: Resistors can bemerged into the drawn symbol to show a gate that has
a weak output drive strength. For example, in Figure 3, the BUS gate (ID 47310) shows a
resistor on one of its input pins, indicating a resistive input.

l Pin Name labels: Some pins are labeled with pin names, and some are not. A pin name on
a primitive indicates that the pinmaps directly to the identical pin on the definingmodule in
the library cell. For example, in Figure 3 the TSD or three-state device (ID 14461) shows
pins labeled A, E, and Z, meaning that those pins are all directlymapped to the pins of the
definingmodule. However, the DFF (ID 82517) shows only pin CP labeled, meaning that
CP ismapped directly to the definingmodule’s pin called CP, but the unnamed pins are
connected to other TetraMAX primitives. A singlemodule can be represented by several
TetraMAX primitives; in that case, the labels do not all appear on the same TetraMAX
primitive.

l Pin order: The order of pins on the TSD, DLAT, DFF, andMUX primitives is significant.
Refer to Figure 3; pins are displayed in the following order, starting at the top:

l For the DLAT (level-sensitive latch) primitive: asynchronous set, asynchronous
reset, active-high enable, and data inputs.

l For the DFF (edge-triggered flip-flop) primitive: asynchronous set, asynchronous
reset, positive triggered clock, and data inputs.

l When the displaymode is set to Primitive, you can control the appearance of
DFF/DLAT symbols in the Environment dialog box (Edit > Environment). In the
dialog box, click the Viewer tab and set the DFF/DLAT option toMode 1, Mode 2, or
Mode 3. For details, see “Displaying Symbols in Primitive or Design View” on and
“DFF Primitive.”

RAM and ROM Primitives
For readability, instead of a single rectangle with numerous pins, a RAMor ROMblock is
represented as a collection of the special primitives shown in Figure 4. The example represents
a simple 256x4 RAMwith a single write port and a single read port, each with its own address
and control pins. Other RAMs can havemultiple read and write ports. Although the RAMand
ROMprimitives are shownwith specific bit-widths (for example, ADRBUS has eight bits and
DATABUS has four bits), all bit-widths are supported, as required by the design.

Getting Started With the GSV 6-14

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 4: RAMandROMPrimitives

TheRAMandROMprimitives are described as follows:
l ADRBUS: Merges the eight individual address lines at the left into the single 8-bit address
bus at the right. In this example, the write port uses a separate address from the read port.

l DATABUS: Merges the four individual data write lines at the left into the single 4-bit data
bus at the right.

l MEMORY: The core of the RAMor ROM; holds the stored contents. Starting from the top
left, pins are as follows: an active-high set; an active-high reset (both tied to 0 in the
example); a single data write port consisting of a write clock (wclk); a write enable (tied to
1); the write port address bus (8 bits); and the write port data bus (4 bits). A memory block
can havemultiple read and write ports; a memorywithout a write port represents a ROM.
Themodule where the ROM is definedmust give a path name to amemory initialization
file.

l RPORT: Provides a single read port. It has a read clock or read enable pin (tied to 1 in the
example), an 8-bit address bus input, and a 4-bit data bus input from thememory core. Its
output is a 4-bit data bus.

l MOUT: Splits a single bit from the 4-bit RPORT data bus.

See Also
Creating Custom ATPG Models

Getting Started With the GSV 6-15

TetraMAX ATPG User Guide K-2015.06-SP4

Displaying Symbols in Primitive or Design View
You can choose to display a schematic using the TetraMAX primitives (Primitive view) or using
the higher-level symbols that represent the library cells (Design view).
To specify the type of view, in the GSV Setup dialog box, select either Primitive or Design in the
Hierarchy box and clickOK. Figure 1 shows two different views of a design.

Figure 1: Comparison of Primitive and Design Views

Note that the schematic labeledPrimitive View uses TetraMAX primitives; the schematic labeled
Design View uses cells in the technology library.

Displaying Instance Path Names
You can display the instance path name above each instance in the schematic, as described in
the following steps:

1. Select Edit > Environment in themenu bar.
The Environment dialog box appears.

2. In the Environment dialog box, click the Viewer tab.
3. Select the Display Instance Names check box.
4. ClickOK.

See Also
Masking Scan Cell Input andOutputs

Displaying Pin Data
You can display various types of pin data on the schematic to help you analyze DRC problems or
view logic states for specific patterns, constrained and blocked values, or simulation results. For

Displaying Pin Data 6-16

TetraMAX ATPG User Guide K-2015.06-SP4

example, youmight want to see the ripple effects of pins tied to 0 or 1, identify all nets that are
part of a clock distribution, or see logic values on nets resulting from a STIL shift procedure.
The data values displayed are generated either byDRC or by ATPG. Data values generated by
DRC correspond to the simulation values used byDRC in simulating the STIL protocol to check
conformance to the test rules. Data values generated by ATPGare the actual logic values
resulting from a specific ATPGpattern.
When you analyze a rule violation or a fault, TetraMAX ATPGautomatically selects and displays
the appropriate type of pin data. You can alsomanually select the type of pin data to be
displayed by using the SETUP button in the GSV toolbar, or you can use the set_pindata
command at the command line.
The following sections describe how to display pin data:

l Using the Setup Dialog Box
l Pin Data Types
l Displaying ClockCone Data
l Displaying ClockOff Data
l Displaying Constrain Values
l Displaying Load Data
l Displaying Shift Data
l Displaying Test Setup Data
l Displaying Pattern Data
l Displaying Tie Data

Using the Setup Dialog Box to Display Pin Data
The following steps describe how to display pin data on the schematic using the Setup dialog
box:

1. With a schematic displayed in the GSV (for example, as shown in Figure 1), click the
SETUP button on theGSV toolbar.
The Setup dialog box opens.

2. Using the Pin Data Type pull-downmenu, select the type of pin data you want to display.
3. ClickOK.

TetraMAX ATPG redraws the schematic using the new pin data type.

Displaying Pin Data 6-17

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1: GSV DisplayWith Pin Data Type Set to Tie Data

To set the pin data displaymode from the command line, use the set_pindata command. For
example:

TEST-T> set_pindata -clock_cone CLK

For complete syntax and option descriptions, seeOnline Help for the set_pindata command.

Pin Data Types
Table 1 lists each pin data type, a description of the data displayed in the GSV, and its typical
use. You can find additional related information in the description of the set_pindata
command in Online Help.

Table 1: Pin Data Types

Pin Data
Type Data Displayed Typical Use

Clock
Cone

Cone of influence and effect cones for
the selected clock

Debugging clock (C)
violations

Clock On Simulated values when all clocks are
held in on state

Debugging clock (C)
violations

Clock Off Simulated values when all clocks are
held in off state

Debugging clock (C)
violations

Constrain
Value

Simulated values that result from
tied circuitry and ATPG constraints

Analysis of the effects of
constrained signals

Debug
Sim Data

Imported external simulator values Debugging golden simulation
vector mismatches

Error Data Simulated values associated with the
current DRC error

Analysis of DRC violations
with severity of error

Displaying Pin Data 6-18

TetraMAX ATPG User Guide K-2015.06-SP4

Pin Data
Type Data Displayed Typical Use

Fault Data Current fault codes Analysis of fault coverage (for
advanced users of fault
simulation)

Fault Sim
Results

Good machine and faulty machine
values for a selected fault

Displaying results of Basic-
Scan fault simulation (for
advanced users of fault
simulation)

Full-Seq
SCOAP
Data

SCOAP controllability and
observability measures using Full-
Sequential ATPG

Identification of logic that is
difficult to test with Full-
Sequential ATPG

Full-Seq
TG Data

Full-Sequential test generator logic
values, showing the sequence of
logic values used to achieve
justification

Analysis of logic controllability
using Full-Sequential ATPG

Good Sim
Results

The good machine value for the
selected ATPG pattern

Displaying ATPG pattern
values

Load Simulated values for the load_
unload procedure

Debugging problems in a STIL
load_unload macro

Master
Observe

Simulated values for the master_
observe procedure

Debugging problems in a STIL
master_observe procedure

Pattern Simulated values for a selected
pattern

Fault analysis; displays ATPG
generated values

SCOAP
Data

SCOAP controllability and
observability measures

Identification of logic that is
difficult to test

Sequential
Sim Data

Currently stored sequential
simulation data

Displaying results of
sequential fault simulation
(for advanced users of fault
simulation)

Shadow
Observe

Simulated values for the shadow_
observe procedure

Debugging problems in a STIL
shadow_observe procedure

Shift Simulated values for the Shift
procedure

Debugging DRC T (scan chain
tracing) violations

Stability
Patterns

Simulated values for the load_
unload, Shift, and capture
procedures

Analysis of classification of
nonscan cells

Displaying Pin Data 6-19

TetraMAX ATPG User Guide K-2015.06-SP4

Pin Data
Type Data Displayed Typical Use

Test
Setup

Simulated values for the test_setup
macro

Debugging problems in a STIL
test_setup macro

Tie Data Simulated values that result from
tied circuitry

Analysis of the effects of tied
signals

Displaying Clock Cone Data
To display clock cone data, select ClockCone as the Pin Data type in the GSV Setup dialog box
and clickOK. The schematic is redrawn as shown Figure 2. This example shows the clock cones
and effect cones of the TCK clock port.

Figure 2: GSV Display: Pin Data Type Set to ClockCone

Note the following:
l Nets labeled “C” are in the clock’s clock cone. A clock cone is an area of influence that
begins at a single point, spreads outward as it passes through combinational gates, and
terminates at a clock input to a sequential gate.

l Nets labeled “E” are in the clock’s effect cone. An effect cone begins at the output of the
sequential gate affected by the clock, spreads outward as it passes through combinational
gates, and also terminates at a sequential gate.

l Nets labeled “CE” are in both the clock and effect cones because of a feedback path
through a common gate that allows the effect cone tomerge with the clock cone.

l Nets labeled “N” are in neither the clock nor effect cones.

Displaying Clock Off Data
To display clock off data, select ClockOff as the Pin Data type in the GSV Setup dialog box and
clickOK. The schematic is redrawn as shown in Figure 3.

Displaying Pin Data 6-20

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 3: GSV Display: Pin Data Type Set to ClockOff

In Figure 3, nets that are part of a clock distribution are shownwith the logic values they have
when the clocks are at their defined off states. Nets not affected by clocks are shownwith Xs.
In this design, the clock ports are CLK and RSTB and their nets have values of 0. The 0 value
from the CLK net is propagated to the input of gate 10, the output of gate 10, and the CK input of
gate 59 (the DFF). The 0 value of RSTB is propagated to the RB input of the sameDFF, gate
59. Notice that the RB pin has an inversion bubble; this is an active-low reset. When the clocks
are off, there is a logic 0 value on this pin, which results in a C1 violation (unstable scan cells
when clocks off).
The solution to the problem detected here is to delete the clockRSTB and redefine it with the
opposite polarity. Then, execute run_drc again and verify that this particular DRC violation is
no longer reported.

Displaying Constrain Values
To display constrain values, select Constrain Value as the Pin Data type in the GSV Setup
dialog box and clickOK. Figure 4 shows a schematic displaying the constrain values.

Figure 4: GSV Display: Pin Data Type Set to Constrain Value

Constrain values are shown as three pairs of characters in the format T/B1, C/B2, S/B3:
l T is the pin’s value that is a result of tied circuitry, if any exists. An “X” indicates that there is
no value due to tied logic.

Displaying Pin Data 6-21

TetraMAX ATPG User Guide K-2015.06-SP4

l B1 indicateswhether faults are blocked on the pin because of the tied value “T.” A value of
“B” indicates that the fault is blocked; a dash (-) indicates that the fault is not blocked.

l C is the constant value on the pin that results from constrained circuitry during Basic-Scan
ATPG, if any. A tilde (~) preceding the character indicates values that cannot be achieved.
For example, ~1means that a value of 1 cannot be achieved, so the value is either 0 or X.
An “X” indicates that there is no constant value due to constraints during Basic-Scan
ATPG.

l B2 indicateswhether faults are blocked on the pin because of the constrained value “C.” A
value of “B” indicates that the fault is blocked; a dash (-) indicates that the fault is not
blocked.

l S is similar to C, except that it is the constant value on the pin that results from constrained
circuitry during sequential ATPG.

l B3 is similar to B2, except that it indicateswhether faults are blocked on the pin because of
the constrained value “S.”

Displaying Load Data
To display logic values during the load_unload procedure, select Load as the Pin Data type in
the GSV Setup dialog box and clickOK. Figure 5 shows a schematic displaying the load data.

Figure 5: GSV Display: Pin Data Type Set to Load

The logic values are shown in the format “AAA{ }SBB”:
l AAA is one or more logic states associated with test cycles defined at the beginning of the
load_unload procedure.
For each test cycle defined before the Shift procedure within the load_unload procedure,
AAA has only one logic state if there were no events during that cycle.
For example, if three test cycles within the load_unload procedure precede the Shift
procedure and an input port is forced to a 1 in the first cycle, the input port might show logic
values 111{ }1. If, however, the port is pulsed and an active-low pulse is applied in the third
test cycle, the port would show logic values 11101{ }1. In this case, the third test cycle is
expanded into three time events and produces the third, fourth, and fifth characters, --101{
}-.
Curly braces { } represent application of the Shift procedure asmany times as needed to
shift the longest scan chain. For single-bit shift chains, the actual data simulated for the
shift pattern is used rather than the { } placeholder.

l S represents the final logic value at the end of the Shift procedure.

Displaying Pin Data 6-22

TetraMAX ATPG User Guide K-2015.06-SP4

l BB represents the logic values from cycles in the load_unload procedure that occur after
the Shift procedure. TetraMAX ATPGdetermines the logic values for multibit shift chains
as follows:

l It places all constrained primary inputs at their constrained states.
l It simulates all test cycles within the load_unload procedure before the Shift
procedure, in the order that they occur.

l It sets to X all other input ports and scan inputs that are not constrained or explicitly
set.

l It pulses the shift clock repeatedly until the circuit comes to a stable state.
l It simulates all test cycles that are defined within the load_unload procedure that
occur after the Shift procedure.

If no test cycles in the load_unload procedure occur after the Shift procedure, BB is an empty
string. Otherwise, the string displayed for BB contains characters: one character for each test
cycle that can be represented with a single time event, andmultiple characters for any test cycles
that requiremultiple time events. This is similar to how a single cycle in A is expanded into three
characters when the port is pulsed; see the preceding discussion of AAA.

Displaying Shift Data
To display logic values during the Shift procedure, select Shift as the Pin Data type in the GSV
Setup dialog box and clickOK. The schematic is redrawn as shown in Figure 6.
In Figure 6, the pins show logic values that result from simulating the Shift procedure. The CLK
port shows a simulation sequence of 010, and during the same three time periods, the RSTB pin
is 111 and the SCAN pin is 111.

Figure 6: GSV Display: Pin Data Type Set to Shift

These are all appropriate values for the STIL Shift procedure shown in the following example:
Shift
V { _so = #; _si = #; INC = 0; CLK = P; RSTB = 1; SCAN = 1; }
}

Displaying Pin Data 6-23

TetraMAX ATPG User Guide K-2015.06-SP4

Displaying Test Setup Data
To display logic values simulated during the test_setupmacro, select Test Setup as the Pin Data
type in the GSV Setup dialog box and clickOK. An example schematic with Test Setup data is
shown in Figure 7.

Figure 7: GSV Display: Pin Data Type Set to Test Setup

By default, only a single logic value is shown, which corresponds to the final logic value at the exit
of the test_setupmacro. To show all logic values of the test_setupmacro, youmust change a
DRC setting using the set_drc command, then rerun the DRC analysis as follows:
TEST-T> drc
DRC-T> set_drc -store_setup
DRC-T> run_drc

Displaying Pattern Data
You can use theGSV to display logic values for a specific ATPGpattern within the last 32
patterns processed. TheGSV can also show the values for all 32 patterns simultaneously.
To display logic values for a specific pattern:

1. Display some design gates in the schematic window.
2. Click the SETUP button in the GSV toolbar.
3. In the Setup dialog box, set the Pin Data type to Pattern.
4. In the Pattern No. text box, choose the specific pattern number to be displayed.
5. ClickOK.

The logic values that result from the selected ATPGpattern are displayed on the nets of
the schematic, as shown in Figure 8.

Displaying Pin Data 6-24

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 8: GSV Display: Pin Data Type Set to a Pattern Number

The logic values shownwith an arrow, as in 0->1, show the pre-clock state on the left and the
post-clock state on the right. A logic state shown as a single character represents the pre-clock
state. For a clock pin, a single character represents the clock-on state.
To display logic values for all patterns, choose All Patterns in the GSV Setup dialog box and click
OK. Figure 9 shows all 32 patterns on the pins. You read the values from left to right. The
leftmost character is the logic value resulting from pattern 0, and the rightmost character is the
logic value resulting from pattern 31.

Figure 9: GSV Display: Pin Data Type Set to Pattern All

To examine a pattern that is not in the final 32 patterns processed, chooseGood SimResults in
the GSV Setup dialog box and clickOK.
For an additional method of viewing the logic values from a specific pattern, see “Running Logic
Simulation ." By simulating a fault on an output port, you can display the logic values for any
pattern.

Displaying Pin Data 6-25

TetraMAX ATPG User Guide K-2015.06-SP4

Displaying Tie Data
To display tie data, select Tie Data as the Pin Data type in the GSV Setup dialog box and click
OK. The schematic is redrawn as shown in Figure 10.

Figure 10: GSV Display: Pin Data Displayed

In Figure 10, logic values are shown on nets affected by pins tied to 0 or 1. Thus, the output of
gate 14 is shownwith logic value 1, because its input is tied to 1. The tied value of 1 is
propagated to the inputs of gates 52 and 21. Nets not affected by tied values are shownwith Xs.

Analyzing a Feedback Path
You can use theGSV to review combinational feedback loops in the design. Example 1 shows
the use of the report feedback paths command to obtain a summary of all combinational
feedback paths and details about a specified feedback path. The five gates involved in this
feedback path example are identified by their instance path names (under “id#”) and gate IDs.

Example 1: Report Feedback Paths Transcript
TEST-T> report_feedback_paths -all
id# #gates #sources sensitization_status
--- ------ -------- --------------------
0 2 1 pass
1 10 1 pass
2 10 1 pass
3 10 1 pass
4 10 1 pass
5 10 1 pass
6 5 1 pass
7 10 1 pass
8 8 1 pass

Analyzing a Feedback Path 6-26

TetraMAX ATPG User Guide K-2015.06-SP4

TEST-T> report_feedback_paths 6 -verbose
id# #gates #sources sensitization_status
--- ------ -------- --------------------
6 5 1 pass
BUF /amd2910/register/U70 (2894), cell=CMOA02
INV /amd2910/register/sub_23/U11 (2895), cell=CMIN20
NAND /amd2910/register/U86 (2896), cell=CMND30
BUF /amd2910/register/U70 (2897), cell=CMOA02
NAND /amd2910/register/U70/M1 (2898), cell=OAI211_UDP_1

To view a particular feedback path in the GSV, click the SHOW button, select Feedback Path,
and specify the feedback path in the Show Feedback Path dialog box. Figure 1 shows the
resulting schematic display for feedback path number 6 in Example 1.

Figure 1: GSV Display: A Feedback Path

Checking Controllability and Observability
You can use the Run Justification dialog box or the run_justification command, along
with the GSV’s ability to display pattern data, to determine if:

l a single internal point is controllable and observable
l a single internal point is controllable and observable within existing ATPGconstraints
l multiple points can be set to required states simultaneously

You specify one or more internal pin states to achieve. TetraMAX ATPGattempts to find a
pattern that achieves the specified logic states. If a pattern can be found, it is placed in the
internal pattern buffer, and you can write it out or display it in the schematic by running the
Pattern pin display format in the Setup dialog box.
By default, the run_justification command uses Basic-Scan ATPG; or if you have
enabled Fast-Sequential ATPGwith the set_atpg -capture_cycles command, it uses
Fast-Sequential ATPG. If you want justification performedwith Full-Sequential ATPG, use the -
full_sequential option of the run_justification command, or enable the Full
Sequential option of the Run Justification dialog box.

Using the Run Justification Dialog Box
To specify pin states using the Run Justification dialog box:

Checking Controllability and Observability 6-27

TetraMAX ATPG User Guide K-2015.06-SP4

1. From themenu bar, choose Run > Run Justification. The Run Justification dialog box
appears.

2. In the Gate ID/Pin path name text field, type the gate ID number of a gate whose state you
want to specify or the pin path name of the pin you want to specify.

3. In the Value field, use the drop-downmenu to choose the value you want to specify for
that gate or pin (0, 1, or Z).

4. Click Add.
The value and gate ID are added to the list in the dialog box.

5. Repeat steps 2, 3, and 4 for each gate or pin that you want to specify. When you are
finished, clickOK.
The Run Justification dialog box closes. TetraMAX ATPGattempts the justification and
reports the results.

Using the run_justification Command
Example 2 shows the use of the run_justification command to request that gate ID 330
be set to 1 while gate ID 146 is simultaneously set to 0. Themessage indicates that the operation
was successful and that the pattern is stored as pattern 0, available for pattern display.

Example 2: Using the run_justification Command
TEST-T> run_justification -set 330 1 -set 146 0 -store

Successful justification: pattern values available in pattern 0.
Figure 2 shows a schematic that displays the data for pattern number 0 in Example 2. Gate 146
is at logic 0 state and gate 330 is at logic 1, as requested. Justification was successful, and
TetraMAX ATPGwas able to create a pattern to satisfy the list of set points.

Figure 2: GSV Display: Logic Values FromRun Justification

See Also
Analyzing the Cause of Low Test Coverage

Analyzing DRC Violations in the GSV
To analyze DRC violations in the GSV:

Analyzing DRC Violations in the GSV 6-28

TetraMAX ATPG User Guide K-2015.06-SP4

1. Run DRC. For details, see "Starting Test DRC."
2. Click the ANALYZE button in the command toolbar of the GSV.
3. Click the Rules tab and select a violation from the displayed list or enter a specific violation

occurrence number in the Rule Violation field.
4. ClickOK.
5. Determine the cause of the violation and correct it. For details, see "Output from the run_

drc Command."
6. Run DRC again using the RunDRC Dialog Box.
7. List the violations of the same rule, verify the absence of the violation you just corrected,

and examine the remaining violations. (Sometimes, correcting a violation corrects others
aswell. But it alsomight create new violations.)

8. Return to Step 2 and repeat the same process until all violations of the rule have been
corrected.

The following topics show how to troubleshoot some typical DRC violations:
l Troubleshooting a Scan Chain Blockage
l Troubleshooting a Bidirectional Contention Problem

Troubleshooting a Scan Chain Blockage
An S1 rule violation is referred to as a scan chain blockage and is a commonDRC violation. The
S1 violation occurs when DRC cannot successfully trace the scan chain because a signal
somewhere in the circuit is in an incorrect state and is blocking the scan chain.
Example 1 shows the transcript message for violation S1-13.

Example 1: S1-13 ViolationMessage
Error: Chain c16 blocked at DFF gate /spec_asic/alu/bits/AD_DATIN/
ff_reg (18985)
after tracing 3 cells. (S1-13)

The following steps show you how to view the violation:

1. Click the ANALYZE button on theGSV toolbar. The Analyze dialog box opens.
2. Click the Rules tab if it is not already active.
3. Type S1-13 in the Rule Violation box.
4. ClickOK.

The schematic in Figure 1 displays the violation. The pin data type has been automatically
set to Shift, and the shift data is displayed. The schematic shows the gate identified in the
S1-13 violationmessage and the gates feeding its second pin (the reset pin).

Analyzing DRC Violations in the GSV 6-29

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1: GSV Display: DRC Violation S1-13

The following steps show you how to find the signal blocking the scan chain at gate 18985:

1. Check the clock and asynchronous pins, starting with the DFF clock pin (H02); it has a
010 simulated state from the shift procedure, which is correct.

2. Check the DFF reset pin (H05); it has an XXX value, which is unacceptable. For a
successful shift, H05must be held inactive.

3. Trace the XXX value back from the H05 pin. The source is the primary input NRES.

The NRES input has an unknown value, either because it was not declared as a clock (as it
should have been because of its asynchronous reset capability) or because the STIL load_
unload procedure does not force NRES to an off state. You should investigate these possibilities
and correct the problem, then execute the run_drc command and examine the new list of
violations.
After correcting the NRES input problem and executing the run_drc command, you select
violation S1-9 from the list of remaining S1 violations. As before, you display the violation using
theGSV. Figure 2 shows the resulting schematic with Shift pin data displayed.

Figure 2: GSV Display: DRC Violation S1-9

In the Figure 2, although the NRES input is now correctly defined as a clockwith an off state of 1,
there is a problemwith the reset pin, pin H05, on gate 19766 (DFF). Tracing the XXX values
back as in the previous example, you find that the source is the primary input TEST. In this case,
TEST was not defined as a constrained port in the STIL file.
To correct the problem, you need to edit the STIL file to define TEST as a primary input
constrained to a logic 1, make entries in the STIL procedures for load_unload and test_setup to
initialize this primary input, and execute run_drc again.
The number of DRC violations decreaseswith each iteration, but there are still S1 violations.
You select another violation and display it in the GSV as shown in Figure 3.

Analyzing DRC Violations in the GSV 6-30

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 3: GSV Display: Another S1 Violation

This time, the problem is associated with the bus device, which is a gate inserted by TetraMAX
ATPGduring ATPGdesign building to resolvemultidriver nets. Both potential sources for the
bus inputs appear to be driving, and both have values of X. One of the sources that has an X
value is theMD[3] bidirectional port; you can correct this by driving the port to a Z state. You edit
the STIL file to add the declarationMD[3] = Z to one of the V{..} vectors at the start of the load_
unload procedure (see “STIL Procedure Files”).
After youmake this correction, you will need to execute the run_drc command again and find
no further S1 violations.

Troubleshooting a Bidirectional Contention Problem
Bidirectional contention issues on ports and internal pins are checked by the Z rules. In Example
1, you use the report_rules command to get a listing of Z rules that have failed. This
particular report shows 108 Z4 failures and 24 Z9 failures. Suppose you decide to troubleshoot
the Z4 failures. You use the report_violations command and get a list of five violations, as
shown in Example 1. From those, you select the Z4-1 violation to troubleshoot first.

Example 1: report_rules Listing of ViolationMessages
TEST-T> report_rules -fail
rule severity #fails description
---- -------- ------ ---------------------------------
S19 warning 201 nonscan cell disturb
C2 warning 201 unstable nonscan DFF when clocks off
C17 warning 17 clock connected to PO
C19 warning 1 clock connected to non-contention-free BUS
Z4 warning 108 bus contention in test procedure
Z9 warning 24 bidi bus driver enable affected by scan cell
TEST-T> report_violations z4 -max 5
Warning: Bus contention on /spec_asic/L030 (17373)
occurred at time 0 of test_setup procedure. (Z4-1)
Warning: Bus contention on /spec_asic/L032 (17374)
occurred at time 0 of test_setup procedure. (Z4-2)
Warning: Bus contention on /spec_asic/L034 (17375)
occurred at time 0 of test_setup procedure. (Z4-3)
Warning: Bus contention on /spec_asic//L036 (17376)
occurred at time 0 of test_setup procedure. (Z4-4)
Warning: Bus contention on /spec_asic/L038 (17377)
occurred at time 0 of test_setup procedure. (Z4-5)

Analyzing DRC Violations in the GSV 6-31

TetraMAX ATPG User Guide K-2015.06-SP4

According to the violation error message in Example 1, the problem is bus contention at time 0 of
the test_setupmacro. You display the violation using theGSV, as shown in Figure 1. The
schematic shows the test_setup data.

Figure 1: GSV Display: DRC Violation Z4-1

The schematic display shows a bidirectional port, IO[0], which is at an X state. In addition, BUS
has both inputs driven at X; at least one should be a Z value. Tracing back fromBUS, you find a
three-state driver TSD (gate 17300) whose enable and data values are both X. There appear to
be numerous potential causes of the contention.
The violationmessage indicates that the violation occurred at time 0 of the test_setupmacro.
Therefore, you examine the test_setupmacro in the STIL procedure file and find that the IO[0]
port has not been explicitly set to the Z state. You edit the test_setupmacro in the STIL file to add
lines that set IO[0] and all the other bidirectional ports to Z.
After eliminating the bus contention, you execute run_drc and find no Z4 violations. However,
Z9 violations are still reported. You select Z9-1 for analysis. The pin data is changed to Constrain
Value, and the schematic display of the Z9 violation appears as shown in Figure 2.

Figure 2: GSV Display: DRC Violation Z9-1

The Z9-1 violation indicates that the control line to a three-state enable gate is affected by the
contents of a scan chain cell. Thus, if a scan chain is loaded with a known value and then a
capture clock or reset strobe is applied, the state of the scan cell probably changes and therefore
the three-state driver control changes. Depending on the states of the other drivers on this
multidriver net, the result might be a driver contention.
You can deal with this violation in one of the following ways:

1. Accept the potential contention, especially if the only other driver of the net is the top-level
bidirectional port. In this case, you can set the Z9 rule to ignore for future runs.

Analyzing DRC Violations in the GSV 6-32

TetraMAX ATPG User Guide K-2015.06-SP4

2. Alter the design to provide additional controls on the three-state enable. In test mode you
might block the path from the scan cell or redirect the control to some top-level port by
means of aMUX.

3. Adjust the contention checking tomonitor bus contention both before and after clock
events. TetraMAX ATPG then discards patterns that result in contention and tries new
patterns in an attempt to find a pattern to detect faults without causing contention. To set
bus contention checking, you enter the following command:
SETUP> set_contention bus -capture

Analyzing Buses
During the DRC process, TetraMAX ATPGanalyzes bus and wire gates to determine if they can
be in contention.
All bus and wire gates are analyzed to determine if two or more drivers can drive different states
at the same time. Bus gates are also analyzed to determine whether they can be placed at a Z
state. Drivers that have weak drive outputs are not considered for contention.
This analysis is performed before a DRC analysis of the defined STIL procedures. The data
from the analysis is used to prevent issuing false contention violations for the STIL procedures.
The following sections describe how to analyze buses:

l BusContention Status
l Understanding the Contention Checking Report
l Reducing Aborted Bus andWire Gates
l Causes of BusContention

BUS Contention Status
Based on the results of DRC contention analysis, a BUS or wire gate is assigned one of the
following contention status types:

l Pass: Indicates that the BUS or wire gate can never be in contention. These gates do not
have to be checked further.

l Fail: Indicates that the BUS or wire gate can be in contention. These gatesmust be
monitored by TetraMAX ATPGduring ATPG to avoid patternswith contention.

l Abort: Indicates that the analysis for determining a pass/fail classification was aborted.
Because these gateswere not identified as “pass,” theymust bemonitored during ATPG.

l Bidi: Indicates a BUS gate that has an external bidirectional connection; any internal
drivers are not capable of contention. TetraMAX ATPGcan avoid contention by controlling
the bidirectional ports.

In addition to a contention status, BUS gates undergo an additional analysis to determine
whether the driver can achieve a Z state. This produces a Z-state status for each pass, fail,
abort, or bidirectional gate.

Analyzing Buses 6-33

TetraMAX ATPG User Guide K-2015.06-SP4

See Also
Contention Analysis

Understanding the Contention Checking Report
After the contention check is complete, TetraMAX ATPGdisplays a report similar to Example 1.
This report identifies the number of bus and wire gates and the number of gates that were
placed into each contention and Z-state category.

Example 1: DRC Report for Contention Checking
SETUP> run_drc spec_stil_file.spf
--
Begin scan design rule checking...
--
Begin reading test protocol file spec_stil_file.spf...
End parsing STIL file spec_stil_file.spf with 0 errors.
Test protocol file reading completed, CPU time=0.05 sec.
#
Begin Bus/Wire contention ability checking...
Bus summary: #bus_gates=577, #bidi=128, #weak=0, #pull=0,
keepers=0
Contention status: #pass=257, #bidi=31, #fail=289, #abort=2,
not_analyzed=0
Z-state status : #pass=160, #bidi=128, #fail=286, #abort=3, not_
analyzed=0
Warning: Rule Z1 (bus contention ability check) failed 289
times.
Warning: Rule Z2 (Z-state ability check) failed 289 times.
Bus/Wire contention ability checking completed, CPU time=7.19
sec.

The “Bus summary” line in the report provides the following information:
l #bus_gates: the total number of bus gates in the circuit
l #bidi: the number of bus gateswith an external bidirectional port
l #weak: the number of bus gates that have only weak inputs
l #pull: the number of bus gates that have both strong and weak inputs
l #keepers: the number of bus gates connected to a bus keeper

Reducing Aborted Bus and Wire Gates
Bus gates associated with aborted contention checking are still checked for contention during
ATPG. If contention checking is aborted for some gates, you should increase the effort used to
classify as pass, fail, or bidirectional, rather than abort. You can do this using the Analyze Buses
dialog box, or you can use the set_atpg -abort_limit and analyze_buses commands
on the command line, as shown in Example 1.

Analyzing Buses 6-34

TetraMAX ATPG User Guide K-2015.06-SP4

Example 1: Using set_atpg -abort_limit and analyze_buses
TEST-T> report_buses -summary
Bus summary: #bus_gates=577, #bidi=128, #weak=0, #pull=0,
#keepers=0
Contention status: #pass=257, #bidi=31, #fail=89, #abort=200,
#not_analyzed=0
Z-state status : #pass=160, #bidi=128, #fail=231, #abort=58,
#not_analyzed=0
TEST-T> set_atpg -abort 50
TEST-T> analyze_buses -all -update
Bus Contention results: #pass=257, #bidi=31, #fail=289, #abort=0,
CPU time=0.00
TEST-T> analyze_buses -zstate -all -update
Bus Zstate ability results: #pass=160, #bidi=128, #fail=289,
#abort=0, CPU
time=0.80
TEST-T> report_buses -summary
Bus summary: #bus_gates=577, #bidi=128, #weak=0, #pull=0,
#keepers=0
Contention status: #pass=257, #bidi=31, #fail=289, #abort=0,
#not_analyzed=0
Z-state status : #pass=160, #bidi=128, #fail=289, #abort=0,
#not_analyzed=0
Learned behavior : none

Using the Analyze Buses Dialog Box
To reduce the number of aborted bus and wire gates:

1. From themenu bar, choose Buses > Analyze Buses.
The Analyze Buses dialog box appears.

2. In the Gate ID text field, choose -All.
3. In the Analysis Type text field, choose Prevention.
4. Enable the Update Status option.
5. ClickOK.

Using the set_atpg and analyze_buses Commands
To reduce the number of aborted bus and wire gates from the command, use the set_atpg -
abort_limit and analyze_buses commands.

Causes of Bus Contention
After attempting to eliminate bus or wire gates originally classified as aborted, youmight want to
review some of the bus or wire gates that were classified as failing. To review these gates, view
a violation ID from the Z1 or Z2 class. The Z1 class deals with buses that can potentially be in
contention, and the Z2 class deals with buses that can potentially be floating.

Analyzing Buses 6-35

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1 shows theGSV display of a Z1 violation and the logic that contributes to the three-state
driver control. In this case, a pattern was found to cause contention on the bus device, gate
19162. The first two input pins of the bus device are conflicting non-Z values. The remaining two
inputs are X. If a conflict is found, TetraMAX ATPGdoes not fill in the details of the remaining
inputs. The source of the potential contention is inherent in the design; with the test_se port at 0,
the TSD driver enables are controlled by the contents of the two independent DFF devices on
the left. Although theremight not be any problem during normal design operation, contention is
almost certain to occur under the influence of random patterns.

Figure 1: GSV Display: DRC Violation Z1

You can deal with the Z1 and Z2 violations in one of the following ways:
l Ignore the warnings, with the following consequences:

a. Contention will probably occur during pattern generation, and TetraMAX ATPGwill
discard those patterns that result in contention, possibly increasing the runtime.

b. The resulting test coverage could be reduced. TetraMAX ATPGmight be forced to
discard patterns that would otherwise detect certain faults.

c. Floating conditionswill probably occur. Although floating conditionsmight have very
little impact on ATPGpatterns, internal Z states quickly become X states after
passing through a gate, leading to an increased propagation of Xs throughout the
design. These Xs eventually propagate to observe points andmust bemasked off,
thus potentially increasing the demands on tester mask resources.

l Modify the design to attempt to eliminate potential contention or, in the case of the Z2
violation, a potential floating internal net. You accomplish this by using DFT logic that
ensures that one and only one driver is on at all times, even when the logic is initialized to a
random state of 1s and 0s.

Analyzing Buses 6-36

TetraMAX ATPG User Guide K-2015.06-SP4

Analyzing ATPG Problems
The following steps show you how to analyze ATPGproblems that appear as fault sites
classified as untestable:

1. View the fault list by opening the Analyze dialog box and clicking the Faults tab. You can
also use the report_faults command or write a fault list.

2. Select a specific fault class and fault location from the fault list.
3. Display the fault in the GSV using the Analyze dialog box, or use the analyze_faults

command.
4. View the schematic and transcript to determine the cause of the problem.

The following examples demonstrate the process of analyzing ATPGproblems:
l Analyzing an AN Fault
l Analyzing a UB Fault
l Analyzing a NOFault

Analyzing an AN Fault
This example shows how to perform an analysis on an AN (ATPGuntestable–not detected) fault
identified as follows:
/amd2910/stack/U948/D1

Example 1 shows a transcript of an analyze_faults command for this fault. TetraMAX
ATPGanalyzes the fault, draws its location in the GSV, generates one or more patterns, and
places them in the internal pattern buffer. You can examine these patterns to determine the
controllability and observability issues encountered in classifying the fault.

Example 1: Transcript of analyze_faults Results for an AN Fault
TEST-T> analyze_faults /amd2910/stack/U948/D1 -stuck 0 -display
--
Fault analysis performed for /amd2910/stack/U948/D1 stuck at 0
(input 0 of BUF gate 608).
Current fault classification = AN (atpg_untestable-not_det).
--
Connection data: to=TLA
Fault site control to 1 was successful (data placed in parallel
pattern 0).
Observe_pt=any test generation was unsuccessful due to atpg_
untestable.
Observe_pt=815(MUX) test generation was successful (data placed in
parallel pattern 1).
Observe_pt=824(AND) test generation was successful (data placed in
parallel pattern 2).

Analyzing ATPG Problems 6-37

TetraMAX ATPG User Guide K-2015.06-SP4

Observe_pt=832(OR) test generation was successful (data placed in
parallel pattern 3).
Observe_pt=3077(DLAT) test generation was unsuccessful due to
atpg_untestable.

Figure 1 shows theGSV schematic display of the untestable fault location. From the schematic
and themessages in Example 1, you canmake the following conclusions:

l The fault site was controllable; it could be set to 1. Therefore, controllability is not the
reason the fault is untestable.

l Attempts to observe the fault at gates 815, 824, and 832 were successful; therefore,
observability at these gates is not the reason the fault is untestable.

l Attempts to observe the fault at gate 3077 (DLAT) were unsuccessful, so observability at
this gate could be the reason the fault is untestable. The DLAT is not in a scan chain and is
not in transparent mode with this particular pattern (CK pin = X), so the fault cannot be
propagated to an observe site.

Figure 1: GSV Display: An AN Fault

The source of the problem seems to be an observability blockage at the DLAT device. You could
now explore whether you can place the DLAT in a transparent state using the run_
justification command, following themethod described in “Checking Controllability and
Observability."

Analyzing a UB Fault
This example shows how to analyze a UB (undetectable-blocked) fault using the Analyze dialog
box:

1. Click the ANALYZE button in the GSV toolbar.
The Analyze dialog box opens.

2. Click the Faults tab.
3. Click Pin Pathname if it is not already selected.
4. Click the Fill button.
5. In the Fill Faults dialog box, select “UB: undetectable-blocked” as the Class type.
6. Enter 100 in the Last field.

Analyzing ATPG Problems 6-38

TetraMAX ATPG User Guide K-2015.06-SP4

7. ClickOK in the Fill Faults dialog box.
In the Analyze dialog box, the first 100 UB faults appear in the scrolling window under the
Faults tab. Scroll through the list and select a fault to analyze.

8. ClickOK.
TetraMAX ATPGanalyzes the fault selected and displays in the transcript window the
equivalent analyze_faults command and the results of the analysis, as shown in Example
1.

Example 1: Transcript of analyze_faults Results for a UB Fault
TEST-T> analyze_faults /JTAG_IR/U51/H02 -stuck 0 -display
--
Fault analysis performed for /JTAG_IR/U51/H02 stuck at 0 \
(input 1 of OR gate 18268).
Current fault classification = UB \
(undetectable-blocked).

Fault is blocked from detection due to tied values.
Blockage point is gate /MAIN/JTAG_IR/U51 (18268).
Source of blockage is gate /MAIN/U354 (143).

Figure 1 shows the graphical representation of the section of the design associated with the
fault.

Figure 1: GSV Display: A UB Fault

The fault analysismessage provides information similar to that in the schematic display. A stuck-
at-0 fault at pin H02 of gate 18268 cannot be detected because the input to pin H01 of this OR
gate comes from a tied-to-0 source.
Notice that the schematic contains the fault site aswell as the gates involved with the source of
the blockage. In addition, the pin data type has been set to Constrain Data and the constraint
information is displayed directly on the schematic. For an interpretation of constrain values, see
“Displaying Constrain Values."
In the example in Figure 1, TetraMAX ATPGhas analyzed a stuck-at-0 fault on the H02 pin in
the schematic. The transcript shows that this fault is UB, that the blockage point is gate 18268,
and that the source of the blockage is gate 143.
You review theGSV display in Figure 1 to gain some additional insight. Gate 143 is a tie-off cell
that ties the H01 input of gate 18268 to 0, forcing the output of gate 18268 to a logic 1 and
blocking the propagation of faults from pin H02.

Analyzing a NO Fault
Figure 1 shows the schematic for an NO (not-observed) fault class.

Analyzing ATPG Problems 6-39

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1: GSV Display: A NOFault

The fault report in Example 1 states that the fault site is controllable but not observable. A pattern
that controlled the fault site to 0 to detect a stuck-at-1 fault was placed in the internal pattern
buffer as pattern 0, but was later rejected because the pattern failed bus contention checks.

Example 1: analyze_faults Report for a NOFault
TEST-T> analyze_faults /U317/H02 -stuck 1 -display
--
Fault analysis performed for /U317/H02 stuck at 1 (output of OR
gate 17233).
Current fault classification = NO (not-observed).
--
Connection data: to=REGPO,MASTER,TS_ENABLE
Fault site control to 0 was successful (data placed in parallel
pattern 0).
Observe_pt=any test generation was unsuccessful due to abort.
Observe_pt=17381(TSD) test generation was unsuccessful due to
atpg_untestable.
Warning: 1 pattern rejected due to 32 bus contentions (ID=17373,
pat1=0). (M181)

The fault report mentions two observe points. The first, “any test generation,” was unsuccessful
because an abort limit was reached. The second observe point at gate 17381 was unsuccessful
because of ATPG-untestable conditions at that gate. The first observe point might succeed if you
increase the abort limit and try again.

Printing a Schematic to a File
You can use the gsv_print command to create a grayscale PostScript file, which captures the
schematic displayed in the graphical schematic viewer (GSV):
gsv_print -file file -banner string Y

You can add the gsv_print command to your TetraMAX scripts and automatically capture
schematic output. The computing host must have PostScript drivers installed (usually with
lpr/lp). You can enclose the arguments in double quotationmarks (" ").

Printing a Schematic to a File 6-40

7
Using the Hierarchy Browser
TheHierarchy Browser displays a design’s basic hierarchy and enables graphical analysis of
coverage issues. It is launched as a standalone window that sits on top of the TetraMAX GUI
main window.
Before you start using the Hierarchy Browser, you should familiarize yourself with the graphical
schematic viewer (GSV). See "Using theGraphical Schematic Viewer" for more information.
The Hierarchy Browser does not display layout data. It is intended to supplement the GSV so
you can analyze graphical test coverage information while browsing through a design’s
hierarchy.
The following topics describe how to use the Hierarchy Browser:

l Launching the Hierarchy Browser
l Basic Components of the Hierarchy Browser
l Performing Fault Coverage Analysis
l Exiting the Hierarchy Browser

7-1

TetraMAX ATPG User Guide K-2015.06-SP4

Launching the Hierarchy Browser
To launch the Hierarchy Browser, you first need to begin the ATPG flow and start the TetraMAX
GUI, as described in the following steps:

1. Follow the initial test pattern generation steps described in “ATPGDesign Flow."
2. Launch the TetraMAX GUI. For details, see “Controlling TetraMAX Processes."
3. After the DRC process is completed, start the Hierarchy Browser by clicking the

Hierarchy Browser button in the TetraMAX GUI, as shown in Figure 1.

Figure 1: Hierarchy Browser Button in the TetraMAX GUI

TheHierarchy Browser will appear as a new window, as shown in Figure 2.

Launching the Hierarchy Browser 7-2

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 2: Initial Display of the Hierarchy Browser

See Also
Exiting the Hierarchy Browser

Launching the Hierarchy Browser 7-3

TetraMAX ATPG User Guide K-2015.06-SP4

Basic Components of the Hierarchy Browser
TheHierarchy Browser is comprised of the followingmain components:

l Hierarchy Pane—Located in the top left portion of the browser, this area displays an
expandable view of the design hierarchy and test coverage data.

l Instance Pane—Located in the bottom left portion of the browser, this area displays test
coverage data associated with themodule selected in the Hierarchy pane.

l Lib Cell/Tree Map Pane—Located in the right portion of the browser, this area toggles
between library cell data and a graphical display of all submodules associated with the
selected instance in the Hierarchy pane.

Using the Hierarchy Pane
TheHierarchy pane displays the overall design hierarchy, including the number of instances, the
test coverage, the number of faults, and themain fault types. It also controls the data displayed in
the Instance pane and Lib cell/Treemap pane.
Using the Hierarchy pane, you can expand and collapse the hierarchical display of a design’s
submodules and view the associated test coverage information.
The following steps describe how to display coverage data in the Hierarchy pane:

1. Click the symbol next to the top instance name.
The design hierarchy expands, and the submodules and related test coverage information
for the top instance name are displayed.

Basic Components of the Hierarchy Browser 7-4

TetraMAX ATPG User Guide K-2015.06-SP4

2. Continue to expand the hierarchy, as needed.

3. Move the slider bar, located at the bottom of the pane, to view coverage details and fault
information associated with the instance names in the left column.

Basic Components of the Hierarchy Browser 7-5

TetraMAX ATPG User Guide K-2015.06-SP4

4. Find data for a particular instance using the Find text field.

Viewing Data in the Instance Pane
The Instance pane displays coverage data for the instance selected in the Hierarchy pane, as
shown in Figure 1.

Basic Components of the Hierarchy Browser 7-6

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1: Displaying Information in the Instance Pane

You can expand the display of information for a fault type in the Instance pane by clicking the
symbol next to a fault class, as shown in Figure 2.

Basic Components of the Hierarchy Browser 7-7

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 2: Expanding the Display of Data for the DT Fault Class

Copying an Instance Name
You can copy the full instance name from anywhere in the Hierarchy Browser and paste it in the
Find text field, or use it for reference purposes in other applications.

To copy an instance name:

l Right-click on an instance name anywhere in the Hierarchy Browser, and select Copy
Instance Name.

Basic Components of the Hierarchy Browser 7-8

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 3: Copying An Instance Name

Viewing Data in the Lib Cells/Tree Map Pane
The Lib cells/Treemap pane toggles between two tabs:

l Lib cells—Displaysmodule names, primitives, faults, test coverage, and fault class data
for library cells, which include all non-hierarchical cells in a selectedmodule. An example is
shown in Figure 4.

l Tree map—Displays a design’s hierarchical graphical test coverage. An example is
shown in Figure 5.

Basic Components of the Hierarchy Browser 7-9

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 4: Display of Library Cell Information

Basic Components of the Hierarchy Browser 7-10

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 5: TreeMap View

As shown in Figure 5, the data displayed in the Treemap is color-coded according to the test
coverage. Dark green indicates themaximum coverage, light green is slightly lower coverage,
yellow isminimal coverage, and dark red is coverage below theminimum threshold.

When you hold your pointer over a particular instance, a po-pup window will display detailed
coverage information for that instance.

Additional details on using the Treemap are provided in the following section, “Performing Fault
Coverage Analysis.”

Basic Components of the Hierarchy Browser 7-11

TetraMAX ATPG User Guide K-2015.06-SP4

Performing Fault Coverage Analysis
You can access and adjust the display of a variety of interactive test coverage data in the
Hierarchical Browser. The following sections show you how to display various types of data that
will help you perform fault coverage analysis:

l Understanding the Types of Coverage Data
l Expanding the Design Hierarchy
l Viewing Library Cell Data
l Adjusting the Threshold Slider Bar
l Identifying Fault Causes
l Displaying Instance Information in the GSV

Understanding the Types of Coverage Data
You can view data in the Treemap based on the overall test coverage, the fault distribution, or
the fault class distribution, which includesDT (detected), PT (possibly detected), UD
(undetectable), AU (ATPGuntestable), or ND (not detected). As shown in Figure 1, the Tree
map has a drop-downmenu that you can use to select the type of coverage data you want to
view.

Figure 1: Selecting the Type of Coverage Data to Display in the TreeMap

The various categories of coverage data include the following information:
l Test Coverage: <displayed area> = (DT + PT_CREDIT * PT) /
Faults

Note:UD faults are excluded from the Test Coverage equation, whichmatches the output
of the report_faults -level command. However, the output from the report_

Performing Fault Coverage Analysis 7-12

TetraMAX ATPG User Guide K-2015.06-SP4

faults -summary command does not match the Hierarchy Browser because it
includesUD faults.

l Fault Distribution: <displayed area> = <number of (DT+PT+AU+ND)
faults >

l DT Fault Distribution: <displayed area> = <number of DT faults>

l PT Fault Distribution: <displayed area> = <number of PT faults>

l UD Fault Distribution: <displayed area> = <number of UD faults>

l AU Fault Distribution: <displayed area> = <number of AU faults>

l ND Fault Distribution: <displayed area> = <number of ND faults>

See Also
Fault Categories and Classes

Expanding the Design Hierarchy
When the Hierarchy Browser is initially invoked, the Treemap displays only the top-level
instance in the design. The following steps show you how to expand the display of the design
hierarchy:

1. Right-click your mouse in the Treemap, then select Expand to expand the display of one
level of the design hierarchy.

Figure 1: Expanding the Design Hierarchy

After selecting Expand, the next level of hierarchy is displayed in the Treemap, as shown
in Figure 2.
Note: TheHierarchy Browser is not a layout viewer. The size of each graphically
represented instance is based on the number of primitives for that instance in proportion
to the other instances. In Figure 2, the largest displayed instance is I_ORCA_TOP. Below
that instance are four smaller instances. The pointer at the bottom of the window is
highlighting the DFTC_ORCA_U instance. Also note that the data in the Hierarchy pane,
in the upper left portion of the window, expands to coincide with the Treemap view.

Performing Fault Coverage Analysis 7-13

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 2: Display of First Level of Hierarchy

2. You can continue to expand the design hierarchy one level at a time by right-clicking and
selecting Expand, or by selecting Expand All to expand the entire design hierarchy. Figure
3 shows the full display of a design’s hierarchy.

Performing Fault Coverage Analysis 7-14

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 3: Display of a Design’s Full Hierarchy

3. You can further focus the display of data for a particular instance by clicking on the
instance in the Treemap or in the Hierarchy pane, as shown in Figure 4.

Performing Fault Coverage Analysis 7-15

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 4: Focusing the TreeMapDisplay on a Single Instance

4. To collapse the display of the design hierarchy, right-click anywhere in the Treemap and
select Collapse or Collapse All.

Viewing Library Cell Data
You can view a graphical representation of library cells associated with a particular instance by
clicking the Show lib cells check box in the Treemap. Figure 1 shows how selecting this check
box affects the display of data in an example instance.

Performing Fault Coverage Analysis 7-16

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1: How Selecting the Show Lib Cells Box Affects the TreeMapDisplay

Adjusting the Threshold Slider Bar
The threshold slider bar is located at the bottom of the Treemap. You can use this bar to change
the threshold for the color spectrum display of fault coverage. By default, the threshold is set to
0% coverage, whichmeans that any instanceswith 0% coverage is displayed in red.
To change the threshold, either move the slider bar or enter a different value in the threshold text
field. Figure 1 shows the comparative effect of moving the threshold slider bar.

Performing Fault Coverage Analysis 7-17

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1: Effect of Moving Threshold fromA (0%) to B (12%) to C (41%)

Identifying Fault Causes
TheHierarchy Browser enables you to identify causes of various faults. The four basic fault
causes are as follows:

l Constrain Values
l Constrain Value Blockage
l Connected to <value>
l Connected from <value>

Performing Fault Coverage Analysis 7-18

TetraMAX ATPG User Guide K-2015.06-SP4

The following steps show you how to identify fault causes for a specific fault class in a specific
instance:

1. In the drop-downmenu located the top of the Treemap, select the type of coverage you
want to display. For example, select UD Fault Distribution.

Figure 1: Drop-DownMenu

2. If required, click the Show lib cells check box to view all the cells in the instance.
3. Expand the display of the design’s hierarchy, as needed.
4. Click an instance of interest in the Treemap or select an instance in the Hierarchy pane.

The Instance pane displays the name of the selected instance and its related coverage
data, as shown in Figure 2.

Figure 2: Display of Coverage Information for Selected Instance in Instance Pane

5. Expand the display of the fault class of interest in the Instance pane. Figure 3 shows the
expansion of the UD fault class and display of the related fault causes.

Performing Fault Coverage Analysis 7-19

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 3: Display of Fault Class and Related Fault Causes

Displaying Instance Information in the GSV
You can select an instance name anywhere in the Hierarchy Browser and display it in the
graphical schematic viewer (GSV).
To display a selected instance from the Hierarchy Browser in the GSV:

Performing Fault Coverage Analysis 7-20

TetraMAX ATPG User Guide K-2015.06-SP4

l Right-click an instance name in the Hierarchy Browser, and select Display in schematic, as
shown in Figure 1.

Figure 1: Selecting an Instance Name

The selected instance will display in the GSV, as shown in Figure 2.

Figure 2: Display of Selected Instance in GSV

Performing Fault Coverage Analysis 7-21

TetraMAX ATPG User Guide K-2015.06-SP4

Exiting the Hierarchy Browser
To exit the Hierarchy Browser, click the Close Browser button in the TetraMAX GUI.

Figure 1: Exiting the Hierarchy Browser

See Also
Launching the Hierarchy Browser

Exiting the Hierarchy Browser 7-22

8
Using the Simulation Waveform Viewer
You can use the TetraMAX SimulationWaveformViewer (SWV) to debug internal, external,
and imported functional patternmismatches by displaying the failing simulation values and
TetraMAX ATPGsimulated values of the test_setup procedure.
The following topics describe how to use the SWV:

l Getting StartedWith the SWV
l Supported Pin Data Types and Definitions
l Invoking the SWV
l Using the SWV Interface

8-1

TetraMAX ATPG User Guide K-2015.06-SP4

Getting Started With the SWV
Before you start using the SimulationWaveformViewer (SWV), you should familiarize yourself
with the graphical schematic viewer (GSV). For more information, see “Using theGSV for
Review and Analysis.”
TheGSV graphically displays design information in schematic form for review and analysis. It
selectively displays a portion of the design related to a test design rule violation so that you can
debug a test setup, and or debug internal, external patternmismatches. You use theGSV to find
out how to correct violations and debug the design.
The SWV is intended to add a third level of dimension to DRC debugging. The following
methods are currently used with DRC:

l Create or parse the STL procedure file, edit the STL procedure file, and rerun DRC
l Use theGSV to identify and resolve shift errors, and also to view test_setup
l Use the SWV when you want to view large amounts of net instance data in the GSV, such
as large test_setup (item 2 above) or run_simulation data

Note that the SWV is only a viewer. Its primary purpose is to enhance what you see in the GSV.
In the GSV, you can view simulation values (or pin data values) on the nets of the design. By
default, these values are 10 data bits, although this is user-configurable. Simulation values
displayed in the GSV are a subset of values, followed by an ellipsis. You can change this display
by changing the default setting, or bymoving the data display within the GSV cone of logic. This
data synchronizeswith the SWV.
When the simulation string becomesmore than 20 characters, the space required to display
such a long stringmakes theGSV display impractical. In the SWV, the simulation strings do not
need to be displayed in full, because you can look up the transition in the waveforms.When
tracing between theGSV cone of logic, the SWV is dynamically updated with the data from the
GSV.When you select andmove your pointer, the SWV highlights the corresponding bit in the
GSV. You can change the default display of simulation values using the following command:
set_environment viewer -max_pindata_length d

Supported Pin Data Types and Definitions
The following pin data types are supported by the SimulationWaveformViewer (SWV):

l Test Setup (test_setup)— Displays simulated values for the test_setupmacro displaying
debugging problems in a STIL test_setupmacro.

l Debug Sim Data (debug_sim_data) — Displays imported external simulator values used
for debugging golden simulation vector mismatches

l Sequential Sim Data (seq_sim_data) — Displays currently stored sequential simulation
data used for displaying results of sequential fault simulation (for advanced users of fault
simulation)

Getting Started With the SWV 8-2

TetraMAX ATPG User Guide K-2015.06-SP4

Note that the SWV does not support all pin data types upon initialization; it supports only test_
setup, debug_sim_data, and sequential_sim_data. Several other pin data types are supported
after starting the SWV in one of the initial three pin data types. You can choose test_setup after
SWV is opened, and then change to any pin data type, such as shift.
Figure 1 shows the TetraMAX pin data type setupmenu.

Figure 1: Setting the Pin Data Type

Two of the pin data types require data to be stored internally in TetraMAX ATPG.
By default, only a single logic value is shown, which corresponds to the final logic value at the exit
of the test_setupmacro. To show all logic values of the test_setupmacro, youmust change the
DRC setting using the set_drc command, then rerun the DRC analysis as follows:
TEST-T> drc
DRC-T> set_drc -store_setup
DRC-T> run_drc

The test_setup pin data type requires the set_drc -store command.
Sequential simulation data typically comes from functional patterns. This type of data is stored in
the external pattern buffer. When the simulation type in the Run Simulation dialog box is set to
Full Sequential, you can select a range of patterns to be stored.
After the simulation is completed, you can display selected data from this range of patterns using
the pin data type seq_sim_data, as shown in the following example:
TEST-T> set_simulation -data 85 89
TEST-T> run_simulation -sequential

The seq_sim_data pin data type requires the output of the set_simulation -data
command.

Supported Pin Data Types and Definitions 8-3

TetraMAX ATPG User Guide K-2015.06-SP4

See Also
Defining the test_setup Macro

Invoking the SWV
You can specify commands, select buttons, or use your right mouse button to openmenus that
cause TetraMAX ATPG to launch the SWV either directly from theGSV or without the GSV.
Figure 1 shows the SWVmenu that appears when you right-click after selecting the nets and or
gates. You can add signals, gates, and nets to the waveform using thismenu. Figure 2 shows
the three ways to invoke the SWV from theGSV.

Figure 1: Opening the SWV Using Your Right Mouse Button

Invoking the SWV 8-4

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 2: ThreeWays to Open the SWV

Invoking the SWV 8-5

TetraMAX ATPG User Guide K-2015.06-SP4

Using the SWV Interface
The following topics describe the basic features of the SWV interface:

l Understanding the SWV Layout
l Manipulating Signals
l Identifying Signal Types in the Graphical Pane
l Using the Time Scales
l Using theMarker Header Area
l Using the SWV with the GSV
l SWV Inputs andOutputs
l Analyzing Violations

Understanding the SWV Layout
The layout of the SWV is shown in Figure 1.

Figure 1: SWV Layout

Note that the SWV contains a scrollable list view (the Signal List pane) and a corresponding
graphical pane (the Graphical pane). The Signal List pane contains two columns: the first

Using the SWV Interface 8-6

TetraMAX ATPG User Guide K-2015.06-SP4

column is the Signal Group tree view with the signal/bus names, and the second column is the
value according to the reference cursor.
TheGraphical pane consists of equivalent rows of signal in graphical drawing. Also, the
reference cursor andmarker can bemanipulated in the Graphic pane to performmeasurement
between events. There are two timescales (upper and lower). The upper timescale denote the
current view port time range and the lower timescale represent the global (full) time range with
data.

Refreshing the View
To refresh the view (similar to the GSV), click the Refresh button or select Edit > Refresh View.

Manipulating Signals
The following sections show you how tomanipulate signals:

l Using the Signal List Pane
l Adding Signals
l Deleting Signals
l Inserting Signals

Using the Signal List Pane
You canmanipulate signals using the Signal List pane, which is located on the left side of the
SWV. This pane is organized into the following three-level tree view:

l The root node is the group name
l The second level is the signal or bused signal name
l The third level is the individual bit of the bused signal (if applicable)

Signals are grouped together according to the target to which it is added to. New groups can be
created with a signal dropped to the (default) new group tree node.
Signal groups provide a logical way to organize your signals. For example, you can keep all input
signals in one group and output signals in another group. You can expand or collapse the signal
list by clicking the + sign to the left of the group name. The sign changes to - when you expand it.
You can edit group names, but you cannot edit signal names. The SWV enables you only to view
the design; you cannot edit or make any changes to the design.

Adding Signals
You can add any number of signals to the SWV base at the current insertion point. By default,
the insertion point is to create a new signal group. After a signal is added, the insertion point is
advanced to themost recently visited group.
To add a signal, middle-click the signal from the waveform to select it. The red insertion line
appears around the signal. Then drag it to the required group.
To add a range of signals, press Shift and click the signals to select the range. A red rubber band
box appears around the range. Then drag the box into a group.

Using the SWV Interface 8-7

TetraMAX ATPG User Guide K-2015.06-SP4

Deleting Signals
To delete a signal, or multiple signals, and groups, select the signal (s) to be deleted, and press
the Delete button or choose Edit > Delete Selected. To deletemultiple signals or groups, choose
Edit > Delete All. Figure 1 shows the Edit menu.

Figure 1: Selecting Delete All in the Edit Menu

Inserting Signals
An insertion point is denoted by a red line. Theremight be timeswhen you need to copy or
duplicate a signal (shift + left-click) andmove it to other groups. To do this, you can drag the
insertion point into the required group.
The target of the insertion point can be specified to be a “New Group” or any group that already
exists.
When an insertion point is applied to a group, the signal is added to the bottom of the list. When
the insertion point is at a particular position, the signal is added below the position of the insertion
point in the signal list view. If the insertion point is in the new group item view, it creates a new
group. If the insertion point is in the list view, it just adds the signal to the group.
Figure 2 shows an empty waveform table, and Figure 3 illustrates signal insertion.

Using the SWV Interface 8-8

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 2: EmptyWaveform Table

Using the SWV Interface 8-9

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 3: Inserting Signals

Identifying Signal Types in the Graphical Pane
Most signals contain events, and each event change is represented by a transition in the
drawing. The viewer signals are classified into scalar type. A scalar signal carries a single bit
transition between the values 0, 1, Z, X. A signal band is divided into vertical subsections to draw
the values. A line drawn at the bottom of a signal band refers to event 0, while a line drawn on
the top of the band refers to event 1. A Z value is drawn in themiddle of the band and a filled
band denotes an unknown X value.
When a vector contains an X value, it is drawn in the red event (default) color. When the vector
contains some Z value, it is drawn in yellow.When all values of the transition vector are
unknown, a filled red rectangle is used, and if all are Z, a horizontal yellow line is drawn in the
middle of the signal band.

Using the Time Scales
The SWV displays two types of time scales:

l Upper Time Scale
This area displays the current viewing time range in x10ps. You can dragmarkers or
cursors visible in the upper time scale to other locations in the view. In addition, you can
perform zoom operations in the upper time scale area by clicking your left mouse button
and horizontally dragging to specify a horizontal zoom area.When you release the left

Using the SWV Interface 8-10

TetraMAX ATPG User Guide K-2015.06-SP4

mouse button, the current view refresheswith the zoomed in view in the current wave list.
You won't need to further adjust the vertical alignment. When in full zoom view, the upper
time scale will display the same value and range as the lower time scale.

l Lower Time Scale
This area shows the full time range the data occupies. You can control zoom operation
using your left mouse button, which causes an adjustment in the current view time range.
The width of the scroll thumb in the horizontal scroll bar shows the approximate view area
in proportion to the full data time range. Reference andmarker cursors are shown in the
lower timescale for easy identification of marked location and tomaintain the context for
navigation.

Using the Marker Header Area
The SWV provides two reference pointers: C1 and C2. These pointers are drawn inmagenta,
whereas other marker cursors are in white. A marker identifier (a circle) in themarker header
area is used for marker selection by the pointer.
The graphical pane shows a graphical representation of equivalent rows of signals. You can
manipulate the reference cursors andmarkers in the graphical pane tomeasure between events
(as shown in Figure 1.)
The following sections show you how to use themarker header area:

l Adding and Deleting Pointers
l Moving a Pointer
l Measuring Between Two Pointers

Using the SWV Interface 8-11

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1: Reference Pointers

Adding and Deleting Pointers
To add the default reference pointer C1 or C2, you can drag the C1 pointer to the clicked
location, or you can use themiddlemouse button to drag the C2 reference pointer.
You can delete all markers by first selecting themarkers, and then choosing the Delete Selected
command (or the Delete ThisMarker command if you selected only onemarker).

Moving a Marker Pointer
There are twomethods you can use tomove amarker pointer:

l Drag themarker identifier (a circle) in themarker header area to the new location. This
method is limited to relocating themarker identifier to a region in the current viewable time
range (See Figure 2).

l Drag the left marker, then click to release it.

Using the SWV Interface 8-12

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 2: Moving amarker cursor

Measuring Between Two Pointers
As shown in Figure 1, you can use any pointer as a reference point for measurement. The other
pointer value will change according to the currently selected reference cursor.

Using the SWVWith the GSV
The primary component of the TetraMAX GUI is the graphical schematic viewer (GSV), which
displays annotated simulation values during DRC (for details see "Using theGraphical
Schematic Viewer"). You can expand theGSV to ease DRC debugging. Patterns are displayed
in a logic cone view: i.e., logic from each design derived by tracing back from a pair of matched
points. Logic cones appear when there are DRC warnings and error messages.
The following steps show you how to launch the SWV window from a selected logic cone view:

1. Select View > WaveformView > Setup.
2. Select “Pin Data Type” as “Test Setup."
3. Click your right mouse button and select Add toWaveform > All GSV Gates.

The simulation waveform is initialized with pattern data associated with the cone view from
which it was created during DRC. There is a one-to-one correspondence betweenGSV and
SWV when a DRC violation is used. If the GSV is closed, its corresponding waveform view is not

Using the SWV Interface 8-13

TetraMAX ATPG User Guide K-2015.06-SP4

closed. If the SWV is closed, its correspondingGSV is not closed, and the pattern annotations
on it are not cleared.

Figure 1: Using the SWVWith the GSV

The data values displayed are generated either byDRC or by ATPG. Data values generated by
DRC correspond to the simulation values used byDRC in simulating the STIL test_setup
protocol to check conformance to the test protocol. Data values generated by ATPGare the
actual logic values resulting from a specific ATPGpattern.
When you analyze a rule violation or a fault, TetraMAX ATPGautomatically selects and displays
the appropriate type of pin data in the GSV. You can alsomanually select the type of pin data to
be displayed by using the SETUP button in the GSV toolbar, or you can use the set_pindata
command on the command line.

Using the SWV Interface 8-14

TetraMAX ATPG User Guide K-2015.06-SP4

The SWV can use only the pin data types listed in the Supported Pin Data Types and Definitions
section. Figure 2 shows an error caused when you do not select a valid pin data type that is
supported by the SWV.

Figure 2: Example of Selecting an Invalid Pin Data Type

Using the SWVWithout the GSV
Youmight need to launch the SWV without the GSV when you have failing external patterns
(read externally into TetraMAX) and you want to see the patterns for an overall evaluation of
how TetraMAX interprets them. You can view the values of gates and nodes of a design for a
particular pattern, or you can just view a waveform if you are already familiar with the circuit nets
and nodes and you are running iterative loops in TetraMAX.
The following examples show some sample flows using the SWV. Enter these commands in a
command file.

Example Flow
set_pindata -test_setup # test_setup is one of the many pin_data_
types
add_display_gates -all # this invokes the GSV containing the gates
of
interest.
set_pindata -test_setup # test_setup is one of the many
pin_data_types required for SWV
add_waveform_signals < > # this invokes the SWV containing the
waveforms for the gates of interest. The user might know the
gates from a previous run in the GSV.

Using the SWV Interface 8-15

TetraMAX ATPG User Guide K-2015.06-SP4

Example 2
set_simulation –data {85 89} # specify the values to store by
patterns start/end run_simulation

run_simulation –sequential # execute a sequential simulation

set_pindata -seq_sim_data # required for SWV

add_waveform_signals <> # this invokes the SWV containing the

waveforms for the I/Os of the patterns 85 through 89

Example 3
set_patterns -external patterns.stil
analyze_simulation_data pats1.vcd -fast 1
add_display_gates < >
set_pindata -debug_sim_data # should be the default setting

SWV Inputs and Outputs
The SWV has two input flows:

l The streaming pin_pathname | gate_id from theGSV to the SWV
l Streaming the externally read pattern data to the SWV displaying all I/Os

The output includesmessages, warnings, and errors.

Analyzing Violations
The various TetraMAX ATPGerror messages related to the SWV are described as follows:
Error: No pin data type is selected

You cannot select any nets or gates because the pin_data types require data to
be stored internally to TetraMAX ATPG using the set_drc -store_setup or
the set_simulation -data command. See the Supported Pin Data Types and
Definitions section.

Error: Invalid argument "TOP_template_DW_tap_inst/U34/QN". <M1>
This message means that a gate was selected and added to the SWV but the
QN pin is not valid or not used due to no net attached.

TOP_template_DW_tap_inst/U10_1/CP (Gate 41) is already in wavefor
llist as TOP_template_DW_tap_inst/U34/CP.

This message appears when you select two gates that have the same clock,
and add them to the SWV. The GSV picks one name and displays a message
that the other pin has the same name.

/U1_out (Gate 5) is already in waveform list as U1/Z
This message appears when you select two gates that have the same clock
and add them to the SWV. The GSV picks one name and displays a message
that the other pin has the same name.

Using the SWV Interface 8-16

9
Design Netlists and Libraries
The "Preparing a Netlist," "Reading a Netlist," and "Reading Verilog LibraryModels" sections
provide specific information on how to specify netlists and librarymodels. The following sections
provide additional information on reading and processing design netlists and librarymodels:

l Netlist Format Requirements
l UsingWildcards to Read Netlists
l Controlling Case-Sensitivity
l Processes That Occur When Building the ATPGModel
l Flattening Optimization for Hierarchical Designs
l IdentifyingMissingModules
l Removing Unused Logic
l Using Black Box and Empty BoxModels
l Handling DuplicateModule Definitions
l MemoryModeling
l Creating CustomATPGModels
l Condensing ATPG Libraries

9-1

TetraMAX ATPG User Guide K-2015.06-SP4

Netlist Format Requirements
TetraMAX ATPGcan read netlists in Electronic Design Interchange Format (EDIF), Verilog,
and VHDL formats. Someminimal preprocessingmight be necessary tomake the netlist
compatible with TetraMAX ATPG.
The following sections describe the netlist requirements for TetraMAX ATPG:

l EDIF Netlist Requirements
l Verilog Netlist Requirements
l VHDLNetlist Requirements

EDIF Netlist Requirements
To ensure EDIF netlists are compatible with TetraMAX ATPG, youmust review all power and
ground logic connections. The following sections describe how to handle these situations:

l Logic 1/0 UsingGlobal Nets
l Logic 1/0 by Special Library Cell

Logic 1/0 Using Global Nets
In EDIF, a design can reference two or more global nets, which represent the tie to logic 1 or
logic 0 connections. Because there is no driver for these nets, TetraMAX ATPG issues
warnings, such as “floating internal net,” as it analyzes the design.
If your design uses this global net approach and you are using Synopsys tools to create your
netlist, set the EDIF environment variables as shown in Example 1 before writing the EDIF
netlist. The global net names used in the example are logic0 and logic1, but you can use any
legal net names.

Example 1: EDIF Variable Settings for Global Logic 1/0 Nets
edifout_netlist_only = true
edifout_power_and_ground_representation = net
edifout_ground_net_name = "logic0"
edifout_power_net_name = "logic1"
write options

Logic 1/0 by Special Library Cell
The EDIF library can contain special tie_to_low and tie_to_high cells. Every logic connection to
power or ground is then connected by a net to one of these cells. If your design uses this library
cell approach, youmust define an ATPGmodel for each cell to supply the proper function of
TIE1 or TIE0; otherwise, themissingmodel definition is translated to a TIEX primitive, and the
logic 1/0 connections are all tied to X instead of to the required logic value.
If you do not yet havemodels describing the logic functions of the special cells, youmight have to
add somemodule definitions to your library. Normally, your ASIC vendor provides these; if not,
see Example 2, which shows a Verilogmodule description for modules called POWER and

Netlist Format Requirements 9-2

TetraMAX ATPG User Guide K-2015.06-SP4

GROUND. You can use thismodule description by changing the name of themodule tomatch
the library cell names referenced by your EDIF design netlist.

Example 2: ATPGModel Definition for Logic 1/0 Library Cells
module POWER (pin);
output pin;
_TIE1(pin);
endmodule

module GROUND (pin);
output pin;
_TIE0(pin);
endmodule

To provide an ATPG functional model for each EDIF cell description, place themodule definition
in a separate file to be referenced during the process flow when it is time to read in library
definitions.

Verilog Netlist Requirements
Verilog netlist style, syntax, and instance and net naming conventions vary greatly. Use the
following guidelines to ensure that your Verilog netlist is compatible with TetraMAX ATPG:

l Do not use a period (.) within the name of any net, instance, pin, port, or module without
enclosing it with the standard Verilog backslashmechanism.

l Verify that your Verilogmodules are structural and not behavioral, except for modules
used to define ATPGRAM/ROM functions.

l Verilog is case-sensitive, althoughmany tools ignore case and treat “specNet” and
“specnet” as the same item.

l If you are using Synopsys tools to create your Verilog netlist, review the define_name_
rules command to find options for adjusting the naming conventions used in your design.

See Also
ATPGModeling Primitive Summary

VHDL Netlist Requirements
The following guidelines apply when using a VHDL netlist with TetraMAX ATPG:

l VHDL designsmust be completely structural in nature.
l Bits and vectorsmust only use std_logic types. Other types, such as SIGNED, are not
supported.

l Conversion functions are not supported.

Netlist Format Requirements 9-3

TetraMAX ATPG User Guide K-2015.06-SP4

Using Wildcards to Read Netlists
If your library cells are stored inmultiple individual files, you can read them all using wildcards.
TetraMAX ATPGsupports the asterisk (*) to match occurrences of any character, and the
questionmark (?) to match any single character.
To read in all files in the directory speclib that have the extension .v, use the following read_
netlist command:
BUILD-T> read_netlist speclib/*.v

To read in all files in speclib, enter the following command:
BUILD-T> read_netlist speclib/*

To read in all files that begin with DF and end with .udp, in all subdirectories in speclib that
end in _lib, enter the following command:
BUILD-T> read_netlist speclib/*_lib/DF*.udp

To read in all files that begin with DFF, end in .V, and have any two characters in between, enter
the following command:
BUILD-T> read_netlist DFF??.V

You can also use wildcards in the Read Netlist dialog box. Use the Browse button to select any
file from the directory of interest and clickOK. Then replace the file namewith an asterisk.
When you use wildcards, youmight find it convenient to use the following options:

l Verbose: Produces amessage for each file rather than the default message for the sum of
all files.

l Abort on error: Determineswhether TetraMAX ATPGstops reading files when it
encounters an error with an individual file.

Controlling Case-Sensitivity
Netlist formats differ in whether or not the instance, pin, net, andmodule names are case-
sensitive. When TetraMAX ATPG reads a netlist, it chooses case-sensitive or case-insensitive
based on the type of netlist by default as follows:

l Verilog Netlists: case-sensitive
l EDIF Netlists: case-insensitive
l VHDLNetlists: case-insensitive

You can override the defaults by using the -sensitive or -insensitive option of the
read_netlist command. For example, to read in all files ending in .V in directory speclib,
using case-insensitive rules, use the following command:
BUILD-T> read_netlist speclib/*.V -insensitive

Using Wildcards to Read Netlists 9-4

TetraMAX ATPG User Guide K-2015.06-SP4

Processes That Occur When Building the ATPG Model
During the execution of the run_build_model command, the following processes occur:

l The targeted topmodule for build, usually the topmodule, is used to form an in-memory
image. Each instance in the top level is replaced by the gate-level representation of that
instance; this process is repeated recursively until all hierarchical instantiations have been
replaced by references to ATPGsimulation primitives.

l Special ATPGsimulation primitives are inserted for inputs, outputs, and bidirectional ports.
l Special ATPGsimulation primitives are inserted to resolve BUS andWIRE nets. Unused
gates are deleted based on the last setting of the set_build -delete_unused_
gates command.

l Each primitive is assigned a unique ID number.
l SomeBUF devices are inserted at top-level ports that have direct connections to
sequential devices. No fault sites are added by these buffers.

l Various design andmodule-level rule checks (the “B” series) are performed to determine
the following:

l Missingmodule definitions
l Floating nets internal to modules
l Module ports defined as bidirectional with no internal drivers (These could
have been input ports.)

l Module ports defined as outputs with no internal drivers (These possibly
should have been inputs.)

l Module input ports that are not connected to any gateswithin themodule
(Thesemight be extraneous ports.)

l Instances that have undriven input pins (Thesemight be floating-gate inputs.)

l TIE0, TIE1, TIEZ, and TIEX primitives are inserted into the design where appropriate as a
result of determining floating inputs or pins tied to a constant logic level.

l Statistics on the number of ATPGsimulation primitives aswell as the types of ATPG
primitives are collected.

Example 1 shows an example transcript of the run_build_model command.

Example 1: Transcript of run_build_model CommandOutput
BUILD-T> run_build_model asic_top
--
Begin build model for topcut = asic_top ...
--
Warning: Rule B7 (undriven module output pin) failed 178 times.
Warning: Rule B8 (unconnected module input pin) failed 923 times.
Warning: Rule B10 (unconnected module internal net) failed 32
times.
Warning: Rule B13 (undriven instance pin) failed 2 times.
End build model: #primitives=101071, CPU_time=3.00 sec,
Memory=34529279

Controlling Case-Sensitivity 9-5

TetraMAX ATPG User Guide K-2015.06-SP4

--

Flattening Optimization for Hierarchical Designs
When you build amodel of a hierarchical design (using the run_build_model command),
TetraMAX ATPG flattens the hierarchy tomake a single-level, in-memorymodel of the design.
Several different optimizationmethods are used to reduce the number of gates and simplify the
design. Some of thesemethods are always performed, while othersmay be enabled or disabled
with the set_build command.
TetraMAX ATPGcan perform 16 different types of optimization. Each optimizationmethod is
described, including the user commands for enabling or disabling themethod, where applicable.
The default configuration (either enabled or disabled) ismarked with an asterisk in each such
description.
1. BUF elimination
Always enabled; no user control
During the flattening process, buffers are eliminated wherever this is possible without eliminating
any fault sites.
2. INV elimination
Always enabled; no user control
During the flattening process, inverters are eliminated wherever this is possible without
eliminating any fault sites.
3. Switches(SW) as BUFs or BUFZs
Always enabled; no user control
During the flattening process, each SW primitive found that has its control gate held constantly
on is replaced with a BUFZ device; or if the propagation of a Z value is not needed, it is replaced
with a BUF device. These BUF/BUFZ devicemay be removed later by the BUF elimination
method (#1 above). This optimization can cause fault sites to be dropped. If this happens, the
dropped faults are reported as B22 violations.
4. DLATs as BUFs
Always enabled; no user control
During the flattening process, for each DLAT primitive found that has its gate/clock input held on
and its set and reset lines held off so that the latch is always transparent, the DLAT is replaced
with a BUF device. This optimization can cause fault sites to be dropped. If this happens, the
dropped faults are reported as B22 violations.
5. DFFs as DLATs
Always enabled; no user control
During the flattening process, each DFF primitive found that has its clock permanently off, but
able to use its asynchronous set or reset input, is replaced with a latch device.
6. Unused Gates
To enable: set_build -delete_unused_gates (default)
To disable: set_build -nodelete_unused_gates

Controlling Case-Sensitivity 9-6

TetraMAX ATPG User Guide K-2015.06-SP4

An unused gate is one which has no output connections to other gates, including black box or
empty box gates. When this optimizationmethod is enabled, unused gates are removed during
the flattening process. It is possible for fault sites to be dropped as these gates are removed.
7. TIE propagation
To enable: set_build -merge tied_gates_with_pin_loss

To disable: set_build -merge notied_gates_with_pin_loss (default)
TIE propagation optimization identifies nets and pins tied high or low and attempts to propagate
this constant value through logic to reduce the number of gates. When disabled, TIE
propagation is still performed, but only where it does not cause testable fault sites to be dropped.
When enabled, TIE propagation occurs even where it causes testable fault sites to be dropped.
If any fault sites are dropped, they are reported in a summarymessage; for example:
There were 38240 primitives and 6318 faultable pins removed during
model optimizations

8. Cascaded Gates
To enable: set_build -merge cascaded_gates_with_pin_loss

To disable: set_build -merge noscascaded_gates_with_pin_loss (default)
Cascaded gate optimization is performed by identifying two gates in series that can be logically
merged into a single gate. An example of this is two 2-input AND gates in series, which can be
replaced by a single 3-input AND gate. When disabled, cascaded gate optimization is still
performed, but only where it does not cause fault sites to be dropped.When enabled, cascade
optimization is performed even where it causes fault sites to be dropped. If any fault sites are
dropped, they are reported as B22 violations.
9. Bus Keepers
To enable: set_build -merge Bus_keepers (default)
To disable: set build -merge NOBus_keepers

Bus keeper recognition is performed by searching for small, constantly enabled combinational
loopswith a weak driver. This recognition considers paths including BUF and INV, aswell as
SW and TSD devices used to form bus keepers that hold only one state. After identified, these
loops are replaced with BUSK ATPGprimitives. When enabled, bus keeper optimization can
result in the dropping of faults sites. If any fault sites are dropped, they are reported as B22
violations.
10. Feedback Paths
To enable: set_build -merge feedback_paths (default)
To disable: set_build -merge nofeedback_paths

Feedback path optimization is done by searching for combinational loops that do not perform
any testable function. One of example is a loop involving a BUS with a weak driver and at least
one strong, non-three-state driver. The loop through the weak driver may be removed. Another
example is a three-state net where all the potential drivers come from top-level primary inputs
(strong drivers) and the feedback path is again through a weak driver. Elimination of these
feedback paths can cause fault sites to be dropped. If this happens, the dropped faults are
reported as B22 violations.
11. MUX Recognition
To enable: set_build -merge mux_from_gates

Controlling Case-Sensitivity 9-7

TetraMAX ATPG User Guide K-2015.06-SP4

To enable: set_build -merge muxpins_from_gates (default)
To enable: set_build -merge muxx_from_gates

To disable: set_build -merge nomux_from_gates

TheMUX recognition optimizationmethod is done by searching for discrete gates that may be
combined to createMUX behavior. Themost common form is two 2-input AND gates followed
by anOR gate. Additional variants are also recognized, such as pass-transistor MUXes. There
are three variations of this optimizationmethod:
Mux_from_gates - When enabled, discrete-gate forms of MUX behavior are replaced with
TetraMAX ATPGMUX primitives. During this optimization, it is possible that fault sites is
dropped. If any fault sites are dropped, they are reported as B22 violations.
Muxpins_from_gates - When enabled, discrete-gate forms of MUXes are replaced, but only
if no fault sites are dropped as a result.
Muxx_from_gates - When enabled, discrete-gate forms of MUXes are replaced, but only if
no fault sites are dropped as a result, and only for "optimisticMUX" behavior. Gateswhich form
the "pessimisticMUX" behavior are left unchanged.
An "optimisticMUX" produces an output equal to the data inputs when the select line is X and
both inputs are identical. The "pessimisticMUX" produces an output of X when the select line is
X, even when the data inputs are identical. The TetraMAXMUX primitive implements the
"optimisticMUX" behavior.
12. XOR/XNOR Recognition
To enable: set_build -merge Xor_from_gates

To enable: set_build -merge XORPins_from_gates (default)
To disable: set_build -merge NOXor_from_gates

XOR/XNOR recognition optimization is done by searching for discrete gates that form either the
XOR or XNOR function. There are two variations of this optimization:
Xor_from_gates - When enabled, discrete-gate forms of XOR/XNOR are replaced with
TetraMAX XOR/XNOR primitives. This optimization can cause fault sites to be dropped. If this
occurs, the dropped fault sites are reported as B22 violations.
Xorpins_from_gates - When enabled, discrete-gate forms of XOR/XNOR are replaced
with TetraMAX XOR/XNOR primitives, but only where no fault sites are dropped as a result.
13. Equivalent DLAT/DFF
To enable: set_build -merge equivalent_dlat_dff (default)
To enable: set_build -merge equivalent_initialized_dlat_dff

To disable: set_build -merge noequivalent_dlat_dff

This optimizationmethod identifies equivalent DLAT and DFF devices, andmerges the
equivalent functions into a single device. The equivalent_initialized_dlat_dff setting, if enabled,
will assume the devices are initialized to their steady state values before determining if they can
bemerged into a single device. TwoDLAT or two DFF devices are equivalent if they share
common input connections, including all clock, set, reset, and data inputs. The outputs of the two
devicesmay be identical or complementary to each other. This optimizationmethod replaces
one equivalent device with a BUF or INV connected to the output of the other equivalent device.
During this process, fault sitesmight be dropped, in which case they are reported as B22
violations.

Controlling Case-Sensitivity 9-8

TetraMAX ATPG User Guide K-2015.06-SP4

14. DLAT pairs as DFF
To enable: set_build -merge flipflop_from_dlat (default)
To enable: set_build -merge flipflop_cell_from_dlat

To disable: set_build -merge noflipflop_from_dlat

This optimizationmethod finds each pair of D-latches that operate together as a D flip-flop, and
replaces themwith a DFF primitive. This occurs when two DLAT devices are connected serially
from theQoutput of one to the D input of the other, share common set, reset, and
complementary clocks from the same source.When this optimization occurs, the two DLAT
devices are replaced with a DFF primitive, possibly causing fault sites to be dropped. If any fault
sites are dropped, they are reported as B22 violations.
flipflop_cell_from_dlat- When enabled, mergingmaster-slave latches into a flip-flop is
limited to those latch pairs that are part of the same design-level cell. This option should be used
byDFT Compiler and when necessary to avoid pin loss due tomerging latches to flip-flops.
15. WIRE and BUS gates
To enable: set_build -merge Wire_to_buffer (default)
To disable: set_build -merge NOWire_to_buffer

This optimization identifies and optimizesWIRE and BUS gates having common-source inputs
with buffer gates. SuchWIRE and BUS gates are like those found common in clock and scan-
enable repowering networks. The buffer gates thus created can be further removed by other
optimizations. This optimization can result in faultable pin losses; however, the lost faults are
untestable anyway. In many designs, this optimization results in fewer primitives in the final
model, particularly fewer WIRE gates; in many cases the number ofWIRE gates is reduced to 0,
which also results in faster DRC. The default is -wire_to_buffer (optimization is enabled).
16 Tied inputs and MUX gates
To enable: set_build -merge Global_tie_propagate (default)
To disable: set_build -merge NOGlobal_tie_propagate

This optimization identifies and optimizes global tie 0/1 value propagations and replaces certain
[N]AND, [N]OR andMUX gateswith buffers/inverters or eliminates them completely. The
analysis ensures that all faults eliminated are either undetectable-redundant (UR) or equivalent
to other faults that are preserved. Thememory and CPU time required by the flattening process
are not measurably affected by this analysis.
This optimizationsmight change the reported test coverage, because:

l Eliminated UR faults could have been classified as ATPG-untestable (AU).
l Eliminated equivalent faultsmight change equivalence classes size and affect uncollapsed
coverage.

The following optimizations are performed during analysis:
l [N]AND, [N]OR gate with controlling tied inputs (T0/T1): replaced with T0/T1 if no output
fault and no faults on the tied inputs. All faults lost are classified UR.

l [N]AND, [N]OR gate with non-controlling tied inputs (T1/T0): replaced with buffer/inverter
if only one input is not tied. Faults lost are either classified UR or equivalent to the
corresponding output fault.

Controlling Case-Sensitivity 9-9

TetraMAX ATPG User Guide K-2015.06-SP4

l MUX gate with tied select input: replaced with buffer/inverter from selected data input if no
fault on the select input or data lines cannot have complementary values. All faults lost are
classified UR.

l MUX gate with data inputs driven by common gate, with same inversion: replaced with
buffer/inverter from a data input if no faults on data inputs. All faults lost are classified UR.

l MUX gate with data inputs driven by T0/T1: replaced with buffer/inverter from select line.
Faults lost are either classified UR or equivalent to the corresponding output fault.

Disabling this optimization could be desirable in the following cases:
l If pins targeted by an add_net_connections command or by reading in external fault
files are eliminated by the new analysis.

l If design-level viewing is limited because instances of interest have been "flattened-down"
(these are tracked by B22 violations).

The current value of all optimization settings can be reviewed by using thereport_settings
build command. An example of a report is as follows:
 BUILD> report settings build
 build = add_buffer=yes, delete_unused_gates=yes, fault_
boundary=lowest,
 hierarchal_delimiter='/', pin_assign=256, undriven_
bidi=PIO,
 net_connections_change_netlist=yes,
 merge: bus_keepers=yes
 cascaded_gate_with_pin_loss=no
 equivalent_dlat_dff=on
 feedback_paths=yes
 flipflop_from_dlat=on
 mux_from_gates=pin-preserve
 tied_gates_with_pin_loss=no
 global_tie_propagate=yes
 wire_to_buffer=yes
 xor_from_gates=pin-preserve

During the flattening process, gate optimization details are reported if expert-level messages
have been enabled with the set_messages -level expert command. In addition, a
summary of optimization results is available at any time after the build process is completed by
using the report_summaries optimizations command, as shown in the following
example.
 TEST> report_summaries optimizations
 Optimizations Report

 optimization #occurrences #primitives #pins #modules
 type eliminated lost optimized

 unused gates 15905 15905 2552 133
 tied gates 0 42 0 0
 buffers 44152 44152 0 313
 inverters 10601 10601 0 100

Controlling Case-Sensitivity 9-10

TetraMAX ATPG User Guide K-2015.06-SP4

 cascaded gates 529 529 0 2
 SWs as BUFs 42 0 0 1
 DLATs as BUFs 0 0 0 0
 MUXs 3261 16242 8 19
 XORs 0 0 0 0
 equiv. DLAT/DFF 1831 0 0 8
 DLATs as DFFs 0 0 0 0
 DFFs as DLATs 0 0 0 0
 BUS keepers 60 0 0 1
 feedback paths 18 36 18 1

 total 76399 87507 2638 322

If, during the optimization process, faults sites are eliminated as gates are removed, those faults
sites are identified as B22 violations. Use the report_violations b22 command to get a
detailed list of fault sites removed during optimization or the report_rules b22 command to
get a summary count.

Identifying Missing Modules
If your design references undefinedmodules, TetraMAX ATPGsends you error messages
during execution of the run_build_model command. To identify all currently referenced
undefinedmodules, you can use the Netlist > Report Modulesmenu command, or you can enter
the report_modules -undefined command at the command line, for example:
BUILD-T> report_modules -undefined

An example of such a report is shown in Figure 1.

Identifying Missing Modules 9-11

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1: Report ModulesWindow Listing UndefinedModules

In the report, the columns for the total number of pins, input pins, output pins, I/O pins, and
number of instances all contain 0. Because the correspondingmodules are undefined, this
information is unknown. In the “refs(def’d)” column, the first number indicates the number
of times themodule is referenced by the design, and (N) indicates that themodule has not yet
been defined.
For additional variations of the report_modules command, see TetraMAX Online Help.
Any undefinedmodule referenced by the design causes a B5 rule violation when you attempt to
use the run_build_model command. The default severity of rule B5 is error, so the build
process stops.
If you set the B5 rule severity to warning, TetraMAX ATPGautomatically inserts a black box
model for eachmissingmodule when you build the design. In a black boxmodel, the inputs are
terminated and the outputs are tied to X. For more information, see “Using Black Box and Empty
BoxModels.”
To change the B5 rule severity to warning, use the following command:
BUILD-T> set_rules B5 warning

Identifying Missing Modules 9-12

TetraMAX ATPG User Guide K-2015.06-SP4

With this severity setting, when you use the run_build_model command, missingmodules
do not cause the build process to stop. Instead, TetraMAX ATPGconverts eachmissingmodule
into a black box. After this process, use the report_violations command to view an explicit
list of themissingmodules:
DRC-T> report_violations B5

Leaving the B5 rule severity set to warningmight cause you tomiss truemissingmodule errors
later. To be safe, you should set the rule severity back to error. Before you do this, use the set_
build command to explicitly declare the black boxmodules in the design, as explained in the
next section. Then you can set the B5 rule severity back to error and still build your design
successfully.

Removing Unused Logic
Designs can contain unused logic for several reasons:

l Existingmodules are reused and some sections of the original module are not used in the
new design.

l Synthesis optimization has not yet been performed to remove unused logic.
l Gates are created as a side effect to support timing checks in the definingmodules.

Example 1 shows amodule definition for a scan D flip-flop with asynchronous reset. Because of
timing check side effects, themodule contains extra gates, with instance names timing_
check_1, timing_check_2, and so on. These gates form outputs that are referenced
exclusively in the specify section. This is a common technique for developing logic terms used in
timing checks, such as setup and hold.

Example 1: ExampleModuleWith Extra Logic
module sdffr (Q, D, CLK, SDI, SE, RN);

input D, CLK, SDI, SE, RN;
output Q;
reg notify;

// input mux
not mux_u1 (ckb, CLK);
and mux_u2 (n1, ckb, D);
and mux_u3 (n2, CLK, SDI);
or mux_u4 (data, n1, n2);

// D-flop
DFF_UDP dff (Q, data, CLK, RN, notify);

// timing checks
not timing_check_1 (seb, SE);
and timing_check_2 (rn_and_SE, RN, SE);
and timing_check_3 (rn_and_seb, RN, seb);

specify
if (RN && !SE) (posedge CLK => (Q +: D)) = (1, 1);
if (RN && SE) (posedge CLK => (Q +: SDI)) = (1, 1);

Identifying Missing Modules 9-13

TetraMAX ATPG User Guide K-2015.06-SP4

(negedge RN => (Q +: 1'b0)) = (1, 1);
$setup (D, posedge CLK &&& rn_and_seb, 0, notify);
$hold (posedge CLK,D &&& rn_and_seb, 0, notify);
$setup (SDI, posedge CLK &&& rn_and_SE, 0, notify);
$hold (posedge CLK,SDI &&& rn_and_SE, 0, notify);
$setup (SE, posedge CLK &&& RN, 0, notify);
$hold (posedge CLK,SE &&& RN, 0, notify);

endspecify
endmodule

When thismodule is converted into a gate-level representation, the timing check gates in the
internal module representation are retained. The output of the report_modules -verbose
command for module sdffr in Example 2 shows each primitive in the TetraMAXmodel, with
the timing check gates present.

Example 2: Module Report Showing UnusedGates
BUILD-T> report_modules sdffr -verbose

pins
module name tot(i/ o/ io) inst refs(def'd) used
---------------------------- --------------- ---- ----------- ----
sdffr 6(5/ 1/ 0) 8 0 (Y) 1

Inputs : D () CLK () SDI () SE () RN ()
Outputs : Q ()
mux_u1 : not conn=(O:ckb I:CLK)
mux_u2 : and conn=(O:n1 I:ckb I:D)
mux_u3 : and conn=(O:n2 I:CLK I:SDI)
mux_u4 : or conn=(O:data I:n1 I:n2)
dff : DFF_UDP conn=(O:Q I:data I:CLK I:RN I:notify)
timing_check_1: not conn=(O:seb I:SE)
timing_check_2: and conn=(O:rn_and_SE I:RN I:SE)
timing_check_3: and conn=(O:rn_and_seb I:RN I:seb)

By default, TetraMAX ATPGdeletes unused gateswhen it builds the design. To specify whether
unused gates are to be deleted or kept, choose Netlist > Set Build Options, which displays the
Set Build dialog box. Notice that, in this case, the “Delete unused gates” box is checked,
meaning that the deletion of unused gates is selected. To keep the extra gates, deselect the
“Delete unused gates” box.
Figure 1 shows theGSV display of the schematic created when the “Delete unused gates”
option is selected. The extra gates do not appear in the schematic.

Identifying Missing Modules 9-14

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1: Design SchematicWith Delete UnusedGatesOn

To keep the extra gates, deselect the “Delete unused gates” option of the Set Build dialog box.
Figure 2 shows the resulting schematic. The design retains the three extra timing check gates
logically as two additional primitiveswith unused output pins. These extra gates can produce
extra fault-site locations, increasing the total number of faults in the design and therefore
increasing the processing time. Any faults on these gates are categorized asUU (undetectable,
unused). Although these UU faults do not lower the test coverage, they still cause an increase in
memory usage and processing time.

Figure 2: Design SchematicWith Delete UnusedGatesOff

If you want to change the “Delete unused gates” setting, youmust do so before executing the
run_build_model command on your design. If you build your design and then change the
setting, youmust return to build mode and rerun the run_build_model command.

Identifying Missing Modules 9-15

TetraMAX ATPG User Guide K-2015.06-SP4

You can also change the unused gate deletion setting by using the set_build commandwith
the -delete_unused_gates or -nodelete_unused_gates option. The following
command overrides the default and keeps unused gates:
BUILD-T> set_build -nodelete_unused_gates

Using Black Box and Empty Box Models
Theremight be blocks in a design in which you don't want to performATPG. These blocks,
referred to as black boxesor empty boxes, may include a phase-locked loop block, an analog
block, a block that is bypassed during test, or a block that is tested separately, such as a RAM
block.
Some ATPG tools require you to build a black boxmodel to represent such a function in your
design. TetraMAX ATPG, however, lets you declare any block in the design to be a black box or
an empty box.
The following sections describe how to use of black box and empty boxmodels:

l Declaring Black Boxes and Empty Boxes
l Behavior of RAMBlack Boxes

See Also
Binary Image Files
Excluding Vectors from Simulation

Declaring Black Boxes and Empty Boxes
You can declare black box or any empty box by using one of the following commands:
set_build -black_box module_name
set_build -empty_box module_name

If you declare a block to be a black box, TetraMAX ignores the contents of the blockwhen you
build themodel with the run_build_model command. Instead, it terminates the block inputs
and connects TIEX primitives to the outputs. Thus, the block outputs are unknown (X) for ATPG.
An empty box is the same as a black box, except that the outputs are connected to TIEZ rather
than TIEX primitives. Thus, the block outputs are assumed to be in the high-impedance (Z) state
for ATPG.
The black boxmodel is the usual andmore conservativemodel for any block that is to be
removed from consideration for ATPG. In certain cases, however, thismodel can cause
contention, thereby preventing patterns from being generated for logic outside of the black box.
In these cases, the empty boxmodel is a better choice.
For example, suppose that you have two RAMblocks called A and B, both with three-state
outputs. The block outputs are tied together and connected to a pullup resistor, as shown in
Figure 1. If the enabling logic is working properly, nomore than one RAM is enabled at any given
time, thus preventing contention at the outputs.

Using Black Box and Empty Box Models 9-16

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1: RAMBlocksModeled AsEmpty Boxes

If you declare blocks A and B to be black boxes, their outputs are unknown (X), resulting in a
contention condition that could prevent pattern generation for logic downstream from the
outputs. However, if you are sure that both block A and block B is disabled during test, you can
declare these two blocks to be empty boxes. In that case, their outputs is Z, and the pullup will
pull the output node to 1 for ATPG.
Be careful when you use an empty box declaration. The pattern generator cannot determine
whether the outputs are really in the Z state during test. If they are not really in the Z state, the
generated patternsmight result in contention at the empty box outputs.
You can build your own black box and empty boxmodels if you prefer to do so. Here is an
example of amodel that works just like a black box declaration:
module BLACK (i1,i2, o1, o2, bidi1, bidi2);
input i1, i2;
output o1, o2;
inout bidi1, bidi2;
_TIEX (i1, i2, o1); // terminate inputs & drive
output
_TIEX (o2);
_TIEX (bidi1);
_TIEX (bidi2);
endmodule

Here is an example of amodel that works just like an empty box declaration:
module EMPTY (i1,i2, o1, o2, bidi1, bidi2);
input i1, i2;
output o1, o2;
inout bidi1, bidi2;
_TIEZ (i1, i2, o1);
_TIEZ (o2);
_TIEZ (bidi1);

Using Black Box and Empty Box Models 9-17

TetraMAX ATPG User Guide K-2015.06-SP4

_TIEZ (bidi2);
endmodule

Note that an empty box is not the same as amodel without any internal components or
connections, such as the following example:
module NO_GOOD (i1,i2, o1, o2, bidi1, bidi2);
input i1, i2;
output o1, o2;
inout bidi1, bidi2;
endmodule

If you use such amodel, TetraMAX interprets it literally, resulting in multiple design rule
violations (unconnectedmodule inputs and undrivenmodule outputs). The unconnected inputs
are considered “unused,” so the gates that drive these inputsmight be removed by the ATPG
optimization algorithm, thus affecting the gate count and fault list. Each unconnected output
triggers a design rule violation and is connected to a TIEZ primitive, which becomes an X on
most downstream gate inputs.
To avoid these problems, create amodel like one of the earlier examples, or use the set_
build command to declare the block to be a black box or empty box.

Behavior of RAM Black Boxes
When the behavior of your RAMblack box is not what you expected, you should consider how
thememory itself wasmodeled. The following six cases revolve around how thememory
module is or is not in the netlist, and how TetraMAX treats that memory device. Additionally, pros
and cons are provided for each case.

Case 1
Netlist Contains: Nomodule definition for memory
TetraMAX Session: Definesmemory as an EMPTY BOX
In this case, because you do not have amodule definition for the RAM, use the set_build -
empty_box specRAM command to tell TetraMAX to treat themodule as an empty box.
Pros: Nomodeling required.
Cons: If thememory has an output enable that is not held off, then thismodel is not accurate.
TetraMAX will have a false environment where it sees no contention but there could really be
contention occurring.

Case 2
Netlist Contains: Nomodule definition for memory
TetraMAX Session: Definesmemory as a BLACK BOX
In this case, because you do not have amodule definition for the RAM, use the set_build -
black_box specRAM command to instruct TetraMAX to treat themodule as a black box.
Pros: Nomodeling required.
Cons: If multiple black box or empty box devices are connected together, then TetraMAX ATPG
might not be able to determine if a pin is an input or an output. An output pin that ismistakenly

Using Black Box and Empty Box Models 9-18

TetraMAX ATPG User Guide K-2015.06-SP4

considered an input means a TIEX that might have exposed a contention problemwill go
unnoticed.

Case 3
Netlist Contains: Null module definition for memory
TetraMAX Session: Definesmemory as an EMPTY BOX
In this case, you take thememorymodule port definition from your simulationmodel and delete
the behavioral or gate level description, leaving only the input/output definition list. This is known
as a "null" module, because it has no gateswithin it. You then optionally use the set_build -
empty_box specRAM command to explicitly document that thismodule is an empty box. The
set_build -empty_box command in this particular case is actually not needed, but it is
good practice to record in the log file that themodel is intentionally and explicitly to be an empty
box.Without this, someone reviewing your work at a later time would have to know what was in
the RAMATPGmodel definition to know what type of model was chosen.
Pros: Modeling takes just a few minutes if you already have a simulationmodel.
There is no ambiguity within TetraMAX as to which pins are inputs or outputs as in Case 2.
Cons: If thememory has an output enable that is not held off, then thismodel is not accurate.
TetraMAX will have a false environment where it sees no contention, but there could really be
contention occurring.
Here's an example null module:
module specRAM (read, write, cs, oe,
data_in, data_out, read_addr, write_addr);
input read, write, cs, oe;
input [7:0] data_in;
input [3:0] read_addr;
input [3:0] write_addr;
output [7:0] data_out;
// all core gates deleted to form NULL module
endmodule

Note:Null module definitions generate numerousNxxwarnings about unconnected inputs.
These can be eliminated by adding a TIEZ gate and connecting all input pins to this gate so that
they are terminated and connecting the output to a dumspec net.

Case 4
Netlist Contains: Null module definition
TetraMAX Session: Definesmemory as a BLACK BOX
In this case, you create a null module as in Case 3, but you use the set_build -black_box
specRAM command to instruct TetraMAX that the outputs of themodule should be connected to
TIEX drivers. The set_build command is not optional for this case, or you would have an
empty box instead of a black box.
Pros: Modeling takes just a few minutes if you already have a simulationmodel.
There is no ambiguity within TetraMAX as to which pins are inputs or outputs as in Case 2.
There is no danger of creating a false environment where potential contention ismasked by the
model as in Cases 1, 2, or 3.

Using Black Box and Empty Box Models 9-19

TetraMAX ATPG User Guide K-2015.06-SP4

Cons: If the RAMhas tristate outputs considered constantly TIEX, then an overly pessimistic
environment is created.When a design hasmultiple RAMswhose outputs are tied together, this
pessimisticmodel will produce contention that cannot be avoided. Depending on the contention
settings chosen for ATPGpattern generation, TetraMAX ATPGmight discard all the patterns
produced.

Case 5
Output enablemodeling
In this case, you start with a null module definition and add only enough gates to properlymodel
the tristate output of the device. This is usually a few AND/OR gates and BUFIF gates enabled
by some sort of chip select or output enable.
Pros: Modeling effort is light to medium. Most models can be created in less than half an hour
with experience.
There is no ambiguity within TetraMAX as to which pins are inputs or outputs as in Case 2.
There is no danger of creating a false environment where potential contention ismasked by the
model as in Cases 1, 2, or 3.
There is no danger of an overly pessimistic output that introduces contention problems as in
Case 4.
Cons: Although thismodel solvesmost problems, it does not let the TetraMAX generate
patterns that would use the RAM to control and observe circuitry around the RAM, thereby
leaving faults in the "shadow" of the RAMundetected.
The following example is amemorymodule with OEN modeling:
module specRAM (read, write, cs, oe,
data_in, data_out, read_addr, write_addr);
input read, write, cs, oe;
input [7:0] data_in;
input [3:0] read_addr;
input [3:0] write_addr;
output [7:0] data_out;
and u1 (OEN, cs, oe); // form output enable
buf u2 (TX, 1'bx);
bufif1 do_0 (data_out[0], TX, OEN);
bufif1 do_1 (data_out[1], TX, OEN);
bufif1 do_2 (data_out[2], TX, OEN);
bufif1 do_3 (data_out[3], TX, OEN);
bufif1 do_4 (data_out[4], TX, OEN);
bufif1 do_5 (data_out[5], TX, OEN);
bufif1 do_6 (data_out[6], TX, OEN);
bufif1 do_7 (data_out[7], TX, OEN);
endmodule

Case 6
Full functional modeling
In this case, you create a functional RAMmodel for ATPGusing the limited Verilog syntax
supported by TetraMAX.

Using Black Box and Empty Box Models 9-20

TetraMAX ATPG User Guide K-2015.06-SP4

Pros: Eliminates all problems of Cases 1 through 5.
Cons: Most time consuming. Can be as quick as an hour or if multiple days to construct, test, and
verify an ATPGmodel for amemory.
The following example shows amemorymodule with full functional modeling (see “Memory
Modeling” for additional examples):
//
// --- level sensitive RAM with active high chip select, read,
// write, and output enable controls.
//
module specRAM (read, write, cs, oe,
data_in, data_out, read_addr, write_addr);
input read, write, cs, oe;
input [7:0] data_in;
input [3:0] read_addr;
input [3:0] write_addr;
output [7:0] data_out;
reg [7:0] memory [0:15];
reg [7:0] DO_reg, data_out;
event WRITE_OP;
and u1 (REN, cs, read); // form read enable
and u2 (WEN, cs, write); // form write enable
and u3 (OEN, cs, oe); // form output enable
always @ (WEN or write_addr or data_in) if (WEN) begin
memory[write_addr] = data_in;
#0; ->WRITE_OP;
end
always @ (REN or read_addr or WRITE_OP)
if (REN) DO_reg = memory[read_addr];
always @ (OEN or DO_reg)
if (OEN) data_out = DO_reg;
else data_out = 8'bZZZZZZZZ;
endmodule

Troubleshooting Unexplained Behavior
You should double-check the following specific itemswhen you see unexplained behavior from
your RAMblock box are described next:

1. Did you follow the guidelines in the previous cases in terms of how thememorymodule
was (or was not) defined in the netlist, as well as what commandwas issued in
TetraMAX?

2. Was the set_build -black_box command used properly? That is, in particular, the
target of this commandmust be themodule name of the RAM, and not a particular
instance of the RAM; for example:
set_build -black_box spec_ram1024x8
spec_RAM1 is the module name

If you're still not sure, consider the commands:
report on as yet undefined modules;

Using Black Box and Empty Box Models 9-21

TetraMAX ATPG User Guide K-2015.06-SP4

A black box showing up in the rightmost column of this
report
indicates that the module is recognized as a black box:
report_modules -undefined

OR
report on what TetraMAX thinks are memories:
report_memory -all -verbose

If you have properly performed steps 1 and 2 listed earlier, but are still seeing unexplained
behavior, determine if your RAMhas bidirectional (inout, tristate) ports. If this is the case, then
perform the following steps:

1. Determine why you've opted for a black box instead of an empty box. The black boxmodel
uses TIEX to drive outputs, whereas the empty boxmodel uses TIEZ.WhenRAMor
ROMdevices have inout/tristate ports used as outputs, they drive “Z” (not “X”) when
disabled. Therefore, an empty boxmodel would bemore appropriate here.

2. If you determine that a black box is still required for a RAMhaving inout ports used as
outputs, then you have some choices tomake because there is no way that TetraMAX
can determine whether a particular inout should be an “in” or an “out” given only the null
module declaration in the netlist:

l Make a TetraMAX ATPGmodel for the black boxRAMusing TIEX ATPGprimitives
inside themodel to force the inout ports to TIEX, and read this in as yet another
source file (for example, spec_RAM1_BBmodel.v, which will in essence redefine
themodule spec_RAM1 to now have these TIEX primitives on its inout ports). The
RAM inouts will now act as outputs driving out 'X' values. The TetraMAX graphical
schematic viewer (GSV) will show you only the TIEXs representing the RAMat this
point, not the RAM itself.

l Make a TetraMAX ATPGmode similar to the previous example, but instead of
placing TIEX ATPGprimitives in themodel, use actual tristate driver ATPGmodels
(TSD) to drive the inout ports being used as outputs. Also, tie the TSD enable and
input pins to TIEX primitives, and the result is not only a RAMwhose inout ports now
drive out “X”, but also a RAM that is visible in the GSV.

Handling Duplicate Module Definitions
You can read amodule definitionmore than one time. By default, TetraMAX ATPGuses the
most recently readmodule definition and issues an N5 rule violation warning for any subsequent
module definitions that have the same name.
You can change this default behavior so that the first module defined is always kept, using the -
redefined_module option of the set_netlist command. Alternatively, you can choose
Netlist > Set Netlist Options and use the Set Netlist dialog box or click the Netlist button on the
command toolbar and use the Read Netlist dialog box.
If you are certain that there are nomodule name conflicts, you can change the severity of rule N5
fromwarning to error:

Handling Duplicate Module Definitions 9-22

TetraMAX ATPG User Guide K-2015.06-SP4

BUILD-T> set_rules n5 error

With a severity setting of error, the process stopswhen TetraMAX ATPGencounters the error,
thus preventing redefinition of an existingmodule by another module with the same name.
When you use the read_netlist command, you can use the -master_modules option to
mark all modules defined by the file being read as “master modules.” A master module is not
replaced when other moduleswith the same name are encountered. Thismechanism can be
useful for reading specificmodules that are intended asmodule replacements, independent of
the reading order. Note that amaster module can be replaced by amodule with the same name
if the -master_modules switch is again used.

Memory Modeling
You can define RAMandROMmodels using a simple Verilog behavioral description. The
following sections describememorymodeling:

l MemoryModel Functions
l BasicMemoryModelingTemplate
l Initializing RAMandROMContents
l Improving Test Coverage for RAMs

Memory Model Functions
Memorymodels can have the following functions:

l Multiple read and write ports
l Common or separate address bus
l Common or separate data bus
l Edge-sensitive or level-sensitive read and write controls
l One qualifier on the write control
l One qualifier on the read control
l A read off state that can hold or return data to 0/1/X/Z
l Asynchronous set and reset capability
l Memory initialization files

You create a ROMby defining a RAM that has an initialization file and no write port.
Note:Write ports cannot simultaneously be both level-sensitive and edge-sensitive. However,
the read ports can bemixed edge-sensitive and level-sensitive, and can be different from the
write ports.
TetraMAX ATPGuses a limited Verilog behavioral syntax to define RAMandROMmodels for
ATPGuse. In cone timept, this is equivalent to defining some simple RAM/ROM functional
models.
For detailed information on RAMandROMmodeling, see the “TetraMAX MemoryModeling”
topic in Online Help.” The topics covered in Online Help include defining write ports and read

Memory Modeling 9-23

TetraMAX ATPG User Guide K-2015.06-SP4

ports, read off behavior, memory address range, multiple read/write ports, contention behavior,
memory initialization, andmemorymodel debugging.

Basic Memory Modeling Template
Example 1 is a basic template for a 16-word by 8-bit RAM that can be applied to a ROM.

Example 1: BasicMemoryModeling Template
module spec_ATPG_RAM (read, write, data_in, data_out,
read_addr,write_addr);
 input read, write;
 input [7:0] data_in; // 8 bit data width
 input [3:0] read_addr; // 16 words
 input [3:0] write_addr; // 16 words
 output [7:0] data_out; // 8 bit data width
 reg [7:0] data_out; // output holding register
 reg [7:0] memory [0:15] ; // memory storage

 event WRITE_OP; // declare event for write-through
 ...memory port definitions...
endmodule

The template consists of a Verilogmodule definition in which youmake the following definitions:
l The inputs and outputs (in any order and with any legal port name)
l The output holding register, “data_out” in this example
l Thememory storage array, “memory” in this example

This basic structure changes very little fromRAM to RAM. The port list might vary for more
complicated RAMs or ROMswithmultiple ports, but the template is essentially the same. Note
that the ATPGmodeling of RAMs requires that bused ports be used.

Initializing RAM and ROM Contents
If a RAM is to be initialized, youmust provide the vectors that initialize it.
If your design contains ROMs, youmust initialize the ROM image by loading data into it from a
memory initialization file. You create a default initialization file and reference it in the ROM’s
module definition.
If you want to use a different memory initialization file for a specific instance, use the read_
memory_file command to refer to the new memory initialization file. In TetraMAX ATPG,
ROMs and RAMs are identical in all respects except that the ROMdoes not have write data
ports. Thus, the following discussion about ROMs also applies to RAMs.

The Memory Initialization File
ROMmemory is initialized by a hexadecimal or binary ASCII file called amemory initialization
file. Example 2 shows a sample hexadecimal memory initialization file.

Example 2: Memory Initialization File
// 16x16 memory file in hex

Memory Modeling 9-24

TetraMAX ATPG User Guide K-2015.06-SP4

0002
0004
0008
0010
0020
0040
0080
0100
0200
0400
0800
1000
2000
4000
8000

For additional examples of Memory Initialization Files, see the “TetraMAX MemoryModeling”
topic in Online Help.

Default Initialization
To establish the default memory initialization file, specify its file name in themodule definition of
the ROM. Example 3 defines a Verilogmodule for a ROM that has 16 words of 16 data bits.

Example 3: 16x16 ROMModel
module rom16x16 (ren, a, dout);
parameter addrbits = 4;
parameter addrmax = 15;
parameter databits = 16;
input ren;
input [addrbits-1:0] a;
output [databits-1:0] dout;
reg [databits-1:0] specmem [0:addrmax];
reg [databits-1:0] dout ;
initial $readmemh("rom_init.dat", specmem);
always @ ren if (ren) dout <= specmem[a] ;
endmodule

The initial $readmemh statement in this example indicates that the data in the rom_
init.dat file is used to initialize thememory core specmem. The $readmemh() function is
for hexadecimal data; there is a similar function, $readmemb(), for binary data.
Verilog defines the order in which data is loaded into the specmem core. This order is based on
how you define the specmem index, as follows:

l The format specmem[0:15] indicates that the first data word in the file is to be loaded
into address 0 and the last data word into address 15.

l The format specmem[15:0] indicates that the first data word in the file is to be loaded
into address 15 and the last data word into address 0.

In Example 3, the following line indicates that the first data word is loaded into address 0 and the
last data word is loaded into the address specified by addrmax:
reg [databits-1:0] specmem [0:addrmax];

Memory Modeling 9-25

TetraMAX ATPG User Guide K-2015.06-SP4

Instance-Specific Initialization
If you usemore than one ROM instance in your design, youmight not want to initialize all the
ROMs from the samememory initialization file.
For each specific ROM instance, you can override thememory initialization file specification in
themodule definition using the ReadMemory File dialog box, or you can enter the read_
memory_file command at the command line.

1. To use the ReadMemory File dialog box to override thememory initialization file
specification in themodule definition for a specific ROM instance, perform the following
steps:

2. From themenu bar, choose the Primitives > ReadMemory File. The ReadMemory File
dialog box appears.

3. Enter the instance and then enter or browse to thememory initialization file.
For more information about the controls in this dialog box, seeOnline Help for the read_
memory_file command.

4. ClickOK.

You can also override thememory initialization file specification in themodule definition using the
read_memory_file command. For example:
DRC-T> read_memory_file i007/u1/mem/rom1/rom_core i007.d3 -hex

The following example indicates that the instance /TOP/BLK1/rom1/rom_core is to be
initialized using the hexadecimal file U1_ROM1.dat.
DRC-T> read_memory_file /BLK1/rom1/rom_core U1_ROM1.dat -hex

Note: In responding to the read_memory_file command, TetraMAX ATPGalways loads
the first word in the data file into memory address 0, the second word into address 1, and so on,
regardless of how thememory index is defined in the Verilogmodule.

Improving Test Coverage for RAMs
Test patterns for RAMs intrinsically requiremore clock cycles thanmost other types of tests.
Also, a RAMusually requires the justification of considerablymore values (all address bus bits,
data bus bits, and enable signals) thanmost combinational gates. In addition, the behavior of
RAMs ismore complex than the behavior of other circuit elements, whichmay increase the
difficulty of getting tests for these faults.

TetraMAX ATPGminimizes the complexity of memory test generation by separating the various
memory operations into different scan chain loads. For example, if a test for a RAM fault involves
two write operations and one read operation, TetraMAX ATPGwill generally do the following:

1. Scan chain load 1

2. Write operation 1

3. Scan chain load 2

Memory Modeling 9-26

TetraMAX ATPG User Guide K-2015.06-SP4

4. Write operation 2

5. Scan chain load 3

6. Read operation

A RAMmust be load stable tomake use of multiple scan chain loads. Thismeans all RAM
operationsmust be disabled during the scan chain load-unload procedure. You can do this by
gating the RAM clockwith the scan-enable signal or by turning off the RAMenable signals
(including Chip Select, if such a signal exists) during the scan chain load. A load-stable RAM
enables TetraMAX ATPG tomaximize its efficiencywhen generating tests for RAM faults,
however the tool still cannot generate tests for all RAM faults.

Creating Custom ATPG Models
You can create custommodels specifically for ATPGuse by constructing a Verilog gate-level
representation of the logic function using a combination of Verilog primitives, TetraMAX
primitives, and other definedmodules. For a list of TetraMAX primitives, see “ATPGModeling
Primitives Summary” in TetraMAX Online Help.
Use only Verilog primitives or instances of other Verilogmoduleswhen possible. Because
Verilog understands these devices, you can simulate thesemodules to validate that they
function as expected.
Example 1 uses TetraMAX primitives tomodel the test mode of a particular device. Themodel
provides a constant 1 on the output lock, and a constant 0 on the outputs ref_out, div2, and
div4 when test is asserted. Otherwise, these outputs are X.

Example 1: CustomATPGModel Using ATPGPrimitives
module phase_lock1 (test, ref_in, delayed_in, ref_out, div2, div4,
lock);
input test, ref_in, delayed_in;
output ref_out, div2, div4, lock;
wire xval;

_TIEX u1 (delayed_in, xval);
_MUX u2 (test, ref_in, 1'b0, ref_out);
_MUX u3 (test, xval, 1'b0, div2);
_MUX u4 (test, xval, 1'b0, div4);
_MUX u5 (test, xval, 1'b1, lock);
endmodule

Example 2 uses Verilog primitives to implement the same functions.

Example 2: CustomATPGModel Using Verilog Primitives
module mux (sel,d0,d1, out);
input d0,d1,sel;
output out;
wire n1,n2,n3;
not u1 (selb, sel);
and u2 (n2, d1,sel);

Memory Modeling 9-27

TetraMAX ATPG User Guide K-2015.06-SP4

and u3 (n3, d0,selb);
or u4 (out, n1,n2);
endmodule
module phase_lock2 (test, ref_in, delayed_in, \
ref_out, div2, div4, lock);
input test, ref_in, delayed_in;
output ref_out, div2, div4, lock;
wire xval;

buf u1 (xval, 1'bx);
mux u2 (test, ref_in, 1'b0, ref_out);
mux u3 (test, xval, 1'b0, div2);
mux u4 (test, xval, 1'b0, div4);
mux u5 (test, xval, 1'b1, lock);
endmodule

Example 3 shows a customATPGmodel of a D flip-flop with a rising-edge clock, asynchronous
active-high set, asynchronous active-low resetn, and scan input sdi enabled when scan is
asserted. The flip-flop has true and complementary outputs q and qn, and an output sdo, a
buffered replica of output q used for scan.

Example 3: CustomATPGModel of a D Flip-Flop
module DFWSRB (clk, data, sdi, scan, set, resetn, q, qn, sdo);
input clk, data, sdi, scan, set, resetn;
output q, qn, sdo; wire din;
_MUX u1 (scan, data, sdi, din);
_DFF u2 (set, !resetn, clock, din, q);
_INV u3 (q, qb);
_BUF u3 (q, sdo);
endmodule

Condensing ATPG Libraries
TetraMAX ATPGattempts to condense eachmodule’s functionality in a netlist into a gate-level
representation using TetraMAX simulation primitives. This condensation task can be
considerable and can produce somewarningmessages, which are typically unimportant and
can be ignored.
You can create a file that has already been condensed into TetraMAX description form. Creating
a condensed form of the librarymodules has the following benefits:

l Space econospec. Themodules are stripped of timing and other non-ATPG related
information. In addition, the file can be created in compressed form.

l No error or warningmessages. Themodules are preprocessed and written using either
ATPGmodeling primitives or simple netlists instantiating other modules.

l Faster module reading. Themodules require less time during analysis and are processed
faster.

Memory Modeling 9-28

TetraMAX ATPG User Guide K-2015.06-SP4

l Information protection. The file can be created in a compressed binary form that is
unreadable by any other tool and partially protects the library information within. When you
read in the library and write it out again, you see only a stripped-down functional gate
version of the original module; no timing or other information remains.

The transcript in Example 1 illustrates the creation of a condensed library file, which is a two-step
process:

1. Read in all requiredmodules.
In Example 1, 1,436modules are initially found in 1,430 separate files. The read process
took 21.5 seconds and reported 16 warnings.

2. Write out themodules as a single file in your choice of formats.
In the example, themodules are written out as a single GZIP compressed file.

Example 1: Creating a Condensed Library File
BUILD-T> read_netlist lib/*.v
 Begin reading netlists (lib/*.v)...
 Warning: Rule N12 (invalid UDP entry) failed 8 times.
 Warning: Rule N13 (X_DETECTOR found) failed 8 times.
 End reading netlists: #files=1430, #errors=0, #modules=1436,
#lines=157516,
 CPU_time=21.5 sec

BUILD-T> write_netlist parts_lib.gz -compress gzip
 End writing Verilog netlist, CPU_time = 1.13 sec, \
 File_size = 47571

BUILD-T> read_netlist parts_lib.gz -delete
 Warning: All netlist and library module data are now deleted.
(M41)
 Begin reading netlist (parts.lib)...
 End parsing Verilog file parts.lib with 0 errors;
 End reading netlist: #modules=1436, #lines=18929, CPU_time=0.84
sec

The next read_netlist command processed the data in less than 1 second and produced
the same 1,436modules, this time without rule violation warnings.

Memory Modeling 9-29

10
STIL Procedures
The STIL language describes scan-shifting protocol, test procedures, and ATPGsignal, timing,
and data information. STIL procedures provide information TetraMAX ATPGuses as a basis to
perform design rule checking (DRC).
You can provide a set of STIL procedures to TetraMAX ATPG through a file, called STIL
procedure file (SPF). You can use an existing SPF written by a tool, such asDFT Compiler, or
you can create a new SPF. TetraMAX ATPGsupports a subset of STIL syntax for input to
describe scan chains, clocks, constrained ports, and pattern/response data as part of the STL
procedure file definitions. If you use an existing SPF, make sure it meets the parameters
recognized by TetraMAX, as described in "STIL Language Support."
If you create an SPF, you can initially define theminimum information needed by TetraMAX
ATPG to run DRC. If you are using the TetraMAX GUI, you can provide this information via the
QuickSTIL tab in the DRC dialog box.
The following sections describe the guidelines for using STIL procedures:

l STIL Procedure File Guidelines
l Creating a New STIL Procedure File
l Defining STIL Procedures
l Specifying SynchronizedMulti Frequency Internal Clocks for anOCC Controller
l Specifying Internal Clocking Procedures
l JTAG/TAP Controller Variations for the load_unload Procedure
l Multiple ScanGroups
l Limiting ClockUsage
l DFTMAX Adaptive Scan with Serializer

10-1

TetraMAX ATPG User Guide K-2015.06-SP4

STIL Procedure File Guidelines
TetraMAX ATPGcan read and write a properly formatted SPF. Any STIL files written by
TetraMAX contain an expanded form of theminimum information andmay also contain pattern
and response data produced by the ATPGprocess. After an SPF is generated for a design,
TetraMAX ATPGcan read it again at a later time to recover the clock, constraint, and chain data,
and the pattern and response data, or both. You can also use several TetraMAX commands to
supplement or provide the same or similar information as STIL procedures.
The following general guidelines, tips, and shortcuts help you efficiently and accurate work with
STL procedure files:

l To save time and avoid typing errors, use the write_drc_file command to create the
STIL template. Themore information that you provide to TetraMAX ATPGbefore the
write_drc_file command, themore TetraMAX ATPGwill provide in the template. If
possible, build your designmodel and define all clock and constrained inputs before you
create the STIL template.

l STIL keywords are case-sensitive. All keywords start with an uppercase character, and
many contain more than one uppercase character.

l Use SignalGroups to define groups of ports so that you can easily assign values and
timing.

l At the beginning of the load_unload procedure, always place the ports declared as
clocks in their off states.

l Except for the test_setup and Shift procedures, every procedure should include
initializing all clocks to their off state and all PI constraints and PI equivalences to their
proper values at the beginning of the procedure.

l If you have constrained ports or bidirectional ports, define a test_setupmacro and
initialize the ports.

l A test_setup proceduremust initialize all clocks to their off states, and all PI
constraints and PI equivalences to their proper values by the end of the procedure. Note
that it is not necessary to stop Reference clocks, including what DFT Compiler refers to as
ATE clocks. All other clocks still must be stopped.

l Bidirectional ports should be forced to Z within a test_setupmacro and forced to Z at
the beginning of the load_unload procedure.

l For non-JTAGdesigns, it is usually not necessary to apply a reset to the design within a
test_setupmacro.

l When defining pulsed ports, define the 0/1/Z mapping for cycles when the clock is inactive,
as in the following example:
CLOCK { 01Z { '0ns' D/U/Z; } }

STIL Procedure File Guidelines 10-2

TetraMAX ATPG User Guide K-2015.06-SP4

Creating a New STIL Procedure File
To create a new STIL procedure file , you first need to define the primary input (PI) constraints,
clocks, and scan chain information using a series of TetraMAX commands. You can then use the
write_drc_file command to create a STIL template file, and edit this file to define the
required STIL procedures and port timing.
The following sections describe how to create an STL procedure file with no prior input:

l Declaring Primary Input Constraints
l Declaring Clocks
l Declaring Scan Chains and Scan Enables
l Writing the Initial STIL Template

Creating a New STIL Procedure File 10-3

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1 Flow for Creating an Initial STL Procedure FileWith No Prior Input

See Also
Defining STL Procedures

Declaring Primary Input Constraints
In most design-for-test (DFT) scenarios, a design shifts into ATPGmode based on the top-level
ports. The success of the ATPGalgorithm usually requires that these ports are held to a
constant state.
You can use STIL procedures to force a constrained port to a state other than the requested
constrained value for a limited number of tester cycles, and then return the port to its constrained
value. For example, youmight want to hold a global reset port to an off state for general ATPG
patterns, but then allow it to be asserted to initialize the design (for more information, see
“Defining the test_setupMacro").
You can declare a port using the Add PI Constraints dialog box in the TetraMAX GUI, the add_
pi_constraints command, or by defining it in the STL procedure file. For more information

Creating a New STIL Procedure File 10-4

TetraMAX ATPG User Guide K-2015.06-SP4

on using the STL procedure file to define PI constraints, see "Defining Constrained Primary
Inputs."
The following sections show you how to use TetraMAX ATPG to declare primary input
constraints:

l Using the Add PI Constraints Dialog Box
l Using the add_pi_constraints Command

Note: A port that enables a test mode for a design is different from the scan_enable port and
other ports that change state during the shift and capture operations.

Using the Add PI Constraints Dialog Box
To use the Add PI Constraints dialog box to declare a PI constraint:

1. From themenu bar, choose Constraints > PI Constraints > Add PI Constraints.
The Add PI Constraints dialog box appears.

2. In the Port Name field, enter the name of the port you want to constrain. To select from a
list of ports, click the down-arrow button at the end of the Port Name field.
In this case, a port named TEST_MODEmust be held to a constant state of logic 1 for all
patterns generated by the ATPGalgorithm.

3. From the Value list, choose the value to which you want to constrain the port.
4. Click Add.

The dialog box remains open so that you can addmore constraints if needed.
5. ClickOK.

Using the add_pi_constraints Command
You can use the add_pi_constraints command to declare a PI constraint. For example:
DRC-T> add_pi_constraints 1 TEST_MODE

Declaring Clocks
You can declare a port as a clock only if the port affects the state of flip-flops and latches or
controls RAM/ROM read or write ports. You declare a clock in terms of its natural off state. An
active-high clock has an off state of 0, and an active-low clock has an off state of 1.
You can declare a clock in the TetraMAX GUI using the Add Clocks dialog box, the Edit Clocks
dialog box, or the DRC dialog box. You can also use the add_clocks command to declare a
clock, or edit the timing block in the STL procedure file. For more information on declaring clocks
in the timing block of the STL procedure file, see "Defining Basic Signal Timing."
The following sections show you how to declare clocks:

l Using the Edit ClocksDialog Box
l Using the add_clocksCommand
l Asynchronous Set and Reset Ports

Creating a New STIL Procedure File 10-5

TetraMAX ATPG User Guide K-2015.06-SP4

Using the Edit Clocks Dialog Box
To declare clocks using the Edit Clocks dialog box:

1. From themenu bar, choose Scan > Clocks > Edit Clocks.
The Edit Clocks dialog box appears.

2. To declare a clock, select the port name from the Port Name list, specify the off state (0 or
1), and specify whether the clock is used for scan shifting. Clock signals used for
asynchronous set/reset or RAM/ROMcontrol are not used for scan shifting and are not
pulsed during shift procedures.

3. If you want to specify the test cycle period, leading edge time, trailing edge time, and
measure time of the clock, fill in the corresponding fields (Period, T1, T2, andMeasure)
and set the time units (ns or ps). In the absence of explicit timing specifications, the
defaults are: Period=100, T1=50, T2=70, Measure=40, and Unit=ns.
The same period, measure time, and units apply to all clocks in the system, but each clock
can have its own leading and trailing edge times (T1 and T2). A measure time less than T1
implies a preclockmeasure protocol, whereas ameasure time greater than T2 implies an
end-of-cycle measure protocol.

4. Click Add.
The clock declaration is added to the list box.

5. Repeat steps 2 to 4 for each clock input in the design. You can also remove, copy, or
modify an existing clock definition.

6. ClickOK to implement the changes you havemade in the dialog box.

Using the add_clocks Command
You can also declare clocks, and define the test cycle period and timing parameters by using the
add_clocks command. For example:
DRC-T> add_clocks 0 CLK1 -timing 200 50 80 40 -unit ns -shift

Asynchronous Set and Reset Ports
By default, latches and flip-flopswhose set and reset lines are not off when all clocks are at their
off state are treated as unstable cells. Because they are unstable, their output values are
unknown and they cannot be used during test pattern generation.
One way tomake these elements stable is to declare their asynchronous set/reset input signals
to be clocks. During ATPG, TetraMAX ATPGholds these inputs inactive while other clocks are
being used. However, test coverage surrounding the elementsmight still be limited.
To have these latches and flip-flops treated as stable cells without declaring their set/reset inputs
to be clocks, use the set_drc -allow_unstable_set_resets command. See. "Cells
With Asynchronous Set/Reset Inputs" for details.

Creating a New STIL Procedure File 10-6

TetraMAX ATPG User Guide K-2015.06-SP4

Declaring Scan Chains and Scan Enables
You can use the DRC dialog box in the TetraMAX GUI or enter a command at the command line
to declare the scan chains and scan enable inputs. You can also declare scan chains in the STIL
Procedure file, as described in "Defining Scan Chains."
The following sections describe how to declare scan chains and scan enables in
TetraMAX ATPG:

l Using the DRC Dialog Box
l Declaring Scan Chains at the Command Line

Using the DRC Dialog Box
To use the DRC dialog box to declare scan chains:

1. Click the DRC button in the command toolbar at the top of the TetraMAX ATPGmain
window.
The DRC dialog box appears.

2. Click the Quick STIL tab if it is not already selected. Under the tab, select the Scan
Chains/Scan Enables view if it is not already selected.
Note: If you select the Clocks view, the Edit Clocks dialog box appears, as described in
“Declaring Clocks."

3. To specify a scan chain, enter a name for the scan chain in the Name field. Specify the
Scan In and ScanOut ports by selecting the port names from the pull-down lists.

4. Click Add.
The scan chain definition is added to the list.

5. To define a scan enable input, select the port name from the Port Name pull-down list. In
the Value field, specify the port value during scan shifting.

6. Click Add.
The scan enable port definition is added to the list.

7. When you finish running the scan chain and scan enable information, clickOK.

Declaring Scan Chains at the Command Line
You can use the following commands to declare, report, and remove scan chains and scan
enables at the command line:

l add_scan_chains
l add_scan_enables
l report_scan_chains
l report_scan_enables
l remove_scan_chains
l remove_scan_enables

Creating a New STIL Procedure File 10-7

TetraMAX ATPG User Guide K-2015.06-SP4

Writing the SPF Template
You can create an SPF template file after executing the run_build_model command. This
template includes all clocks, PI equivalences, PI constraints, or scan chain information you have
previously specified.
To create an SPF template from the TetraMAX GUI:

1. Click the DRC button in the command toolbar at the top of the TetraMAX GUI main
window.
The DRC dialog box appears.

2. Click theWrite tab in the DRC dialog box.
3. In the Name field, enter the name of the STIL procedure file you want to create.
4. Click theWrite button.

The following example shows how to create a STIL template using the write_drc_file
command:
write_drc_file template.spf

Example SPF Template File
The following example shows an STL procedure file template file created from the write_
drc_file command:

 STIL 1.0 {
 Extension Design P2011;
 }
 Header {
 Title " TetraMAX 2010.06-i000622_173054 STIL output";
 Date "Wed Dec 31 17:21:05 2011";
 History { }
 }
 Signals {
 CLK In; RSTB In; SDI2 In; SDI1 In; INC In; SCAN In; HACKIN In;
si4 In;
 six In; D0 InOut; D1 InOut; D2 InOut; D3 InOut; SDO2 Out; COUT
Out;
 HACKOUT Out; so4 Out; sox Out;
 }
 SignalGroups {
 _pi = 'D0 + D1 + D2 + D3 + CLK + RSTB + SDI2 + SDI1 + INC +
 SCAN + HACKIN + si4 + six';
 _default_Clk1_Timing_ = 'RSTB';
 _io = 'D0 + D1 + D2 + D3' { WFCMap 0X->0; WFCMap 1X->1; WFCMap

 ZX->Z; WFCMap NX->N; }
 _po = 'SDO2 + COUT + D0 + D1 + D2 + D3 + HACKOUT + so4 + sox';

Creating a New STIL Procedure File 10-8

TetraMAX ATPG User Guide K-2015.06-SP4

 _default_In_Timing_ = 'D0 + D1 + D2 + D3 + CLK + RSTB + SDI2 +

 SDI1 + INC + SCAN + HACKIN + si4 + six';
 _default_Out_Timing_ = 'SDO2 + COUT + D0 + D1 + D2 + D3 +
HACKOUT
 + so4 + sox';
 _default_Clk0_Timing_ = 'CLK';
}

 ScanStructures {
 # Uncomment and modify the following to suit your design
 # ScanChain chain_name { ScanIn chain_input_name; ScanOut
chain_output_name; }
 }
 Timing {
 WaveformTable _default_WFT_ {
 Period '100ns';
 Waveforms {
 _default_In_Timing_ { 0 { '0ns' D; } }
 _default_In_Timing_ { 1 { '0ns' U; } }
 _default_In_Timing_ { Z { '0ns' Z; } }
 _default_In_Timing_ { N { '0ns' N; } }
 _default_Clk0_Timing_ { P { '0ns' D; '50ns' U; '80ns' D;
} }
 _default_Clk1_Timing_ { P { '0ns' U; '50ns' D; '80ns' U;
} }
 _default_Out_Timing_ { X { '0ns' X; } }
 _default_Out_Timing_ { H { '0ns' X; '40ns' H; } }
 _default_Out_Timing_ { T { '0ns' X; '40ns' T; } }
 _default_Out_Timing_ { L { '0ns' X; '40ns' L; } }
 }
 }
 }
 PatternBurst _burst_ { PatList {
 pattern {
 }
 }}
 PatternExec {
 PatternBurst _burst_;
 }
 Procedures {
 capture_CLK {
 W _default_WFT_;
 forcePI: V { _pi=\r13 # ; _po=\j \r9 X ; }
 measurePO: V { _po=\r9 # ; }
 pulse: V { CLK=P; _po=\j \r9 X ; }
 }
 capture_RSTB {

Creating a New STIL Procedure File 10-9

TetraMAX ATPG User Guide K-2015.06-SP4

 W _default_WFT_;
 forcePI: V { _pi=\r13 # ; _po=\j \r9 X ; }
 measurePO: V { _po=\r9 # ; }
 pulse: V { RSTB=P; _po=\j \r9 X ; }
 }
 capture {
 W _default_WFT_;
 forcePI: V { _pi=\r13 # ; _po=\j \r9 X ; }
 measurePO: V { _po=\r9 # ; }
 }

 # Uncomment and modify the following to suit your design
 # PRE_CLOCK_MEASURE Procedures {
 # load_unload {
 # W _default_WFT_;
 # C { test_so=X; test_si=0; test_si2=0; test_so2=X; clk=0;
tclk=0; reset=1; test_se=1; }
 # Shift { W _default_WFT_;
 # V { _si=#; _so=#; CLK = P; }
 # }
 # }
 # TMAX GENERATED POST_CLOCK_MEASURE (Closer to DFTCompiler
Procedures {
 # load_unload {
 # W _default_WFT_;
 # C { test_si=0; test_si2=0; clk=0; tclk=0; reset=1; test_
se=1; }
 # V { _so=#; }
 # Shift { W _default_WFT_;
 # V { _si=#; _so=#; clk=P; }
 # }
 }
 MacroDefs {
 test_setup {
 W _default_WFT_;
 V { CLK=0; RSTB=1; }
 }
 }

Defining STIL Procedures
There are a variety of STIL procedures you can specify in the SPF, including the load_unload,
shift, and test_setup procedures, and capture, system capture, generic capture, and sequential
capture procedures. You can also define signal timing and signal groups, scan chains, primary

Defining STIL Procedures 10-10

TetraMAX ATPG User Guide K-2015.06-SP4

input parameters, POmasks, andmany other parameters. Some of these settings can be
specified using TetraMAX commands.
If you don't have an existing SPF, see "Creating a New STIL Procedure File."
The following sections describe how to define STIL procedures:

l Defining Scan Chains
l Defining the load_unload Procedure
l Defining the test_setup Procedure
l Predefined Signal Groups
l Defining Basic Signal Timing
l Defining Capture Procedures
l Defining SystemCapture Procedures
l Creating Generic Capture Procedures
l Defining a Sequential Capture Procedure
l Defining Constrained Primary Inputs
l Defining Equivalent Primary Inputs
l Defining POMasks
l Defining Reflective I/OCapture Procedures
l Using themaster_observe Procedure
l Using the shadow_observe Procedure
l Using the delay_capture_start Procedure
l Using the delay_capture_end Procedure
l Using the test_end Procedure
l Scan Padding Behavior
l Using the Condition Statement
l Excluding Vectors fromSimulation
l Defining Internal Clocks for PLL Support
l Specifying anOn-Chip ClockController Inserted byDFT Compiler

Note that STIL keywords are case-sensitive. When you enter a keyword in an STL procedure
file, ensure that you use uppercase and lowercase letters correctly (for example,
ScanStructures, ScanChain, ScanIn, ScanOut). Incorrect case is a common cause of
syntax errors.
Throughout the STIL examples in the following sections, text strings are sometimes enclosed in
quotationmarks. The general rule in STIL procedure files is that quotationmarks are optional
unless the text string contains parentheses “()”, braces “[]”, or spaces.

Defining Scan Chains
You define scan chains in the ScanStructures block of the STL procedure file. In the following
example, the text in bold type illustrates four scan chains. The labels "c1", "c2", etc., are the

Defining STIL Procedures 10-11

TetraMAX ATPG User Guide K-2015.06-SP4

symbolic names assigned to the scan chains. The STIL specification indicates a length, but this
item is optional for TetraMAX input.
The following example also represents theminimumSTL procedure file needed by TetraMAX
ATPGas it defines the scan chains, the load_unload procedure, and the Shift procedure.
STIL;

ScanStructures {
ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }

}

Procedures {
 "load_unload" {
 V {
 CLOCK = 0; RESETB = 1;
 SCAN_ENABLE = 1;
 }
 Shift {
 V { _si=####; _so=####; CLOCK=P;}
 }
 }
}

Defining the load_unload Procedure
The load_unload procedure describes how to place a design into a state in which the scan
chains can be loaded and unloaded. This typically involves asserting a SCAN_ENABLE port, or
other control line, and placing bidirectionals into a Z state. Standard DRC rules also require that
ports defined as clocksmust be placed in their off states at the start of the scan chain load/unload
process if they are not initialized to an off state in the test_setup procedure.
The load_unload procedure is required by TetraMAX ATPG. If you define the scan enable
information before you write the STIL file, TetraMAX ATPGautomatically creates the load_
unload procedure.
The scan chain length is required in standard STIL syntax, but is optional for STIL input files
used by TetraMAX ATPG.Whenwriting a STIL pattern file, TetraMAX ATPGdetermines the
scan chain lengths and defines the correct length of each scan chain while writing STIL output.
Example 1 shows the syntax used to define scan chains. This example consists of the STIL
header followed by the ScanStructures keyword and four scan chains. In this example, the
scan chains are named c1 through c4. The Procedures section defines a procedure called
load_unload , which consists of one test cycle (a "V {...}" vector statement). In the test cycle,
the CLOCK and RESETB clocks are set to their off states and the SCAN_ENABLE port is driven
high to enable the scan chain shift paths.

Defining STIL Procedures 10-12

TetraMAX ATPG User Guide K-2015.06-SP4

Example 1: Defining Scan Chain Loading and Unloading in the STL procedure file
STIL;
ScanStructures {
 ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
 ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
 ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
 ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
}
Procedures {
 "load_unload" {
 V { CLOCK=0; RESETB=1; SCAN_ENABLE=1; }
 }
}

See Also
JTAG/TAP Controller Variations for the load_unload Procedure

Controlling Bidirectional Ports
During scan chain shifting defined by the load_unload procedure, the control logic for
bidirectional ports sometimes operates at random states. This condition causes Z classDRC
violations. You can prevent these violations by doing the following:

l Place a Z value on the bidirectional port, which turns off the ATE tester drive
l Enable a top-level control port, applied only for test mode, to globally disable all
bidirectional drivers

Example 1 illustrates a design with a top-level bidirectional control port called BIDI_DISABLE
(shown in bold). This example uses the SignalGroups section to define an ordered grouping
of ports referenced by the label bidi_ports, thus facilitating assignment to multiple ports.

Example 1 Controlling Bidirectional Ports in the STL Procedure File
STIL;
SignalGroups {
 bidi_ports = '"D[0]" + "D[1]" + "D[2]" + "D[3]" + "D[4]" + "D
[5]" + "D[6]"
 + "D[7]" + "D[8]" + "D[9]" + "D[10]" + "D[11]" + "D[12]"
 + "D[13]" + "D[14]" + "D[15]";
}
ScanStructures {
 ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
 ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
 ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
 ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
}
Procedures {
 "load_unload" {
 V {
 CLOCK=0; RESETB=1; SCAN_ENABLE = 1;

Defining STIL Procedures 10-13

TetraMAX ATPG User Guide K-2015.06-SP4

 BIDI_DISABLE = 1;
 bidi_ports = ZZZZ ZZZZ ZZZZ ZZZZ;
 }

V {}
V { bidi_ports = \r4 1010 ; }

 Shift {
 V { _si=####; _so=####; CLOCK=P;}
 }
 V { CLOCK=0; RESETB=1; SCAN_ENABLE = 0;}
 }
}
MacroDefs {
 test_setup {
 V {TEST_MODE = 1; PLL_TEST_MODE = 1; PLL_RESET = 1;

BIDI_DISABLE = 1; bidi_ports = ZZZZZZZZZZZZZZZZ; }
 V {PLL_RESET = 0; }
 V {PLL_RESET = 1; }
 }
}

You can use both the load_unload procedure and the test_setup procedure for
bidirectional control. The control mechanisms for the load_unload procedure are as follows:

l You can add the following lines to the first test cycle:
BIDI_DISABLE = 1;
bidi_ports = ZZZZ ZZZZ ZZZZ ZZZZ;

Setting the BIDI_DISABLE port to 1 disables all bidirectional drivers in the design.
Assigning Z states to the bidi_ports ensures that the ATE tester does not try to drive
the bidirectional ports.

l You can also use an empty test cycle:
V{}

The empty braces indicate that no signals are changing. This provides a cycle of delay
between turning off bidirectional drivers with BIDI_DISABLE=1 and forcing the
bidirectional ports as inputs in the third cycle. This is not usually necessary, but illustrates
one technique for adding delay using an empty test cycle.

l A third test cycle:
V{ bidi_ports = \r4 1010 ; }

In this case, the bidi_ports are driven to a non-Z state so that they do not float while the
drivers are disabled. The \r4 syntax indicates that the following string is to be repeated four
times. In other words, the pattern applied to the bidi_ports group is 1010101010101010.

In the test_setup procedure, the following line can be added to the first test cycle:
BIDI_DISABLE = 1; bidi_ports = ZZZZZZZZZZZZZZZZ;

In this case, the BIDI_DISABLE port is forced high and the bidi_ports are set to a Z state.

Defining STIL Procedures 10-14

TetraMAX ATPG User Guide K-2015.06-SP4

Defining the Shift Procedure
The Shift procedure specifies how to shift the scan chains. It is placed within the load_
unload procedure.
Shift is a recognized keyword to the STIL language and is not enclosed in quotationmarks. The
"_si" and "_so" names are predefined symbolic names used by TetraMAX ATPG to represent
the list of scan inputs and scan outputs. "CLOCK" is the name of a clock port that affects scan
chains. More than one clock port is often required.
The bold text shown in Example 1 defines the Shift procedure.

Example 1: STL procedure file: Defining the Scan Chain Shift Procedure
STIL;
ScanStructures {
 ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
 ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
 ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
 ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
}
Procedures {
 "load_unload" {
 V { CLOCK=0; RESETB=1; SCAN_ENABLE = 1; }
 Shift {
 V { _si=####; _so=####; CLOCK=P;}
 }
 V { CLOCK=0; RESETB=1; SCAN_ENABLE = 0;}
 }
}

The Shift procedure consists of a test cycle (V) in which the scan inputs _si are set from the
next available stimulus data (#); the scan outputs _so aremeasured from the next available
expected data (#); and the port CLOCK is pulsed (P). There are four # symbols, one for each
scan chain defined.
When the load_unload procedure is applied, the Shift procedure is applied repeatedly as
required to shift asmany bits as are in the longest scan chain.
A test cycle is added after the Shift procedure to ensure that the clocks and asynchronous
reset/set ports are at their off states. This is an optional cycle if all procedures start out by
ensuring that the clocks and asynchronous set/reset ports are at the off state.
The _si and _so grouping names are expected by TetraMAX. They refer to the scan inputs
and scan outputs. The STIL file output generated by TetraMAX completely describes the port
names and ordering contained in the groupings _si and _so; you do not have to enter this
information.

Defining the test_setup Procedure
The test_setup procedure defines all initialization sequences that a design needs for test
mode or to ensure that the device is in a known state.

Defining STIL Procedures 10-15

TetraMAX ATPG User Guide K-2015.06-SP4

In Example 1, the test_setup procedure is highlighted in bold text. This example procedure
consists of three test cycles:

l The first cycle sets the inputs TEST_MODE, PLL_TEST_MODE, and PLL_RESET to 1
l The second cycle changes PLL_RESET to 0
l The third cycle returns PLL_RESET to 1.

Example 1: Defining the test_setupMacro in the STL procedure file
STIL;
ScanStructures {
 ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
 ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
 ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
 ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
}
Procedures {
 "load_unload" {
 V { CLOCK=0; RESETB=1; SCAN_ENABLE = 1; }
 Shift {
 V { _si=####; _so=####; CLOCK=P;}
 }
 V { CLOCK=0; RESETB=1; SCAN_ENABLE = 0;}
 }
}
MacroDefs {
 test_setup {
 V {TEST_MODE = 1; PLL_TEST_MODE = 1; PLL_RESET = 1; }
 V {PLL_RESET = 0; }
 V {PLL_RESET = 1; }
 }
}

If you need to initialize a port to X in the test_setup procedure, use the "N" STIL assignment
character. An “X” character indicates that an output measure is performed and the result is
masked.
You can use the test_setup procedure to perform several other tasks, including:

l Place a device in ATPG test mode
l Place clocks in their off states
l Initialize constrained ports
l Initialize bidirectional ports to Z
l Initialize JTAGTAP controllers
l Implement Loop statements (see the "Loop Statements" section).

Using Loop Statements
You can use loops in test_setup procedures, however you should limit their usage. If you use
toomany loops:

Defining STIL Procedures 10-16

TetraMAX ATPG User Guide K-2015.06-SP4

l The size of the test_setup procedure dramatically increases
l The time to simulate the clock pulses dramatically increases

You should represent only the necessary events required to initialize the device for ATPGefforts
in the test_setup procedure. Loops that represent device test (for example, onemillion
vectors to lock a PLL clock at test) are not appropriate or necessary in the ATPGenvironment
when a PLL clock is a black box.
Vectorsmay be extracted before the Loop and after the Loop, and the Loop count decremented
as appropriate for each extracted vector.
Each extracted vector must contain the exact same sequence of clocks as specified in the vector
inside the Loop statement. Empty vectors (no events) may appear between the vectors that
contain clock pulses— but it is critical that any vector that contains a signal assignment, match in
order with the signal assignments for the vector inside the Loop. Otherwise, this extracted vector
will not be recognized as consistent with the internal vector, and the extracted vector will not be
"re-rolled" into the Loop count, causing DRC analysis errors.
The only supported contents of a Loop in a *setup procedure are C {} condition statements, V {}
vectors, or WaveformTable "W" statements.
Example 1:
MacroDefs {
 "test_setup" {
 W "_default_WFT_";
 C { "all_inputs" = NNN; "all_outputs" = \r6 X; }
 Loop 10 { V { "s_in"=0; "clk"=P; } }
 }}

Example 2:
MacroDefs {
 "test_setup" {
 W "_default_WFT_";
 V { "CK"=0; }
 Loop 4 { V { "s_in"=0; "clk"=P; } }
}

Loops in STILmay contain other references (for example, calls to other macros and
procedures). These constructs are not supported within the setup environment.

Predefined Signal Groups in STIL
A SignalGroup is amethod in STIL that describes a list of pins using a symbolic label. You can
use symbolic labels to reference a large number of pins without excessive typing.
TetraMAX ATPGaccepts the following predefined SignalGroups:

l _in = input pins
l _out = output pins
l _io = bidirectional pins
l _pi = inputs + bidirectional pins
l _po = outputs + bidirectional pins

Defining STIL Procedures 10-17

TetraMAX ATPG User Guide K-2015.06-SP4

l _si = scan chain inputs
l _so = scan chain outputs

If your STIL DRC description defines a symbolic group with the same name as the predefined
TetraMAX groups, your definition supersedes the predefined definition.

Defining Basic Signal Timing
You can define clocks and other pulsed ports, such as asynchronous sets and resets, in the STL
procedure file. This is an alternativemethod to using the Edit Clocks dialog box in the
TetraMAX GUI or the add_clocks command (for more information, see "Declaring Clocks."
You do not need to define signal timing to performDRC or to generate patterns. However,
timing definition is necessary for writing patterns that requiremeaningful timing. If you do not
explicitly define the signal timing, TetraMAX ATPGuses a set of default values.
You should avoid editing signal timing values in ATPG-generated pattern files because it causes
simulationmismatches or ATE mismatches. Make sure you define signal timing in the STL
procedure file and run DRC with the same STL procedure file before generating hand-off
patternswith ATPG.

Example 1: STL procedure file: Defining Timing
1. STIL;
2. UserKeywords PinConstraints;
3. PinConstraints { "TEST_MODE" 1; "PLL_TEST_MODE" 1; }
4. SignalGroups {
5. bidi_ports '"D[0]" + "D[1]" + "D[2]" + "D[3]" + "D[4]" + "D[5]"
+ "D[6]" +"D[7]" + "D[8]" + "D[9]" + "D[10]" + "D[11]" + "D[12]" +
"D[13]" + "D[14]" + "D[15]" ‘;
6. input_grp1 'SCAN_ENABLE + BIDI_DISABLE + TEST_MODE + PLL_TEST_
MODE' ;
7. input_grp2 'SDI1 + SDI2 + DIN + "IRQ[4]"' ;
8. in_ports 'input_grp1 + input_grp2';
9. out_ports 'SDO2 + D1 + YABX + XYZ';
10. }
11. Timing {
12. WaveformTable "BROADSIDE_TIMING" {
13. Period '1000ns';
14. Waveforms {
15. CLOCK { P { '0ns' D; '500ns' U; '600ns' D; } } // clock
16. CLOCK { 01Z { '0ns' D/U/Z; } }
17. RESETB { P { '0ns' U; '400ns' D; '800ns' U; } } /
 / async reset
18. RESETB { 01Z { '0ns' D/U/Z; } }
19. input_grp1 { 01Z { '0ns' D/U/Z; } }
20. input_grp2 { 01Z { '10ns' D/U/Z; } }
 // outputs are to be measured at t=350
21. out_ports { HLTX { '0ns' X; '350ns' H/L/T/X; } }
 // bidirectional ports as inputs are forced at t=20
22. bidi_ports { 01Z { '0ns' Z; '20ns' D/U/Z; } }
23. // bidirectional ports as outputs are measured at t=350

Defining STIL Procedures 10-18

TetraMAX ATPG User Guide K-2015.06-SP4

24. bidi_ports { X { '0ns' X; } }
25. bidi_ports { HLT { '0ns' X; '350ns' H/L/T; } }
26. }
27. } // end BROADSIDE_TIMING
28. WaveformTable "SHIFT_TIMING" {
29. Period '200ns';
30. Waveforms {
31. CLOCK { P { '0ns' D; '100ns' U; '150ns' D; } }
32. CLOCK { 01Z { '0ns' D/U/Z; } }
33. RESETB { P { '0ns' U; '20ns' D; '180ns' U; } }
34. RESETB { 01Z { '0ns' D/U/Z; } }
35. in_ports { 01Z { '0ns' D/U/Z; } }
36. out_ports { X { '0ns' X; } }
37. out_ports { HLT { '0ns' X; '150ns' H/L/T; } }
38. bidi_ports { 01Z { '0ns' Z; '20ns' D/U/Z; } }
39. bidi_ports { X { '0ns' X; } }
40. bidi_ports { HLT { '0ns' X; '100ns' H/L/T; } }
41. }
42. } // end SHIFT_TIMING
43. }
44. ScanStructures {
45. ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
46. ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
47. ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
48. ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
49. } // end scan structures
59. Procedures {
51. "load_unload" {
52. W "BROADSIDE_TIMING" ;
53. V {CLOCK=0; RESETB=1; SCAN_ENABLE=1; BIDI_DISABLE=1;
 bidi_ports = \r16 Z;}
54. V {}
55. V { bidi_ports = \r4 1010 ; }
56. Shift {
57. W "SHIFT_TIMING" ;
58. V { _si=####; _so=####; CLOCK=P;}
59. }
59. W "BROADSIDE_TIMING" ;
60. V { CLOCK=0; RESETB=1; SCAN_ENABLE=0;}
61. } // end load_unload
62. } //end procedures
63. MacroDef {
64. "test_setup" {
65. W "BROADSIDE_TIMING" ;
66. V {TEST_MODE = 1; PLL_TEST_MODE = 1; PLL_RESET = 1;
67. BIDI_DISABLE = 1; bidi_ports = ZZZZZZZZZZZZZZZZ; }
68. V {PLL_RESET = 0; }
69. V {PLL_RESET = 1; }
70. } // end test_setup
71. } //end procedures

Defining STIL Procedures 10-19

TetraMAX ATPG User Guide K-2015.06-SP4

Lineswere added for the following purposes:
l Lines 6–9: Defines some additional signal groups so that timing for all inputs or outputs can
be defined in just a few lines, instead of explicitly naming each port and its timing.

l Lines 12–27: This is a waveform table with a period of 1000 ns that defines the timing to be
used during nonshift cycles.

l Lines 28–42: This is another waveform table, with a period of 200 ns, that defines the
timing to be used during shift cycles.

l Line 52: Addition of theW statement ensures that the BROADSIDE_TIMING is used for V
cycles during the load_unload procedure.

l Line 57: Addition of theW statement ensures that the SHIFT_TIMING is used during
application of scan chain shifting.

l Line 65: Causes the test_setupmacro to use BROADSIDE_TIMING.

Defining Pulsed Ports
You can define pulsed ports for clocks and asynchronous sets and resets using the Add Clocks
dialog box in the TetraMAX GUI, the add_clocks command, or by specifying an optional section
in the STL procedure file.
The bold text in Example 1 defines two pulsed ports, CLOCK and RESETBin the STL procedure
file. This specificationadds a Timing{..} section and a WaveformTable definition with the
special-purpose name recognized by TetraMAX, _default_WFT_.

Example 1: STL procedure file: Defining Pulsed Ports
STIL;

Timing {
 WaveformTable "_default_WFT_" {
 Period '100ns';
 Waveforms {
 CLOCK { P { '0ns' D; '50ns' U; '80ns' D; } }
 CLOCK { 01Z { '0ns' D/U/Z; } }
 RESETB { P { '0ns' U; '10ns' D; '90ns' U; } }
 RESETB { 01Z { '0ns' D/U/Z; } }
 }
 }
}
ScanStructures {
 ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
 ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
 ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
 ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
}
Procedures {
 "load_unload" {
 V {
 CLOCK=0; RESETB=1; SCAN_ENABLE = 1;
 BIDI_DISABLE = 1;

Defining STIL Procedures 10-20

TetraMAX ATPG User Guide K-2015.06-SP4

 bidi_ports = ZZZZ ZZZZ ZZZZ ZZZZ;
 }
 V {}
 V { bidi_ports = \r4 1010 ; }
 Shift {
 V { _si=####; _so=####; CLOCK=P;}
 }
 V { CLOCK=0; RESETB=1; SCAN_ENABLE = 0;}
 }
}
MacroDefs {
 test_setup {
 V {TEST_MODE = 1; PLL_TEST_MODE = 1; PLL_RESET = 1;
 BIDI_DISABLE = 1; bidi_ports = ZZZZZZZZZZZZZZZZ; }
 V {PLL_RESET = 0; }
 V {PLL_RESET = 1; }
 }
}

This timing definition has the following features:
l The period of the test cycle is 100 ns.
l The following line defines the port CLOCK as a positive-going pulse that starts each cycle
at a low value (D = force down), transitions up (U = force up) at an offset of 50 ns into the
cycle, then transitions down at an offset of 80 ns:
CLOCK { P { '0ns' D; '50ns' U; '80ns' D; } }

l The next line indicates that for test cycles in which the CLOCK port has a constant value,
the change to that value occurs at an offset of 0 ns into the test cycle:
CLOCK { 01Z { '0ns' D/U/Z; } }

l The following lines define the port RESETB as a negative-going pulse:
RESETB { P { '0ns' U; '10ns' D; '90ns' U; } }
RESETB { 01Z { '0ns' D/U/Z; } }

Note that RESETB is defined nearly identically to CLOCK, with two exceptions:
l First, it starts each pulse cycle in the U (force up) position, transitions to D (force
down), and then to U again.

l Second, the timing is slightly different, with the first transition at an offset of 10 ns into
the cycle and the last transition at an offset of 90 ns.

Selecting Strobed or Windowed Measures in STIL
Some testers and vendors prefer a windowedmeasure for selecting timing in STIL. For this
approach, the outputs are compared continuously for a window of time against the expected
values instead of at a single time.
STIL supports the definition of windowedmeasures by using some slightly different syntax
involving lowercaseWaveformEvents. The first following example illustrates strobed
comparisons that occur at an offset of 450ns into each cycle.

Defining STIL Procedures 10-21

TetraMAX ATPG User Guide K-2015.06-SP4

Timing {
 WaveformTable "STROBED_COMPARE" {
 Period '1000ns';
 Waveforms {
 clocks { P { '0ns' D; '500ns' U; '600ns' D; } }
 input_ports { 01Z { '0ns' D/U/Z; } }
 out_ports { X { '0ns' X; '450ns' X; } }
 out_ports { HLT { '0ns' X; '450ns' H/L/T; } }
 bidi_ports { X { '0ns' X; } }
 bidi_ports { 01Z { '0ns' D/U/Z; } }
 bidi_ports { HLT { '0ns' X; '450ns' H/L/T; } }
 }
 }
}

This second example uses a windowed comparison for the group "out_ports" that compares the
outputs between the offsets of 450 nS and 490 nS into each test cycle. Notice how the standard
STILWaveformChars of "H/L/T" have been replaced by lowercase STILWaveformEvents of
"h", "l", "t". This indicates to TetraMAX ATPG that windowedmeasures are required.
Timing {

 WaveformTable "WINDOW_COMPARE" {
 Period '1000ns';
 Waveforms {
 clocks { P { '0ns' D; '500ns' U; '600ns' D; } }
 input_ports { 01Z { '0ns' D/U/Z; } }
 out_ports { X { '0ns' X; } }
 out_ports { HLT { '0ns' X; '450ns' h/l/t; '490ns' X; } }
 bidi_ports { X { '0ns' X; } }
 bidi_ports { 01Z { '0ns' D/U/Z; } }
 bidi_ports { HLT { '0ns' X; '450ns' H/L/T; } }
 }
 }
}

TetraMAX ATPGsupports the definition of windowedmeasure in the STIL timing block and if
STIL or WGL output patterns are written, then this timing definition is carried into the output
patterns. However, when writing Verilog or VHDL patterns, the patternswill contain a strobed
measure and the call for a windowedmeasure is not supported and is ignored.

Supporting Clock ON Patterns in STIL
The default patterns generated by TetraMAX ATPGuse a preclockmeasure. Certain types of
faults on combinational paths involving clock pins and primary outputs require a different style of
pattern, called a "ClockON" pattern, where themeasure is performed during the interval in
which the clock is asserted. This difference is shown graphically below and these types of faults
in the design are signaled by the presence of C17 DRC violations.

Defining STIL Procedures 10-22

TetraMAX ATPG User Guide K-2015.06-SP4

TetraMAX ATPGdoes not generate this additional style of patterns by default, because it is not
supported by all testers. Your target tester must either support multiple waveform timings and
dynamically switching between them on a pattern by pattern basis, or youmust be willing to
create patterns that contain clock-onmeasure and preclockmeasure and write them into
separate pattern blocks before use (the -type option of the write_patterns command is handy
for this).

l The first step necessary to support the generation of Clock-On patterns is to edit your DRC
file and to create a unique timing definition to be used for the clock-onmeasure patterns.
This is usually accomplished by copying the existing or default waveform timing and
adjusting themeasure time of outputs to occur within the time interval where the clock is
asserted.

l After creating a unique waveform timing definitionmodify or create the non-clocking
capture procedure named "capture" and have it reference the clock-on waveform timing.

l Next enable the generation of clock-onmeasure patterns by use of the -allow_
clockon_measures option of the set_atpg command.

l Finally, use themodified DRC file in your run_drc command.
When the ATPGalgorithm generates patterns, it will reference the defined waveform timing of
the non-clocking capture procedure for any patterns created that require the clock-onmeasure.
These patterns have a recognizable label when reported with the -types option of the report_
patterns command.
Note: It is also possible for the ATPGalgorithm to create regular patterns that do not require a
clock. If this occurs, these patternswill also reference the defined timing of the "capture"
procedure. Usually only a few patterns are generated for any particular design that do not
require a clock be used. These patterns should work but can increase the amount of dynamic
timing switches in your tester. If this is a cone timern, then explore the -clock -one_hot option of
the set_drc command as a way to inhibit the generation of non-clocking patterns.
The following example defines a unique timing set for use by the clock-on patterns. The timing of
CLOCK_ON is identical to PRE_CLOCK, except that themeasure time has beenmoved from
40ns (preclock) to 60ns (clock asserted).
:
:
Timing {
 WaveformTable "PRE_CLOCK" {
 Period '100ns';
 Waveforms {
 clocks { P { '0ns' D; '50ns' U; '80ns' D; } }
 clocks { 01Z { '0ns' D/U/Z; } }
 _in { 01ZN { '0ns' X; '40ns' L/H/T/X; } }
 _out { LHZX { '0ns' X; '40ns' L/H/T/X; } }
 _io { LHZX { '0ns' X; '40ns' L/H/T/X; } }
 _io { 01ZN { '0ns' D/U/Z/N; } }
 }

Defining STIL Procedures 10-23

TetraMAX ATPG User Guide K-2015.06-SP4

 }
 WaveformTable "CLOCK_ON" {
 Period '100ns';
 Waveforms {
 clocks { P { '0ns' D; '50ns' U; '80ns' D; } }
 clocks { 01Z { '0ns' D/U/Z; } }
 _in { 01ZN { '0ns' D/U/Z/N; } }
 _out { LHZX { '0ns' X; '60ns' L/H/T/X; } }
 _io { LHZX { '0ns' X; '60ns' L/H/T/X; } }
 _io { 01ZN { '0ns' D/U/Z/N; } }
 }
 }
}
 :
 :
 capture_CLK {
 W PRE_CLOCK;
 V { _pi=\r13 # ; _po=\j \r9 X ; }
 V { _po=\r9 # ; }
 V { CLK=P; _po=\j \r9 X ; }
 }

 capture {
 W CLOCK_ON; // reference the alternate timing definition
 V { _pi=\r13 # ; _po=\j \r9 X ; }
 V { _po=\r9 # ; }
 }
 :
 :\line

Defining the End-of-Cycle Measure
The preferred ATPGcycle has themeasure point coming before any clock events in the cycle.
However, an end-of-cycle measure is possible with a few minor adjustments to the STL
procedure file.
The STL procedure file in Example 1 illustrates the two changes that allow TetraMAX ATPG to
accommodate an end-of-cycle measure:

l The timing of themeasure points defined in the Waveforms section is adjusted to occur
after any clock pulses.

l Ameasure scan out ("_so"=####) is placed within the load_unload procedure and
before the Shift procedure.

In addition, the capture proceduresmust be either the default of three cycles or a two-cycle
procedure where the force/measure events occur in the first cycle and the clock pulse occurs in
the second.

Defining STIL Procedures 10-24

TetraMAX ATPG User Guide K-2015.06-SP4

Example 1: End-of-CycleMeasure
Timing {
 WaveformTable "BROADSIDE_TIMING" {
 Period '1000ns';
 Waveforms {
 measures { X { '0ns' X; } }
 CLOCK { P { '0ns' D; '500ns' U; '600ns' D; } }
 CLOCK { 01Z { '0ns' D/U/Z; } }
 RESETB { P { '0ns' U; '400ns' D; '800ns' U; } }
 RESETB { 01Z { '0ns' D/U/Z; } }
 input_grp1 { 01Z { '0ns' D/U/Z; } }
 input_grp2 { 01Z { '10ns' D/U/Z; } }
 bidi_ports { 01Z { '0ns' Z; '20ns' D/U/Z; } }
 measures { HLT { '0ns' X; '950ns' H/L/T; } }
 }
 }
 WaveformTable "SHIFT_TIMING" {
 Period '200ns';
 Waveforms {
 measures { X { '0ns' X; } }
 CLOCK { P { '0ns' D; '100ns' U; '150ns' D; } }
 CLOCK { 01Z { '0ns' D/U/Z; } }
 RESETB { P { '0ns' U; '20ns' D; '180ns' U; } }
 RESETB { 01Z { '0ns' D/U/Z; } }
 in_ports { 01Z { '0ns' D/U/Z; } }
 bidi_ports { 01Z { '0ns' Z; '20ns' D/U/Z; } }
 measures { HLT { '0ns' X; '190ns' H/L/T; } }
 }
 }
}
 ScanStructures {
 ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
 ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
 ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
 ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
}
Procedures {
 "load_unload" {
 W "BROADSIDE_TIMING" ;
 V {CLOCK=0; RESETB=1; SCAN_ENABLE=1;
 BIDI_DISABLE=1; bidi_ports = \r16 Z;}

V { "_so" = #### ; }
 V { bidi_ports = \r4 1010 ; }
 Shift {
 W "SHIFT_TIMING" ;
 V { _si=####; _so=####; CLOCK=P;}
 }
}

Defining STIL Procedures 10-25

TetraMAX ATPG User Guide K-2015.06-SP4

Defining Capture Procedures in STIL
Capture procedures offer the flexibility to control the timing of the force primary inputs and bidis,
measure primary outputs and bidis, and, optionally, a capture operation with a functional
(nonscan) clock. These three eventsmust be in the order shown, andmay be arranged in three,
two, or one tester cycles (Vectors). Different capture procedures are used for each capture
clock, as well as a non-clock capture procedure.
NOTE: Each port can only be forced one time among all vectors in the capture procedure.
The following examples are from a design with CLK and RSTB defined as clock ports. The
"capture_CLK" procedure illustrates forcing PI's, measuring PO's, and pulsing the clock in the
same cycle. The "capture_RSTB" illustrates using two cycles.
 "capture_CLK" {
 W "_default_WFT_";
 V { "_pi"=\r 12 # ; "_po"=\r 8 #; "CLK"=P; }
 }

 "capture_RSTB" {
 W "_default_WFT_";
 "force_and_measure": V { "_pi"=\r 12 # ; "_po"=\r 8 #; }
 "pulse": V { "RSTB"=P; }
 }

 "capture" {
 W "_default_WFT_";
 "forcePI": V { "_pi"=\r 12 # ; }
 "measurePO": V { "_po"=\r 8 #; }
 }

The default algorithm for combinational ATPGproduces an event order of: force inputs,
measure outputs, pulse clocks (optional). If you should need to produce an end-of-cycle
measure or postclockmeasure instead of this preclockmeasure, you will need to use a specific
2-cycle capture procedure with the following event order: cycle 1 {force inputs, measure
outputs}, cycle 2 {pulse clocks}. You will also need to adjust the defined timing on the ports. An
example of this style follows:
 "capture_CLK" {
 W "spec_timing_set";
 V { "_pi"=\r 12 # ; "_po"=\r 8 #;}
 V { "_po"=\r 8 X ; CLK=P; }
 }

TetraMAX ATPGdefaults to the first WaveformTable encountered in the file if it is not specified
in the sequential_capture procedure (if present) or defined in a capture procedure in the DRC
file. ThisWaveformTable can be, but does not need to be named "_default_WFT_". In other
words, if your STL procedure file had two waveform tables, say "_first_WFT_" followed later by

Defining STIL Procedures 10-26

TetraMAX ATPG User Guide K-2015.06-SP4

"_default_WFT_", and you did not list your capture clocks in the STL procedure file, then
TetraMAX ATPGwould use "_first_WFT" for waveform timing information.

Limiting Clock Usage
Youmight need to limit the clocks used by the ATPGalgorithm during the capture procedures.
For example, sometimes only the TCK clock should be used or the TAP controller statemachine
will get out of step. If you need to restrict usage of defined clocks to a single clock, use the -
clock option of the set_drc command:
DRC-T> set_drc -clock TCK

This option restricts the ATPGalgorithm to use only the specified clock for capture.

Defining Constrained Primary Inputs
You can use the STIL Procedure file to define constraints on ports. This is an alternativemethod
to using the add_pi_constraints command or the Constraintsmenu in the TetraMAX GUI.
The following example is a fragment of a STIL file in which the "F{...}" or Fixed construct is used
to define a fixed port condition. The STIL specification defines that this Fixed relationship
persists only within the procedure in which it occurs. A TetraMAX PI constraint applies to every
capture procedure. Because of this difference, you should repeat the Fixed relationship in every
capture procedure. If you don't, TetraMAX ATPG issues V12 warnings and continues as if the
missing Fixed statements are present.
TetraMAX ATPGdoes not support use of the "F{...}" statement in the test_setup or load_
unload/shift or other procedures. Youmust explicitly set any ports you want held at fixed values
in these procedures. In the following example, the ports TEST_MODE and PLL_TEST_MODE
are explicitly set in both the load_unload procedure and the test_setup procedure.
STIL;

ScanStructures {
 ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
 ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
 ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
 ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
}

Procedures {
 "load_unload" {
 V {
 CLOCK = 0; RESETB = 1;
 SCAN_ENABLE = 1;
 TEST_MODE=1; PLL_TEST_MODE=0;
 }
 Shift {
 V { _si=####; _so=####; CLOCK=P;}
 }
 }
 "capture_CLOCK" {

Defining STIL Procedures 10-27

TetraMAX ATPG User Guide K-2015.06-SP4

F { TEST_MODE=1; PLL_TEST_MODE=0; }
 V { "_pi"=\r 12 # ; "_po"=\r 8 #; "CLOCK"=P; }
 }
 "capture_RESETB" {

F { TEST_MODE=1; PLL_TEST_MODE=0; }
 V { "_pi"=\r 12 # ; "_po"=\r 8 #; "RESETB"=P; }
 }
 "capture" {

F { TEST_MODE=1; PLL_TEST_MODE=0; }
 V { "_pi"=\r 12 # ; "_po"=\r 8 #; }
 }
}

MacroDefs {
 test_setup {
 V { TEST_MODE=1; PLL_TEST_MODE=0; CLOCK=0; }
 }
}

Defining Equivalent Primary Inputs
Primary inputs that need to be held at the same values or at complementary values can be
defined in the STL procedure file as an alternative to using the add_pi_equivalences
command. Example 1 shows how to define equivalent primary inputs in the STL procedure file.

Example 1: STL procedure file: Defining Equivalent Ports
Procedures {
 "capture" {
 W "_default_WFT_";
 E "ck1" "ck2";
 C { "all_inputs"=\r30 N; "all_outputs"=\r30 X ; }}
 V { "_pi"=\r35 # ; "_po"=\r30 # ; }}
 }
 "capture_ck1" {
 W "_default_WFT_";
 E "ck1" "ck2";
 C { "all_inputs"=\r30 N; "all_outputs"=\r30 X ; }
 "measurePO": V { "_pi"=\r35 # ; "_po"=\r30 # ; }
 C { "InOut1"=X; "PA1"=X; "DOA"=X; "NA1"=X; "NA2"=X; }
 "pulse": V { "ck1"=P; }
 }
 "load_unload" {

Defining PO Masks
You can use the STIL Procedure file to definemasks on output port measures. The following
example shows a fragment from a STIL file in which the "F{...}" or Fixed construct is used to

Defining STIL Procedures 10-28

TetraMAX ATPG User Guide K-2015.06-SP4

define amasked output condition by setting the expect value to X. This Fixed relationship
definition persists only within the procedure in which it occurs, so it must be repeated in all
capture procedures to properly define a POMask to TetraMAX ATPG.
TetraMAX ATPGdoes not support use of the "F{...}" statement in the test_setup or load_
unload/shift or other procedures.
The "F{...}" statement is also used for defining PI Constraints.
STIL;

ScanStructures {
 ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
 ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
 ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
 ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
}

Procedures {
 "load_unload" {
 V {
 CLOCK = 0; RESETB = 1;
 SCAN_ENABLE = 1;
 TEST_MODE=1;
 }
 Shift {
 V { _si=####; _so=####; CLOCK=P;}
 }
 }
 "capture_CLOCK" {
 F { YOUT = X; }
 V { "_pi"=\r 12 # ; "_po"=\r 8 #; "CLOCK"=P; }
 }
 "capture_RESETB" {
 F { YOUT = X; }
 V { "_pi"=\r 12 # ; "_po"=\r 8 #; "RESETB"=P; }
 }
 "capture" {
 F { YOUT = X; }
 V { "_pi"=\r 12 # ; "_po"=\r 8 #; }
 }
}

MacroDefs {
 test_setup {
 V { TEST_MODE=1; PLL_TEST_MODE=0; CLOCK=0; }
 }
}

Defining STIL Procedures 10-29

TetraMAX ATPG User Guide K-2015.06-SP4

Defining System Capture Procedures
TetraMAX ATPGuses a default capture procedure that defines how a declared clock port is
pulsed for a system (nonscan) test cycle. This procedure uses the naming convention capture_
clockname (where clockname is the clock port name).
The default system capture procedure usually contains three test cycles that perform the
following tasks:

1. Force inputs
2. Measure outputs
3. Pulse the clock/set/reset port (optional)

If you defined ports named CLOCK and RESETB to be clocks using the write_drc_file
command, the output file contains default capture procedures similar to those shown in Example
1.

Example 1: Default Capture Procedures
"capture_CLOCK" {
 W "_default_WFT_";
 "forcePI": V { "_pi"=\r10 # ; }
 "measurePO": V { "_po"=######; }
 "pulse": V { "CLOCK"=P; }
}
"capture_RESETB" {
 W "_default_WFT_";
 "forcePI": V { "_pi"=\r10 # ; }
 "measurePO": V { "_po"=######; }
"pulse": V { "RESETB"=P; }
}
"capture" {
 W "_default_WFT_";
 "forcePI": V { "_pi"=\r10 # ; }
 "measurePO": V { "_po"=######; }
}

If you want to use non-default timing or sequencing, copy the definitions for the capture
procedures from the default output template into the Procedures section of your STL
procedure file and edit the procedures.
TetraMAX ATPGdefaults to the first WaveformTable it encounters in the file if aWaveformTable
is not specified in the sequential_capture procedure when present or defined in a capture
procedure in the DRC file. ThisWaveformTable can named, for example, “_default_WFT_”. If
your STL procedure file has two waveform tables, “_first_WFT_” and “_default_WFT_”, and you
do not list your capture clocks in the STL procedure file, TetraMAX uses “_first_WFT” for
waveform timing information.
The bold text in Example 2 shows some typical modifications to the capture procedure files. In
this case, the three cycles aremerged into a single cycle and the non-default timing is specified
using the BROADSIDE_TIMING statement.

Defining STIL Procedures 10-30

TetraMAX ATPG User Guide K-2015.06-SP4

Example 2: Modified Capture Procedure Examples
Procedures {
 "load_unload" {
 W "BROADSIDE_TIMING" ;
 V {CLOCK=0; RESETB=1; SCAN_ENABLE=1;
 BIDI_DISABLE=1; bidi_ports = \r16 Z;}
 V {}
 V { bidi_ports = \r4 1010 ; }
 Shift {
 W "SHIFT_TIMING" ;
 V { _si=####; _so=####; CLOCK=P;}
 }
 W "BROADSIDE_TIMING" ;
}
"capture_CLOCK" {
 W "BROADSIDE_TIMING";

V { "_pi"=\r10 # ; "_po"=######; "CLOCK"=P; }
}
"capture_RESETB" {
 W "BROADSIDE_TIMING";

V { "_pi"=\r10 # ; "_po"=######; "RESETB"=P; }
}
"capture" {
 W "BROADSIDE_TIMING";

V { "_pi"=\r10 # ; "_po"=######; }
 }
}
MacroDefs {
 "test_setup" {
 W "BROADSIDE_TIMING" ;
 V {TEST_MODE = 1; PLL_TEST_MODE = 1; PLL_RESET = 1;
 BIDI_DISABLE = 1; bidi_ports = ZZZZZZZZZZZZZZZZ; }
 V {PLL_RESET = 0; }
 V {PLL_RESET = 1; }
 }
}

Creating Generic Capture Procedures
This section describes how to write a set of single-cycle generic capture procedures. These
procedures include: multiclock_capture(), allclock_capture(), allclock_
launch(), and allclock_launch_capture().
Generic capture procedures offer the following advantages:

l A single cycle capture procedure is efficient because it matches the event ordering (force
PI, measure PO, pulse clock) in TetraMAX ATPGwithout anymanual modifications.

l Stuck-at and at-speed ATPGcan use a single common protocol file.

Defining STIL Procedures 10-31

TetraMAX ATPG User Guide K-2015.06-SP4

l The stuck-at _default_WFT_WaveformTable is used as a template for modifying the
timing of the at-speedWaveformTables.

The following topics describe how to create generic capture procedures:
l Generating Generic Capture Procedures
l ControllingMultiple ClockCapture
l Using Allclock Procedures
l Using load_unload for Last-Shift-Launch Transition
l Example Post-Scan Protocol
l Limitations

See Also
Defining a Sequential Capture Procedure
Defining a System Capture Procedure

Generating Generic Capture Procedures
Generic capture procedures are generated by default when you specify the write_drc_file
command (the -generic_captures option of the write_drc_file command is on by
default). This command overrides the default-generated procedures (capture_clockname -
except for an explicitly defined clocked capture procedure from a prior run_drc command. An
unclocked capture procedure is not written. Also, the default timing is compatible with single-
cycle capture procedures (a Z event is produced by default for themeasure events H, L, T, and
X, at time zero) when this option is used.

WaveformTables
If the default timing is defined, only oneWaveformTable is generated in the output file, and all
procedureswill reference that same timing. If you want to createmultipleWaveformTables ("_
launch_WFT_", "_capture_WFT_", and "_launch_capture_WFT_"), use the set_
faults -model transition command or the set_faults -model path_delay
command before the write_drc_file command. These command specify that the data
should be generated to cover thismode of operation.
Note the following requirements and scenarios:

l Youmust use generic capture procedures for Internal/External Clocking.
l Capture procedures using the internal clocksmust use _multiclock_capture_WFT_
procedures, which is appropriate because the PLL pulse trains are internally generated
independently of the external timing. The timings that should be changed to get at-speed
transition fault testing on the external clocks are in the _allclock_WaveformTables
(launch_WFT, capture_WFT, launch_capture_WFT). Be careful not to change the
Period or the timings of the Reference Clocks or else the PLLsmight lose lock. Only
change the rise and fall times of the external clocks. (For more information, see the
“Creating Generic Capture Procedures” section in theDFT Compiler User Guide.)

Defining STIL Procedures 10-32

TetraMAX ATPG User Guide K-2015.06-SP4

l A two-clock transition fault test consists of a launch cycle using _allclock_launch_
WFT_ followed by a capture cycle using _allclock_capture_WFT_. The active clock
edges of these two cycles should bemoved close to each other. Make sure that the clock
leading edge comes after the all_outputs strobe times, and adjust those times (for all
values: L, H, T and X) in the _allclock_capture_WFT_ if necessary. The remaining
Waveform Table, _allclock_launch_capture_WFT, is only used when launch and
capture are caused by opposite edges of the same clock. Here, the only important timing is
from the clock leading edge to the same clock's trailing edge. In practice, this only happens
in Full- Sequential ATPG. and inmost cases it can be ignored.

Generating QuickSTIL File Flows
There are three scenarios to carefully consider when generating aQuickSTIL file flows:

l Running stuck-at STIL procedure file generation with no generic captures creates a set of
default generic captureswhich use the default WaveformTables. All the generic captures
are defined— not just themulticlockWaveformTables. But the allclock_*
WaveformTables are defined at this time.

l Running transition STIL procedure file generation with no generic captures creates
generic captures using all of the transitionWaveformTables. All the generic captures are
defined— not just themulticlockWaveformTables. But the allclock_*
WaveformTables are defined at this time. You are responsible to update the timing needed
for the at-speed timingWaveformTables.

l Running transition STIL procedure file generation with generic captures already present
(for example, from a stuck-at flow), will not change or update the generic captures or
WaveformTables already present in the original STL procedure file. If you want transition
timing and full WaveformTables in your STL procedure file, you need to one of the
following:

l Edit and copy the “_default_wft_” multiple times, and change them to the
transitionWaveformTables and timing needed for their design.

l Rerun DRC with the deletion of the allclock_* procedures, and regenerate
default timing in transitionmode for these procedures.

For an example that compares the different techniques, see Figure 1 and Figure 2. Note that the
blue font follows the default WaveformTables, while the green font follows the at-speed
WaveformTables.

Defining STIL Procedures 10-33

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1: Comparing Generic Captures Flows (Part 1)

Defining STIL Procedures 10-34

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 2: Comparing Generic Captures Flows (Part 2)

Controlling Multiple Clock Capture
You can control multiple clock capture by specifying a single general capture procedure, called
multiclock_capture, in an STIL procedure file. This procedure enables you tomap all
capture behaviors irrespective of the number of clocks present, to use this procedure. In addition
to supporting capture operations that contain multiple clocks, this procedure also eliminates the
need tomanually define a full set of clock-specific capture procedures or allow them to be
defined by default.
There are several different methods associated with specifyingmultiple clock capture:

l Multiple ClockCapture for a Single Vector
l Multiple ClockCapture for Multiple Vectors
l UsingMultiple Capture Procedures

Multiple Clock Capture for a Single Vector
The following example shows how to specify multiclock_capture for a single vector, which
is the simplest form of this procedure:
Procedures {
 "multiclock_capture" {
 W "TS1";
 C { “_po”=\r9 X ; }
 V { "_po"=\r9 # ; "_pi"=\r11 # ; }
 }
}

Note that the single vector form does not require an explicit parameter to support the clock
pulses because the clocks are always listed in the _pi arguments, and also in the _po

Defining STIL Procedures 10-35

TetraMAX ATPG User Guide K-2015.06-SP4

arguments for any clocks that are bidirectional. It is strongly recommended that you specify an
initial Condition statement to set the _po states to an X in this procedure. A default should be
present in this procedure because not all calls from the Pattern data provide explicit output
states.
As is the case with all capture procedures, the single-vector form of multiclock_capture
requires the timing in theWaveformTable to follow the TetraMAX ATPGevent order for
captures. Thismeans that all input transitionsmust occur first, all output measuresmust occur
next, and all clock pulsesmust be defined as the last event.

Multiple Clock Capture for Multiple Vectors
Aswith standard capture procedures, the multiclock_capture procedure can consist of
multiple vectors. In this case, you need to specify an additional argument to hold the variable
clock-pulse information, as shown in the following example:
Procedures {
 "multiclock_capture" { // 2-cycle
 W "TS1";
 C { “_po”=\r9 X ; }
 V { "_pi"=\r11 # ; "_po"=\r9 # ; }
 C { "_po"=\r9 X ; }
 V {"_clks"= ###; }
}
 "multiclock_capture" { // 3-cycle
 W "TS1";
 C { “_po”=\r9 X ; }
 V { "_pi"=\r11 # ; }
 V { "_po"=\r9 # ; }
 C { "_po"=\r9 X ; }
 V {"_clks"= ###; }
 }
}

Using Multiple Capture Procedures
Figure 3 shows how the multiclock_capture procedure is used when other capture()
or capture_clk() procedures are defined.

Defining STIL Procedures 10-36

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 3: UsingMultiple Capture Procedures

Using Allclock Procedures
Allclock procedures directly replace specifically namedWaveformTables (WFTs) by designating
launch, capture, and launch_capture-specific timing parameters. This approach replaces an
inline vector andWFT switch with a procedure call.
You can specify a set of allclock procedures for use in specific contexts in which a sequence of
capture events supports a launch and capture operation. These sequences are generated in
system clock-launched transition tests. Full-sequential patterns use inline vectors and not
procedure calls. This is because the full-sequential operation has dependencies on the
sequential_capture definition, which affects how capture operationswill occur. Because inline
vectors are used, transition and path delay timing is controlled by using fixedWaveformTable
names (and not the allclock capture procedures) for full-sequential patterns.
Last-shift-launch contexts do not identify the launch or the capture operation. Thismeans a last-
shift-launch uses a standard capture procedure designation and does not reference allclock
procedures even if they are present.
Standard capture procedure designation apply themulticlock_capture procedure in this situation
if it is present (based on the presence of other capture procedures as diagrammed in Figure 11-
4), and youmay define the timing of the transition capture operation from this procedure. The
timing of the launch operation is defined by the last vector of the load_unload procedure for a
last-shift-launch context.
TetraMAX ATPGsupports the following allclock procedures:

l allclock_capture()—Applies to tagged capture operations in launch/capture
contexts only.

Defining STIL Procedures 10-37

TetraMAX ATPG User Guide K-2015.06-SP4

l allclock_launch()—Applies to tagged launch operations in launch/capture
contexts only

l allclock_launch_capture()—Applies to tagged launch-capture operations only.

Specifying a Typical Allclock Procedure
By default, an allclock procedure applies to a single vector, although it doesn’t have to carry the
redundant clock parameter. An allclock proceduremay reference anyWFT for each operation.
See the following example allclock_capture() procedure:
Procedures {
 "allclock_capture" {
 W "TS1";
 C { “_po”=\r9 X ; }
 V { "_po"=\r9 # ; "_pi"=\r11 # ; }
 }
}

Interaction of the Allclock and Multiple Clock Procedures
A defined multiclock_capture() procedure is always used for any capture operation that
is not controlled by another defined procedure. Thismeans that if an allclock procedure is not
defined, the multiclock_capture procedure is applied in its place.

Interaction of Allclock Procedures and Named Waveform Tables
If an allclock procedure is defined, a namedWFT is not applied on inline vectors even if it is
defined. This is because allclock procedures always replace the generation of inline vectors in
pattern data, andWFT names are supported only when inline vectors are generated.
It is strongly recommended that you define a sufficient set of allclock procedures for a particular
context, even if the procedures are identical. This preserves pattern operation information that
might otherwise be difficult to identify.

Using load_unload for Last Shift-Launch Transition
The load_unload procedure supports passing the pi data into the first vector of the load_
unload operation. Thismeans load_unload supports last shift-launch transition tests, presents
the leading PI states at the time of the last shift operation (the launch), and supports transitioning
those states.
Because of this implementation, it is important to provide sufficient information as part of the
load_unload definition to permit standalone operation of the load_unload procedure. It is
important to consider that the load_unload procedure is also used to validate scan chain
tracing. Required states on inputs necessary to support scan chain tracingmust be provided to
this routine even if these signals are subsequently presented as parameterized values to the
procedure, as shown in the following example:
Procedures {
 “load_unload” {
 W “_default_WFT_”;
 C { “test_se”=1; } // required for scan chain tracing
 V { “_pi”=\r34 #; }

Defining STIL Procedures 10-38

TetraMAX ATPG User Guide K-2015.06-SP4

 Shift {
 V { “_ck”=\r3 P; “_si”=\r8 #; “_so”=\r8 #; }
 }
 }
}

Example Post-Scan Protocol
The following example shows a post-scan protocol containing generic capture procedures:

Procedures {
"multiclock_capture" {

 W "_default_WFT_";
 C {
 "_po" = XXXX;
 }
 V {
 "_po" = ####;
 "_pi" = \r9 #;
 }
}

"allclock_capture" {
 W "_default_WFT_";
 C {
 "_po" = XXXX;
 }
 V {
 "_po" = ####;
 "_pi" = \r9 #;
 }
}

"allclock_launch" {
 W "_default_WFT_";
 C {
 "_po" = XXXX;
 }
 V {
 "_po" = ####;
 "_pi" = \r9 #;
 }
}

"allclock_launch_capture" {
 W "_default_WFT_";
 C {
 "_po" = XXXX;
 }
 V {
 "_po" = ####;
 "_pi" = \r9 #;
 }
}

Defining STIL Procedures 10-39

TetraMAX ATPG User Guide K-2015.06-SP4

"load_unload" {
 W "_default_WFT_";
 C {
 "all_inputs" = NN0011NN1; // moved scan enable here
 "all_outputs" = XXXX;
 }
 "Internal_scan_pre_shift" : V { "_pi" = \r9 #; }
 Shift {
 V {
 "_clk" = PP11;
 "_si" = ##;
 "_so" = ##;
 }
 }
 }
}

Generic Capture Procedures Limitations
Note the following limitations related to generic capture procedures:

l WGL patterns are not supported if themulticlock_capture ismultiple cycle or the clock (_
clk) parameter is used; in this case, theWGLwill not contain the clock pulses.WGL
pattern format is only supported with single-cycle multiclock_captures that do not use a
"clock" parameter (_clk).

l WGL, VHDL, and legacy Verilog formats do not support 3-cycle generic capture
procedures.

l Using the DFT Compiler flow, the timing from the _default_WFT_ waveform table is
copied to the allclock waveform tables (launch_WFT, capture_WFT, launch_
capture_WFT). You will need tomodify thesemultiple identical copies of this information
with the correct timing before running at-speed ATPG.

l TetraMAX transition-delay ATPGusing the command set_delay -launch_cycle
last_shift is not supported with the allclock capture procedures, only system_clock
launch is supported.

l MUXclock is not supported (D, E, P waveforms).

Defining Sequential Capture Procedures
A sequential capture procedure lets you customize the capture clock sequence applied to the
device during Full-Sequential ATPG. For example, you can define the clocking sequence for a
two-phase latch design, where CLKP1 is followed byCLKP2. Using a sequential capture
procedure is optional, and it only affects Full-Sequential ATPG. For more information on ATPG
modes, see "ATPGModes."
With Full-Sequential ATPGand a sequential capture procedure, the relationships between
clocks, tester cycles, and capture procedures can bemore flexible andmore complex. Using
Basic-Scan ATPG results in one clock per cycle, one clock per capture procedure, and one
capture procedure per TetraMAX ATPGpattern. Using Full-Sequential ATPGand a sequential
capture procedure, a cycle can be defined with one or more clocks, a capture procedure can be

Defining STIL Procedures 10-40

TetraMAX ATPG User Guide K-2015.06-SP4

defined with any number of cycles, and an ATPGpattern can contain multiple capture
procedures.
A sequential capture procedure can pulsemultiple clocks, define clocks that overlap, and specify
both optional and required clock pulses. A very long or complex sequential capture procedure is
more computationally intensive than a simple one, which can affect the Full-Sequential ATPG
runtime.
The following sections describe how to define sequential capture procedures:

l Using Default Capture Procedures
l Using a Sequential Capture Procedure
l Sequential Capture Procedure Syntax

Using Default Capture Procedures
By default, all ATPGmodes use the same capture_clockname procedures described in
"Defining SystemCapture Procedures." The Full-Sequential algorithm assumes the same order
of events for each vector as the other algorithms. Under these default conditions, the Full-
Sequential algorithm uses a fixed capture cycle consisting of three time frames, in which the
tester does the following:

1. Loads scan cells, changes inputs, andmeasures outputs (optional)
2. Applies a leading clock edge
3. Applies a trailing clock edge, and optionally unloads scan cells

The Full-Sequential ATPGalgorithm can choose any one of the available capture procedures
for each vector, including the one that does not pulse any clocks. The algorithm can produce
patterns using any sequence of these capture procedures to detect faults.

Using a Sequential Capture Procedure
To use a sequential capture procedure, add the sequential_capture procedure to the
STIL file, then set the -clock -seq_capture option of the set_drc command, as shown in
the following example:
DRC-T> set_drc -clock -seq_capture

Using this command option causes the Full-Sequential ATPGalgorithm to use only the
sequential capture procedure and to ignore the capture_clockname procedures defined by
the STIL file or the add_clocks command. This option has no effect on the Basic-Scan and
Fast-Sequential algorithms. Sequential Capture Procedure in STIL for more information.

Sequential Capture Procedure Syntax
A sequential capture procedure can be composed of one or more vectors. You can specify each
vector using any of the following events:

l Force PI (must occur before clock pulses; required for the first vector)
l Measure PO (might occur before, during, or after clock pulses)
l Clock pulse (nomore than one per clock input)

Defining STIL Procedures 10-41

TetraMAX ATPG User Guide K-2015.06-SP4

Each vector corresponds to a tester cycle. Be sure to consider any hardware limitations of the
test equipment when you write the sequential capture procedure.
You can specify an optional clock pulse, whichmeans that the clock is not required to be pulsed
in every sequence. The Full-Sequential ATPGalgorithm determineswhen to use or not use the
clock. To define such a clock pulse, use the following statement:
V {"clock_name"=#;}

You can specify a required (mandatory) clock pulse, whichmeans that the clockmust be pulsed
in every capture sequence. To define such a clock pulse, use the following statement:
V {"clock_name"=P;}

The following example shows a sequential capture procedure:
"sequential_capture"
W "_default_WFT_";
F {"test_mode"= 1; }
V {"_pi"= \r48 #; "_po"= \r12 X ; }
V {"CLK1"= P; CLK2= #; }
V {"CLK3"= P; }
V {"_po"= \r12 #; }
}

A sequential capture procedure can contain multiple tester cycles by supporting one or more
vectors (multiple V statements), but there can be only oneWaveformTable reference (W
statement).
The procedure can have one force PI event per input per vector. Each force PI event must occur
before any clock pulse events in that cycle. All inputsmust be forced in the first vector of the
sequential capture procedure; each input holds its state in subsequent vectors unless there is an
optional change caused by another force PI event.
The procedure can have one required (=P) or optional (=#) clock pulse event per clock input
per vector. Nonequivalent clocks can be pulsed at different times, and these clock pulses can
overlap or not overlap.
The procedure can have onemeasure POevent per output per vector, which can occur
anywhere in the cycle. However, no input or clock pulse events can be specified between the
earliest and latest output measurements. The procedure also supports equivalence
relationships and input constraints (E and F statements).
Sequential ATPGand simulation canmodel input changes only in the first time frame of each
cycle. TetraMAX addsmore time frames only as necessary tomodel discrete clock pulse events.
It strobes outputs in nomore than one of the existing time frames for each cycle.

Defining Reflective I/O Capture Procedures
A few ASIC vendors have special requirements for the application of the tester patternswhen
the design contains bidirectional pins. These vendors require the design to contain a global
disable control, available in ATPG test mode, which is used to turn off all potential bidirectional
drivers. Further, the following sequence is required during the application of nonshift clocking
and nonclocking capture procedures:

Defining STIL Procedures 10-42

TetraMAX ATPG User Guide K-2015.06-SP4

1. Force primary inputs with bidirectional ports enabled
2. Measure values on outputs aswell as bidirectional ports
3. Disable bidirectional drivers
4. Use tester to force bidirectional ports with valuesmeasured in step 2
5. (Optional) Apply clock pulse

You identify toTetraMAX which port acts as the global bidirectional control using the -bidi_
control_pin option of the set_drc command. For example, to indicate that the value 0 on
the port BIDI_EN disables all bidirectional drives, enter the following command:
DRC-T> set_drc -bidi_control_pin 0 BIDI_EN

To define the corresponding reflective I/O capture procedures, you use % characters instead of #
as data placeholders. In Example 1, each capture proceduremeasures primary outputs with the
string %%%%%% instead of the string ######. A few cycles later, the string %%% appears in an
assignment of the symbolic group "_io", which is shorthand for the bidirectional ports.
The number of ports in the "_po" symbolic list is usually larger than the set of bidirectional ports
referenced by "_io", so it is common for the %%%%%% string for "_po" to be longer than the string
for the "_io" reference where the reflected data is reapplied. TetraMAX understands the
correspondence required for proper pattern data.

Example 1: Capture ProceduresWith Reflective I/OSyntax
"capture_CLOCK" {
 W "_default_WFT_"; // force PI, measure PO, BIDI_EN=1
 V { "_pi"=\r10 # ; "_po"=%%%%%% ; } // disable bidis, mask PO
measures
 V { BIDI_EN=0; "_po"=XXXXXX; } // reflect bidis, pulse CLOCK
 V { "_io"=%%% ; CLOCK=P; }

}
capture_RESETB {
 W "_default_WFT_"; // force PI, measure PO, BIDI_EN=1
 V { "_pi"=\r10 # ; "_po"=%%%%%% ; } // disable bidis, mask
PO measures
 V { BIDI_EN=0; "_po"=XXXXXX; } // reflect bidis, pulse RESETB
 V { "_io"=%%% ; RESETB=P; }
}
capture {
 W "_default_WFT_";
 V { "_pi"=\r10 # ; "_po"=###### ; } // force PI, measure PO
 V { "_po"=XXXXX; } // mask measures
 V { } // pad procedure to 3 cycles
}

Using the master_observe Procedure
Use the master_observe procedure if the design has separatemaster-slave clocks to
capture data into scan cells, as shown in Figure 1. In system (nonscan) mode, after applying the

Defining STIL Procedures 10-43

TetraMAX ATPG User Guide K-2015.06-SP4

capture_clockname procedure corresponding to themaster clock, youmust apply the slave
clock to propagate the data value captured from themaster latches to the slave latches. In the
master_observe procedure, you describe how to pulse the slave clock and thereby observe
themaster.

Figure 1 Master-Slave Scan Chain

Example 1 shows a master_observe procedure that uses two tester cycles. In the first cycle,
all clocks are off except for the slave clock, which is pulsed. In the second cycle, the slave clock is
returned to its off state.

Example 1 Examplemaster_observe Procedure
Procedures {
 "load_unload" {
 W "BROADSIDE_TIMING"
 V { MCLK=0; SCLK=0; RESETB=1; SCAN_ENABLE=1; BIDI_DISABLE=1;}
 V { bidi_ports = \r16 Z ;}
 Shift {
 W "SHIFT_TIMING";

 V { _si=##; _so=##; MCLK=P; SCLK=0;}
 V { MCLK=0; SCLK=P;}
 }
 V { SCLK=0;}
 }
 master_observe {

 W "BROADSIDE_TIMING";
 V { MCLK=0; SCLK=P; RESETB=1; }
 V { SCLK=0;}
 }
}

Using the shadow_observe Procedure
You use a shadow_observe procedure when a design has shadow registers and each
shadow register output is observable at the scan cell to which it is a shadow. Figure 2 shows two

Defining STIL Procedures 10-44

TetraMAX ATPG User Guide K-2015.06-SP4

shadow registers, S1 and S2, which are shadows of R1 and R2, respectively. Shadow S1 has a
combinational path back to its scan cell (R1) and would benefit from the definition of a
shadow_observe procedure. Shadow S2 does not have a path back to R2 and would not
benefit from a shadow_observe procedure.

Figure 2 A Shadow Register

Example 3 shows a shadow_observe procedure that corresponds to Figure 2. The first
cycle places all clocks at off states and sets up the path from S1 back to R1 by setting SCAN=0
and SOBS=1. The second cycle pulses the CLK port, and the third cycle turns off CLK and
returns SOBS to zero.

Example 3 Example shadow_observe Procedure

Procedures {
load_unload {

 V { CLK=0; RSTB=1; SCAN=1;}
 Shift { V { _si=##; _so=##; CLK=P;} }
 V { CLK=0;}

}

shadow_observe {
 V { CLK=0; RSTB=1; SCAN=0; SOBS=1; }
 V { CLK=P;}
 V { CLK=0; SOBS=0;}

}
}

Using the delay_capture_start Procedure
You can use the delay_capture_start procedure to specify a wait period at the start of a
capture operation. TetraMAX ATPG inserts calls to this procedure in the patterns at the end of
each shift to establish the presence of the delay before the start of the capture operation. The

Defining STIL Procedures 10-45

TetraMAX ATPG User Guide K-2015.06-SP4

first PI state present in the capture operation is asserted in this procedure, otherwise the
transition time of slow-propagating signals will not occur before other capture events.
There are several different methods you can use to specify the parameters of this delay:

l Specify the number of vectors contained in the delay_capture_start procedure
l Control the period of theWaveformTable referenced by this procedure
l Control the number of times to insert this procedure at the end of shift using the -use_
delay_capture_start option of the write_patterns command

The delay_capture_start procedure has several format requirements to operate as a
simple wait statement. The default form of this procedure is as follows:
 "delay_capture_start" {
 W "_default_timing_";
 C { "_po"=\rn X; }
 V { "_pi"=\rm #; }
 }

Note the following:
l This proceduremust contain a Condition statement that sets the _po to X at the start of
the procedure. This ensures that any potential measure contexts at the end of the last
operation are reset.

l This proceduremust contain a call to the _pi group, with a parameter assignment of
values, to ensure that the _pi states are applied at the start of the capture through this
wait operation. No other signal assignment should bemade in the V statement, as this will
cause unpredictable results when the STIL patterns are used.

l The default form of this procedure calls the current default WaveformTable defined in the
flow, and contains a single Vector statement. If this procedure is not defined in the
incoming STIL procedure file, this default form is generated with the first use of the -use_
delay_capture_start option of the write_patterns command. In this situation,
this procedure is present in the Procedure block for all subsequent write_patterns
or write_drc_file commands, although it will only be applied in the patterns if -use_
delay_capture_start is specified.

l When the pattern set is written for transition patterns, the set_delay -nopi_changes
command inserts one leading delay cycle in the delay_capture_start operation and
uses the multiclock_capture procedure to set the PI states into all transition capture
operations. Therefore, the pattern set will already have one delayed capture start event
present. The delay_capture_start procedure calls are be inserted after the number
of requested delays exceed the number already present in the pattern data. If you require
additional delays beyond those already present in the patterns, you need to set the
delay_capture_start calls to a number greater than 1.

l If you define the delay_capture_start procedure in your STIL procedure file, it is
present or defined in all subsequent STIL andWGL patterns that are written out.

l If the delay_capture_start procedure is not defined in the STIL procedure file, then
the first time that write_patterns -use_delay_capture_start is specified, it is
created and defined in all STIL patterns that are written out. After it is created from the
write_patterns -use_delay_capture_start command, this procedure will
function just as if it were specified in the STL procedure file. However, it will not be called in

Defining STIL Procedures 10-46

TetraMAX ATPG User Guide K-2015.06-SP4

the patterns unless the write_patterns -use_delay_capture_start command
is specified.

l The delay_capture_start procedure calls are eliminated when patterns are read
back into TetraMAX. Each write_patterns commandmust use the -use_delay_
capture_start option in order for this procedure present. While this procedure is not
present on the internal pattern data, the presence of these function calls, and the
generated vectors due to these procedures, are still counted during the pattern read-back
operation. This allows cycle-based diagnostic flows to function with no changes.When the
patterns are rewritten, youmust set the -use_delay_capture_start option properly
for every pattern write operation.

Using the delay_capture_end Procedure
You can use the delay_capture_end procedure to specify a wait period at the end of a
capture operation. You will need to insert calls to this procedure in the patterns at the end of
each capture to establish the presence of the delay before the start of the next LOAD operation.
There are several ways you can specify the parameters of this delay:

l Specify the number of vectors contained in the delay_capture_end procedure
l Control the period of theWaveformTable referenced by this procedure
l Control the number of times to insert this procedure at the end of capture by using the -
use_delay_capture_end option of the write_patterns command.

The delay_capture_end procedure has several format requirements that enable it to
operate as a simple wait statement. The default form of this procedure is as follows:
"delay_capture_end" {
 W "_default_timing_";
 C { "_po"=\rn X; }
 V{ "_pi"=\rm #; }
 }

Note the following:
l If you define the delay_capture_end procedure in your STIL procedure file, it is
present or defined in all subsequent STIL andWGL patterns that are written out.

l If the delay_capture_end procedure is not defined in the STIL procedure file, then the
first time that write_patterns -use_delay_capture_end is specified, it is
created and defined in all STIL patterns that are written out. After it is created from the
write_patterns -use_delay_capture_end command, this procedure will
function just as if it were specified in the STL procedure file. However, it will not be called in
the patterns unless the write_patterns -use_delay_capture_end command is
specified.

l The delay_capture_end procedure calls are eliminated when patterns are read back
into TetraMAX. Each write_patterns commandmust use the -use_delay_
capture_end option in order for this procedure present. While this procedure is not
present on the internal pattern data, the PRESENCE of these function calls, and the
generated vectors due to these procedures, are still counted during the pattern read-back
operation. This allows cycle-based diagnostic flows to function with no changes.When the

Defining STIL Procedures 10-47

TetraMAX ATPG User Guide K-2015.06-SP4

patterns are rewritten, youmust set the -use_delay_capture_end option properly for
every pattern write operation.

Using the test_end Procedure
You can define the test_end procedure or macro in the Procedures or MacroDefs
sections of the STIL procedure file so that it is called at the end of every pattern block that is
written out. This proceduremust contain only signal drive assignments; measures are not
supported.
When you define the test_end procedure or macro, TetraMAX places it at the end of STIL and
WGL-formatted patterns only. When STIL or WGL patterns are read back, this procedure is
removed. It will not be included in the internal pattern data. If patterns are rewritten, then the
test_end proceduremust be present in the STIL procedure file to place (or replace) it at the
end of any new patterns.

Scan Padding Behavior
When scan chains are of unequal lengths and shifted in parallel, the shorter scan datamust be
padded or extended during the time after the short chain is exhausted but the shift procedure (or
pattern operation) continues to complete the shifting of the longest chain.
Some TetraMAX output formats allow you to control the padding state from command-line
options. For example, the combination of the set wgl -pad and write patterns -pad_
character commands control padding values for WGL files.
The STIL environment defines the padding values directly from the procedure definitions. For
instance, for the load_unload procedure, the last assigned state, even if it was not applied in a
Vector (it might have only been defined in a Condition statement) before the Shift block or first
statement that contains an assignment of '#' to a scan signal, is the value used to pad that signal.
If the scan signals are not assigned values before the Shift block, then when the load_unload
procedure is written out, the inputs are assigned '0' and the outputs assigned 'X'. These defaults
are sufficient for most environments, but sometimes additional data is specified in the procedure
that might affect the padding behavior. When this occurs, it might become necessary to assign
explicit values to signals in order for the STIL file to have the expected behavior.
Several DRC messagesmight be generated when STIL padding issues are detected in the
patterns. Thesemessages are all warnings, because consistency of the STIL datamight not be
a cone timern if your flow uses a different format. These warnings are either V12 (unexpected
item) or V14 (missing state) messages. All of thesemessages contain the text "STIL scan pad",
to indicate they are being generated for STIL scan padding issues.
Certain design situations (for instance, reusing scan signals onmultiple scanchains andmaking
use of scan groups) limits the ability of thesemessages to detect all error conditions. Assigning
an X to the scan outputs before the Shift block will define a correct test program, and is themost
direct path to fixing padding problems.
TetraMAX tri-state checksmight require that bidirectional scan outputs be assigned a Z
WaveformCharacter, to trace a scan chain properly. This Z value enforces that the bidirectional
output values are visible during the shift operation. However, during the scan operation it is likely
that an XWaveformCharacter would be preferable, especially for padding. The Z reference is

Defining STIL Procedures 10-48

TetraMAX ATPG User Guide K-2015.06-SP4

not wrong, but it is a "drive" waveform being assigned to a bidirectional being used as an output.
Some environmentsmight not like to see this drive value on a scan output. One way to define an
X for pad operation is to place this X in a Condition statement before the first assignment to a '#'.
For example:

V { so1=Z; ... }
 C { so1=X; }
 Shift { V { so1=# ...

TheDRC messages are generated only when a potential violation is detected. This will only
happen for scan chains that are shorter than the longest chain in the shift operation. These
checkswill not occur on the longest chain in the design, even if the values assigned to the scan
signals of that chain are incorrect, because the longest chain will not be padded.
Thesemessages are not generated during the STL procedure file checks, because at this point
there is not sufficient analysis of the scan chains to accomplish this checking. Therefore, these
DRC messages are generated later in the process. Thesemessages are V warnings but are not
generated with the STL procedure file read, so be aware that additional V messagesmight be
generated after the STL procedure file read has completed.
The specificmessages, and how to address each, are explained as follows:

l V12, Scan output [name] is assigned a drive [state] before
Shift; used as STIL scan pad

In this circumstance, a signal identified as a scan output, has been assigned a value
commonly associated with an input signal. The [state] value is one of 0, 1, or N.
In most circumstances this is easily fixed by adding a C {} statement before the Shift block,
and assigning the bidirectional scan output to an X value (or other preferred state). This
was shown in the previous example.

l V14, Scan input [name] has no assignment before Shift, output
[name] is [state]; missing STIL scan pad [input_state]

This warning is generated when a scan-output is assigned a known state, either H or L,
before the Shift block, but the scan-input is not specified. The fix is to either assign the
scan-output to an X before the Shift block (as done above), or to assign the appropriate
input drive value (0 or 1) to the scan-input. Be aware that the appropriate value is a
function of the parity of the scan chain, as discussed in the next message.
Note that this warning occurs only when scan outputs have been specified, but scan-inputs
have not been assigned. The reverse condition, when scan-inputs are specified but scan-
outputs have not been specified, is not a problem because the default handling of scan-
outputs will place an X on the outputs, making the environment insensitive to input states.

l V14, Scan output [name] is assigned [state] before Shift,
input [name] is [state]; wrong STIL scan pad

V14, Scan input [name] is assigned [state] before Shift,
output [name] is [state]; wrong STIL scan pad

These two warnings indicate the same condition, it just depends on the order of the signals
in the design as to which you will see. These warnings are generated when both the scan-
input and scan-output signals are assigned known values, but the scan data (and the parity
of the scan chain) will cause this data to fail at test. In this circumstance, either the scan-

Defining STIL Procedures 10-49

TetraMAX ATPG User Guide K-2015.06-SP4

input statemust be changed, or the scan-output state, (but, obviously, not both) or the
scan-output can be assigned an X value before the Shift.
DRC checks STIL padding to validate special conditions around bidirectional signals used
as scan outputs.

l V14, Scan output bidi (signal) has no assignment before Shift;
Z added for scan padding

During pattern write (of STIL data), the Z assignment is added to these signals, correcting
the situation. You can always override the correction (and eliminate the V14) by specifying
an assignment to this scan signal before the first # in the load_unload operation.

Using the Condition Statement in STIL
You can use the Condition statement, C{...}, to define force or measure values for defaults,
without immediately resulting in an action. The conditioned values are deferred from being
applied until a vector statement, V{...}, is encountered.
TheWaveformTable used to translate the conditions is the waveform in effect at the time of the
next Vector statement, not the waveform in effect at the time of the Condition statement.
Multiple Condition statementsmay be defined between vector statements. The last state defined
in a Condition or vector statement for each pin is the state applied to that pin on the vector
statement.
A vector statement defining a value to be applied to a pin will override any value defined in any
preceding Condition statements.
Condition statements are useful when setup information is available; however, if this setup is
applied as a vector, then the subsequent data becomes difficult to align. A typical situation in
which to use a Condition statement is to enable the scan clocks preceding a Shift operation.
Condition statements are also useful at the end of amacro to set up information for the return.
Note that Condition statements would not be useful at the end of procedures because
procedures return to the state before the procedure call and any condition information would be
discarded.
 STIL;

 ScanStructures {
 ScanChain "c1" { ScanIn SDI2; ScanOut SDO2; }
 ScanChain "c2" { ScanIn SDI1; ScanOut D1; }
 ScanChain "c3" { ScanIn DIN; ScanOut YABX; }
 ScanChain "c4" { ScanIn "IRQ[4]"; ScanOut XYZ; }
 }

 Procedures {
 "load_unload" {
 C { CLOCK = 1; RESETB = 1; SCAN_ENABELE = 1;
 Shift {
 V { _si=####; _so=####; CLOCK=P; } // pulse shift clock
 }
 }
 }

Defining STIL Procedures 10-50

TetraMAX ATPG User Guide K-2015.06-SP4

 MacroDefs {
 test_setup {
 V { TEST_MODE = 1; CLOCK = 0; RESETB = 1; }
 }
 }

Excluding Vectors From Simulation
Passing a large number of loops through DRC negatively affects the performance of TetraMAX
ATPG. You can use the DontSimulate statement in the test_setup procedure of the STL
procedure file to eliminate loopswith large count values and reduce activity, such as clock
pulses, in the vectors of the loop.

The following sections describe how to use the DontSimulate statement:

l Using the DontSimulate Statement for Loops and Reference Clocks
l Syntax and Example of the DontSimulate Statement

Using the DontSimulate Statement for Loops and Reference Clocks
The DontSimulate statement identifies a PLL initialization or synchronization block of vectors
for exclusion fromDRC simulation. Becausemost PLLmodels are black boxes in TetraMAX
ATPG, DRC results are not affected when clock pulses associated with thesemodels are
bypassed.

DRC procedures often require excessivememory resourceswhen expanding the events of a
loop. Also, the test_setup procedure causes excessive runtime when processing loop
events, even though they do not affect the simulation. If the number of events in the test_
setup procedure exceeds a 32-bit time value, thememory and runtime of all subsequent
TetraMAX operations are affected.

The DontSimulate statement prevents the insertion of loop events into TetraMAX operations,
while preserving the loops throughout the flow. This includeswriting the loops in the patterns
even though the loop events bypassed other TetraMAX operations.

In addition to loops, the DontSimulate statement applies to the following clocks:

l Reference clocks that are not identified as free-running clocks (because they affect other
logic in the design).

l Reference clockswith a large number of pulsed vectors during setup. These pulses are not
necessary for DRC because they are only driving the black box PLL logic.

Youmust make sure that any other logic driven by a reference clock uses all the necessary
pulses.

Syntax and Example for Excluding Vectors
To exclude vectors from simulation:

Defining STIL Procedures 10-51

TetraMAX ATPG User Guide K-2015.06-SP4

1. Add the UserKeywords DontSimulate construct before the appropriateMacroDefs
block in the STL procedure file. The syntax for this statement is as follows:
UserKeywords DontSimulate;

2. Add the DontSimulate ATPGDRC construct before the appropriate Loop statement in
the STL procedure file. The syntax for this construct is as follows:
DontSimulate ATPGDRC;

The following example from an STL procedure file shows a typical implementation for excluding
vectors from simulation:

UserKeywords DontSimulate;
MacroDefs {
“pll_setup” {
DontSimulate ATPGDRC;
Loop 1000 {V {clock1=P;}}
}
“test_setup” {
W “_default_WFT_”;
C {“all_inputs”= …; “all_outputs” = …;}
...
Macro “pll_setup”;
}
}

See Also
Using Internal Clocking Procedures

Defining Internal Clocks for PLL Support
TetraMAX ATPGsupports twomethods for defining internal clocks for PLL support:

l From the command line using the add_clocks command
l From an optional ClockStructures block of a STIL procedure file .

The following is an example defining two internal clocks for PLL support by entering commands
from the command line.
 add_clocks 0 intclk3 -intclk -pll_source pllclk3 \
 -cycle { 0 clock_chain/cell[3]/Q 1 \
 1 clock_chain/cell[4]/Q 1 }
 add_clocks 0 intclk1 -intclk -pll_source pllclk3 \
 -cycle { 0 clock_chain/cell[1]/Q 1 clock_chain/cell[0]/Q 0 \
 clock_chain/cell[2]/Q 1 clock_chain/cell[0]/Q 0 }

In the preceding example:
l intclk3 as an internal clock with offstate 0; its PLL source is pllclk3; intclk3 is pulsed in cycle
0 when cell 3 of chain clock_chain is 1, and is pulsed in cycle 1 when cell 4 of chain clock_

Defining STIL Procedures 10-52

TetraMAX ATPG User Guide K-2015.06-SP4

chain is 1.
l intclk1 as an internal clock with offstate 0; its PLL source is pllclk3; intclk1 is pulsed in cycle
0 when cell 1 of chain clock_chain is 1 and cell 0 is 0, and is pulsed in cycle 1 when cell 2 of
chain clock_chain is 1 and cell 0 is 0.

The following is an example showing the corresponding definitions is a STL procedure file
ClockStructures block.
 Signals { "refclk1" In; "refclk2" In;
 "pllclk1" Pseudo; "pllclk2" Pseudo; "pllclk3" Pseudo;

 "intclk1" Pseudo; "intclk2" Pseudo; "intclk3" Pseudo;

 }
 SignalGroups { "all_inputs" = '... + "refclk1" + "refclk2" + ...
‘ }
 Timing {
 WaveformTable "_default_WFT_" {
 Period '100ns';
 Waveforms {
 "all_inputs" { 01ZN { '0ns' D/U/Z/N; } }
 "refclk1" { P { '0ns' D; '45ns' U; '55ns' D; } }
 "refclk2" { P { '0ns' D; '45ns' U; '55ns' D; } }
 }
 }
 }

 UserKeywords ClockStructures;
 ClockStructures {
 PLLStructures specpll {
 PLLCycles 2;
 Clocks {
 "refclk1" Reference; "refclk2" Reference;
 "pllclk1" PLL { Offstate 0 ; }
 "pllclk2" PLL { Offstate 0 ; }
 "pllclk3" PLL { Offstate 1 ; }
 "intclk1" Internal { Offstate 0; PLLSource "pllclk3";
 Cycle 0 "clock_chain/cell[0]/Q" 0;
 Cycle 0 "clock_chain/cell[1]/Q" 1;
 Cycle 1 "clock_chain/cell[0]/Q" 0;
 Cycle 1 "clock_chain/cell[2]/Q" 1;
 }
 "intclk3" Internal { Offstate 0; PLLSource "pllclk3";
 Cycle 0 "clock_chain/cell[3]/Q" 1;
 Cycle 1 "clock_chain/cell[4]/Q" 1;
 }
 }
 }
 }

Defining STIL Procedures 10-53

TetraMAX ATPG User Guide K-2015.06-SP4

The following is a template for a generic STL procedure file ClockStructures block.
 UserKeywords ClockStructures;
 ClockStructures {

(PLLStructures struct_name {
(PLLCycles integer ;)
(RefCycles integer ;)
(Clocks {

(sig_name <Reference | PLL| Internal> ;)*
(sig_name <Reference | PLL| Internal> {

(Offstate <0|1> ;)
(PLLSource sig_name ;)
(Cycle integer {AlwaysOn| AlwaysOff} ;)*
(Cycle integer {net_or_pin_name <0|1>}+ ;)*

 })*
 })*
 })*
 }

Where:
PLLCycles specifies the number of PLL clock cycles supported per load. This
block is required if Cycle constructs are used. The PLLCycles block must
precede all Cycle constructs.
RefCycles specifies the minimum number of system cycles each pattern must
have.
Clocks defines the clocks in the PLLStructures block. The sig_name
construct identifies the clock name and type. A type is required and must be
one of the values shown. The Offstate construct is syntactically optional, but
semantically required for all but reference clocks, and must be 0 or 1 (the
offstate for reference clocks is derived from a Waveformtable). The PLLSource
construct is used for internal clocks and identifies the corresponding PLL clock
source. The Cycle construct is used for internal clocks and identifies the
corresponding control nets and their values.

Specifying an On-Chip Clock Controller Inserted by DFT Compiler
This section describes the process for specifying anOCC controller inserted by the insert_
dft command in DFT Compiler. For information on signal requirements, see the "On-Chip
Clocking Support" chapter in theDFT Compiler User Guide.
The following commands are used for specifying a default OCC controller inserted by
DFT Compiler (Note: For user-definedOCC controllers, the commands are similar but will differ
if the OCC controller is controlled differently):

l add_scan_chains ...

l add_scan_enables 1 test_se

DFT Compiler uses the default pin name test_se, if a name is not provided.

Defining STIL Procedures 10-54

TetraMAX ATPG User Guide K-2015.06-SP4

l add_pi_constraints 1 test_mode

DFT Compiler uses the default pin name test_mode, if a name is not provided.
l add_pi_constraints 0 {test_se pll_reset pll_bypass}

DFT Compiler uses the default pin names test_se, pll_reset, and pll_
bypass if the pin names are not provided.

l set_drc -num_pll_cycles
l add_clocks 0 {port_names} -shift -timing {period LE TE
measure_time}

Use this command to specify external clocks that are controllable by ATPG.
l add_clocks 0 {port_names} -shift -refclock -timing {period LE
TE measure_time}
Use this command to specify ATE and reference clockswith the same period as the shift
clock.

l add_clocks 0 {port_names} -refclock -ref_timing {period LE TE }

Use this command to specify reference clockswith different periods than the shift clock.
l add_clocks 0 {pin_names} -pllclock

Use this command to specify the PLL clocks.
l add_clocks 0 pin_name -intclock -pll_source node_name -cycle
...

Use this command to specify the internal clock and the PLL source clock.
l write_drc_file file_name

In addition to using these commands, you will need tomake the following changes from the
output STIL procedure file created by the write_drc_file command to the final protocol file:

1. Copy and paste the entireWaveformTable (WFT) "_default_WFT_" { ... } block four
times.

2. Rename newWFT blocks as follows:
"_multiclock_capture_WFT_"

"_allclock_capture_WFT_"

"_allclock_launch_WFT_"

"_allclock_launch_capture_WFT_"

3. Change theWFT for each procedure (except load_unload) as follows:
"multiclock_capture" { W "_multiclock_capture_WFT_";

"allclock_capture" { W "_allclock_capture_WFT_";

"allclock_launch" { W "_allclock_launch_WFT_";

"allclock_launch_capture" { W "_allclock_launch_capture_WFT_";

Defining STIL Procedures 10-55

TetraMAX ATPG User Guide K-2015.06-SP4

4. In load_unload, add the following just before Shift loop, and specify only the ATE clocks
and reference clockswith the same period:
V { "clkate"=P; "clkref0"=P; }

5. In test_setup, copy the V statement and do the following:
l Change the polarity of the PLL reset constraint in the first V statement (the PLL reset
is the same port identified as pll_reset in the previous command list).

l Change 0 to P for all the ATE clocks and synchronous reference clocks in both V
statements (these are exactly the same clocks specified in Step 4).

6. Change the timing of theWFTs as required. This can be done in an editor, or you can
specify another TetraMAX ATPG run and use the update_wft and update_clock
commands.

Specifying Synchronized Multi Frequency Internal
Clocks for an OCC Controller
You can use the ClockTiming block to implement synchronized internal clocks at one or
multiple frequencies in anOCC Controller. The ClockTiming block is placed in the top level of
the ClockStructures block that already describes other aspects of the internal clocks.
The following sections show you how to specify synchronized internal clocks at one or multiple
frequencies in anOCC Controller:

l ClockTiming Block Syntax
l Timing and Clock Pulse Overlapping
l Controlling Latency for the PLLStructures Block
l ClockTiming Block Selection
l ClockTiming Block Example

For more information on this feature, see the "Using SynchronizedMulti Frequency Internal
Clocks" section.

ClockTiming Block Syntax
The syntax and location of the ClockTiming block is as follows, with instance-specific input in
italics, optional input in [squarebrackets] andmutually-exclusive choices separated by a | pipe
symbol:
ClockStructures [name] {
 PLLStructures name {
// The contents of the PLLStructures block are unchanged,
// except for the addition of the optional Latency statement.
 }

[PLLStructures name2 {
// Multiple PLLStructures blocks are possible, and have a specific
meaning.

Specifying Synchronized Multi Frequency Internal Clocks for an OCC Controller 10-56

TetraMAX ATPG User Guide K-2015.06-SP4

// See the section PLLStructures Block and Latency.
 }]
 ClockTiming name {
 SynchronizedClocks name {
 Clock name { Location "internal_clock_signal";
Period 'time';

[Waveform 'rise' 'fall';]}
[Clock name2 { Location "internal_clock_signal2";

Period 'time2';
[Waveform 'rise2' 'fall2';]}]

// Multiple Clocks can be defined within a SynchronizedClocks
block.
// These Clocks are considered to be synchronized to each other.
// Note that each clock’s Location value is used, not its name.

[MultiCyclePath number [Start|End] {
[From clocklocation;]
[To clocklocation2;]

 }]
// As many MultiCyclePath blocks as needed might be defined.
// All clocks inside them must be in the current SynchonizedClocks
group.
 }

[SynchronizedClocks name2 {
// Multiple SynchronizedClocks blocks can be defined within a
ClockTiming block
// These SynchronizedClocks are considered to be asynchronous to
each other
// The Clocks defined in each SynchronizedClocks group must be
different.
 }]
 }
[ClockTiming name2 {
// Multiple ClockTiming blocks can be defined, but only one is
used.
// The Clocks must be defined again in each ClockTiming block.
// See the ClockTiming Block Selection section.
 }]
}

Note the following:
l The ClockTiming name is arbitrary and is only used by the set_drc -internal_
clock_timing option. See “ClockTiming Block Selection” for details.

l The SynchronizedClocks name and Clock name are arbitrary.
l The Location argument must be identical to the name of the internal clock source
defined in one of the PLLStructures blocks (see the previous example).

l The Period and Waveform times are either ns or ps. If they are defined as ps but the rest
of the STL procedure file is in ns, they are converted to ns and the fractional part truncated.
For example, 1900 ps is converted to 1 ns.

Specifying Synchronized Multi Frequency Internal Clocks for an OCC Controller 10-57

TetraMAX ATPG User Guide K-2015.06-SP4

Timing and Clock Pulse Overlapping
The Waveform values and MultiCyclePath blocks are optional, and ATPGcan use
different clocks safely for launch and capture without them. However, different frequency clock
pulses are not allowed to overlap if they aremissing. Figure 1 illustrates synchronized clocking
without overlapping pulses.

Figure 1: Non-Overlapping Synchronized Internal Clock Pulses

The criteria for allowing synchronized clocks of different frequencies to have overlapping pulses,
which in turn allows single-cycle transition fault testing from the slower to the faster clock
domain, are as follows:

l The Waveform valuesmust be specified for both clocks.
l A MultiCyclePath 1 blockmust be specified from the slower clock to the faster clock.
l For non-integer Period ratios, a MultiCyclePath 1 block is needed for both directions.

Figure 2 illustrates synchronized clocking with overlapping pulses from the slower clock to the
faster clock. For the other direction, from faster clock to slower clock, there is no difference
between the overlapping and non-overlapping cases.

Figure 2: Overlapping Synchronized Internal Clock Pulses

TetraMAX ATPGgenerates and simulates patternswith both edges of the first clock pulse
preceding either edge of the second clock pulse. Clock pulse overlapping can change this timing
relationship. If this situation also changes the behavior of the circuit when simulated on a timing
simulator, then the patternswill mismatch. This will occur when trailing-edge or mixed-edge

Specifying Synchronized Multi Frequency Internal Clocks for an OCC Controller 10-58

TetraMAX ATPG User Guide K-2015.06-SP4

clocking is used, and paths exist from the fast clock to the trailing-edge of the slow clock. If these
paths exist, TetraMAX ATPGwill prevent overlapping of the clock pair.

Controlling Latency for the PLLStructures Block
The number of PLLStructures blocks that are specified affects clock latency, which in turn
affects the required length of the clock chain. Latency can be controlled using the following top-
level statement in the PLLStructures block:
Latency number;

The default latency is 5. This number refers to the number of pulses of the PLLClock that must
pulse before the first internal clock pulse is issued by theOCC controller. This number is
important when clocks from the same SynchronizedClocks group are defined as internal
clocks in more than one PLLStructures block. In this case, each PLLStructures block is
interpreted as being a separate OCC controller with its own latency.
If there ismore than one clock in a PLLStructures block, the latency is in terms of the fastest
clock defined in that PLLStructures block. (Thus, the same Latency number might mean
very different latency times in different PLLStructures blocks.) The latency time for each
clock should be an integer multiple of its period. For example, if a PLLStructures block
contains synchronized clocks of 10 ns and 20 ns periods, and the latency is allowed to default to
5, then the latency time is 5 * 10 nswhich is not amultiple of the 20 ns clock’s period. The 20 ns
clock gets a C40 violation and is flagged as restricted.
The latency number is not used if the clocks for each SynchronizedClocks group are
defined in a single PLLStructures group. In that case, it can be set to 0.

ClockTiming Block Selection
By default, the last ClockTiming block to be defined in an STL procedure file is used. To use a
specific block in a case wheremultiple ClockTiming blocks have been defined, use the
following set_drc command:
set_drc –internal_clock_timing name

To ignore all ClockTiming blocks and return to legacy non-synchronized internal clocks
behavior, use the following setting:
set_drc –nointernal_clock_timing

ClockTiming Block Example
The following ClockStructures block defines three synchronized clocks in one group:
ClockStructures Internal_scan {
 PLLStructures "TOTO" {
 PLLCycles 6;
 Latency 4;
 Clocks {
 "clkate" Reference;
 "dut/CLKX4" PLL {
 OffState 0;

Specifying Synchronized Multi Frequency Internal Clocks for an OCC Controller 10-59

TetraMAX ATPG User Guide K-2015.06-SP4

 }
 "TOTO/U2/Z" Internal {
 OffState 0;
 PLLSource "dut/CLKX4";
 Cycle 0 "snps_clk_chain_0/U_shftreg_0/ff_38/q_
reg/Q" 1;
//Note that the rest of the clock chain goes here.
 }
 "dut/CLKX2" PLL {
 OffState 0;
 }
 "TOTO/U5/Z" Internal {
 OffState 0;
 PLLSource "dut/CLKX2";
 Cycle 0 "snps_clk_chain_0/U_shftreg_0/ff_19/q_
reg/Q" 1;

//The rest of the clock chain goes here.

 }
 "dut/CLKX1" PLL {
 OffState 0;
 }
 "TOTO/U8/Z" Internal {
 OffState 0;
 PLLSource "dut/CLKX1";
 Cycle 0 "snps_clk_chain_0/U_shftreg_0/ff_0/q_
reg/Q" 1;

//The rest of the clock chain goes here.

 }
 }
 }
 ClockTiming CTiming_2 {
 SynchronizedClocks group0 {
 Clock CLKX4 { Location "TOTO/U2/Z"; Period '10ns';
}
 Clock CLKX2 { Location "TOTO/U5/Z"; Period '20ns';
}
 Clock CLKX1 { Location "TOTO/U8/Z"; Period '40ns';
}
 }
 }
 ClockTiming CTiming_1 {
 SynchronizedClocks group0 {
 Clock CLKX4 { Location "TOTO/U2/Z"; Period '10ns';
 Waveform '0ns' '5ns'; }
 Clock CLKX2 { Location "TOTO/U5/Z"; Period '30ns';
 Waveform '0ns' '15ns'; }

Specifying Synchronized Multi Frequency Internal Clocks for an OCC Controller 10-60

TetraMAX ATPG User Guide K-2015.06-SP4

 MultiCyclePath 1 { From "TOTO/U5/Z"; To
"TOTO/U2/Z"; }
 }
 SynchronizedClocks group1 {
 Clock CLKX1 { Location "TOTO/U8/Z"; Period '40ns';
}
 }
 }
}

This example shows two ClockTiming blocks. The one labeled CTtiming_1 is the default
because it is the last one to be defined.
In the first ClockTiming block, the three clocks can be used as a single synchronization group.
However, clock pulse overlapping is not possible because there are noWaveform statements.
In the second ClockTiming block, the same three clocks are defined but in a different
relationship. The first two clocks are in one SynchronizedClocks group and, because their
Waveforms and a MultiCyclePath 1 relationship is defined, clock pulse overlapping can
be done. The third clock is defined separately, so it is considered to be asynchronous to the
others. For this purpose, it could also have been omitted since any clock that is not assigned to a
SynchronizedClocks group is considered to be asynchronous to all other clocks.
Note that when ClockTiming blocks are used, the lengths of the clock chainsmight be
different for different internal clocks. (This is still an error when there is no ClockTiming
block.)

Specifying Internal Clocking Procedures
You can use internal clocking procedures to specify which combinations of internal clock pulses
you want to use and how to generate them.
The following sections describe the syntax used for specifying internal clocking procedures in the
STL procedure file:

l ClockConstraints and ClockTiming Block Syntax
l Specifying the Clock Instruction Register
l Specifying External Clocks
l Example 1
l Example 2

For more information on specifying internal clocking procedures, see the "Using Internal
Clocking Procedures" section.

ClockConstraints and ClockTiming Block Syntax
You can use either the ClockConstraints block or the ClockTiming blockwithin the top
level of the ClockStructures block. However, you cannot combine the

Specifying Internal Clocking Procedures 10-61

TetraMAX ATPG User Guide K-2015.06-SP4

ClockConstraints and ClockTiming blocks. External clocks specified in the
ClockStructures blockmust be specified in their usual places in the STL procedure file.
The following syntax is used for specifying internal clocking procedures:
ClockStructures (name) {

(ClockController name { // alias of PLLStructures - either may
be used

(PLLCycles number;)
(MinSysCycles number;) // equivalent to set_atpg –min_

ateclock_cycles
(Clocks {

(location <External|Internal|PLL> {
(OffState <0|1>;)
(Name name;)

 …
 })*

(name <External|Internal|PLL> {
(OffState <0|1>;)
(Location location (location)+;)

 …
 })*
 })*
 …

(InstructionRegister name {(signame;)+})*
 })*

(ClockTiming (name){ … })*
(ClockConstraints (name){

(UnspecifiedClockValue <Off|On|DontCare|0|1>;)
(ClockingProcedure name {

(UnspecifiedClockValue <Off|On|DontCare|0|1>;)
(clk=<0|1|P|->+;)* // Clock assignments
(clkIR=<0|1|->+;)* // Corresponding Clock Instruction

 // Register assignments
 })*
 })*
}

Note the following itemswhen specifying internal clocking procedures:
l The MinSysCycles keyword specifies the number of external (ATE) cycles required for
the clock controller to return to its initial state after being enabled. This statement works for
any type of on-chip clocking. It specifies theminimumnumber of ATE cycles of the capture
operation. Extra cycles are appended to the end of the capture sequence if necessary.
This keyword can be used instead of set_atpg -min_ateclock_cycles command,
which has exactly the same behavior in both cases.

l You can define external clocks in the Clocks block. You can also define aliases between
the location of the clock (whichmust be the pin-pathname to its driving cell) and a name
that can be used in the constraint definitions. A clock name can be defined with multiple
locations, which allowsmultiple clocks to be defined with one statement in the constraint
definitions.

Specifying Internal Clocking Procedures 10-62

TetraMAX ATPG User Guide K-2015.06-SP4

l The InstructionRegister block is a construct in the ClockController block. It
consists of a sequence of locations that must be set externally to control the specifics of a
clocking sequence. The InstructionRegister is associated with the controller -- not
with individual clocks. The InstructionRegister construct subsumes the clock
chains as specified by using the ControlledPulse or Cycle statements. When
constraints are used, the ControlledPulse and Cycle statements are ignored if either
of them are present.

l Only one ClockTiming or ClockConstraints block can be used at the same time. If
a ClockTiming block exists, youmust specify the set_drc –nointernal_clock_
timing command to use internal clocking procedures.

l The ClockConstraints block describes a set of clock constraints. The
ClockingProcedure block describes a set of clock pulse sequences intended to be
used jointly. The ClockingProcedure specifications satisfies the
ClockConstraints specifications.

l A ClockingProcedure block consists of two types of assignments:
l The first set of assignments correspond to the clocks, which constitute the actual
clock constraints:
clk=<0|1|P|->+;

In this case, clk is the name of an internal clock, as defined in the
ClockController block. The nth bit at the end of the line is the constrained
assignment to the clock in the nth capture time frame of the pattern in which it is used.
The value "-" denotes a don't-care value, which is not supported. The clock-off value
(from the Clocks definition) indicates no pulse; the P value indicates a pulse. The
non clock-off value is synonymous to P.

l The second set of assignments are for the InstructionRegister contents.
These assignments specify the externally assignable values required to realize the
clock assignments. In this case, the nth bit at the end of the line is the value used to
set the nth bit of the InstructionRegister in the same order that the bits were
defined in the ClockController block.
The components of the clock controller hardwaremust be apparent to validate that
the specified assignments to the InstructionRegister contents actually cause
the expected clock pulses. This typically requires functional validation techniques and
is beyond the scope of test DRC. Therefore, functional validation is your
responsibility. As a last resort, a full timing simulation of the generated patterns
should detect any issue.

l The UnspecifiedClockValue statement defines the behavior of clocks that are not
defined in a particular ClockingProcedure block. An UnspecifiedClockValue
statement outside of all of the ClockingProcedure blocks globally specifies the
behavior of all unspecified clocks. However, an UnspecifiedClockValue statement
inside a ClockingProcedure block overrides the global value for that block only. The
values that can be specified are Off (the clocks do not pulse), On (the clocks do pulse),
DontCare (the clocks are unspecified), 0 or 1. The default is DontCare. Incomplete
clocking procedures are not recognized, so either the On or Off value should be used or
all clock values should be specified.

Specifying Internal Clocking Procedures 10-63

TetraMAX ATPG User Guide K-2015.06-SP4

Specifying the Clock Instruction Register
The InstructionRegister block can comprise any of the following defined signals:

l Outputs of scan cells
l Primary inputs
l Outputs of nonscan cells

You can define a combination of any of these signals. Nonscan cells in the clock instruction
register must be constant-value C0 or C1 cells and are not allowed to change during the test.
You can apply the add_cell_constraints or add_pi_constraints command to the
clock instruction register members if you want to limit the number of usable clocking procedures.

Specifying External Clocks
External clocks are clocks that are controlled from top-level design ports. They are generally
incompatible with internal clocking.When internal clocking procedures are used, unspecified
external clocks should be disabled using the add_pi_constraints command.
External clocks can be specified inside internal clocking procedures. Although they are already
defined as clocks elsewhere in the STL procedure file, theymust be redefined in the Clocks
block of the ClockController block if they are specified in the ClockConstraints block.
The external clocks are defined just like other clocks in the ClockingProcedure blocks. The
external clock pulses can be used to control the pulsing of internal clock pulse and are
considered as part of the clock instruction register.
You can define the external clocks in a way that they do not affect the internal clocking and are
allowed to pulse. In this case, you should definemultiple ClockingProcedure blocks. These
blocks are identical except for the external clock definitions. As a result, the external clocks are
not part of the conditioning to specify the pulses of the internal clocks.

Example 1
ClockStructures {
 ClockController controller1 {
 PLLCycles 2;
 Clocks {
// All clocks are defined by their instance/pin names as usual.
// The Cycle statements are not needed, so they can be omitted.
 "U1/U2/U_CLK_A_CNTL/Y" Internal {OffState 0;}
 "U1/U2/U_CLK_B_CNTL/Y" Internal {OffState 0;}
 "U1/U2/U_CLK_C_CNTL/Y" Internal {OffState 0;}
// The next two clocks are equivalent inside the clocking
procedures.
 “ClkDE” Internal {
 Offstate 0;
 Location “U1/U2/U_CLK_D_CNTL/Y” “U1/U2/U_CLK_E_CNTL/Y”;
 }
 }

Specifying Internal Clocking Procedures 10-64

TetraMAX ATPG User Guide K-2015.06-SP4

 InstructionRegister CLKIR {
 "U1/U3/U_CLK_REG/clk_reg_2_/Q";
 "U1/U3/U_CLK_REG/clk_reg_1_/Q";
 "U1/U3/U_CLK_REG/clk_reg_0_/Q";
 }
 }
 ClockConstraints constraints1 {
 UnspecifiedClockValue Off;
 ClockingProcedure one { // A launches, B captures, C & DE
default (off)
// Clocks are still defined by their instance/pin names.
 "U1/U2/U_CLK_A_CNTL/Y"=P0;
 "U1/U2/U_CLK_B_CNTL/Y"=0P;
 CLKIR=001;
 }
 ClockingProcedure three { // B & C both launch & capture, A
& DE are off
 UnspecifiedClockValue On;
 "U1/U2/U_CLK_A_CNTL/Y"=00;
 “ClkDE”=00;
 CLKIR=010;
 }
 ClockingProcedure four { // DE launches & captures, C also
captures
 “ClkDE”=PP;
 "U1/U2/U_CLK_C_CNTL/Y"=0P;
 CLKIR=100;
 }
 ClockingProcedure ClockOff { // All clocks off to prevent a
C37 error
 "U1/U2/U_CLK_A_CNTL/Y"=00;
 "U1/U2/U_CLK_B_CNTL/Y"=00;
 "U1/U2/U_CLK_C_CNTL/Y"=00;
 CLKIR=011;
 }
// These are all that are defined, so no other clock pulse
combinations
// or CLKIR values are allowed in the ATPG patterns.
 }
}

Example 2
ClockStructures Internal_scan {
 ClockController "PLL_STRUCT_0" {
 PLLCycles 2;
 Clocks {
 "dutm/clk1" Internal { OffState 0; }
 "dutm/clk2" Internal { OffState 0; }
 "clkref" Reference;

Specifying Internal Clocking Procedures 10-65

TetraMAX ATPG User Guide K-2015.06-SP4

// “clkext0” is used to control clocking
 "clkext0" External;
// “clkext1” is allowed to pulse in some procedures
 "clkext1" External;
 }
 InstructionRegister CLKIR {
 "dutc1/FF_0_reg/Q";
 "dutc1/FF_1_reg/Q";
 }
 }
 ClockConstraints constraints1 {
// Force external clocks off when they’re unspecified
 UnspecifiedClockValue Off;
 ClockingProcedure intraU1 {
 "dutm/clk1"=PP;
 "dutm/clk2"=00;
 CLKIR=11;
 "clkext0"=00;
 }
 ClockingProcedure extraU1 {
 "dutm/clk1"=PP;
 "dutm/clk2"=P0;
 CLKIR=11;
 "clkext0"=P0;
 }
 ClockingProcedure intraU0 {
 "dutm/clk1"=00;
 "dutm/clk2"=PP;
 CLKIR=01;
 "clkext1"=PP;
 }
 ClockingProcedure ClockOff {
 "dutm/clk1"=00;
 "dutm/clk2"=00;
 CLKIR=00;
 }
 }
}

See Also
Using Internal Clocking Procedures

Specifying Internal Clocking Procedures 10-66

TetraMAX ATPG User Guide K-2015.06-SP4

JTAG/TAP Controller Variations for the load_unload
Procedure
The load_unload procedure defines how to place the design into a state in which the scan
chains can be loaded and unloaded. This typically involves asserting a scan-enable input or
other control line and possibly placing bidirectional ports into the Z state. Standard DRC rules
also require that ports defined as clocks be placed in their off states at the start of the scan chain
load/unload process.
In designs that use the test access port (TAP) controller to set up internal scan chain access or
boundary scan access, it is very common to need to perform the very last scan shift with the test
mode select (TMS) port asserted. This is accomplished by placing asmany scan chain force and
measure events outside of the Shift procedure as necessary. Usually only one final
force/measure event is needed.
The bold text in Example 1 shows one additional scan chain force andmeasure placed outside
of the Shift procedure. For a scan chain length of N, TetraMAX ATPGperforms N-1 shifts using
the vector inside the Shift procedure, and the final shift using the vector which follows, where
TMS=1.

Example 1: JTAG/TAP Controller Adjustments to load_unload
Procedures {
 "load_unload" {
 V { TMS=0; TCK=0; CLOCK=0; RESETB=1; SCAN_ENABLE = 1; }
 Shift {
 V { _si=####; _so=####; TCK=P;}
 }

V { TMS=1; _si=####; _so=####; TCK=P;}
 }
}

For more examples of load_unload procedures, see “JTAGSupport."

Multiple Scan Groups
You should set up TetraMAX ATPG for multiple scan-group support if your design hasmultiple
scan chains that cannot be accessed simultaneously (for example, they share the same I/O
pins). TetraMAX ATPGsupports designs that havemultiple scan groups by using IEEE Std.
1450.1 extensions to STIL.
If you have a design with multiple scan groups that must be accessed in serial, not in parallel,
during the load_unload process, perform the following steps.

JTAG/TAP Controller Variations for the load_unload Procedure 10-67

TetraMAX ATPG User Guide K-2015.06-SP4

1. Definemultiple ScanStructure blocks.
Each ScanStructure block defines one scan chain group. Use a unique label for each
scan chain group. In Example 1, the ScanStructure labels are g1, g2, g3, and g4.
TetraMAX ATPGalso requires each ScanChain label to be unique across all scan chain
definitions.

2. Add ScanStructure statements to the load_unload procedure.
Within the load_unload procedure, add the ScanStructure statement ahead of any
scan input or scan output references. The ScanStructure statement identifies the
scan group label that is active for any lines that follow.

3. Reference scan inputs and outputs with symbolic labels.
Within the load_unload and Shift procedures, reference the appropriate set of scan
inputs and scan outputs with symbolic labels: _si1, _so1, _si2, _so2, and so on.

TetraMAX ATPGassociates these symbolic labels with the scan inputs and scan outputs of the
appropriate scan group. You are not required to use the _so prefix on scan output symbolic
labels, but if you use the _so prefix, youmust also use the _si prefix on symbolic labels for the
scan input.
If STIL patterns are written out from this data, then each scan signal in each Shift Vector needs a
unique symbolic label. A V14 warning is generated when this constraint is not followed,
identifying the signal that needs a unique symbolic label. In most other situations, all scan signals
can be referenced with a single symbolic label, such as Shift { V { _si=##; _so=##;
...}}.
If you are using named ScanStructure blocks, theymust to be specified as part of the
PatternBurst block. However, if STIL patterns are written out, then each scan signal used
acrossmore than one scan group will require a separate symbolic label to associate scan data
with this specific scan block. The example shown in the "JTAG/TAP Controller Variations for the
load_unload Procedure" section does not follow this constraint (and would generate V14
warningswhichmay be ignored if STIL patterns are not generated), however Example 1 below
(with only one scan chain per Shift) does. Example 1 demonstrates amultiple scan chain per
Shift implemented with this restriction.
When symbolic labelsmust be associated with individual scan signals, it is necessary to define a
SignalGroups block to establish these associations and define the symbolic labels. Example
1 identifies the necessary SignalGroup definitions that must be part of this context.

Example 1: Four ScanGroups Structured for STIL Pattern Generation
STIL 1.0;
SignalGroups {
_si11="SDI[1]" {ScanIn;} _si12="SDI[2]" {ScanIn;} _si13="SDI[3]"
{ScanIn;}
_so11="SDO[1]" {ScanOut;} _so12="SDO[2]" {ScanOut;} _so13="SDO[3]"
{ScanOut;}
_si21="SDI[1]" {ScanIn;} _si22="SDI[2]" {ScanIn;} _si23="SDI[3]"
{ScanIn;}
_so21="SDO[1]" {ScanOut;} _so22="SDO[2]" {ScanOut;} _so23="SDO[3]"
{ScanOut;}
_si31="SDI[1]" {ScanIn;} _si32="SDI[2]" {ScanIn;} _si33="SDI[3]"
{ScanIn;}

Multiple Scan Groups 10-68

TetraMAX ATPG User Guide K-2015.06-SP4

_so31="SDO[1]" {ScanOut;} _so32="SDO[2]" {ScanOut;} _so33="SDO[3]"
{ScanOut;}
_si41="SDI[1]" {ScanIn;} _si42="SDI[2]" {ScanIn;} _si43="SDI[3]"
{ScanIn;}
_so41="SDO[1]" {ScanOut;} _so42="SDO[2]" {ScanOut;} _so43="SDO[3]"
{ScanOut;}
}

PatternBurst "_burst_"{
 ScanStructures g1;ScanStructures g2;ScanStructures g3;
ScanStructures g4;
 PatList {"_pattern_"{
}}

ScanStructures g1 {
 ScanChain g1_0 { ScanIn "SDI[1]"; ScanOut "SDO[1]"; }
 ScanChain g1_1 { ScanIn "SDI[2]"; ScanOut "SDO[2]"; }
 ScanChain g1_2 { ScanIn "SDI[3]"; ScanOut "SDO[3]"; }
 }

 ScanStructures g2 {
 ScanChain g2_0 { ScanIn "SDI[2]"; ScanOut "SDO[1]"; }
 ScanChain g2_1 { ScanIn "SDI[3]"; ScanOut "SDO[2]"; }
 ScanChain g2_2 { ScanIn "SDI[1]"; ScanOut "SDO[3]"; }
 }

 ScanStructures g4 {
 ScanChain g4_0 { ScanIn "SDI[3]"; ScanOut "SDO[1]"; }
 ScanChain g4_1 { ScanIn "SDI[2]"; ScanOut "SDO[2]"; }
 ScanChain g4_2 { ScanIn "SDI[1]"; ScanOut "SDO[3]"; }
 }

 ScanStructures g3 {
 ScanChain g3_0 { ScanIn "SDI[3]"; ScanOut "SDO[1]"; }
 ScanChain g3_1 { ScanIn "SDI[1]"; ScanOut "SDO[2]"; }
 ScanChain g3_2 { ScanIn "SDI[2]"; ScanOut "SDO[3]"; }
 }

Procedures {
 load_unload {

 V { mclk=0; clk=0; rst=1; scan_en=1; inc=0; }
 V { mode=0; }
 V { chain_sel = 0; mclk=P; }
 V { }

 ScanStructures g1;
 "single_shift0:" V { _si11=#; _si12=#; _si13=#; _so11=#; _
so12=#; _so13=#; clk=P; mclk=0; }

Multiple Scan Groups 10-69

TetraMAX ATPG User Guide K-2015.06-SP4

 Shift { ScanStructures g1; V { _si11=#; _si12=#; _si13=#; _
so11=#; _so12=#; _so13=#; clk=P;} }

 ScanStructures g4;
 Shift { V { _si41=#; _si42=#; _si43=#; _so41=#; _so42=#; _
so43=#; clk=P; mclk=0; } }
 V { clk=0; mclk=0; mode=1; }
 "single_shift1:" V { _si11=#; _si12=#; _si13=#; _so11=#; _
so12=#; _so13=#; clk=P; }
 V { chain_sel = 0; mclk=P; clk=0; }
 V { chain_sel = 1; }
 V { mclk=0; }

 ScanStructures g2;
 Shift { V { _si21=#; _si22=#; _si23=#; _so21=#; _so22=#; _
so23=#; clk=P; } }
 "single_shift2:" V { _si21=#; _si22=#; _si23=#; _so21=#; _
so22=#; _so23=#; clk=P; }
 V { chain_sel = 1; mclk=P; clk=0; }

 ScanStructures g3;
 V { chain_sel = 0; mclk=P; }
 Shift { V { _si31=#; _si32=#; _si33=#; _so31=#; _so32=#; _
so33=#; clk=P; mclk=0; } }
 V { clk=0; }
 V { chain_sel = 1; mclk=P; }
 V { }

 }
}
MacroDefs {
"test_setup" {

 V { "mclk"=0; "clk"=0; "rst"=1; scan_en=0; inc=0; mode=1; }
 }
}

Example 1 identifies the necessary expansion to the symbolic references, to support proper
STIL pattern generation of a design containing scan groups that are sequentially shifted. This
example shows,

l The SignalGroups definitions necessary to support association of the individual signals
in the load_unload procedure.

l The use of the symbolic references in the load_unload procedure to reference
individual scan signals.

l The presence of pre-shift and post-shift vectors that also consume scan data. Look for the
labels single_shift0, single_shift1, and single_shift2 in the Example 1.

Note: It is a DFT requirement that the scan cells of one scan group not be disturbed during the
scan shifting of other scan groups. Youmust consider this restriction when you plan to use
multiple scan groups.

Multiple Scan Groups 10-70

TetraMAX ATPG User Guide K-2015.06-SP4

Example 2 illustrates syntax for a design with four different groups of scan chains that must be
accessed serially during the load_unload process.

Example 2: Four Scan-Chain Groups Loaded Serially
ScanStructures g1 {
 ScanChain g1_0 { ScanIn "SDI[1]"; ScanOut "SDO[1]"; }
 ScanChain g1_1 { ScanIn "SDI[2]"; ScanOut "SDO[2]"; }
 ScanChain g1_2 { ScanIn "SDI[3]"; ScanOut "yama"; }
}
ScanStructures g2 {
 // STIL allows same chain name in another group,
 // but TMAX does not
 ScanChain GROUP2_0 { ScanIn "SDI[2]"; ScanOut "data23"; }
 ScanChain GROUP2_1 { ScanIn "SDI[3]"; ScanOut "SDO[2]"; }
 }
ScanStructures g4 {
 ScanChain "g4_0" { ScanIn "SDI[3]"; ScanOut "SDO[1]"; }
 ScanChain "g4_1" { ScanIn "SDI[2]"; ScanOut "SDO[2]"; }
 ScanChain "g4_2" { ScanIn "SDI[1]"; ScanOut "SDO[3]"; }
}
ScanStructures g3 {
 ScanChain g3_0 { ScanIn "SDI[3]"; ScanOut "SDO[1]"; }
 ScanChain g3_1 { ScanIn "SDI[1]"; ScanOut "SDO[2]"; }
 ScanChain g3_2 { ScanIn "SDI[2]"; ScanOut "SDO[3]"; }
 }
Procedures {
 load_unload {
 V { mclk=0; clk=0; rst=1; scan_en=1; inc=0; }
 V { mode=0; }

ScanStructures g1;
 V { chain_sel = 0; mclk=P; }
 V { chain_sel = 0; mclk=P; }
 Shift {
 V { _si1=###; _so1=###; clk=P; mclk=0; }
 }

ScanStructures g2;
 V { chain_sel = 0; mclk=P; clk=0; }
 V { chain_sel = 1; mclk=P; }
 V { mclk=0; }
 Shift {
 V { _si2=##; _so2=##; clk=P; }
 }

ScanStructures g3;
 V { chain_sel = 1; mclk=P; clk=0; }
 V { chain_sel = 0; mclk=P; }
 Shift {
 V { _si3=###; _so3=###; clk=P; mclk=0; }
 }

ScanStructures g4;
 V { clk=0; }
 V { chain_sel = 1; mclk=P; }

Multiple Scan Groups 10-71

TetraMAX ATPG User Guide K-2015.06-SP4

 V { chain_sel = 1; mclk=P; }
 Shift {
 V { _si4=###; _so4=###; clk=P; mclk=0; }
}
 V { clk=0; mclk=0; mode=1; }
 }
}

The design for themultiple scan group protocol in Example 2 has the following elements:
l Four scan chain groups. Three groups have three scan chains and the fourth has two. A
simpleMUX control selects the active scan group bymarching a 2-bit code into the
chain_sel port using the mclk clock.

l The load_unload procedure begins with two V{...} statements to place the design
into a shift mode.

l The first ScanStructures statement makes group g1 active for the lines that follow.
l A Shift{...} procedure uses the symbolic label _si1. This symbolic label is
associated with the scan input pins defined in the ScanStructures g1 block.

l Following the first scan group are three additional sequences of ScanStructures,
followed by V{...} statements that select the appropriate chain group, and a Shift
{...} procedure.

As you saw in Example 2, a simpleMUX control accomplished the sharing of similar I/O pins
across four scan groups. But some boundary-scan designs that need to support multiple scan
chains can havemore complicated control sequences. For example, it is not uncommon to
require the final shift of the TAP-controlled scan chain to be done outside of the Shift procedure.
The cone timepts and rules for supportingmultiple scan groups are the same for a design with
boundary scan as for a design without boundary scan.
Example 3 shows amore complicated sequence for a design with three scan groups of one scan
chain each. In this design, to load an instruction that accesses each internal scan chain through
its test data in (TDI) and test data out (TDO) pins, the TAP controller must be stepped through
each of its various states.

Example 3: DesignWith Three ScanGroups
STIL 1.0;
ScanStructures A { ScanChain "A1" { ScanIn "tdi"; ScanOut "tdo"; }
}
ScanStructures B { ScanChain "B1" { ScanIn "tdi"; ScanOut "tdo"; }
}
ScanStructures C { ScanChain "C1" { ScanIn "tdi"; ScanOut "tdo"; }
}
//
// Instructions to enable scanning of each of the previous 3
groups:
//
// Group Tap instruction
// --------------------- ---------
// 1 SCAN_MODULE_A 7'b00011
// 2 SCAN_MODULE_B 7'b00101
// 3 SCAN_MODULE_C 7'b00111

Multiple Scan Groups 10-72

TetraMAX ATPG User Guide K-2015.06-SP4

//
Procedures {
 load_unload {

 V { clock=0; test_enab=1; scan_enab=1; _io=Z ;
 tms=0; tck=0; resetN=1; TBC=0; }
 ScanStructures A;
 V { tms=1; tdi=0; tck=P; clock=0; } // move to SELECT-DR
 V { tms=1; tdi=0; tck=P; }// move to SELECT-IR
 V { tms=0; tdi=0; tck=P; }// move to CAPTURE-IR
 V { tms=0; tdi=0; tck=P; }// move to SHIFT-IR
 V { tms=0; tdi=1; tck=P; }// shift IR, inst=1xxxx
 V { tms=0; tdi=1; tck=P; }// shift IR, inst=11xxx
 V { tms=0; tdi=0; tck=P; }// shift IR, inst=011xx
 V { tms=0; tdi=0; tck=P; }// shift IR, inst=0011x
 V { tms=1; tdi=0; tck=P; }// shift IR, inst=00011, mv to
EXIT1-IR
 V { tms=1; tdi=0; tck=P; }// move to UPDATE-IR
 V { tms=0; tdi=0; tck=P; }// move to IDLE
 V { tms=0; tdi=0; tck=0; }// clocks off
 Shift { V { _si1=# ; _so1=# ; clock=P; } }
 ScanStructures B;
 V { tms=1; tdi=0; tck=P; clock=0; }// move to SELECT-DR
 V { tms=1; tdi=0; tck=P; }// move to SELECT-IR
 V { tms=0; tdi=0; tck=P; }// move to CAPTURE-IR
 V { tms=0; tdi=0; tck=P; }// move to SHIFT-IR
 V { tms=0; tdi=1; tck=P; }// shift IR, inst=00101
 V { tms=0; tdi=0; tck=P; }// shift IR
 V { tms=0; tdi=1; tck=P; }// shift IR
 V { tms=0; tdi=0; tck=P; }// shift IR
 V { tms=1; tdi=0; tck=P; }// shift IR, move to EXIT1-IR
 V { tms=1; tdi=0; tck=P; }// move to UPDATE-IR
 V { tms=0; tdi=0; tck=P; }// move to IDLE
 V { tms=0; tdi=0; tck=0; }// clocks off
 Shift { V { _si2=# ; _so2=# ; clock=P; } }
 ScanStructures C;
 V { tms=1; tdi=0; tck=P; clock=0; }// move to SELECT-DR
 V { tms=1; tdi=0; tck=P; }// move to SELECT-IR
 V { tms=0; tdi=0; tck=P; }// move to CAPTURE-IR
 V { tms=0; tdi=0; tck=P; }// move to SHIFT-IR
 V { tms=0; tdi=1; tck=P; }// shift IR, inst=00111
 V { tms=0; tdi=1; tck=P; }// shift IR
 V { tms=0; tdi=1; tck=P; }// shift IR
 V { tms=0; tdi=0; tck=P; }// shift IR
 V { tms=1; tdi=0; tck=P; }// shift IR, move to EXIT1-IR
 V { tms=1; tdi=0; tck=P; }// move to UPDATE-IR
 V { tms=0; tdi=0; tck=P; }// move to IDLE
 V { tms=0; tdi=0; tck=0; }// clocks off
 Shift {
 V { _si3=# ; _so3=# ; clock=P; }
 }

Multiple Scan Groups 10-73

TetraMAX ATPG User Guide K-2015.06-SP4

 V { tms=1; tdi=#; tck=#; }// move to EXIT1-DR
 V { tms=1; tdi=0; tck=0; }// move to UPDATE-DR
 V { tms=1; tdi=0; tck=0; }// move to SELECT-DR
 V { tms=0; tdi=0; tck=0; }// move to CAPTURE-DR
 } // end load_unload
 capture_tck {
 V { _pi=# ; _po=# ; tck=P; }
}
 capture_clock {
 V { _pi=# ; _po=#; clock=P; }
}
 capture_resetN {
 V { _pi=# ; _po=# ; resetN=P; }
}
 capture {
 V { _pi=# ; _po=# ; }
}
}
MacroDefs {
 test_setup {
 V { _io=Z ; tms=1; tdi=0; tck=0; resetN=1; test_enab=1;
 scan_enab=0; clock=0; TBC=0; }
 V { tms=1; tdi=0; tck=0; resetN=P; clock=0; } // move to
RESET
 V { tms=1; tdi=0; tck=P; resetN=1; clock=P; }// stay in
RESET
 V { tms=0; tdi=0; tck=P; resetN=1; clock=P; }// move to
IDLE
 V { tms=0; tdi=0; tck=0; } // clocks off
 } }

DFTMAX Compression with Serializer
TheDFTMAX compression scan architecture creates by default a combinational connection
between the input and output of the compressor/decompressor (“CODEC”) to the top-level
ports or pins. To improve the ATPGquality of results (QOR) for designs or blockswith a limited
number of top-level ports, DFTMAX compression also supports an optional serial connection
between the CODEC and the top-level ports, called "serializer."
You should refer to the "DFTMAX with Serializer" chapter in theDFTMAX Compression User
Guide to see an example STIL procedure file specifically used with serializer. This chapter
includes a description of the SerializerStructures statement, which is specific to
serializer.
Also note that the report_serializers command in TetraMAX ATPGgenerates a report
containing data for the specified serializers.

DFTMAX Compression with Serializer 10-74

11
Design Rule Checking
TheDRC process verifies that the physical layout of a design satisfies a series of parameters or
rules required by semiconductor manufactures. By performing DRC, you can verify that a design
will function properly when it is fabricated.

You can refer to "Performing Test Design Rule Checking" for a basic guide on how to specify
basic DRC settings, run DRC, and review DRC results.
The following sections describe the various settings youmake when performing DRC:

l Understanding the DRC Process
l Contention Analysis
l Scan Chain Tracing
l ClockGrouping
l Declaring Equivalent and Differential Input Ports
l CellsWith Asynchronous Set/Reset Inputs
l Masking Input andOutput Ports
l Masking Scan Cell Inputs andOutputs
l Previewing Potential Scan Cells
l Transparent Latches
l Shadow Register Analysis
l Feedback Paths Analysis
l Procedure Simulation
l Changing the Design Rule Severity
l Understanding the DRC SummaryReport

11-1

TetraMAX ATPG User Guide K-2015.06-SP4

l Binary Image Files
l Save/Restore in TESTMode

11-2

TetraMAX ATPG User Guide K-2015.06-SP4

Understanding the DRC Process
When performing design rule checking, TetraMAX ATPG takes the following actions:

1. Reads the STIL procedures to gather information and to check for syntax and consistency
errors. For more information, see "STIL Procedures."

2. Performs contention ability checks on buses and wired logic. This step identifies drivers
that could potentially be placed in a conflicting state and cause internal device contention.
For more information, see "Contention Analysis."

3. Simulates the test procedures in the STL procedure file to determine whether certain
conditions have beenmet involving the state of clocks and the sequencing of procedural
events.

4. Simulates each scan chain under the direction of the defined test procedures, to
guarantee that the scan path is operational and complies with all scan chain rules. For
more information, see "Scan Chain Tracing."

5. Analyzes all clocks and clocked devices against the ATPG rules for clock usage. For more
information, see C Rules.

6. Analyzes all nonscan devices, including latches, RAMs, ROMs, and bus keepers (S
Rules). Nonscan devices that hold state are identified and used for ATPGpurposes.
Latches that can bemade transparent are identified, and latches that cannot bemade
transparent are replaced with TIEX logic.

7. Analyzes themulti driver nets identified in step 2 as potentially causing conflict to
determine which drivers actually cause conflict.

8. Performs some additional circuit learning that depends on the results of the previous
steps. After identifying scan, nonscan, transparent and nontransparent devices, and
sequential devices at a constant state, TetraMAX ATPGpropagates the effects of PI
constraints, ATPGconstraints, and TIEX effects throughout the design.

9. Produces a summary report listing the types and totals of DRC violations encountered.
For more information, see "Understanding the DRC SummaryReport."

Contention Analysis
Three-state circuitry is characterized by its ability to use the high impedance state (Z state). The
supported gate types that model the logical behavior of three-state circuitry and use the Z state
include the BUS, BUSK, TSD, SW, PI, PO, PIO, and TIEZ gates.
Most three-state activity occurs on a BUS gate, which is primarily used to resolve the net value
from a net with multiple drivers. A BUS gate can have bidirectional connections to external pins
(PIO) or bus keepers (BUSK). All inputs and bidirectional connectionsmay be strong or weak.
A contention condition occurs when a BUS gate has two strong drivers of opposing values. This
condition can damage the chip, so extensive contention checking is required to prevent its
occurrence.

Understanding the DRC Process 11-3

TetraMAX ATPG User Guide K-2015.06-SP4

The following sections describe contention checking:
l BUS Contention Ability Checking
l BUS Z State Ability Checking
l Contention Prevention Checking
l Simulation Contention Detection
l ATPGContention Prevention
l Post-Capture Contention Checking

For information on settings you canmake for contention checking, see "Settings for Contention
Checking."

BUS Contention Ability Checking
During DRC, the Z1 rule checks BUS gateswith circuitry that could potentially cause BUS
contention. This check eliminates false contention reporting whenmultiple inputs to a BUS are at
X. The BUS contention ability analysis searches for two strong three-state drivers on a BUS
gate that can simultaneously have their enable lines active. Unless the -nomultiple_on
option of the set_contention command is set for contention checking, the data linesmust be
at different values to fail the check. After BUS contention ability checking is performed, a
summarymessage shows the number of buses falling into each of the following contention
ability categories:

l Pass - The BUS gate cannot satisfy contention conditions andmay be ignored for
contention checking.

l Bidi - The BUS has an external bidirectional connection. Except for this connection, it
passes contention ability checking. To control contention, it need only be controlled by the
value placed on the bidirectional port.

l Fail - The BUS is capable of contention andmust be checked and controlled.
l Abort - Contention ability checking of the BUS was aborted. It is uncertain whether the
BUS is capable of contention, so it must be checked and controlled.

The BUS contention ability analysis is performed only when required. If the analysis was
previously performed and nothing has changed that could affect the results for a BUS, it is not
checked again.

BUS Z State Ability Checking
During DRC, the Z2 rule identifies BUSeswith circuitry that could potentially cause a Z state.
This check attempts to satisfy the conditions necessary to justify a Z state on a BUS gate. After
this check is performed, a summarymessage shows the number of BUSes falling into each Z
state ability category:

l Pass - The BUS gate cannot satisfy Z-state conditions.
l Bidi - The BUS has an external bidirectional connection. Except for this connection, it
passes Z-state checking.

l Fail - The BUS is capable of holding a Z state.

Contention Analysis 11-4

TetraMAX ATPG User Guide K-2015.06-SP4

l Abort - Z-state ability checking of the BUS was aborted. It is uncertain whether the BUS is
capable of holding a Z state.

The BUS Z state ability analysis is performed only when required. If the analysis was previously
performed and nothing has changed that could affect the results for a BUS, it is not checked
again.

Contention Prevention Checking
For BUSes that fail or abort the Z1 rule, an ATPGanalysis is performed by the Z7 rule to
determine if it is possible to simultaneously satisfy the conditions necessary to prevent
contention on these buses. A Z7 failure indicates that ATPG is unlikely to be successful in
avoiding bus contention. See the description of the Z7 rule in TetraMAX Help for a complete
description of how to properly analyze a Z7 failure.

Simulation Contention Detection
BUS gates that fail contention ability checking during simulation are checked to determine if
there are in a potential contention condition. A violation of BUS contention during fault simulation
causes the pattern to be rejected and disallowed any detection credit. A message is issued for
each simulation pass indicating the number of patterns rejected due to contention and the site of
the first contention. You can turn off contention checking during simulation using the nobus
option of the set_contention command.

ATPG Contention Prevention
BUS gates that fail contention ability checking during test generation are forced to satisfy a
contention-free state. If the process of satisfying contention prevention causes an abort
condition, a special message reports the number of faults per simulation pass (32 patterns) that
were aborted due to this condition. You can turn off ATPGcontention prevention using the -
noatpg switch of the set_contention command.

Post-Capture Contention Checking
Normal scan-based simulation only considers the effect of values loaded into scan cells and not
the effect of values that may be captured. If the enable lines of three-state drivers of bus gates
that are not contention-free are connected to scan cells, it is possible for these BUS gates to go
into contention after the capture clock, even if theywere contention-free before the capture
clock. These conditions are checked by the Z9 and Z10 rules.
You can configure the simulation process to simulate the captured values using the -capture
option of the set_contention command. As a result, the simulation checks for contention
that could occur at capture time, and rejects and reports patterns that fail the contention check.

Contention Analysis 11-5

TetraMAX ATPG User Guide K-2015.06-SP4

Settings for Contention Checking
When TetraMAX ATPGchecks bus contention, it discards patterns that can potentially cause
contention and generates additional patterns to avoid contention. You can select optional bus
contention checks using the Set Contention dialog box, or you can enter the set_contention
command from the command line.
The following sections show you how to choose settings for contention checking:

l Using the Set Contention Dialog Box
l Using the set_contention Command

For more information on contention checking, see "Contention Analysis."

Using the Set Contention Dialog Box
To use the Set Contention dialog box to set contention options,

1. From themenu bar, choose Buses > Set Contention Options.
The Set Contention dialog box appears.

2. If you require settings other than the defaults, choose them now.
The default settings are the ones usedmost often. For details about these and other
settings, seeOnline Help for the set_contention command.

3. ClickOK.

Using the set_contention Command
You can also select bus contention options using the set_contention command. For
example, the following command is conservative without being overly restrictive to TetraMAX
ATPG:
DRC-T> set_contention bidi bus ram -capture -atpg -multiple_on

For the complete syntax and option descriptions, seeOnline Help for the set_contention
command.

See Also
Contention Analysis

Scan Chain Tracing
When performing scan chain tracing, TetraMAX ATPG takes the following actions:

1. Initializes constrained ports to their constrained states.
2. Simulates the events in the test_setupmacro.
3. Simulates the events in the load_unload procedure.

Scan Chain Tracing 11-6

TetraMAX ATPG User Guide K-2015.06-SP4

4. Simulates the events in the Shift procedure, andmonitors the elements in the scan chain
to ensure that the scan data path is valid, the scan cells are clocked, and any
asynchronous set/clear pins are stable in their off positions.

To see a verbose report on the scan chain tracing, execute the following command:
BUILD-T> set_drc -trace

The default is to not show the verbose tracing of scan chains.

See Also
Performing Scan Chain Diagnostics

Clock Grouping
TetraMAX ATPGapplies dynamic clocking grouping by default. This enables basic scan ATPG
to simultaneously pulse clocks and detect clocks that can be serially pulsed during the same
capture cycle. Clockswith a small amount of sequential effects can also be detected and
grouped. In this case, TetraMAX ATPGsets up the pattern generation environment to avoid
generating vectors that would fail simulation.
Clock grouping can potentially reduce pattern count since ungrouped clocks require separate
scan loads and patterns to test faults in each clock domain for basic-scan patterns. Grouped
clocks can be pulsed in a single pattern. The clocks pulsed for a given vector are selected
dynamically during pattern generation, maximizing the fault detection andminimizing the pattern
count.
In addition to dynamic clocking, TetraMAX ATPGcan use disturbed clocking to group some
clockswith a limited number of cells containing sequential effects. In this case, even if there are
sequential effects, grouping these clock can further reduce pattern count. TetraMAX ATPG then
masks any disturbed cells to avoid sequential effects. Potential disturbed grouping is done
during DRC analysis.
During the DRC process, TetraMAX ATPG automatically performs clock grouping analysis and
reports the results in the transcript. All PI equivalences are removed, except for differential
inputs.
The following sections describe how to work with clock groups:

l Reducing the Pattern Count Through ClockGrouping
l ClockGrouping Analysis
l Generating a ClockGroup Report
l ClockGrouping Limitations

Reducing the Pattern Count Through Clock Grouping
When you generate combinational vectors in basic-scan ATPG, TetraMAX ATPGnormally uses
only one clock pulse per pattern. However, it is sometimes possible to pulse several clocks in the

Clock Grouping 11-7

TetraMAX ATPG User Guide K-2015.06-SP4

same vector, which enables you to observemore logic and reduces the need for additional
patterns.
If your design has two independent clocks (for example, when you pulse one clock, no logic
driven by the other clock is affected), then you need two patterns to exercise the logic in the two
clock domains. However, because the clocks are independent, you can pulse them at the same
time, which saves one test vector. When you use static parallel clock grouping, the grouped
clocksmust always be pulsed together. None of the clocks in the groupmay be pulsed alone.
Dynamic clock grouping selects the clocks pulsed for a given vector during pattern generation,
whichmaximizes the fault detection andminimizes the pattern count.
The disturbed clocking scheme allows TetraMAX ATPG to group some clockswith a limited
number of cells having sequential effects. In this case, even if there are sequential effects, it can
be useful to group those clocks to further reduce pattern count. TetraMAX ATPGcannot use the
disturbed cells. Tomanually group clocks, use the add_pi_equivalences command. After
you have defined a group, any clock that belongs to this group cannot be pulsed alone.
To use clock grouping to reduce the pattern count:

1. Read your netlist and librarymodel files, and build your design in TetraMAX ATPG. For
details, see "Setting Up and Building the ATPG Model."

2. Choose your criteria for clock grouping. The set_drc command has several options that
affect clock grouping, including the -allow_unstable_set_resets, the -
blockage_aware_clock_grouping, the -clock -dynamic, the -disturb_
clock_grouping, and the -dynamic_clock_equivalencing options.

3. Run DRC. For details, see "Performing Test Design Rule Checking."
DRC performs an analysis for clock grouping. For details, see "ClockGrouping Analysis."

4. Generate the basic-scan test vectors, for example:
run_atpg -auto_compression

Clock Grouping Analysis
During the DRC process, clock grouping analysis is automatically performed and the results are
reported in the transcript, as shown in the following example:
 Clocks C1 (8) and C2 (13) were identified as potentially
groupable.
 Clocks C1 (8) and C3 (17) were identified as potentially
groupable.
 Clocks C1 (8) and C4 (19) were identified as potentially
groupable.
 Clocks C1 (8) and W4 (20) were identified as potentially
groupable.
 Clocks C2 (13) and C3 (17) were identified as potentially
groupable.
 Clocks C2 (13) and C4 (19) were identified as potentially
groupable.
 Clocks C2 (13) and W4 (20) were identified as potentially
groupable.
 Clocks C3 (17) and C4 (19) were identified as potentially

Clock Grouping 11-8

TetraMAX ATPG User Guide K-2015.06-SP4

groupable.
 Clocks C3 (17) and W4 (20) were identified as potentially
groupable.
 Clock grouping analysis completed, #clock_groups_identified=9

The lines in the example indicate that clock 'C1', with gate ID 8, can be grouped with clocks 'C2',
'C3', 'C4', and 'W4'.
In addition, clock 'C2' is groupable with {C3,C4,W4} and 'C3' is groupable with {C4,W4}.
Clock groupingmight be affected by the order in which the clock list is processed. It is suggested
that if you define clocks using add clocks commands, that you define the clockwith the
highest fanout first, and all asynchronous set/resets last.
The clock grouping algorithm considers clocks as groupable if all of the following conditions are
true:

l The clocks do not connect to a common clock-off stable state element.
l There are no level sensitive (LS) or trailing edge (TE) ports where one clock is connected
to the clock or write port input and the other clock has a clock-effect connection to the port
data input with any of the following conditions:

l LS/LE connection
l TE connection
where the off-time of the first clock occurs later than the off-time of the other clock.

l There are no LE ports where one clock is connected to the clock or write port input and the
other clock has a clock-effect connection to the port data input with any of the following
condition:

l LS/LE connection
where the on-time of the first clock occurs later than the on-time of the other clock.

l There are no LS or TE ports where one clock is connected to the clock or write port input
and the other clock has a clock-effect connection to the port clock/write input with any of
the following conditions:

l LS/LE connection
l TE connection
where the off-time of the first clock occurs later than the off-time of the other clock.

l There are no LE ports where one clock is connected to the clock or write port input and the
other clock has a clock-effect connection to the port clock or write input with any of the
following condition:

l LS/LE connection
where the on-time of the first clock occurs later than the on-time of the other clock.

l If the design has two state elements A and B such that:
l The output of A is connected to the input of B.
l A and B are clocked by different clocks that have nearly identical timing
Then, the two clocks have a parallel grouping relationship only if the capture edge of
clock B occurs at or before the capture edge of clock A minus the skew value.

Clock Grouping 11-9

TetraMAX ATPG User Guide K-2015.06-SP4

Otherwise, the clocks are ungrouped, or have a disturbed grouping. The default for
the skew is 1 time unit, which eliminates clockswith exactly the same timing from
being grouped in this type of design connectivity.

Note that the unstable state elements (including transparent latches) are ignored for this clock
grouping analysis.
The clock grouping analysis is always performed at the end of the clock rules checking during
DRC with all grouped clocks reported in the transcript.

Generating a Clock Group Report
To report results of clock grouping analysis, use the following command:
report_clocks -matrix -verbose

The -matrix option of the report_clocks command displays amatrix of clock pairs that
can be grouped together. In the clockmatrix, each row indicates the potential grouping
relationships of a candidate clockwith all of the other candidate clocks.
For example:
id# clock_name type 0 1 2 3 4 5 6 7 8 9

0 clk C --- --A --A --A --A --A --A --A --A ---
1 iopclk11 C B-- --- --A BPA BPA BPA BPA BPA BPA B--
2 iopclk12 C B-- B-- --- --A BPA BPA BPA BPA BPA B--
3 iopclk21 C B-- BPA B-- --- --A BPA BPA BPA BPA B--
4 iopclk22 C B-- BPA BPA B-- --- BPA BPA BPA BPA B--
5 iopclk31 C B-- BPA BPA BPA BPA --- --A BPA BPA B--
6 iopclk32 C B-- BPA BPA BPA BPA B-- --- BPA BPA B--
7 iopclk41 C B-- BPA BPA BPA BPA BPA BPA --- --A B--
8 iopclk42 C B-- BPA BPA BPA BPA BPA BPA B-- --- B--
9 tx_intf1_clk C --- --A --A --A --A --A --A --A --A ---
10 tx_intf2_clk C --- --A BPA --A --- --A BPA --A BPA B--
11 tx_intf3_clk C --- --A BPA --A BPA --A --- --A BPA B--
12 tx_intf4_clk C -D- BPA BPA --A BPA --A BPA --A --- BP-
13 por R --- --A --A --A --A --A --A --A --A --A
14 rst SR --- --- --- --- --- --- --- --- --- ---
id1 id2 C1 #masks C2 masked gates

Clock Grouping Limitations
Clock grouping has the following limitations:

l Dynamic and disturbed clocking are not used by Full-Sequential ATPG.
l Disturbed clocking can result in a slightly lower test coverage because of disturbed cell
masking.

Clock Grouping 11-10

TetraMAX ATPG User Guide K-2015.06-SP4

Declaring Equivalent and Differential Input Ports
You can declare two primary input ports to be equivalent or differential. During ATPG,
equivalent ports are always driven with the same values and differential ports are always driven
with complementary values.
You can use the Add PI Equivalences dialog box tomake this kind of declaration, or you can
enter the add_pi_equivalences command at the command line.
The following sections describe how to declare equivalent and differential input ports:

l Using the Add PI EquivalencesDialog Box
l Using the add_pi_equivalencesCommand

Using the Add PI Equivalences Dialog Box
The following steps describe how to use the Add PI Equivalences dialog box tomake two
primary input ports to be equivalent or differential:

1. From themenu bar, choose Constraints > PI Equivalences > Add PI Equivalences. The
Add PI Equivalences dialog box appears.

2. Select the ports and logic relationships.
For additional information about the available options, see the description of the add_pi_
equivalences command in TetraMAX Help.

3. ClickOK.

Using the add_pi_equivalences Command
You can also declare equivalent or differential input ports by using the add_pi_
equivalences command, as shown in the following example:
DRC-T> add_pi_equivalences ENA_P -inv ENA_N

For the complete syntax and option descriptions, see the description of the add_pi_
equivalences command in TetraMAX Help..
In the following example, the first line defines the two input ports spec_port1 and spec_
port2 as equivalent; the second line defines that the following ports should be constrained to
be at an inverted value relative to the first port in the list.
DRC-T> add_pi_equivalences {spec_port1 spec_port2}
DRC-T> add_pi_equivalences spec_port1 -invert spec_port2

When differential inputs are also clocks, youmust first define each port as a clock and then
define the equivalence relationship, as in the following example:
DRC-T> add_clocks 0 clock_pos
DRC-T> add_clocks 1 clock_neg
DRC-T> add_pi_equivalences clock_pos -differential clock_neg

The third line defines them as differential. This is similar in function to the -invert option with
two differences. The first difference is that only two pins are accepted. The second difference is

Declaring Equivalent and Differential Input Ports 11-11

TetraMAX ATPG User Guide K-2015.06-SP4

that pins declared as having a -differential relationship that are also clocks retain that
relationship when clock grouping is enabled. A differential clock relationship formedwith the -
invert optionmay be ignored by clock grouping. Pins declared as having a differential
relationship are driven to opposite values by generated patterns.

See Also
Understanding Flattening Optimization
PI Equivalences Report in TetraMAX Help
Differential Input Models in TetraMAX Help

Cells With Asynchronous Set/Reset Inputs
You can use the set_drc command to specify the treatment of latches and flip-flopswhose set
and reset lines are not off when all clocks are at their off state. By default, these latches and flip-
flops are treated as unstable cells, which prevents them from being used during test pattern
generation.
To have these latches and flip-flops treated as stable cells, use the set_drc -allow_
unstable_set_resets command. Then the ATPGalgorithm can use the cells with unstable
set/reset inputs to improve test coverage. In that case, it is not necessary to define the set/reset
inputs as clocks.
In certain cases, the -remove_false_clocks option of the set_drc command
automatically invokes the “allow unstable set/reset” behavior. When a primary input port has
been defined as a clock and a DRC analysis determines that the port cannot capture data into a
sequential device, the input port is determined to be a “false clock.” In the default DRC
configuration, the result is a C4 violation. However, using the set_drc -remove_false_
clocks command causes automatic removal of the clock declaration for each false clock,
instead of a C4 violation.
If a primary input port declared to be a clock is connected to the set/reset inputs of sequential
gates, and also to the D inputs of other sequential gates, it is considered a false clock. As a
result, the algorithm removes the clock declaration for that port and then enables unstable
set/reset cells, just like executing the set_drc -allow_unstable_set_resets
command.
The -allow_unstable_set_resets option can be useful if a scan-enable signal is used to
disable the set/reset inputs of scan cells during load. Using this optionmeans that the scan-
enable signal does not have to be defined as a clock, which can greatly improve test coverage.

See Also
Declaring Clocks
Power Aware Testing with Asynchronous Primary Inputs

Cells With Asynchronous Set/Reset Inputs 11-12

TetraMAX ATPG User Guide K-2015.06-SP4

Masking Input and Output Ports
You canmask an input port or output port to isolate it from the design during debugging. For
example, if a lower-level module you are testing appears to have full controllability and
observability of all of its input and output ports in standalone configuration but loses this control
when placed in the higher-level module, youmight want to mask those inputs and outputs that
are not controllable or observable.
Youmask an input port by defining a primary input constraint in which the input port is held to an
X value. You can define the constraint by using the Add PI Constraints dialog box (see the
“Declaring Primary Input Constraints” section) or by using the add_pi_constraints
command:
DRC-T> add_pi_constraints X port_name

Youmask an output port by listing it in the Add POMasks dialog box (opened by choosing
Constraints > POMasks > Add POMasksmenu command) or by using the add_po_masks
command:
DRC-T> add_po_masks port_name

Masking Scan Cell Inputs and Outputs
TetraMAX ATPGsupports a number of scan cell controls. You can define these controls by
using the Add Cell Constraints dialog box, or you can enter the add_cell_constraints
command at the command line.
The following sections describe how tomask scan cell inputs and outputs:

l Specifying Cell Constraints Locations and Scan Cell Controls
l Using the Add Cell Constraints Dialog Box
l Using the add_cell_constraints Command

Specifying Cell Constraints Locations and Scan Cell Controls
You specify the location of the cell constraint using either of the following techniques:

l Use the name of the scan chain and the bit position, with bit 0 as the bit closest to the scan
chain output

l Use an instance path name to the scan chain element
You can use any of the following five scan cell controls:

l 0 –The scan cell is always loaded with a 0 during the scan chain load.
l 1 –The scan cell is always loaded with a 1.
l X –The scan cell is always loaded with an X.
l OX – No restrictions exist on the loaded value, but any data captured by the regular system
clock is considered to be observed as X. That is, the scan cell can be loaded to control logic

Masking Input and Output Ports 11-13

TetraMAX ATPG User Guide K-2015.06-SP4

connected to its outputs, but its data input is always considered X.
l XX –The load is always X, and the observe is always X.
Note: The loading of a scan cell with an X value for the X or XX cell constraint provides an X for
simulation. However, on a device tester, the X is translated into a 0 or a 1 because you cannot
drive an X on a tester.

Using the Add Cell Constraints Dialog Box
The following steps describe how to use the Add Cell Constraints dialog box to define scan cell
controls:

1. From themenu bar, choose Constraints > Cell Constraints > Add Cell Constraints. The
Add Cell Constraints dialog box appears.

2. Specify the location of the cell constraint by entering the name of a scan chain or instance.
3. Enter a bit position for the scan chain and scan cell control values for the scan chain and

instance.
For additional information about the available options, see description of the add_cell_
constraints command in TetraMAX Help.

4. ClickOK.

Using the add_cell_constraints Command
You can also define scan cell controls using the add_cell_constraints command, as
shown in the following example:
DRC-T> add_cell_constraints 0 /TOP/U1/sifter/reg42

For the complete syntax and option descriptions, see the description of the add_cell_
constraints command in TetraMAX Help.

Previewing Potential Scan Cells
You can preview the effect on your design of changing flip-flops and latches from nonscan
elements to scan elements in scan chains without actually changing your design. To do this, you
place one or more nonscan sequential devices in a virtual scan chain. TetraMAX ATPG treats
the virtual scan chain as a true scan chain. Remember to set up the clocks, and when you run
ATPG, you see the potential effect on test coverage.
Sequential devices in the Set Scan Ability list must meet all DRC rule checks for scan chain
elements. Some of the devicesmight fail DRC because of uncontrolled asynchronous set/reset
connections. (TetraMAX ATPGconverts the devices into a scan chain but does not change
set/reset pins.)
The following sections describe how to preview potential scan cells:

l Using the Set Scan Ability Dialog Box
l Using the set_scan_ability Command

Previewing Potential Scan Cells 11-14

TetraMAX ATPG User Guide K-2015.06-SP4

Using the Set Scan Ability Dialog Box
You can place the nonscan devices in a virtual scan chain by listing them in the Set Scan Ability
dialog box. The following steps describe how to use the Set Scan Ability dialog box to list the
nonscan devices in a virtual scan chain:

1. From themenu bar, choose Scan > Set Scan Ability. The Set Scan Ability dialog box
appears.

2. Select themethod and add DLAT/DFF gates from the list.
For more information about the controls in this dialog box, seeOnline Help for the set_
scan_ability command.

3. ClickOK.

Using the set_scan_ability Command
You can also place nonscan sequential devices in a virtual scan chain using the
set_scan_ability command, as shown in the following example:
DRC-T> set_scan_ability on core/host/status

For the complete syntax and option descriptions, see the description of the set_scan_
ability command in TetraMAX Help.
The following example adds four devices to the virtual scan chains:
DRC-T> set_scan_ability on /top/U1/U2/reg1
DRC-T> set_scan_ability on /top/U1/U2/reg2
DRC-T> set_scan_ability on /top/U1/U2/reg3
DRC-T> set_scan_ability on /top/U1/U2/reg4

When you use a list format in the set_scan_ability command, youmight not be able to
write patterns because the patterns include the virtual scan chain. Any patterns that are written
will fail simulation unless the design ismodified to convert the virtual scan chain into a real scan
chain.
Note that the set_scan_ability command is not compatible with any type of scan
compression. DRC will fail if the STIL procedure file contains a CompressorStructures block.

Transparent Latches
A transparent latch is a latch in which the enable line can be asserted so that data passes
through it without activating any of the design’s defined clocks. During the rule checking process,
TetraMAX ATPGautomatically determines the location of all latches in the design and checks to
see whether the latches can bemade transparent. For ATPG, youmust be able to disconnect
the latch control from any clock ports.
When latches are transparent, it is easier for TetraMAX ATPG to detect faults around those
latches.When latches are not transparent, youmight need to use a Full-Sequential ATPG run to
get good fault coverage around those latches.

Transparent Latches 11-15

TetraMAX ATPG User Guide K-2015.06-SP4

Shadow Register Analysis
A shadow register is not in the scan chain, but is loaded when itsmaster register in the scan
chain is loaded, by the same clock or by a separate clock. A shadow register is considered a
control point but not an observe point. During the DRC analysis, TetraMAX ATPGsearches for
nonscan cells that can be considered shadow registers.
If the shadow register’s state can be observed at the shadow’smaster, TetraMAX ATPG
classifies the register as an observable shadow. This usually requires defining a shadow_
observe procedure in the STL procedure file.
The default is to search for shadow registers. You can disable the default by executing the
following command:
BUILD-T> set_drc -noshadow

Feedback Paths Analysis
During initial processing, TetraMAX ATPG identifies feedback pathswithin the design and
assigns each path a unique feedback path ID.
During DRC, TetraMAX ATPGanalyzes the feedback paths to ensure that the loop of logic
gates can be broken at some combinational gate within the loop. If the logic loop does not have a
blocking point, simulations performed during ATPGwill oscillate without resolving to a final
value. If DRC analysis cannot find a set of inputs and scan chain load values that can break the
loop and still maintain any other constraints in effect, TetraMAX ATPG issues an X1 rule
violation.

See Also
Analyzing a Feedback Path

Procedure Simulation
In addition to the test_setup, load_unload, and Shift procedures, there are other procedures in
the STL procedure file or implied by the definition of clock ports. TetraMAX ATPGsimulates all
of these procedures as part of the design rule checking process to guarantee that they
accomplish their intended purposes. For details on the running the various procedures, see
"STIL Procedure Files."

Shadow Register Analysis 11-16

TetraMAX ATPG User Guide K-2015.06-SP4

Changing the Design Rule Severity
Each design rule is assigned a severity level that determines the action taken if a rule violation
occurs. A design rule violation has possible four severity levels:

l Ignore - The rule is not checked and nomessages are issued.
l Warning - Violation of the rule produces a warningmessage, and the current process
continues.

l Error - Violation of the rule produces an error message, and the current processing step is
terminated. Before continuing, youmust either correct the problem or change the rule
severity level.

l Fatal - Violation of the rule produces an error message, and the current processing step is
terminated. the severity level cannot be changed. Before continuing, youmust correct the
problem.

You can change the rule severity level by using the Set Rules dialog box, or by running the set_
rules command from the command line.
You can determine the severity level setting of a particular rule and the number of violations that
have occurred by selecting Rules > Report Rules in the TetraMAX GUI or by running the
report_rules command.

Using the Set Rules Dialog Box
To change the rule severity by using the Set Rules dialog box:

1. From themenu bar in the TetraMAX GUI, choose Rules > Set Rule Options. The Set
Rules dialog box appears.

2. Enter a rule ID and select a severity level.
For additional information about the available options, see the description of the set_
rules command in TetraMAX Help.

3. ClickOK.

Using the set_rules Command
You can change the rule severity level of any rule (except those that are Fatal) by using the
set_rules command, as shown in the following example:
BUILD-T> set_rules B5 warning

When running DRC (before ATPG) on circuits which include blocks that have both default and
high X-tolerant architectures, specify the following command:
set_rules R22 warning

This will downgrade a check done for fully X-tolerant designs built by DFTMAX compression
which were built with blocks that include both default X-tolerant architectures and high X-tolerant
architecture.

Changing the Design Rule Severity 11-17

TetraMAX ATPG User Guide K-2015.06-SP4

Understanding the DRC Summary Report
The run_drc command performs design rule checking (DRC), and produces a DRC summary
report, as shown in the following example:

 DRC> run_drc top.spf

 Begin scan design rule checking...

 Begin reading test protocol file top.spf...
 End parsing STIL file slo_gin.spf with 0 errors.
 Test protocol file reading completed, CPU time=0.08 sec.

 Begin Bus/Wire contention ability checking...
 Bus summary: #bus_gates=40, #bidi=40, #weak=0, #pull=0,
#keepers=0
 Contention status: #pass=0, #bidi=40, #fail=0, #abort=0, #not_
analyzed=0
 Z-state status : #pass=0, #bidi=40, #fail=0, #abort=0, #not_
analyzed=0
 Bus/Wire contention ability checking completed, CPU time=0.04
sec.
 --
 Begin simulating test protocol procedures...
 Nonscan cell constant value results: #constant0 = 4, #constant1 =
7
 Nonscan cell load value results : #load0 = 4, #load1 = 7
 Warning: Rule Z4 (bus contention in test procedure) was violated
12 times.
 Test protocol simulation completed, CPU time=0.15 sec.

 Begin scan chain operation checking...
 Chain c1 successfully traced with 31 scan_cells.
 Chain c2 successfully traced with 31 scan_cells.
 Chain c3 successfully traced with 31 scan_cells.
 Chain c4 successfully traced with 31 scan_cells.
 Chain c5 successfully traced with 31 scan_cells.
 : : : : : : :
 Chain c44 successfully traced with 30 scan_cells.
 Chain c45 successfully traced with 30 scan_cells.
 Chain c46 successfully traced with 30 scan_cells.
 Scan chain operation checking completed, CPU time=0.47 sec.
 --
 Begin clock rules checking...
 Warning: Rule C17 (clock connected to PO) was violated 16 times.
 Warning: Rule C19 (clock connected to non-contention-free BUS)

Understanding the DRC Summary Report 11-18

TetraMAX ATPG User Guide K-2015.06-SP4

was violated 1 times.
 Clock rules checking completed, CPU time=0.15 sec.
 --
 Begin nonscan rules checking...
 Nonscan cell summary: #DFF=201 #DLAT=0 tla_usage_type=none
 Nonscan behavior: #C0=4 #C1=7 #LE=11 #TE=179
 Nonscan rules checking completed, CPU time=0.04 sec.
 --
 Begin DRC dependent learning...
 DRC dependent learning completed, CPU time=1.01 sec.
 --
 Begin contention prevention rules checking...
 26 scan cells are connected to bidirectional BUS gates.
 Warning: Rule Z9 (bidi bus driver enable affected by scan cell)
was violated 24 times.
 Contention prevention checking completed, CPU time=0.03 sec.

 DRC Summary Report
 --
 Warning: Rule C17 (clock connected to PO) was violated 16 times.
 Warning: Rule C19 (clock connected to non-contention-free BUS)
was violated 1 times.
 Warning: Rule Z4 (bus contention in test procedure) was violated
12 times.
 Warning: Rule Z9 (bidi bus driver enable affected by scan cell)
was violated 24 times.
 There were 54 violations that occurred during DRC process.
 Design rules checking was successful, total CPU time=2.27 sec.

scan design rule checking
This indicates the beginning of the scan design rule checking process.

reading test protocol file
The first message indicates the beginning of the reading of the test protocol
file. The second message indicates the parsing of the file was successful with
no errors. The last message indicates the process is completed and the CPU
time in seconds that was used for the process.

Bus/Wire contention ability checking
The first message indicates the beginning of the bus and wire contention
checking rules.
The second message summarizes the types of bus gates that are used in the
circuit. This includes the total number of bus gates, the number of bidirectional
bus gates, the number of weak bus gates (only weak drivers), the number if
pull bus gates (a mixture of strong and weak drivers), and the number of bus
gates which have a bus keeper.

Understanding the DRC Summary Report 11-19

TetraMAX ATPG User Guide K-2015.06-SP4

The next message gives a summary of contention ability status of the bus
gates after the analysis is completed. This includes the number of buses which
pass (proven contention free), are bidirectional (contention free except for the
bidi input), fail (proven contention sensitive), and abort (aborted during
analysis).
The next message gives a summary of Z-state ability status of the bus gates
after the analysis is completed. This includes the number of buses which pass
(proven incapable of attaining a Z state), are bidirectional, fail (proven capable
of attaining a Z state), and abort (aborted during analysis).
The last message indicates the process is completed and the CPU time in
seconds that was used for the process.

simulating test protocol procedures
The first message indicates the beginning of the simulation of the test protocol
procedures. The results of the simulation is used to first determine state
elements that have a constant state behavior and those that attain a set value
after the scan chain load.
The second message in the example indicate 4 state elements have a constant
0 behavior and 7 state elements have a constant 1 behavior.
The third message indicate 4 state elements are set to 0 and 7 state elements
are set to 1 at the end of the scan chain load. During simulation, certain rules
are checked. In this case, the rule checking for bus contention during the test
procedures was violated 12 times and a warning message is given.
The last message indicates the process is completed and the CPU time in
seconds that was used for the process.

scan chain operation checking
The first message indicates the beginning of the scan chain operation checking.
The results of the previous simulation are used to verify the operation of the
scan chains and identify the associated scan cells. As each scan chain is
successfully verified, a message is given indicating its completion with its
name and length. The last message indicates the process is completed and the
CPU time in seconds that was used for the process.

clock rules checking
The first message indicates the beginning of the clock rules checking. During
this process many clock rules are checked and messages are given when
violations occur. In this case, two messages are given indicating there were 16
violations of rule C16 and 1 violation of rule C19. The last message indicates
the process is completed and the CPU time in seconds that was used for the
process.

nonscan rules checking
The first message indicates the beginning of the nonscan rules checking. The
objective of this checking is to determine the appropriate behavior for all non
scan state elements.

Understanding the DRC Summary Report 11-20

TetraMAX ATPG User Guide K-2015.06-SP4

The second message gives a summary of the nonscan state elements. This
includes the nonscan DFFs, nonscan DLATs, and the transparent latch usage. In
this case, there are no transparent latches.
The next message gives a summary of the calculated nonscan behaviors. This
includes C0 (constant 0), C1(constant 1), LE (edge sensitive state elements
that capture on the leading edge of a pulse on the clock pin), and TE (edge
sensitive state elements that capture on the trailing edge of a pulse on the
clock pin).
The last message indicates the process is completed and the CPU time in
seconds that was used for the process.

DRC dependent learning
The first message indicates the beginning of the DRC dependent learning
process. Using the behaviors learned during DRC, analyses are performed to
determine control ability, observe ability, constraint effects, and blockages due
to constraint effects for all gates in the circuit. The last message indicates the
process is completed and the CPU time in seconds that was used for the
process.

contention prevention rules checking
The first message indicates the beginning of the contention prevention rules
checking.
The second message indicates that there were 26 scan cells which had
connectivity to bidirectional bus gates. This normally indicates a potential
problem that will cause some rule violations.
The next message indicates the rule violations that was the result of that
connectivity.
The last message indicates the process is completed and the CPU time in
seconds that was used for the process.

DRC Summary Report
The first message indicates the beginning of the summary report. For each rule
that had at least one violation, a summary message for that rule is given
indicating the number of times it was violated.
The next message indicates the total number of rule violations that occurred
during the DRC process.
The last message indicates the process is completed and the CPU time in
seconds that was used for the process.

Binary Image Files
A binary image file is a data file that stores design information in an efficient and proprietary
format for reading by TetraMAX ATPG. It contains a flattened version of the design, along with
some selected TetraMAX settings.

Binary Image Files 11-21

TetraMAX ATPG User Guide K-2015.06-SP4

Using an image file provides several key benefits:
l Simplifies file management
Because an image file stores all netlist, library, and STL procedure file details in a single
file, it is easy to archive and share design data.

l Avoids repetitive tasks
When TetraMAX ATPG reads an image file, you do not need to repeat the entire build and
DRC phases, since this data is already stored in the file. This results in significant time
savingswhen using large designs.

l Restricts command usage
You can create secure image files that allow only a restricted set of commands. These
commands are stored in the encrypted image file. You can also control whether schematic
viewing is allowed.
When a secure image file is read, the TetraMAX session switches to a secure state in
which only the allowed commands can be executed. If you specify a disallowed command,
TetraMAX ATPGdoes not execute it and issues a warningmessage.

l Provides intellectual property protection
TetraMAX ATPGcan obfuscate instance, net, andmodule nameswhen creating a binary
image. This provides an additional level of security by hiding design context.

l Stores context-sensitive design data
An image file stores different types of design information, depending on what mode is
active when you create it:

l When the Test mode is active, both build and DRC data is stored in the image file.
l When the DRC mode is active, only the build data is stored in the image file.

Creating and Reading Image Files
You use the write_image command to create an image file and the read_image command
to read it.

You can also create and read secure image files. This functionality is implemented through the
following commands:

l set_commands [-secure command | -all>]
[-nosecure <command | -all>]

l report_commands [-secure]

l write_image file_name [-password string] [-schematic_view]

l read_image file_name [-password string]

Note that TetraMAX ATPGcan obfuscate instance, net andmodule names. This provides an
additional level of security by hiding design context. The names are changed to the following
format (where "###" is an integer number of any length):

l Instance names use the format u###
l Net names use the format n###

Binary Image Files 11-22

TetraMAX ATPG User Guide K-2015.06-SP4

l Module names use the format m###
The -garble option of the write_image commandmodifies the names in the output image.
You can send this secure image to a third party with controlled data access. You can also
translate themodified instance and net names back to the original names using the -ungarble
option of the report_nets command and the report_instances command, if the original
design database or the unmodified image file is accessible.
After TetraMAX ATPG reads the image, it remains in the samemode in which the image was
created (DRC or Test). An image file does not create an identical session aswhen it was
originally created. Some settings and data, such as net names and intermediate levels of
hierarchy, are not in the image file. Thus, TetraMAX ATPGcan only operate in primitive view
and not design view
You can use the report_settings -all -command_report command to view the
stored settings.
For details on how create non-secure and secure image files, see the following sections:

l Creating a Non-Secure Image File
l Creating a Secure Image File

Creating a Non-Secure Image File
To create a non-secure image file:

1. Read the netlist file, as shown in the following example:
read_netlist top.v

2. Read the librarymodels.
read_netlist spec_lib.v -library

3. Create the designmodel.
run_build_model spec_chip

4. Perform design rule checking.
run_drc spec_chip.spf

5. Write the image file.
write_image spec_chip_post_drc.img -violations -replace

To read the image during a subsequent run, use the read_image command, as shown in the
following example:
read_image spec_chip_post_drc.img

Creating a Secure Image File
You can use a combination of set_commands and write_image commands to create a
secure image file.

Binary Image Files 11-23

TetraMAX ATPG User Guide K-2015.06-SP4

Note:When using a secure image file, the following neutral commands are always allowed:
exit, alias, unalias, help, source, c, and pwd.
To create a secure image file:

1. Read the netlist file, as shown in the following example:
read_netlist top.v

2. Read the librarymodels.
read_netlist spec_lib.v -library

3. Create the designmodel.
run_build_model spec_chip

4. Perform design rule checking.
run_drc spec_chip.spf

5. Use the set_commands command to specify all commands you want to allow in the
secure image. For example:
set_commands -secure add_equivalent_nofaults
set_commands -secure add_nofaults
set_commands -secure source
set_commands -secure help
set_commands -secure read_faults
set_commands -secure read_nofaults
set_commands -secure remove_nofaults
set_commands -secure report_licenses
set_commands -secure report_nofaults
set_commands -secure report_patterns
set_commands -secure report_version
set_commands -secure set_simulation
set_commands -secure run_diagnosis
set_commands -secure run_simulation
set_commands -secure set_patterns
set_commands -secure set_diagnosis

6. Use the write_image command to create the secure image. For example:
write_image image_enc.gz -password top_secret \
 -schematic_view -replace -garble

7. Generate the ATPGpatterns.
run_atpg -auto

8. Write the ATPGpatterns to a binary file.
write_patterns pat.bin -format binary

To read the secure image:

1. Force TetraMAX ATPG to BUILD mode, as shown in the following example:
build -force

Binary Image Files 11-24

TetraMAX ATPG User Guide K-2015.06-SP4

2. Read the image.
read_image image_enc.gz -password top_secret

3. Read the binary pattern format.
set_patterns -external pat.bin

4. Create the STIL/WGL patterns to be used with garbled image.
write_patterns pat_garbled.wgl -format wgl -external
write_patterns pat_garbled.stil -format stil -external

To translate a garbled name back to the original name:

1. Read the original design database, as shown in the following example:
read_netlist specnetlist.v

2. Create the designmode.
run_build_model ...

3. Perform design rule checking.
run_drc ...

4. Supply the garbled name as argument to get ungarbled name in output.
report_instances u43259 -ungarble

Save/Restore in TEST Mode
You can use the save/restore feature to reduce the time needed to read the netlists, build the
design, and run the design rule checker (DRC) for subsequent ATPG runs. This feature is
implemented through the write_image and read_image commands.
After a successful DRC run, use the write_image commandwhile in TESTmode to save the
in-memory TetraMAX database (gates) to a file. You can optionally save the DRC violations for
the C, D, L, S, X, and Z rules with the -violations option. When you later decide to domore
runs, issue a read_image command to read the database file and proceed.

Binary Image Files 11-25

12
Fault Lists and Faults
TetraMAX ATPGputs faults into various fault classes, each of which are organized into
categories.
The following topics describe the fault classes and explain how TetraMAX ATPGcalculates test
coverage statistics:

l Working with Fault Lists
l Fault Categories and Classes
l Fault SummaryReports
l Using ClockDomain-Based Faults

12-1

TetraMAX ATPG User Guide K-2015.06-SP4

Working with Fault Lists
TetraMAX ATPGmaintains a list of potential faults for a design, along with the categorization of
each fault. A fault list is contained in an ASCII file that can be read and written using the read_
faults and write_faults commands.
The following topics describe how to work with fault lists:

l Using Faults Lists
l Collapsed and Uncollapsed Fault Lists
l RandomFault Sampling
l Fault Dictionary

As shown in Example 1, a fault list contains one fault entry per line. Each entry consists of three
items separated by one or more spaces. The first item indicates the stuck-at value (sa0 or sa1),
the second item is the two-character fault class code, and the third item is the pin path name to
the fault site. Any additional text on the line is treated as a comment.
If the fault list contains equivalent faults, then the equivalent faultsmust immediately follow the
primary fault on subsequent lines. Instead of a class code, an equivalent fault is indicated by a
fault class code of “--”.

Example 1: Typical Fault List Showing Equivalent Faults
// entire lines can be commented
sa0 DI /CLK ; comments here
sa1 DI /CLK
sa1 DI /RSTB
sa0 DS /RSTB
sa1 AN /i22/mux2/A
sa1 UT /i22/reg2/lat1/SB
sa0 UR /i22/mux0/MUX2_UDP_1/A
sa0 -- /i22/mux0/A # equivalent to UR fault above it
sa0 DS /i22/reg1/MX1/D
sa0 -- /i22/mux1/X
sa0 -- /i22/mux1/MUX2_UDP_1/Q
sa1 DI /i22/reg2/r/CK
sa0 DI /i22/reg2/r/CK
sa1 DI /i22/reg2/r/RB
sa0 AP /i22/out0/EN
sa1 AP /i22/out0/EN

Note the following:
l TetraMAX ATPG ignores blank lines and lines that start with a double slash and a space
(//).

l You can control whether the fault list contains equivalent faults or primary faults by using
the -report option of the set_faults command or the -collapsed or -
uncollapsed option of the write_faults command.

Working with Fault Lists 12-2

TetraMAX ATPG User Guide K-2015.06-SP4

See Also
Persistent Fault Model Operations

Using Fault List Files
You can use fault list files tomanipulate your fault list in the following ways:

l Add faults from a file, while ignoring any fault classes specified
l Add faults from a file, while retaining any fault classes specified
l Delete faults specified by a fault list file
l Add nofaults (sites where no faults are to be placed) specified by a fault list file

To access fault list files, you use the read_faults and read_nofaults commands, which
have the following syntax:
read_faults file_name [-retain_code] [-add | -delete]

read_nofaults file_name

The -retain_code option retains the fault class code but behaves differently depending on
whether the faults in the file are new or replacements for existing faults:

l New Faults
For any new fault locations encountered in the input file, if the fault code is DS or DI, the
new fault is added to the fault list as DS or DI, respectively. For all other fault codes,
TetraMAX ATPGdetermineswhether the fault location can be classified asUU, UT, UB,
DI, or AN. If the fault location is determined to be one of these fault classes, the new fault is
added to the fault list and the fault code is changed to the determined fault class. If the fault
location was not found to be one of these special classes, the new fault is added with the
fault code as specified in the input file.

l Existing Faults
For any fault locations provided in the input file that are already in the internal fault list, the
fault code from the input file replaces the fault code in the internal fault list. TetraMAX
ATPGdoes not perform any additional analysis.

Collapsed and Uncollapsed Fault Lists
To improve performance, most ATPG tools collapse all equivalent faults and process only the
collapsed set. For example, the stuck-at faults on the input pin of a BUF device are considered
equivalent to the stuck-at faults on the output pin of the same device. The collapsed fault list
contains only the faults at one of these pins, called the primary fault site. The other pin is then
considered the equivalent fault site. For a given list of equivalent fault sites, the one chosen to be
the primary fault site is purely random and not predictable.
You can generate a fault summary report using either the collapsed or uncollapsed list using the
-report option of the set_faults command.

Example 1: Collapsed and Uncollapsed Fault SummaryReports

Working with Fault Lists 12-3

TetraMAX ATPG User Guide K-2015.06-SP4

TEST-T> set_faults -report collapsed

TEST-T> report_faults -summary

Collapsed Fault Summary Report

fault class code #faults
------------------------------ ---- ---------
Detected DT 120665
Possibly detected PT 3749
Undetectable UD 1374
ATPG untestable AU 6957
Not detected ND 6452

total faults 139197
test coverage 88.91%

TEST-T> set_faults -report uncollapsed
TEST-T> report_faults -summary

Uncollapsed Fault Summary Report

fault class code #faults
------------------------------ ---- ---------
Detected DT 144415
Possibly detected PT 4003
Undetectable UD 1516
ATPG untestable AU 8961
Not detected ND 7607

total faults 166502
test coverage 88.74%

Random Fault Sampling
Using a sample of faults rather than all possible faults can reduce the total runtime for large
designs. You can create a random sample of faults using the -retain_sample
percentage option of the remove_faults command.
The percentage argument of the -retain_sample option indicates a probability of
retaining each individual fault and does not indicate an exact percentage of all faults to be
retained. For example, if percentage = 40, for a fault population of 10,000, TetraMAX ATPG
does not retain exactly 4,000 faults. Instead, it processes each fault in the fault list and retains or
discards each fault according to the specified probability. For large fault populations, the exact
percentage of faults kept is close to 40 percent, but for smaller fault populations, the actual
percentagemight be a little bit more or less than what is requested, because of the granularity of
the sample.

Working with Fault Lists 12-4

TetraMAX ATPG User Guide K-2015.06-SP4

For example, the following sequence requests retaining a 25 percent sample of faults in block_
A and block_B and a 50 percent sample of faults in block_C.
TEST-T> add_faults /spec_asic/block_A
TEST-T> add_faults /spec_asic/block_B
TEST-T> remove_faults -retain_sample 50
TEST-T> add_faults /spec_asic/block_C
TEST-T> remove_faults -retain_sample 50

You can combine the -retain_sample option with the capabilities of defining faults and
nofaults from a fault list file for flexibility in selecting fault placement.
As an alternative to the remove_faults command, you can choose Faults > Remove Faults
to access the Remove Faults dialog box.

Fault Dictionary
In some products, a “fault dictionary” is used to translate a fault location into a pattern that tests
that location, and to translate a pattern number into a list of faults detected by that pattern.
TetraMAX ATPGdoes not produce a traditional fault dictionary. Instead, it supports a
diagnosticsmode that translates tester failure data into the design-specific fault location
identified by the failure data. For more information, see “DiagnosingManufacturing Test Failures
.”

Fault Categories and Classes
Faults are assigned to classes corresponding to their current fault detection or detectability
status. A two-character code is used to specify a fault class. Fault classes are hierarchically
defined: low-level fault classes can be grouped together to form a higher level fault classes.
Faults are only assigned the low fault classes but the high level fault classesmay be used for
reporting. The fault class hierarchy for all fault classes is as follows:

Fault Class Hierarchy
DT - Detected

DR - Detected Robustly
DS - Detected by Simulation
DI - Detected by Implication
D2 - Detected clock fault with loadable nonscan cell faulty value of 0 and 1
TP - Transition partially detected

PT - Possibly Detected

AP - ATPG Untestable Possibly Detected
NP - Not analyzed, Possibly Detected
P0 - Detected clock fault and loadable nonscan cell faulty value is 0

Fault Categories and Classes 12-5

TetraMAX ATPG User Guide K-2015.06-SP4

P1 - Detected clock fault and loadable nonscan cell faulty value is 1
UD - Undetectable

UU - Undetectable Unused
UO - Undetectable Unobservable
UT - Undetectable Tied
UB - Undetectable Blocked
UR - Undetectable Redundant

AU - ATPGUntestable

AN - ATPG Untestable Not-Detected
AX - ATPG Untestable Timing Exceptions

ND - Not Detected

NC - Not Controlled
NO - Not Observed

DT (Detected) = DR + DS + DI + D2 + TP
The "detected" fault class is comprised of faults which have been identified as "hard" detected. A
hard detection guarantees a detectable difference between the expected value and the fault
effect value. The detection identification can be performed by simulation or implication analysis.

l DR (Detected Robustly)
DR faults are hard detected by the fault simulator using weak non-robust (WNR), robust
(ROB), or hazard-free robust (HFR) testing criteria to mark path delay faults. During
ATPG, at least one pattern that caused the fault to be placed in this class is retained. This
classification applies only to Path Delay ATPG.

l DS (Detected by Simulation)
DS faults are hard detected by explicit simulation of patterns. During ATPG, at least one
pattern that caused the fault to be placed in this class is retained.

l DI (Detected by Implication)
DI faults are detected by an implication analysis. Faults which reside on pins which are in
the scan chain path are declared detected due to the application of a scan chain functional
test. Faults on ungated circuitry that connect to the shift clock line of scan cells are also
considered detected by implication. Faults on ungated circuitry that connect to the set/reset
lines of scan cells and cause the set/reset to be active are also considered detected by
implication. No credit is given when the scan chain path ismultiply sensitized. Faults are
immediately placed into this fault class when they are added to the fault list.

l D2
A fault is classified asD2 if a clock fault is detected and the loadable nonscan cell faulty
value is set to both 0 and 1. Note that the loadable nonscan cells featuremust be active.
For more information, see "Using Loadable Nonscan Cells in TetraMAX."

Fault Categories and Classes 12-6

TetraMAX ATPG User Guide K-2015.06-SP4

l TP (Transition Partially-Detected)
TP faults are detected with a slack that exceeds theminimum slack bymore than value
specified by the -max_delta_per_fault option of the set_delay command. A TP
fault can continue to be simulated with the intention of getting a better test for the fault.

PT (Possibly Detected) = AP + NP + P0 + P1
l AP (ATPGUntestable, Possibly Detected)
AP faults are possibly detected faults. A faultymachine response will simulate an "X"
rather than a 1 or 0. Analysis has determined that the fault cannot be detected with the
current ATPGconstraints and restrictions so the fault is removed from the active fault list
and no further patterns for detecting this fault is attempted. At least one pattern which
demonstrates that the presence of the fault will simulate as X is retained unless the -pt_
credit option of the set_faults command has been used to indicate no credit should
be given for PT faults. The default PT credit is 50%.

l NP (Not Analyzed, Possibly Detected)
NP faults are identical to AP faults except that either analysis was not completed or could
not prove that the fault would always simulate as an X. It is still possible that a different
pattern could detect the fault and it's classification could becomeDS, until then it's
classification remainsNP and it remains in the active fault list. At least one pattern which
demonstrates that the presence of the fault will simulate as X is retained unless the -pt_
credit option of the set_faults command has been used to indicate no credit should
be given for PT faults. The default PT credit is 50%.

l P0
A fault is classified as P0 fault if a clock fault is detected and the loadable nonscan cell
faulty value is set to 0. This classification applies only if the loadable nonscan cells feature
is active. For more information, see "Using Loadable Nonscan Cells in TetraMAX."

l P1
A clock fault is classified as P1 if a clock fault is detected and the loadable nonscan cell
faulty value is set to 1. Note that the loadable nonscan cells featuremust be active. For
more information, see "Using Loadable Nonscan Cells in TetraMAX."

UD (Undetectable) = UU + UO + UT + UB + UR
The "undetectable" fault classes include faults which cannot be detected (either hard or
possible) under any conditions.When calculating test coverage, these faults are not considered
because they have no logical effect on the circuit behavior and cannot cause failures.

l UU (Undetectable Unused)
UU faults are located on circuitry with no connectivity to an externally observable point.
During the creation of the simulationmodel, the default is to remove this unused circuitry
which results in these faults not existing. To expose these faults, you need to select the -
nodelete_unused_gate option of the set build command. Faults are immediately
placed into this fault class when they are added to the fault list.

Fault Categories and Classes 12-7

TetraMAX ATPG User Guide K-2015.06-SP4

l UO (Undetectable Unobservable)

UO faults are similar to UU faults, except they are located on unused gateswith fanout
(i.e., gates connected to other unused gates). Faults on unused gateswithout fanout are
identified asUU faults.

l UT (Undetectable Tied)
A UT fault is located on a pin that is tied to a value that is the same as the fault value. Faults
are immediately placed into this fault class when they are added to the fault list.

l UB (Undetectable Blocked)
A UB fault is located on circuitry that is blocked from propagating to an observable point
due to tied logic. Faults are immediately placed into this fault class when they are added to
the fault list.

l UR (Undetectable Redundant)
URs fault are undetectable (using both hard detection and possible detection). Test
generation fault analysis is performedwhen adding faults, during pattern-by-pattern test
generation (as a result of the run_atpg command), and as a dedicated analysis of local
or global redundancies (also as a result of run_atpg). When adding faults (using the
add_faults command), an analysis is performed to identify and remove from the active
list those faults which can easily be shown to be AU or UR. A simple form of ATPG is used
during this analysis. Fault grading can never place a fault in this class.

AU (ATPG Untestable) = AN
"ATPG Untestable" faults include faults which can neither be hard detected under the current
ATPGconditions nor proved redundant. When calculating test coverage, these faults are
considered the same as untested faults because they have the potential to cause failures.

l AN (ATPGUntestable, Not Detected)
AN faults have not been possibly detected and an analysis was performed to prove it
cannot be detected under current ATPGconditions. The analysis also failed the
redundancy check. Faults can immediately be placed in this class if they are inconsistent
with the pre-calculated constrained value information. Others can require test generation
analysis. After they are placed in this class, they are removed from the active fault list and
not given any further opportunity to become possible detected. Primary reasons for faults
in this classification include:

l Fault untestable due to a constraint which is in effect.
l Fault requires sequential patterns for detection.
l Fault can only be possible detected.
l Fault requires using an unresolvable Z state for detection.

l AX (ATPGUntestable, Timing Exceptions)

For each fault affected by SDC (SynopsysDesign Constraints) timing exceptions, if all the
gates in both the backward and forward logic cones are part of the same timing exception
simulation path, then the fault ismarked AU and is assigned an AX subclass. This analysis

Fault Categories and Classes 12-8

TetraMAX ATPG User Guide K-2015.06-SP4

finds the effects of setup exceptions, so it does not affect exceptions that are applied only to
hold time.

To enable this type of analysis, use the set_atpg -timing_exceptions_au_
analysis command. To configure separate reporting of these faults, use the set_
faults -summary verbose command.

Note that AX analysis is applied only for transition delay faults. The commands used for AX
analysis are accepted for other fault models, but the results will not show any AX faults.

ND (Not Detected) = NC + NO
AnND fault indicates that test generation has not yet been able to create a pattern that controls
or observes the fault. For these faults, it is possible that increasing the ATPGeffort with the
set_atpg -abort_limit commandwill result in these faults becoming some other
classification.

l NC (Not Controlled)
The NC fault class indicates that no pattern was yet found that would control the fault site
to the state necessary for fault detection. This is the initial default class for all faults.

l NO (Not Observed)
The NO fault class indicates that, although the fault site is controllable, that no pattern has
yet been found to observe the fault so that credit can be given for detection.

Fault Summary Reports
The following sections describe the various types of summary reports:

l Fault SummaryReport Examples
l Test Coverage
l Fault Coverage
l ATPGEffectiveness

Fault Summary Report Examples
By default, TetraMAX ATPGdisplays fault summary reports using the five categories of fault
classes, as shown in Example 1.

Example 1: Fault SummaryReport: Test Coverage

Uncollapsed Fault Summary Report

fault class code #faults
------------------------------ ---- ---------
Detected DT 144361
Possibly detected PT 4102

Fault Summary Reports 12-9

TetraMAX ATPG User Guide K-2015.06-SP4

Undetectable UD 1516
ATPG untestable AU 8828
Not detected ND 7695

total faults 166502
test coverage 88.74%

For a detailed breakdown of fault classes, use the -summary verbose option of the set_
faults command:
TEST-T> set_faults -summary verbose

Example 2 shows a verbose fault summary report, which includes the fault classes in addition to
the fault categories.
Example 2: Verbose Fault Summary Report

Uncollapsed Fault Summary Report

fault class code #faults
------------------------------ ---- ---------
Detected DT 144415
 detected_by_simulation DS (117083)
 detected_by_implication DI (27332)
Possibly detected PT 4003
 atpg_untestable-pos_detected AP (403)
 not_analyzed-pos_detected NP (3600)
Undetectable UD 1516
 undetectable-unused UU (4)
 undetectable-tied UT (565)
 undetectable-blocked UB (469)
 undetectable-redundant UR (478)
ATPG untestable AU 8961
 atpg_untestable-not_detected AN (8961)
Not detected ND 7607
 not-controlled NC (503)
 not-observed NO (7104)

total faults 166502
test coverage 88.74%

The test coverage figure at the bottom of the report provides a quantitativemeasure of the test
pattern quality. You can optionally choose to see a report of the fault coverage or ATPG
effectiveness instead.
The three possible qualitymeasures are defined as follows:

l Test coverage = detected faults / detectable faults
l Fault coverage = detected faults / all faults
l ATPGeffectiveness = ATPG-resolvable faults / all faults

Fault Summary Reports 12-10

TetraMAX ATPG User Guide K-2015.06-SP4

Test Coverage
Test coverage gives themost meaningful measure of test pattern quality and is the default
coverage reported in the fault summary report. Test coverage is defined as the percentage of
detected faults out of detectable faults, as follows:

PT_credit is initially 50 percent and AU_credit is initially 0. You can change the settings for PT_
credit or AU_credit using the set_faults command.
By default, the fault summary report shows the test coverage, as in Example 1 and Example 2.

Fault Coverage
Fault coverage is defined as the percentage of detected faults out of all faults, as follows:

Fault coverage gives no credit for undetectable faults; PT_credit is initially 50 percent.
To display fault coverage in addition to test coverage with the fault summary report, use the -
fault_coverage option of the set_faults command.
Example 3 shows a fault summary report that includes the fault coverage.
Example 3: Fault Summary Report: Fault Coverage
TEST-T> set_faults -fault_coverage
TEST-T> report_faults -summary

Uncollapsed Fault Summary Report

fault class code #faults
------------------------------ ---- ---------
Detected DT 144361
Possibly detected PT 4102
Undetectable UD 1516
ATPG untestable AU 8828
Not detected ND 7695

total faults 166502
test coverage 88.74%
fault coverage 87.93%

Fault Summary Reports 12-11

TetraMAX ATPG User Guide K-2015.06-SP4

ATPG Effectiveness
ATPGeffectiveness is defined as the percentage of ATPG-resolvable faults out of the total
faults, as follows:

In addition to faults that are detected, full credit is given for faults that are proven to be untestable
by ATPG. PT_credit is initially 50 percent.
To display ATPGeffectivenesswith the fault summary report, use the -atpg_
effectiveness option of the set_faults command. Example 4 shows a fault summary
report that includes the ATPGeffectiveness.
Example 4: Fault Summary Report: ATPG Effectiveness
TEST-T> set_faults -atpg_effectiveness
TEST-T> report_faults -summary

Uncollapsed Fault Summary Report

fault class code #faults
------------------------------ ---- ---------
Detected DT 144361
Possibly detected PT 4102
Undetectable UD 1516
ATPG untestable AU 8828
Not detected ND 7695

total faults 166502
test coverage 88.74%
fault coverage 87.93%
ATPG effectiveness 94.30%

See Also
Direct Fault Crediting

Using Clock Domain-Based Faults
TetraMAX ATPG includes a set of command options that enable you to report fault coverage for
transition or stuck-at faults on a per-clock domain basis. You can also add or remove faults for
particular clock domains so that ATPGor fault simulation targets only those clock domains that
are of interest.

Using Clock Domain-Based Faults 12-12

TetraMAX ATPG User Guide K-2015.06-SP4

Note the following when using this feature:
l TetraMAX ATPGdistinguishes faults captured by a clock and launched by a clock:

l Faults are considered to be captured by a clockwhen they feed a logic cone that
enters the data input of a flip-flop clocked by that clock.

l Faults are considered to be launched by a clockwhen they are fed by a logic cone
starting from the output of a flip-flop clocked by that clock.

l The clock, set, and reset inputs of flip-flops are not considered when determining
capture; faults leading to them are captured by the NO_CLOCK domain.

l Faults within the logic core of more than one clock are not considered to belong to either
domain. Instead, they are put into a separate category calledMULTIPLE. Thus, the clock
domain faulting is called exclusive because each clock domain excludes the effects of other
clocks.

l Faults given the status Detected by Implication (DI) are detected by the scan chain
load/unload sequence. This sequence uses shift constraints which can differ dramatically
from the capture constraints that are used to calculate launch and capture clocks for
reporting faults by clock domain. This often results in DI faults being reported as captured
by the NO_CLOCK domain if the shift path is blocked by the capture constraints. If shift-
only clocks are used, this can result in DI faults being both launched and captured by the
NO_CLOCK domain.

l Faults that can be launched by one clock and PI/PIO, or that can be captured by one clock
and PO/PIO, are not consideredMULTIPLE faults. These faults are added, removed, or
reported when only the one clock is specified as the launch or capture clock, and they are
considered exclusive faults.

l When the special domains PI, POor NO_CLOCK are specified, the only faults added are
those launched or captured exclusively by the specified domain, unless shared faults are
also specified. These domains are treated in amore restricted way because they generally
cannot be used to test transition delay faults, so the ability to add them is includedmainly
for the sake of completeness.

When adding faults launched and captured by specific clocks and also other clocks, asmany as
four commandsmay be required. For example:

l The add_faults -launch A -capture B command adds faults launched
exclusively by A and captured exclusively by B.

l The add_faults -launch A -capture B -shared command adds faults
launched by A and another clock and captured by B and another clock.

l The add_faults -launch A -capture B -shared_launch command adds
faults launched by A and another clock and captured exclusively by B.

l The add_faults -launch A -capture B -shared_capture command adds
faults launched exclusively by A and captured by B and another clock.

Table 1 list all the commands and command options associated with reporting clock domain-
based faults.

Using Clock Domain-Based Faults 12-13

TetraMAX ATPG User Guide K-2015.06-SP4

Table 1: Commands andOptionsUsed for Reporting ClockDomain-Based Faults

Command Description

add_faults
-launch
launch_clock

Specifies the launch clock of the faults to be added. You can
use this switch independently, or in conjunction with the -
capture switch.

add_faults
-capture

clock_name

Specifies the capture clock of the faults to be added. You can
use this switch independently, or in conjunction with the -
launch switch .

add_faults
-exclusive

Specifies that only the faults that are driven and captured
exclusively (using a single launch and a single capture) are to
be added. Faults exclusively driven by PI or observed by PO
are also added.

add_faults
-shared

Specifies that only the faults that are launched or captured by
multiple clocks should be added. This excludes all PI and PO
faults described in the add_faults options described
previously.

add_faults
-shared_launch

Specifies that faults launched by the specified clock
and other clocks are added. An error is reported if you
specify this switch without also using the -launch
option.

add_faults
-shared_capture

Specifies that faults captured by the specified clock
and other clocks are added. An error is reported if you
use this switch without also using the -capture
option.

add_faults
-inter_clock_domain

Adds only exclusive faults that are driven and captured by
different clock domains.

add_faults
-intra_clock_domain

Adds only exclusive faults that are driven and captured by the
same clock domains.

remove_faults
-launch clock_name

Specifies the launch clock of the faults to be removed. You can
use this switch independently, or in conjunction with the -
capture switch (described later).

Using Clock Domain-Based Faults 12-14

TetraMAX ATPG User Guide K-2015.06-SP4

remove_faults
-capture clock_name

Specifies the capture clock of the faults to be removed. You
can use this switch independently, or in conjunction with the -
launch switch (described previously).

remove_faults
-exclusive

Specifies that only the faults that are driven and captured
exclusively (using a single launch and a single capture) are to
be removed. Faults exclusively driven by PI or observed by PO
are also removed.

remove_faults -
shared

Specifies that only the faults that are launched or captured by
multiple clocks should be removed. This excludes all PI and PO
faults (described in the remove_faults options previously).

remove_faults
-inter_clock_domain

Removes only exclusive faults that are driven and captured by
different clock domains.

remove_faults
-intra_clock_domain

Removes only exclusive faults that are driven and captured by
the same clock domains.

report_faults
-per_clock_domain

All specified faults are reported with extra information for their
launch and capture clocks. Note that all clocks are reported,
even for "shared" or "multiple" categories.

report_summaries
faults
-per_clock_domain

Specifies that the clock report should be divided on a per clock
domain basis as shown in the following example. All shared
faults are reported as one category.

report_summaries
faults
-launch clock_name

Specifies the launch clock of the faults to be reported on. This
switch can be used independently, or in conjunction with the -
capture switch.

report_summaries
faults -capture
clock_name

Specifies the capture clock of the faults to be reported on. This
switch can be used independently or in conjunction with the -
launch switch (described previously.

report_summaries
faults -exclusive

Excludes themultiple launch and capture section from the
report.

report_summaries
faults -shared

Reports only the section relating tomultiple launch and capture
clocks.

Using Clock Domain-Based Faults 12-15

TetraMAX ATPG User Guide K-2015.06-SP4

report_summaries
faults
-inter_clock_

domain

Reports on only the exclusive faults that are driven and
captured by different clock domains.

report_summaries
faults
-intra_clock_

domain

Reports on only the exclusive faults that are driven and
captured by the same clock domains.

Using Signals That Conflict With Reserved Keywords
The MULTIPLE, NO_CLOCK, PI, and PO names are reserved keywordswhen you use the -
launch and -capture options. If a clock signal uses one of these names, the clock signal
always takes priority when these options are used.
For example, if a clock is namedMULTIPLE, then the command add_faults -launch
MULTIPLE adds faults launched exclusively by the clock namedMULTIPLE. In this case, if you
want to add faults launched bymultiple clocks, you can use the command add_faults -
launch multiple. This commandworks as expected because the reserved names can be
all uppercase or all lowercase; however, the actual clock names are case-sensitive.

Finding Particular Untested Faults Per Clock Domain
If you specify the report_summaries faults -per_clock command, TetraMAX ATPG
provides only aggregate results. To find individual faults, specify the report_faults -per_
clock_domain command, then use UNIX editing commands tomanipulate the faults of
interest.

Using Clock Domain-Based Faults 12-16

TetraMAX ATPG User Guide K-2015.06-SP4

13
Optimizing ATPG
You can specify a variety of parameters to control the ATPGprocess. The "Running ATPG"
section describes some of the basic ATPGsettings you canmake, including running the APTG
mode and setting a test coverage target value. You can further optimize the ATPGprocess by
setting ATPGconstraints and test points, limiting the number of patterns and aborted decisions,
applying patternmasking, and runningmulticore ATPG.
The following sections describe the various settings you canmake to optimize ATPG:

l Using ATPGConstraints
l Using the RandomDecision Option
l Obtaining Target Test Coverage Using Fewer Patterns
l Maximizing Test Coverage Using Fewer Patterns
l Improving Test CoverageWith Test Points
l Optimizing Basic Scan Patterns
l Limiting the Number of Patterns
l Limiting the Number of Aborted Decisions
l Creating Test Patterns for Diagnosing Scan Chain Failures
l Creating End-of-CycleMeasures in ATPGPatterns
l Per-Cycle PatternMasking
l Deleting Top-Level Ports FromOutput Patterns
l Detecting FaultsMultiple Times
l WGLPattern Generation Options
l RunningMulticore ATPG
l Running Logic Simulation
l Data Volume and Test Application TimeReduction Calculations

13-1

TetraMAX ATPG User Guide K-2015.06-SP4

Using ATPG Constraints
You can use ATPGconstraints to define internal restrictions that you cannot define with the
add_pi_constraints command. ATPGconstraints are in effect during ATPGand optionally
during test design rule checking (DRC). The use of ATPGconstraints is illustrated in the
following examples:

l Usage Example 1
l Usage Example 2

Usage Example 1
In this example, a librarymodule called FIFOhas two control inputs, push and pop. Under
normal operation, the control logic for push and pop ensures that both are never asserted at the
same time. However, under the random conditions of ATPG, this control is not guaranteed. To
ensure that push and pop are never asserted at the same time, you can define an ATPG
constraint at themodule level by first adding a temporary gate to facilitate the ATPGconstraint
and then defining the constraint itself.
You want a logic function with a single output that can bemonitored to determine that the push
and pop pins are at the required logic states. The following steps describe how to define an
ATPGprimitive to implement this logic function:

1. Choose Constraints > ATPGPrimitives > Add ATPGPrimitives. The Add ATPG
Primitives dialog box appears.

2. In the Type list, select the ATPGprimitive SEL01. (For a list of all available ATPG
primitives, see the online reference for the add_atpg_primitives command.) The
SEL01 function produces a 1 as its output if all inputs are 0 or if only one input is 1 and the
rest are 0. For the example two-input implementation, SEL01 produces a 0 only if both
inputs are 1.

3. In the ATPGPrimitive Name field, type the name you want to give this primitive.
4. In theModule field, type the name of themodule in which you want this primitive to be.
5. In the Input Constraints field, enter the inputs that are to be constrained (in this case, push

and pop). Click Add after each entry. The inputs are added to the list in the Input
Constraints window

6. ClickOK.

Alternatively, you can add the primitive using the add_atpg_primitives command, as
shown in the following example:
DRC-T> add_atpg_primitives FIFO_CTRL sel01 -module FIFO push pop

The new gate, FIFO_CTRL, is added to themodule FIFOand uses themodule-level pins
named push and pop as input to the SEL01 function. The output pin of the function is
referenced by the name FIFO_CTRL.
If necessary, you can addmore primitives and cascade the logic to build more complex logic
functions.

Using ATPG Constraints 13-2

TetraMAX ATPG User Guide K-2015.06-SP4

To apply a constraint to the output of the newly added primitive, you can use the add_pi_
constraints command, as shown in the following example:
DRC-T> add_atpg_constraints spec_LABEL 1 -module FIFO FIFO_CTRL

This command defines a constraint, referenced by spec_LABEL, that holds the output FIFO_
CTRL to a 1 value. SEL01 cannot have an output of 1 if both of its inputs are 1, so this constraint
ensures that the pins push and pop are never asserted at the same time.

Usage Example 2
In this example, a combinational gate is buried within the design hierarchy. Under random
conditions, there is a timing-sensitive path causing attempts to generate ATPGpatterns to fail
simulation. Your analysis concludes that if you could hold two of the pins of a four-input NAND
gate at a high value, you could block the use of this timing-sensitive path.
The instance path name of the NAND gate is asic_top/BRL/regbank2/u1, and the input
pins you want to control are A and C.
The following steps describe how to add the required constraints:

1. Choose Constraints > ATPGConstraints > Add ATPGConstraints. The Add ATPG
Constraints dialog box appears.

2. For each constraint, you specify a constraint name, the constraint site, and value.
3. You can apply the constraint to a single site or to selected pins of all instances of amodule.
4. ClickOK.

You can also add the constraints using the add_pi_constraints command, as shown in the
following example:
BUILD-T> add_atpg_constraints NAND_BLK2 1 /asic_top/BRL/u1/C

Using the Random Decision Option
You can use the RandomDecision check box in the Run ATPGdialog box to specify how
TetraMAX ATPGmakes the initial choice for any algorithm decision cone timerning ATPG
pattern generation. By default, RandomDecision is off and the initial choice ismade based on
controllability criteria. Checking RandomDecision for ATPGpattern compression can result in a
smaller number of patterns.
The following set_atpg command is equivalent to checking the RandomDecision check box:
TEST-T> set_atpg -decision random

See Also
Specifying ATPG Settings

Using the Random Decision Option 13-3

TetraMAX ATPG User Guide K-2015.06-SP4

Obtaining Target Test Coverage Using Fewer
Patterns
To obtain a target test coverage value while minimizing the number of patterns, follow the
procedure for obtainingmaximum test coverage and set the coverage percentage (-coverage
option) to a number between 1 and 99 that represents your target test coverage.
Note: TetraMAX ATPGcreates patterns in groups of 32 and checks this limit at each 32-pattern
boundary, so the patterns generatedmight exceed the target test coverage.
Review the transcript. If you find that your target ismet with the first few patterns of the last
group of 32 and you do not want to include all of the last group of patterns, use the write_
patterns -last command to truncate the patternswritten as output at the point at which the
target wasmet.
The target coverage is affected by your use of the set_faults -report command. If fault
reporting is set to collapsed, the target percentage is in collapsed fault numbers. If fault reporting
is set to uncollapsed, the target percentage is in uncollapsed numbers. The test coverage
obtained through the uncollapsed fault list is usually higher and within a few percentage points of
the test coverage obtained through the collapsed fault list (note, however, test coverage can
slightlymore with the fault report set to collapsed compared to the test coverage with fault
coverage set to uncollapsed). To be conservative, set fault reporting to collapsed before you
generate patterns for a specific target coverage.When you have finished, display the test
coverage using the uncollapsed fault list numbers. Often, the actual test coverage achieved is
higher than your target.

Maximizing Test Coverage Using Fewer Patterns
To obtain themaximum test coverage while minimizing the number of patterns:

1. Obtain an estimate of test coverage using theQuick Test Coverage technique. For details,
see "Quickly Estimating Test Coverage." If you are not satisfied with the estimate,
determine the cause of the problem and obtain satisfactory test coverage before you
attempt to achieveminimumpatterns.

2. Set the abort limit to 100–300.
3. Set themerge effort to High.
4. Execute run_atpg -auto_compression.
5. Examine the results. If there are still toomanyNC or NO faults remaining, increase the

Abort Limit by a factor of 2 and execute run_atpg again.

Obtaining Target Test Coverage Using Fewer Patterns 13-4

TetraMAX ATPG User Guide K-2015.06-SP4

Improving Test Coverage With Test Points
You can improve TetraMAX test coverage by adding control and observation points to specific
areaswith known low controllability and observability. TetraMAX ATPG then generates
additional patterns for faults that are controlled or fed into these points. This process is
particularly useful if you want to achieve very high test coverage targets— usually in the 99
percent range.
You can use TetraMAX ATPG to further improve test coverage by performing an analysis to
determine the optimal placement of test points.
The following sections describe how to improve test coverage with test points:

l Test Points Analysis Options
l Running the Test Points Analysis Flow
l Limitation

Test Points Analysis Options
You can use the analyze_test_points command to select a particular type of analysis:
analyze_test_points –target <pattern_reduction | testability |
fault_class>

The analysis options are described as follows:
l pattern_reduction—Uses static analysis with SCOAP (Sandia Controllability and
Observability Analysis Program) numbers to target reduced pattern size with observe
points (does not require prior ATPG).

l testability—Uses iterative static analysis with random patterns to target improved
test coverage with control and observe points (does not require prior ATPG).

l fault_class—Uses dynamic analysis with fault cone topology to target improved test
coverage with observe points for fault classes (requires initial ATPG for analysis of fault
cones).

Running the Test Points Analysis Flow
The following steps describe the flow for running test-point insertion:

1. Run the run_atpg –auto command or use any other method for generating patterns.
Note: If you do not performATPGbefore running the analyze_test_points
command, all undetected faults are analyzed, whichmight result in very long runtimes.

2. Run the analyze_test_points command to generate a list of test points. For
example:
analyze_test_points -target fault_class -test_points_file tp_
file_a

Improving Test Coverage With Test Points 13-5

TetraMAX ATPG User Guide K-2015.06-SP4

Note: You can run the analyze_test_points -target testability or the
analyze_test_points -target pattern_reduction commands before or
after ATPG to obtain a list of test points. A previous ATPG run is only required when you
use the -target fault_class option with the analyze_test_points
command.

3. Use the run_atpg –auto command to launch another ATPG run. TetraMAX ATPG
estimates the test coverage improvement by reading in the generated test points file. For
example:
run_atpg –auto –observe_file tp_file_a

Note: The total number of faults reported after running ATPGwill not include the faults
from the additional test points.

4. Use DFT Compiler to insert the test points by reading in the file generated by the
analyze_test_points command, then rerun TetraMAX ATPGon the new netlist to
generate the final ATPGpatterns and coverage.

Limitation
Note the following limitation associated with test points analysis:

l If you have a LSSD design, you can use the analyze_test_points command in
TetraMAX ATPG. However, DFT Compiler does not support the insertion of observe and
control test points on this style of scan. In this case, a TESTXG-61message is issued in
DFT Compiler.

Optimizing Basic Scan Patterns
You can use the -optimize_patterns option of the run_atpg command to produce a
compact set of patternswith high test coverage. This option enables you to use a single run_
atpg command instead of iteratingmultiple run_atpg commands andmanually adjusting
various parameters.

When the -optimize_patterns option is set, TetraMAX ATPGmonitors the ATPGprocess
and dynamically adjusts the internal algorithms to generate a compact pattern set. The trade-off
is a longer runtime. All manually specified run_atpg settings, such as abort limits, minimum
detects, andmerge limits, are ignored during this operation. However, these settings are
restored after pattern optimization is completed.

Note that the -optimize_patterns option generates two-clock ATPGpatterns as basic
scan patterns. But they are stored, read, and simulated as fast-sequential patterns. As a result, a
fault simulation that uses two-clock ATPGpatterns usually takes longer than the original ATPG
run.

The -optimize_patterns option of the run_atpg commandwill work with the -chain_
test, -coverage, and -patterns options of the set_atpg command. This option also

Optimizing Basic Scan Patterns 13-6

TetraMAX ATPG User Guide K-2015.06-SP4

workswith all power aware options of the set_atpg command. However, the power aware
optionsmight impact the effectiveness of the pattern optimization process.

The -optimize_patterns option is useful during a final TetraMAX ATPG run when you
want to optimize the pattern count. It generates a lower number of patterns and produces similar
test coverage compared to a single run_atpg -auto_compression command. You
cannot use the -optimize_patterns option with any additional run_atpg options.

You should use the run_atpg -auto_compression command for general pattern
generation purposes, such as initial test coverage estimates, writing patterns for verification,
analyzing the effects of various options, and obtaining good test coverage and pattern count
without increased runtimes. For details on using the -auto_compression option, see Using
AutomaticMode to Generate Optimized Patterns.

Note the following limitationswhen using the -optimize_patterns option:

l Multiple run_atpg commands are supported, but pattern optimization can only be
specified one time.

l A learned recipe is not saved.
l Fast-Sequential and Full-Sequential ATPGmodes are not supported.
l Be aware that unlike the run_atpg -auto_compression command, specifying set_
atpg -capture_cycle number will not enable Fast-Sequential ATPGduring the
pattern optimization process. To run Fast-Sequential top-off ATPG, it must be done as an
extra step. For example:
run_atpg –optimize_patterns

set_atpg –capture 4

run_atpg -auto fast_sequential

l Only stuck-at and transition fault models are supported.
l Distributed APTG is not supported.

Limiting the Number of Patterns
By default, the number of ATPGpatterns TetraMAX ATPGproduces is limited only by the RAM
and disk space of your computer or workstation. You can specify a limit on the number of
patterns by entering an integer value in theMaxPatterns field of the Run ATPGdialog box, or by
issuing a command similar to the following example:
TEST-T> set_atpg -patterns 1234

If there is a pattern limit in effect, you can turn it off by running the value 0 as the pattern limit.

Limiting the Number of Patterns 13-7

TetraMAX ATPG User Guide K-2015.06-SP4

Limiting the Number of Aborted Decisions
The search for a pattern by the ATPGalgorithm involvesmaking a decision and certain
assumptions, setting inputs and scan chain values, and determining whether controllability and
observability can be attained.When an assumption is proved false or some restriction or
blockage is encountered, the algorithm backs up, remakes the decision, and proceeds until the
abort limit is reached or a pattern is found to detect the fault.
To control the level of effort used in searching for a pattern to detect a specific fault, use the -
abort_limit option of the set_atpg command or enter a number in the Abort Limit field of
the Run ATPGdialog box. The default limit is 10. Higher numbers indicate higher levels of effort.
The default of 10 has been found to return reasonable results for most designs. Some possible
reasons for adjusting the abort limit are,

l Youwant a quick estimate of total coverage (see “Quickly Estimating Test Coverage”.
l You find that after performing pattern generation, you have ND (not detected) faults
remaining. See “Analyzing the Cause of Low Test Coverage”.

l You have aborted buses reported during design rule checking (DRC). See “Analyzing
Buses”.

l You are using a high compression effort and you want to generate enough patterns to
ensure that the CPU time spent merging patterns is worthwhile.

Creating Test Patterns for Diagnosing Scan Chain
Failures
By default, the run_atpg command creates an initial pattern, called a chain test, to test scan
cells, scan clocking, and scan enable signals. This pattern does not pulse capture clocks or
asynchronous set and reset signals. It only loads and unloads the repeating pattern of 0 and 1
signals. If the chain test pattern fails, TetraMAX ATPGassumes that all failures are caused by
scan chain defects.

If your design usesDFTMAX compression with high X-tolerance, you can use the
-xtol_chain_diagnosis option of the set_atpg command to create additional patterns
that improve the identification of failing scan chains, failing scan cells, andmultiple chain defects.
When you specify the -xtol_chain_diagnosis option, the run_atpg command creates
two additional sets of patterns:

l X-tolerant chain tests (also known as augmented chain test patterns)
l X-tolerant capture patterns

After generating these additional pattern sets, the run_atpg command continues generating
normal capture patterns and targets the remaining undetected faults.

Limiting the Number of Aborted Decisions 13-8

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1 shows the components of the final generated pattern set when the
-xtol_chain_diganosis option is enabled.

Figure 1: Pattern Set Generated Using the -xtol_chain_diganosisOption

The following sections explain the process for generating test patterns for diagnosing scan chain
failures:

l Understanding DFTMAX UnloadModes and Chain Diagnosis Patterns
l Generating Pattern Sets

For more information on DFTMAX high X-tolerance scan compression, see the "Managing X
Values in Scan Compression" chapter in theDFTMAX User Guide.

Understanding DFTMAX Unload Modes and Chain Diagnosis Patterns
The X-tolerant chain tests and X-tolerant capture patterns use additional unloadmodes from the
high X-tolerance DFTMAX architecture. Thesemodes dynamically configure the compressor so
each internal scan chain is observed on nomore than one scan output pin of the device under
test. Thesemodes are classified as either N:1 or 1:1modes.

The N:1modes observemultiple internal scan chains on each scan output pin. The 1:1modes
observe a single internal scan chain on each scan output pin, which is optimal for mapping tester
failures back to a failing scan cell. Each 1:1mode can observe only a subset of all internal scan
chains, inversely proportional to the compression ratio. As a result, TetraMAX ATPG

Creating Test Patterns for Diagnosing Scan Chain Failures 13-9

TetraMAX ATPG User Guide K-2015.06-SP4

implements several 1:1modes so it can directly observe all internal scan chains. You can use the
report_compressors -unload command to report the number of unloadmodes and list
the 1:1modes.

The X-tolerant chain tests use the 1:1 X-tolerant modes to observe individual chains. Each 1:1
mode is enabled for 20 shift cycles, and each X-tolerant chain test pattern has an additional
padding pattern. To calculate the number of X tolerant chain test patterns, multiply the
compression ratio by 20 and divide by the number of shift cycles. You should double this number
to account for padding patterns. For example, a design with 32 scan I/Os, 1600 internal chains,
and amaximum chain length of 250 requires 8 (=2*1600*20/(32*250)) additional patterns.

The X-tolerant capture patterns use all available N:1 or 1:1 X-tolerant modes. These patterns
pulse capture clocks and target primary and secondary faults similar to patterns produced from
standard ATPG. However, X-tolerant capture patterns are optimized to improve the diagnosis of
failing scan cells, while standard ATPGmaximizes the number of faults detected per pattern.
When you specify the -xtol_chain_diagnosis low option of the set_atpg command,
32 capture patterns and 32 padding patterns are generated that use only N:1 X-tolerant modes.
Thesemodes provide a limited improvement for identifying failing scan cells. When the high
option is specified, TetraMAX ATPGgenerates 10 capture patterns for each available 1:1 X-
tolerant mode. Specifying the high option creates additional patternswhich provide a
significant improvement for diagnosing chain defects.

Generating Pattern Sets
To generate pattern sets for diagnosing scan chain failures, specify the
-xtol_chain_diagnosis option of the set_atpg command, followed by the run_atpg
command.

The following example creates a single pattern set for both accurate diagnosis of scan chain
defects and highmanufacturing test coverage:

TEST-T> set_atpg -xtol_chain_diagnosis high
TEST-T> run_atpg –auto

Youmight need two separate patterns sets: one for accurate diagnosis of scan chain defects
and another for highmanufacturing test coverage. You can use the
run_atpg -only_chain_diagnosis command to terminate ATPGafter generating the
X-tolerant chain tests and capture patterns. The following example shows how to generate a
separate pattern set for diagnosis of chain defects. This pattern set includes an additional 100
standard ATPGpatterns to further improve diagnosis resolution.

TEST-T> set_atpg -xtol_chain_diagnosis high
TEST-T> run_atpg -only_chain_diagnosis –auto
TEST-T> set_atpg -xtol_chain_diagnosis off
TEST-T> set_atpg -patterns [expr [sizeof_collection \

[get_patterns -all]] + 100]
TEST-T> run_atpg –auto

Creating Test Patterns for Diagnosing Scan Chain Failures 13-10

TetraMAX ATPG User Guide K-2015.06-SP4

See Also
Performing Scan Chain Diagnosis
Preparing for ATPG

Creating End-of-Cycle Measures in ATPG Patterns
The TetraMAX combinational ATPGalgorithm is based on a preclockmeasure of scan
outputs and regular design outputs. This preclockmeasure requires a fundamental event order
within a tester cycle of:

l Force inputs
l Measure outputs
l Pulse capture clocks (optional)

This preclockmeasure has been chosen because it enables superior ATPGpattern generation
performance without compromising on pattern count or tester cycle count.
Many ASIC vendors and users prefer to have patternswith an event order using postclock or
End-of-Cyclemeasures. A postclockmeasure seems to be amore comfortable form because it
matches the event order of most functional patterns and is perhaps easier to debug.
Many ASIC vendors claim that they can only accept postclockmeasure format. It is rare to find
an ASIC tester which does not support the preclockmeasure. More often than not it is a
software translation limitation rather than a tester limitation. The fundamental event order for a
postclockmeasure cycle is:

1. Force inputs
2. Pulse capture clocks (optional)
3. Measure outputs

The TetraMAX combinational ATPGalgorithmwill not produce this postclock form of patterns.
However, the postclock style of patterns can be created using some post processing techniques
applied during the write_patterns command.

Drawbacks of Using End-of-Cycle Measures
Here are some drawbacks of creating End-of-Cycle style ATPGpatterns:

l The internal pattern format is in preclock format and attempting to compare internal
patterns to an external form in STIL, Verilog, VHDL, etc. ismore difficult.

l At least one additional tester cycle is needed for every ATPGpattern. This additional cycle
is placed in the load_unload procedure and performs a scan chain pre-measure before the
Shift procedure.

l Capture Clock procedures cannot be condensed into a single tester cycle andmust be
defined with aminimumof 2 tester cycles. The first cycle performs a force PI, measure PO,
and the second cycle performs an optional clock pulse.

Creating End-of-Cycle Measures in ATPG Patterns 13-11

TetraMAX ATPG User Guide K-2015.06-SP4

In general terms, the cost of implementing the End-of-Cyclemeasure is two additional tester
cycles for every ATPGpattern generated. There is no increase or decrease to overall test
coverage or the number of ATPGpatterns produced by choosing End-of-Cyclemeasures over
preclockmeasure. This can or cannot be significant, depending upon your budget for test cycles
or tester time.

Requirements Needed to Produce End-of-Cycle Measures
To create End-of-Cycle style ATPGpatternswith the write_patterns command the
following setup steps are required:

1. The DRC procedure file must contain a timing definition block and the time at
which outputs and scan outputs are measured must be defined to occur at
the end of a test cycle, after any potential clock pulses.

2. All capture procedures must be defined using two or more test cycles and
the event order must be:
cycle 1: force PI's, measure PO's
cycle 2: mask PO's, pulse clocks

3. The load_unload procedure must pre-measure the first scan chain output
before the first scan shift is performed.

In this case, you are still measuring outputs before a clock. You do not change the fundamental
event order whichmust continue to be: 1) force PI's, 2) measure PO's, 3) pulse clocks; make
sure that relative to a single tester cycle timing, themeasures occur after any clock pulses. For
example, if you define tester timing for a 100nS period in which PI's are forced at offset zero, a
clock is pulsed from 50 to 70ns and outputs aremeasured at 99ns, then your "capture_XXX"
procedures produce a 2-cycle timing of:
 time action cycle
 ---- ------------------------------- -----
 000 force PI's 1
 050 assert clock (but inhibited) 1
 070 remove clock 1
 099 measure PO's 1
 100 force PI's (no change needed) 2
 150 assert clock 2
 170 remove clock 2
 199 measure PO's (masked) 2

The fundamental event order is still that of the preclock timing under which the ATPGpatterns
are generated but the per cycle timing is such that measures are performed at the end of a tester
cycle.

Creating End-of-Cycle Measures in ATPG Patterns 13-12

TetraMAX ATPG User Guide K-2015.06-SP4

See Also
write_patterns
End-of-Cycle Measures and Load_Unload
End-of-Cycle Measures and Timing
End-of-Cycle Measures and Capture Procedures

Deleting Top-Level Ports From Output Patterns
Some netlist formats include nonlogic top-level ports (for example, power and ground). ATPG
patterns that include power and ground can create problemswith simulation. You can eliminate
these and other unwanted top-level ports from the generated patterns using the add_net_
connections command.
The following example removes the top-level input ports pwr1, pwr2, and pwr3 from the
generated patterns:
BUILD-T> add_net_connections pwr1 pwr2 pwr3 -remove

Note: This commandmodifies only the in-memory image of the design. These changes do not
appear in the output from the write_netlist command.

Detecting Faults Multiple Times Using N-Detect
TheN-detect feature attempts to detect faults n times in ATPG. The default is one fault
detection. During fault simulation, the fault is kept in the active list until it is detected n times.
Studies have shown that detecting faults with multiple patterns helps catch defects that cannot
bemodeled with standard fault models. Examples include transistor stuck-open or cell-level
faults.
Pattern size, memory consumption, and runtime is larger than with the default one fault
detection.
With the exception of the IDDQand path delay fault models, all other fault models are supported.
Multicore ATPG, distributed processing, Full-Sequential ATPG, and fault simulation are not
supported.
The N-detect capability is implemented with options of the run_atpg, run_fault_sim, and
report_faults. SeeOnline Help for each of these commands for descriptions of the N-
detect options.
N-detect ATPGshould be used in conjunction with the set_atpg -decision random
command to increase the probability of detecting the faults in different ways. Note that
TetraMAX ATPGdoes not guarantee that each fault is detected in different ways.

See Also
Distributed ATPGLimitations

Deleting Top-Level Ports From Output Patterns 13-13

TetraMAX ATPG User Guide K-2015.06-SP4

WGL Pattern Generation Options
The following sections explain the variousWGL pattern generation options:

l Creating LSI-CompatibleWGLPatterns
l Creating NEC-CompatibleWGLPatterns
l Scan Chain Padding
l Scan Chain Definition Choices
l Macro Usage
l Grouping Bidirectional Port Data
l Controlling Port Data Order
l SpecifyingWindowedMeasures inWGL
l Delayed Input Force Timing and Force Prior
l Balancing Vector and Scan Statements via Last Scan
l Mapping Bidirectional PortsWithin Vector Statements
l Mapping Bidirectional PortsWithin Scan Statements
l Adjusting Pattern Data for Serial vs. Parallel Interpretation
l Selecting Scan Chain Inversion Reference
l Effect of CELLDEFINE
l Ambiguity of theMaster Cell

See Also
set_wgl
set_buses

Creating LSI-Compatible WGL Patterns
To produce LSI-compatibleWGL output you need to use the set_drc, set_buses, set_
simulation, and set_wgl commands, as shown in the following example:
set_drc -nomulti_captures_per_load
set_buses -external_z x
set_simulation -xclock_gives_xout
set_rules c13 error
set_rules z4 error
set_wgl -nolast_scan
set_wgl -scan_map keep
set_wgl -pre_measured
set_wgl -inversion_reference master
set_wgl -chain_list shift
set_wgl -nomacro -nopad -nogroup_bidis
set_wgl -bidi_map { 0x 0- 1x 1- xx x- z0 -0 z1 -1 zx -x zz -z }

WGL Pattern Generation Options 13-14

TetraMAX ATPG User Guide K-2015.06-SP4

Note the following:

l Scan shifts must use a single tester cycle. For more information, see
"Defining the Shift Procedure."

l Scan Chain names defined in the STIL procedure file must not contain spaces
or other white space. For example, use "chain_1" instead of "chain 1".

l Youmust define the end-of-cycle timing, as follows:
a. The timing block must define the end-of-cycle measure. For more

information, see "Defining the End-of-Cycle Measure."
b. The load_unload procedure must use pre-measure scan outputs. For

more information, see "Defining the load_unload Procedure."
l You can use the ReflectIO protocol. However, unless all bidirectional pins are

fully controlled, you should avoid this protocol since it can create patterns
which fail in simulation and might contain contention when all BIDI pins are
not controlled.
For a design with bidirectional ports, the ReflectIO protocol causes each capture_XXX
procedure to use the reflectIO style of syntax. For example, you can define all clocks and
then issue the set_drc -bidi_control_pin command followed by a write_drc
command to create a template STIL procedure file. Thenmodify the capture_XXX
procedures to appear similar to the following 3-cycle protocol:
 capture_CLK {
 W _default_WFT_;
 V { _pi=\r15 # ; _po=\j \r44 % ; } # force PI, TN=1
 V { TN=0; _io=\r32 Z ; _po=\j \r44 X ; } # disable bidis

 V { _io=\m \r32 % ; CLK=P; } # reflect bidis, pulse CLK
 }

l All capture_XXX procedures for clocks must have the same number of tester
cycles, V{...} constructs. If you use a three cycle capture for 'CLK', then you
must also use a three-cycle capture for 'RST', 'CLK2', etc. This includes the
non-clocking capture procedure named capture.

l Use a test_setup procedure to initialize all input pins to a known value in the
first test cycle. Initialize bidirectional pins to Z.

l If inputs are applied with a delay on the tester, then the Timing block of the
STIL DRC procedure file should include a "ForcePrior" or "P" character at time
offset zero of each cycle before applying the required value within that cycle.
This generates a V6 warning during DRC which will have to be ignored. There
is an example of ForcePrior at the end of topic: Controlling Pin Timing in STIL

l You can use only one timing block.
l Use the -order_pins option of the write_patterns command when writing

WGL patterns.
l Do not use the -measure_forced_bidis option of the write_patterns

command when writing WGL patterns

WGL Pattern Generation Options 13-15

TetraMAX ATPG User Guide K-2015.06-SP4

l Contact LSI for the latest advice and application notes cone timerning the
use of TetraMAX ATPG.

See Also
set_wgl
set_drc
set_simulation
set_contention
write_drc_file
write_patterns
End-of-Cycle Measures and Load_Unload
End-of-Cycle Measures and Timing
End-of-Cycle Measures and Capture Procedures

Creating NEC-Compatible WGL Patterns
To produce NEC-compatibleWGL output, you need to use both the set_simulation and
set_wgl commands, as shown in the following example:
set_simulation -strong_bidi_fill
set_wgl -nomacro
set_wgl -nopad
set_wgl -notester_ready
set_wgl -inversion_reference master
set_wgl -scan_map dash
set_wgl -bidi_map { 0x 0- 1x 1- xx x- z0 -0 z1 -1 zx -x zz -z -x -
- z- -- }

Note the following:

l Scan shifts must use a single tester cycle. For more information, see
"Defining the Shift Procedure."

l You must define the end-of-cycle timing, as follows:
a. The timing block must define the end-of-cycle measure. For more

information, see "Defining the End-of-Cycle Measure."
b. The load_unload procedure must use pre-measure scan outputs. For

more information, see "Defining the load_unload Procedure."
c. The clock capture procedures must use the two-cycle end-of-cycle

measure format. For more information, see "Defining Capture
Procedures in STIL."

l You must explicitly initialize bidirectional ports to non-Z values in the load_
unload procedure.

l Use the test_setup procedure to eliminate uninitialized ports at T=0. For
more information, see "Defining the test_setup Procedure."

l Use the test_setup procedure to eliminate floating ports at T=0.

WGL Pattern Generation Options 13-16

TetraMAX ATPG User Guide K-2015.06-SP4

l Do not use the -measure_forced_bidis option of the write_patterns
command when writing WGL patterns.

l Use the WGL to ALB to Verilog translation path. Other paths, such as WGL to
ALB to CPT, have not been validated to work.

See Also
set_wgl
set_simulation
set_contention
write_patterns
End-of-Cycle Measures and Load_Unload
End-of-Cycle Measures and Timing
End-of-Cycle Measures and Capture Procedures

WGL Scan Chain Padding
When a design hasmore than one scan chain and the scan chains are not all the same length
then you have the option of causing theWGL patterns to be written so that all scan load and
unload data is the same length (set_wgl -pad) or is only the length of the scan chain (set_
wgl -nopad). The default is not to pad, and this is preferred bymost vendors.
When padding is enabled, the pad valuemay be any one of 0, 1, or X and you select which by
the -pad_character option of the write_patterns commandwhen theWGL patterns
are written. The default when padding is enabled, is to pad with a zero. Note, however, that
when padding is enabled and a particular pad character is chosen that this will have no effect on
the padding used for the chain test patterns. The padding for chain test patterns is always the
continuation of the repeating string 0011.
The first example shows a portion of theWGLSCANSTATE block for a design with three scan
chains of length 2, 3, and 8 bits where padding is disabled.
 # scan chain padding disabled
 scanstate
 c1L0 := c1G(11);
 c2L1 := c2G(011);
 c3L2 := c3G(00110011);
 c1E3 := c1G(00);
 c2E4 := c2G(100);
 c3E5 := c3G(11001100);

The second example shows the same data with scan chain padding enabled and a pad
character of X used so that it is easier to see where the padding occurs. For scan load strings the
padding occurs on the left (first shifted in) for all shorter chains. For scan unload strings the
padding occurs on the right (last shifted out).
 # scan chain padding enabled with pad = X
 scanstate
 c1L0 := c1G(XXXXXX11);
 c2L1 := c2G(XXXXX011);
 c3L2 := c3G(00110011);

WGL Pattern Generation Options 13-17

TetraMAX ATPG User Guide K-2015.06-SP4

 c1E3 := c1G(00XXXXXX);
 c2E4 := c2G(100XXXXX);
 c3E5 := c3G(11001100);

See Also
set_wgl
set_buses

WGL Scan Chain Definitions
By convention, the scanchain block inWGL defines the instances in the physical sequence of
each scan chain, starting at the scan input, and traversing to the scan output. The number of
instances in the scan chainmatches the number of bits called for in the scanstate block for
loading or observing from the scan chain.
On some designs, generally those with JTAGused during ATPG, the final scan chain shift is
done outside of the scan loop. This translates into the "scan()" vector being shortened by one bit
and an additional vector() or more being added to the procedure to handle the final shift outside
of the scan statement. Now mostWGL translators require that the number of bits defined in the
scanchain blockmatch the physical length of the scan chain. However, a few require that the
number of bitsmatch the length of data to be loaded by the "scan()" statements. The-chain_
list option controls how the scan chain is listed in the scanchain block. The default is all
which causes all instances in the scan chain to be included in the defining list. Optionally
specifying shift causes the list to match only those bits loaded by the "scan()" statements.
The first examples shows the default scanchain block for a design with two scan chains of 5
and 4 bits.
 # set_wgl -chain_list all
 scanchain
 chain1 ["si1", "A4", !, "A3", "A2", "A1", "A0", "so1"];
 chain2 ["si2", "B3", "B2", "B1", "B0", !, "so2"];
 end

The second example shows the same scanchain blockwhen the final shift of the scan chain is
done outside of the Shift procedure and a selection of -chain_list shift is used. The final instance
in each scan chain "A1", and "B1" have been omitted from the scan chain definitions.
 # set_wgl -chain_list shift
 scanchain
 chain1 ["si1", "A4", !, "A3", "A2", "A1", "so1"];
 chain2 ["si2", "B3", "B2", "B1", !, "so2"];
 end

See Also
set_wgl
set_buses

WGL Pattern Generation Options 13-18

TetraMAX ATPG User Guide K-2015.06-SP4

Macro Usage in WGL
WGL supports the definition of macros. Macros can be used to represent commonly repeated
sequences and the use of macros can lead tomore compactWGL pattern files. TetraMAX
ATPGwill writeWGL usingmacros if the set_wgl -macro option has been used. Most
vendors do not support macros as this requires amore complexWGL reader and so the
TetraMAX default is not to usemacros.
Whenmacros are enabled, TetraMAX ATPGadds variousmacro definitions to theWGL pattern
file. The following example is amacro for a capture procedure for the port CLK. There will
generally be amacro for each procedure in the DRC file.
 # an example macro definition
 macro capture_CLK (SDI3_I, SDO1_I, D0_I, D2_I, CLK, RSTB, SDI,
 INC, SCAN_9, SDI3_O, SDO1_O, D0_O, D2_O, P, SDO, CO)
 vector(tp1) := [@SDI3_I @SDO1_I @D0_I @D2_I @CLK @RSTB @SDI

@INC @SCAN_9 X X X X XX XX X];
 vector(tp1) := [@SDI3_I @SDO1_I @D0_I @D2_I @CLK @RSTB @SDI

@INC @SCAN_9 @SDI3_O @SDO1_O @D0_O @D2_O @P
@SDO @CO];

 vector(tp1) := [@SDI3_I @SDO1_I @D0_I @D2_I 1 @RSTB @SDI
@INC @SCAN_9 X X X X XX XX X];

 endmacro

The first following example shows a segment from aWGLPATTERN blockwhich does not use
macros and the second example is the same information usingmacros.
 # example patterns without macros
 pattern group_ALL ("SDI3":I, "SDO1":I, "D0":I, "D2":I, "CLK",
 "RSTB", "SDI[1]", "SDI[2]", "INC", "SCAN", "SDI3":O, "SDO1":O,
 "D0":O, "D2":O, "P[0]", "P[1]", "SDO[2]", "SDO[3]", "CO")

{ test_setup }
 vector(tp1) := [Z Z Z Z 0 1 0 0 0 0 X X X X X X X X X];
 vector(tp1) := [Z Z Z Z 0 0 0 0 0 0 X X X X X X X X X];
 vector(tp1) := [Z Z Z Z 0 1 0 0 0 0 X X X X X X X X X];

{ scan_test }
{ pattern 0 }
{ load_unload }

 vector(tp1) := [X X X X 0 1 X X 0 0 X X X X X X X X X];
 vector(tp1) := [X Z X X 0 1 X X 0 1 X X X X X X X X X];
 scan(tp1) := [- - X X 1 1 - - 0 1 - - X X X X - - X],
 output [c1:c1U0], output [c2:c2U1], output [c3:c3U2],
 input [c1:c1L0], input [c2:c2L1], input [c3:c3L2];

{ capture_RSTB }
 vector(tp1) := [Z Z Z Z 0 1 0 0 0 1 X X X X X X X X X];
 vector(tp1) := [- Z - - 0 0 0 0 0 1 Z 0 Z Z Z 0 1 0 0];

{ pattern 1 }

WGL Pattern Generation Options 13-19

TetraMAX ATPG User Guide K-2015.06-SP4

{ load_unload }
 vector(tp1) := [X X X X 0 1 X X 0 0 X X X X X X X X X];
 vector(tp1) := [X Z X X 0 1 X X 0 1 X X X X X X X X X];
 scan(tp1) := [- - X X 1 1 - - 0 1 - - X X X X - - X],
 output [c1:c1U3], output [c2:c2U4], output [c3:c3U5],
 input [c1:c1L3], input

[c2:c2L4], input [c3:c3L5];
{ capture_CLK }

 vector(tp1) := [Z Z 0 Z 0 1 1 1 0 0 X X X X X X X X X];
 vector(tp1) := [- - 0 - 0 1 1 1 0 0 Z Z X Z Z 0 1 0 1];
 vector(tp1) := [Z Z 0 Z 1 1 1 1 0 0 X X X X X X X X X];

{ pattern 2 }
{ load_unload }

 vector(tp1) := [X X X X 0 1 X X 0 0 X X X X X X X X X];
 vector(tp1) := [X Z X X 0 1 X X 0 1 X X X X X X X X X];
 scan(tp1) := [- - X X 1 1 - - 0 1 - - X X X X - - X],
 output [c1:c1U6], output [c2:c2U7], output [c3:c3U8],
 input [c1:c1L6], input

[c2:c2L7], input [c3:c3L8];
 capture_RSTB }
 vector(tp1) := [Z Z Z Z 0 1 1 1 1 1 X X X X X X X X X];
 vector(tp1) := [- Z Z Z 0 0 1 1 1 1 Z 0 1 0 Z 0 0 0 0];

 # example patterns using macros
 pattern group_ALL ("SDI3":I, "SDO1":I, "D0":I, "D2":I, "CLK",
 "RSTB", "SDI[1]", "SDI[2]", "INC", "SCAN", "SDI3":O, "SDO1":O,
 "D0":O, "D2":O, "P[0]", "P[1]", "SDO[2]", "SDO[3]", "CO")

{ test_setup }
 test_setup

{ scan_test }
{ pattern 0 }

 load_unload(c1U0, c2U1, c3U2, c1L0, c2L1, c3L2)
 capture_RSTB(-, Z, -, -, 0, 1, 00, 0, 1, Z, 0, Z, Z, Z0, 10, 0)

{ pattern 1 }
 load_unload(c1U3, c2U4, c3U5, c1L3, c2L4, c3L5)
 capture_CLK(-, -, 0, -, 0, 1, 11, 0, 0, Z, Z, X, Z, Z0, 10, 1)

{ pattern 2 }
 load_unload(c1U6, c2U7, c3U8, c1L6, c2L7, c3L8)
 capture_RSTB(-, Z, Z, Z, 0, 1, 11, 1, 1, Z, 0, 1, 0, Z0, 00, 0)

WGL Pattern Generation Options 13-20

TetraMAX ATPG User Guide K-2015.06-SP4

See Also
set_wgl
set_buses

Grouping Bidirectional Port Data in WGL
InWGL patterns a bidirectional port appears as two characters, one for the force input value and
another for themeasure output value. These two characters can appear side by side (grouped),
or in independent locationswithin the data (split columns). The set_wgl -group_bidis
command causes the two characters to appears as a single column of two characters, with the
first representing the input action and the second representing the output action. The default is to
present the bidirectional port data as two separate columns.
The first following example uses grouped bidis and in this example there are four bidirectional
ports which appear as the first four columns of each vector()statement. The characters "ZX"
indicate a force of Z (no force) and ameasure of X (maskmeasure).
 # example patterns using grouped bidis
 pattern group_ALL ("SDI3", "SDO1", "D0", "D2", "CLK",
 "RSTB", "SDI[1]", "SDI[2]", "INC", "SCAN", "P[0]",
 "P[1]", "SDO[2]", "SDO[3]", "CO")

{ test_setup }
 vector(tp1) := [ZX ZX ZX ZX 0 1 0 0 0 0 X X X X X];
 vector(tp1) := [ZX ZX ZX ZX 0 0 0 0 0 0 X X X X X];
 vector(tp1) := [ZX ZX ZX ZX 0 1 0 0 0 0 X X X X X];

In the second following example split bidis are used. Notice that the pattern data no longer has
any two character columns. The port order list now lists each bidirectional port twice and follows
each by either :Ior :O to indicate direction. The two parts of the bidirectional port data do not
appear as adjacent data in the vector, they can appear at any position.
 #example patterns using split bidis
 pattern group_ALL ("SDI3":I, "SDO1":I, "D0":I, "D2":I,
 "CLK", "RSTB", "SDI[1]", "SDI[2]", "INC", "SCAN", "SDI3":O,
 "SDO1":O, "D0":O, "D2":O, "P[0]", "P[1]", "SDO[2]", "SDO[3]",
 "CO")

{ test_setup }
 vector(tp1) := [Z Z Z Z 0 1 0 0 0 0 X X X X X X X X X];
 vector(tp1) := [Z Z Z Z 0 0 0 0 0 0 X X X X X X X X X];
 vector(tp1) := [Z Z Z Z 0 1 0 0 0 0 X X X X X X X X X];

See Also
set_wgl
set_buses

WGL Pattern Generation Options 13-21

TetraMAX ATPG User Guide K-2015.06-SP4

Controlling Port Data Order in WGL
The default pin data order of theWGL pattern data follows the order in which the ports are
defined in the design's topmodule. By changing the order of the ports in the topmodule you can
affect the order of theWGL data.
There is also the -order_pins option of the write_patterns command. Use of this option
causes the ports to occur in the order: inputs, bidis, and outputs. Within each grouping the port
data order matches the order the ports are defined in the design's topmodule.
For a top-level design with port order:
 module TOP (I1,B1,O1,O2,O4,O3,B3,B2,I3,I2);

the following two examples illustrate the difference in data order.
 # default port order using grouped bidis
 pattern group_ALL ("I1", "B1", "O1", "O2", "O4", "O3", "B3",
 "B2", "I3", "I2")

{ test_setup }
 vector(tp1) := [0 ZX X X X X ZX ZX 0 0];
 vector(tp1) := [0 ZX 1 1 1 1 ZX ZX 0 0];
 vector(tp1) := [1 0X 1 1 1 1 0X 0X 1 1];

 # port order using ORDER_PINS option
 pattern group_ALL ("I1", "I3", "I2", "B1", "B3", "B2", "O1",
 "O2", "O4", "O3")

{ test_setup }
 vector(tp1) := [0 0 0 ZX ZX ZX X X X X];
 vector(tp1) := [0 0 0 ZX ZX ZX 1 1 1 1];
 vector(tp1) := [1 1 1 0X 0X 0X 1 1 1 1];

See Also
set_wgl
set_buses

Specifying Windowed Measures in WGL
The default WGL patternswritten will define timing which performs a strobedmeasure (single
timemeasure) when outputs are to bemeasured. If your tester supports window measure
(measure over a continuous range of time) and you would like to have a windowedmeasure, this
type of measure can be created. This time you do not use any set_wgl options, but instead
make edits to the Timing block of the DRC procedure file. Note that these editsmust bemade
before performing the run_drc command and before generating ATPGpatterns.
The following example illustrates a window measure for the symbolic group out_ports
defined elsewhere in the DRC file. The STIL language specifies that the uppercase {H,L,T,X}
characters indicate a strobedmeasure, and the lowercase characters {h,l,t,x} call for a window
measure. In this specific example the ports associated with the symbolic group out_portsis

WGL Pattern Generation Options 13-22

TetraMAX ATPG User Guide K-2015.06-SP4

continuouslymeasured for high/low/tristate values between an offset of 450 nS and 490 nS from
the beginning of the tester cycle. The '490ns' x; text specifies the window measure is turned
off at this time and is text which is not needed for a strobedmeasure.
 Timing {
 WaveformTable "WINDOW_COMPARE" {
 Period '1000ns';
 Waveforms {
 clocks { P { '0ns' D; '500ns' U; '600ns' D; } }
 input_ports { 01Z { '0ns' D/U/Z; } }
 out_ports { X { '0ns' X; } }
 out_ports { HLT { '0ns' X; '450ns' h/l/t; '490ns' X; } }
 bidi_ports { X { '0ns' X; } }
 bidi_ports { 01Z { '0ns' D/U/Z; } }
 bidi_ports { HLT { '0ns' X; '450ns' H/L/T; } }
 }
 }
 }

See Also
set_wgl
set_buses

Delayed Input Force Timing and Force Prior in WGL
It is a common requirement when running the pattern timing to require that one or more pins
have their inputs applied at some delayed offset from the beginning of the tester cycle. This is
another adjustment that ismade in the Timing block of the DRC file rather than with a set_
wgl command. In the following example the symbolic pin group input_grp2 has its pattern
data applied at an offset of 5ns into the tester cycle.
What is the value on the pins of group input_grp2 from the start of the cycle to offset 5ns? The
answer is that the value is undefined unless you specify some value in the timing block such as 0,
1, X, or perhaps Z.What if you just want the port to continue the value from the previous tester
cycle? InWGL aswell as STIL there is a "Force Prior" cone timept which indicates the value is to
be whatever was previously assigned.
To cause theWGL output to call for a Force Prior, edit the Timingblock of the DRC file before
performing a run_drc command and before generating any ATPGpatterns and add the "P"
character to the beginning of the timing definition for those inputs which are applied after a delay.
Note that this use of the "P" waveform character will produce a V6warning which you can
ignore. In the following example, the symbolic pin group input_grp2calls for the Force Prior
value.
WaveformTable "FORCE_PRIOR_EXAMPLE" {

 Period '1000ns';
 Waveforms {
 CLOCK { P { '0ns' D; '500ns' U; '600ns' D; } }
 CLOCK { 01ZN { '0ns' D/U/Z/X; } }
 RESETB { P { '0ns' U; '400ns' D; '800ns' U; } }

WGL Pattern Generation Options 13-23

TetraMAX ATPG User Guide K-2015.06-SP4

 RESETB { 01ZN { '0ns' D/U/Z/X; } }
 input_grp1 { 01ZN { '0ns' D/U/Z/X; } }
 input_grp2 { 0 { '0ns' P; '5ns' D; } }
 input_grp2 { 1 { '0ns' P; '5ns' U; } }
 input_grp2 { Z { '0ns' P; '5ns' Z; } }
 out_ports { HLTX { '0ns' X; '490ns' H/L/T/X; } }
 bidi_ports { 01ZN { '0ns' Z; '20ns' D/U/Z/X; } }
 bidi_ports { X { '0ns' X; } }
 bidi_ports { HLT { '0ns' X; '490ns' H/L/T; } }
 }
 } # end FORCE_PRIOR_EXAMPLE

See Also
set_wgl
set_buses

Balancing Vector and Scan Statements in WGL
By default, the last event in theWGL pattern file is a scan chain unload to observe themeasure
values of the final capture clock. This corresponds to a scan() statement in theWGL file.
Some vendors require that the final event in theWGL pattern file be a vector()statement to
ensure that clocks are off and to provide a symmetric order where the scan statements are
always followed by an identical number of vector statements. You can cause the final events in
theWGL file to be vector statements by using the set_wgl -nolast_scanoption to change
the default behavior.
The first following example shows the default final pattern where the last event is a scan()
statement. The second example shows the effect of using -nolast_scan.
 #example made with -last_scan

{ pattern 26 }
{ load_unload }

 vector(tp1) := [X- X- X- X- 0 1 X X 0 0 X X X X X];
 vector(tp1) := [X- -- X- X- 0 1 X X 0 1 X X X X X];
 scan(tp1) := [-- -- X- X- 1 1 - - 0 1 X X - - X],
 output [c1:c1U78], output [c2:c2U79], output [c3:c3U80],
 input [c1:c1L78], input [c2:c2L79], input [c3:c3L80];

{ capture
 vector(tp1) := [-Z -0 -0 -1 0 1 1 1 1 1 Z 1 0 0 0];

{ load_unload }
 vector(tp1) := [X- X- X- X- 0 1 X X 0 0 X X X X X];
 vector(tp1) := [X- -- X- X- 0 1 X X 0 1 X X X X X];

scan(tp1) := [-- -- X- X- 1 1 - - 0 1 X X - - X],
 output [c1:c1U81], output [c2:c2U82], output [c3:c3U83],
 input [c1:c1L81], input [c2:c2L82], input [c3:c3L83];
 end

WGL Pattern Generation Options 13-24

TetraMAX ATPG User Guide K-2015.06-SP4

 #example made with -nolast_scan
{ pattern 26 }
{ load_unload }

 vector(tp1) := [X- X- X- X- 0 1 X X 0 0 X X X X X];
 vector(tp1) := [X- -- X- X- 0 1 X X 0 1 X X X X X];
 scan(tp1) := [-- -- X- X- 1 1 - - 0 1 X X - - X],
 output [c1:c1U78], output [c2:c2U79], output [c3:c3U80],
 input [c1:c1L78], input [c2:c2L79], input [c3:c3L80];

{ capture_CLK }
 vector(tp1) := [-Z -0 -0 -1 0 1 1 1 1 1 Z 1 0 0 0];

{ load_unload }
 vector(tp1) := [X- X- X- X- 0 1 X X 0 0 X X X X X];
 vector(tp1) := [X- -- X- X- 0 1 X X 0 1 X X X X X];
 scan(tp1) := [-- -- X- X- 1 1 - - 0 1 X X - - X],
 output [c1:c1U81], output [c2:c2U82], output [c3:c3U83],
 input [c1:c1L81], input [c2:c2L82], input [c3:c3L83];

{ nocapture }
 vector(tp1) := [-X -X -X -X 0 1 X X 0 0 X X X X X];
 vector(tp1) := [-X -X -X -X 0 1 X X 0 0 X X X X X];
 vector(tp1) := [-X -X -X -X 0 1 X X 0 0 X X X X X];
 end

See Also
set_wgl
set_buses

Mapping Bidirectional Ports Within Vector Statements in WGL
You've seen an example earlier of how TetraMAX ATPGsupports creatingWGL patternswith
bidirectional port data represented as either a single column of two characters (grouped) or as
two columns of single characters (non-grouped or split). In addition to this choice in grouping
there is also the ability to change or map the characters used. Not every vendor agrees on what
theWGL character representation should be for bidirectional port data so TetraMAX ATPGhas
been designed to provide flexibility by use of the set_wgl -bidi_map option.
The syntax for this option is: set_wgl -bidi_map <from> <to>

There are 9mappings that can be adjusted: 3 for which the bidirectional port is an input, 4 for
which the bidirectional port is an output, and 2 for when the bidirectional port is a scan input or
scan output. This argument may be repeated on the same command line or acrossmultiple
commands to specifymore than onemapping. If the same from designator is repeated then the
later one will replace the earlier ones.
The from designator is a two-character string the represents the TetraMAX internal data. The to
designator is a two-character string that specifies the characters which will appear in theWGL
pattern output in place of this internal representation.
 Definition of TetraMAX Internal Representation = "from"

 from

WGL Pattern Generation Options 13-25

TetraMAX ATPG User Guide K-2015.06-SP4

 ====
 0x : force 0, no measure
 1x : force 1, no measure
 xx : force unknown, no measure

 z0 : no force, measure 0
 z1 : no force, measure 1
 zx : no force, no measure
 zz : no force, measure Z

 -x : bidi is in scan input mode
 z- : bidi is in scan output mode

The preceding table defines all the legal combinations available for the from portion of the
mapping option. Any other combination is illegal. The to designator is alsomade up of
characters 0/1/x/z/- but themapping is checked to ensure that you are not destroying the intent
of the data or maskingmeasures that would affect the test coverage reported. As an example of
amapping the following table represents a commonly requestedmap in which one of the
bidirectional characters is always a dash:
 A common mapping

 from : to
 ==== : ==
 0x : 0- # force 0, no measure
 1x : 1- # force 1, no measure
 xx : x- # force unknown, no measure
 z0 : -0 # force Z, measure 0
 z1 : -1 # force Z, measure 1
 zx : -x # force Z, no measure
 zz : -z # force Z, measure Z
 -x : -- # bidi is a scan input
 z- : -- # bidi is a scan output

With the exception of the {zz,-z}mapping above, this table represents the default mapping.
The set_wgl commandwhich would implement the previous table is:
BUILD> set_wgl -bidi_map { 0x 0- 1x 1- xx x- z0 -0 \

 z1 -1 zx -x zz -z x -- z- -- }

Note in the previous example that you can specify the -bidi_map option only one time, and the
parametersmust be in a list structure. Alternatively, you can repeat the entire command line for
each entry, as shown in the following example:
set_wgl -bidi_map {0x 0-}
set_wgl -bidi_map {1x 1-}
set_wgl -bidi_map {xx x- }
set_wgl -bidi_map {z0 -0 }
set_wgl -bidi_map {z1 -1}
set_wgl -bidi_map {zx -x}
set_wgl -bidi_map {zz -z}

WGL Pattern Generation Options 13-26

TetraMAX ATPG User Guide K-2015.06-SP4

set_wgl -bidi_map {x --}
set_wgl -bidi_map {z- --}

Note: Not all mappings are allowed. For example, you cannot map the dash for scan input or
scan output to any other character. Also, you canmap "zz" to "-z", but you cannot map "zz" to "z-
". because of the loss of measure and to unambiguously read back in theWGLwhich is written
out. The "zz"->-z" mapping still indicates ameasuremust be performed but a "zz"->z-" mapping
could be confused with a "zx"->z-" mapping which generally is interpreted tomean there is no
force and nomeasure.
Note: The ability to use some bidi mappings is affected bywhether the tester canmeasure Z
values or not. If the tester canmeasure Z values then the default setting of set_buses -
external_z Z should be used and theWGL patterns can contain both ZZ and ZX data (no
force, measure Z and no force, nomeasure). If the tester cannot measure Z values or you want
to generate patterns for which no Z-measure is needed you would set the set_buses -
external_z X option before generating patterns. This would result inWGL patternswith "ZX"
data for bidirectional pins but no "ZZ". If "ZZ" does not appear in theWGL you can define a bidi
map of "ZX"->Z-" or "ZX"->-Z" which you could not do if the Z measure were enabled and "ZZ"
were possibly present.
Note: Most vendors do not support a simultaneous force andmeasure on the same port in the
same cycle. With that in mind you should not use the -measure_forced_bidis option of the
write_patterns command as this allows for a simultaneous force andmeasure whenever
possible.
To report the current bidirectional map settings use the report_settings wgl command.
The output is similar to the following example and themapping will appear as a series of
(from,to) settings.
 wgl = macro_usage=off, nopad=on, scan_map=dash
 group_bidis=off, inversion_reference=master, tester_ready=on
 bidi_map=(Z0,-0)(Z1,-1)(0X,0-)(1X,1-)(XX,X-)(ZX,-X)(ZZ,-Z)(Z-,-
-)

As an example of how the vector() statement data changes for bidirectional ports the first
following example shows some pattern data with four bidirectional pins (grouped as single
column of two characters each) where themapping is identical to the TetraMAX internal
representation. The second example uses a commonmapping in which the bidirectional
character pair always has one character represented as a dash.
 An example where the mapping matches TetraMAX internal
 representation.

{ pattern 1 }
{ load_unload }

 vector(tp1) := [0X 1X XX ZX 0 1 X X 0 0 X X X X X];
 vector(tp1) := [0X 1X XX ZX 0 1 X X 0 1 X X X X X];
 scan(tp1) := [0X 1X XX ZX 1 1 - X 0 1 X X X - X],
 output [c1:c1U0], input [c1:c1L1]];
{ capture_CLK }

 vector(tp1) := [ZX ZX ZX ZX 0 1 0 1 0 1 X X X X X];
 vector(tp1) := [Z0 Z1 ZX ZZ 0 1 0 1 0 1 Z 0 0 1 0];
 vector(tp1) := [ZX ZX ZX ZX 1 1 0 1 0 1 X X X X X];

WGL Pattern Generation Options 13-27

TetraMAX ATPG User Guide K-2015.06-SP4

{ pattern 2 }
{ load_unload }

 vector(tp1) := [ZX ZX ZX 0X 0 1 X X 0 0 X X X X X];
 vector(tp1) := [ZX ZX ZX 0X 0 1 X X 0 1 X X X X X];
 scan(tp1) := [ZX ZX ZX 0X 1 1 - X 0 1 X X X - X],
 output [c1:c1U1], input [c1:c1L2]];
{ capture_CLK }

 vector(tp1) := [0X 0X 0X 0X 0 1 1 1 1 0 X X X X X];
 vector(tp1) := [0X 1X Z0 ZZ 0 1 1 1 1 0 Z 0 1 0 0];
 vector(tp1) := [0X 1X ZX ZX 1 1 1 1 1 0 X X X X X];

 The same patterns after defining a mapping of:
(0x,0-)(1x,1-),(xx,x-),(z0,-0),(z1,-1),(zx,-x),(zz,-z)

{ pattern 1 }
{ load_unload }

 vector(tp1) := [0- 1- X- Z- 0 1 X X 0 0 X X X X X];
 vector(tp1) := [0- 1- X- Z- 0 1 X X 0 1 X X X X X];
 scan(tp1) := [0- 1- X- Z- 1 1 - X 0 1 X X X - X],
 output [c1:c1U0], input [c1:c1L1]];
{ capture_CLK }

 vector(tp1) := [-X -X -X -X 0 1 0 1 0 1 X X X X X];
 vector(tp1) := [-0 -1 -X -Z 0 1 0 1 0 1 Z 0 0 1 0];
 vector(tp1) := [-X -X -X -X 1 1 0 1 0 1 X X X X X];

{ pattern 2 }
{ load_unload }

 vector(tp1) := [-X -X -X 0- 0 1 X X 0 0 X X X X X];
 vector(tp1) := [-X -X -X 0- 0 1 X X 0 1 X X X X X];
 scan(tp1) := [-X -X -X 0- 1 1 - X 0 1 X X X - X],
 output [c1:c1U1], input [c1:c1L2]];
{ capture_CLK }

 vector(tp1) := [0- 0- 0- 0- 0 1 1 1 1 0 X X X X X];
 vector(tp1) := [0- 1- -0 -Z 0 1 1 1 1 0 Z 0 1 0 0];
 vector(tp1) := [0- 1- -X -X 1 1 1 1 1 0 X X X X X];

See Also
set_wgl
set_buses

Mapping Bidirectional Ports Within Scan Statements in WGL
The vector() statements inWGL correspond to the application of tester cycles. The scan()
statements correspond to the serial loading and unloading of scan chains. The various vendor
rules for character mapping of the vector() statements cannot be the same as for the scan()

WGL Pattern Generation Options 13-28

TetraMAX ATPG User Guide K-2015.06-SP4

statement and so TetraMAX ATPGsupports the set_wgl -scan_map option to allow
somewhat independent control of characters in the scan() statement. The available choices for
scanmapping are: dash, bidi, keep, and none. The default is dash.
The following examples show some of the variations of -scan_map. The patterns are for a
design with three scan chains and the first bidirectional port is a scan input and the second
bidirectional port is a scan output.
For a setting of dash, every scan input and output position in the scan() statement contains a
dash, and all bidirectional ports acting as a scan input or output contain a double dash.
 # set_wgl -scan_map dash

 vector(tp1) := [0- -X X- X- 0 1 X X 0 1 X X X X X];
 scan(tp1) := [-- -- X- X- 1 1 - - 0 1 X X - - X],

For a setting of bidi, every scan input and output position in the scan() statement contains a
dash, and any bidirectional port acting as a scan input or output follows themapping defined by
the -bidi_map options. For the following example, assume a BIDI mapping of (-x,--) for scan
inputs, and (z-,z-) for scan outputs.
 # set_wgl -scan_map bidi -bidi_map {-x --} -bidi_map {z- z- }

 vector(tp1) := [0- -X X- X- 0 1 X X 0 1 X X X X X];
 scan(tp1) := [-- Z- X- X- 1 1 - - 0 1 X X - - X],

For a setting of keep, every scan input and output position in the scan() statement keeps the
same characters as from the previous vector() statement in the load_unload procedure,
including any scan inputs or outputs on bidirectional ports.Note:It is important that the load_
unload procedure have at least one vector() statement before the Shift procedure in order for a
selection of keep to work properly.
 # set_wgl -scan_map keep

 vector(tp1) := [0- -X X- X- 0 1 X X 0 1 X X X X X];
 scan(tp1) := [0- -X X- X- 1 1 X X 0 1 X X X X X],

For a setting of none, every scan input and output position in the scan() statement contains a
dash, and any bidirectional port acting as a scan input or output uses the TetraMAX internal
representation of "-X" for input and "Z-" for output.
 # set_wgl -scan_map none

 vector(tp1) := [0- -X X- X- 0 1 X X 0 1 X X X X X];
 scan(tp1) := [-X Z- X- X- 1 1 - - 0 1 X X - - X],

See Also
set_wgl
set_buses

WGL Pattern Generation Options 13-29

TetraMAX ATPG User Guide K-2015.06-SP4

Adjusting Pattern Data for Serial Versus Parallel Interpretation in
WGL
The scan load data in theWGL patterns can be represented in two different ways, depending
upon the reference point required by your WGL pattern translation tool. The set_wgl -
tester_readysetting selects a data format that is ready to serially shift into the device without
further processing for scan cell inversions. The -set_wgl -notester_ready option selects
a data format that is ready to parallel load directly into the scan cells without further processing
for inversions.
In the following figure, if you desire to have all devices A,B,C, and D loaded with 1's after a scan
load, and your WGL translation application expects the data in parallel (-notester_ready)
format, then theWGL scan datamust be written as all 1's. However, if your WGL translation
application expects the data in serial format (-tester_ready), then theWGL scan datamust be
adjusted for internal inversions that it passes through before being shifted into place. As you can
see, the data is not the same: "1111" vs. "0110". So it is very important to know which data
format your WGL translation application is expecting. The parallel format is themore popular, so
if you do not know you should try the -notester_ready option first.

Note that both the serial and parallel load formatsmay be sensitive to the referencing scheme for
determining inversion if the finalWGL translator is doing a parallel-form to serial form translation
or a serial-form to parallel-form translation.
One additional variant of WGL output is needed if theWGL is to be interpreted for a parallel
simulation and the end-of-cycle protocol is used. This end of cycle protocol results in a scan
output pre-measure before beginning the "scan()" statement for the balance of the scan
load/unload. The expected scan output vector needs to be shifted by the single bit of the pre-
measure. To accomplish this, use the -pre_measured option instead of the -notester_
ready option.

See Also
set_wgl
set_buses

WGL Pattern Generation Options 13-30

TetraMAX ATPG User Guide K-2015.06-SP4

Selecting Scan Chain Inversion Reference in WGL
The scanchain block of theWGL pattern file defines each scan chain in physical order from
input port to output port. When an inversion exists between positions in the scan order, and
exclamationmark "!" is inserted to indicate an inversion of the data has occurred between the
two positions. This inversion information is crucial for the correct translation of the scan chain
load and unload data by theWGL-to-simulator or WGL-to-tester tools supported by your vendor.
More than one interpretation of the reference scheme for calculating inversions exists and so
TetraMAX ATPGoffers options of master, cell, and omit for the set_wgl -inversion_
reference command.

The previous diagram can provide some insight into the two different referencing schemes for
inversionmarkers. When TetraMAX ATPGcalculates the inversionmarkers for a setting of
master the reference point begins at the scan input pin, and then looks at whether the data is
inverted from that point to the actual sequential simulation primitive functioning as the "master
cell" where the value is stored. This is often a Verilog UDP level underneath the vendor's library
cell. For a library cell with only one sequential element there is only one answer but for a library
cell with two or more sequential elements, the answer might be ambiguous. As shown in the
diagram, for an inversion reference of master there are inversions between the scan input and
U1, between U1 and U2, and between U2 and U3. The correspondingWGL scanchain
definition is shown in the following example.
 # set_wgl -inversion_reference master

 scanchain
 c1 ["si", !, "U1/R", !, "U2/R", !, "U3/R", "so"];
 end

When TetraMAX ATPGcalculates the inversionmarkers for a setting of cell it begins at the
scan in pin and then determineswhether an inversion of the data occurs relative to the scan
input pin of each library cell. This reference is used by someWGL translators in forming the
FORCE/RELEASE statements needed for a parallel Verilog simulation. The location of the
inversionmarkers is unambiguous and not affected bywhich cell is classified as the "master" cell
by TetraMAX ATPGduring DRC. Using an inversion reference of cell and the preceding

WGL Pattern Generation Options 13-31

TetraMAX ATPG User Guide K-2015.06-SP4

diagram, there is an inversion only between the scan input of cell U1 and the scan input of U2.
The correspondingWGL scanchain definition is shown in the following example:
 # set_wgl -inversion_reference cell

 scanchain
 c1 ["si", "U1/R", !, "U2/R", "U3/R", "so"];
 end

Sometimes, nomatter which inversion reference you select the externalWGL translator seems
to come upwith patterns that mismatch in simulation. If the simulation environment serially
processes scan load information, then there is onemore inversion reference that might be of use
and that is the omitoption. This option leaves out all inversionmarkers. By combing both the -
inversion_reference omit and -tester_ready options, TetraMAX ATPGproduces
scan load/unload data that is preprocessed for inversions and is ready to shift into the device
unchanged, and omits the inversionmarkers so the externalWGL translator ismydesignled into
thinking that no data adjustments for inversion are needed. The correspondingWGL scanchain
data when omit is used is shown in the following example:
 # set_wgl -inversion_reference omit

 scanchain
 c1 ["si", "U1/R", "U2/R", "U3/R", "so"];
 end

See Also
set_wgl
set_buses

Effect of CELLDEFINE in WGL
The previous examples showed the effect of different choices of inversion reference on the
placement of the inversionmarkers "!" in the scanchain definition block. Another itemwhich
affects the scanchain block is the presence or absence of the `celldefine compiler directive in the
definition of the librarymodel. Consider the following two examples:
 # Verilog library module without celldefine
 module SDFF (Q, CLK, SE, D, SI);
 input CLK, SE, D, SI;
 output Q;
 uMUX M (di, SE, D, SI);
 uDFFQ R (Q , CLK, di);
 endmodule

 # WGL scanchain shows instance "R"
 scanchain
 c1 ["si", "U1/R", !, "U2/R", "U3/R", "so"];

WGL Pattern Generation Options 13-32

TetraMAX ATPG User Guide K-2015.06-SP4

 end

 # Verilog library module with celldefine
 `celldefine
 module SDFF (Q, CLK, SE, D, SI);
 input CLK, SE, D, SI;
 output Q;
 uMUX M (di, SE, D, SI);
 uDFFQ R (Q, CLK, di);
 endmodule
 `endcelldefine

 # scanchain instances have no "R"
 scanchain
 c1 ["si", "U1", !, "U2", "U3", "so"];
 end

In the first example the Verilogmodule definition was not defined inside a
`celldefine/`endcelldefine pair. The resultingWGL scanchain definition shows instance
pathnames that include the R of the uDFFQdevice.
In the second example the Verilogmodule definition waswithin a `celldefine/`endcelldefine pair.
The resultingWGL scanchain definition does not include the instance references beneath the
SDFFmodule.
Note: Reading a netlist with the -library option has the same effect as enclosing themodule
with `celldefine/`endcelldefine pair and is yet another way to affect theWGL output.

See Also
set_wgl
set_buses

Ambiguity of the Master Cell in WGL
The diagram below provides one simple example of the potential for ambiguity when using an
inversion reference of master. In this example someDFF functions are created with a library cell
using two latches. TetraMAX ATPGdefines the "master" based on which sequential device in a
scan chain shifts first due to the leading edge of the defined shift clocks. So with the CLK port
defined as active high, the "master" becomes the second LATCH in U1 and U3, with U2 acting
as a lockup latch. If the polarity of CLK is reversed, then the first latch in U1 is classified as the
master and the lockup latch is classified as themaster for cell U3! Both polarities of CLK
generates ATPGpatterns but most likely only one resultingWGL inversion set is correct.

WGL Pattern Generation Options 13-33

TetraMAX ATPG User Guide K-2015.06-SP4

See Also
set_wgl
set_buses

Running Multicore ATPG
Multicore ATPG is used to parallelize and improve ATPG runtime by leveraging the resources
provided bymulticoremachines. Multicore ATPG launchesmultiple slaves to parallelize ATPG
work on a single host. You can specify the number of processes to launch, based on the number
of CPUs and the availablememory on themachine.
The following sections describemulticore ATPG:

l ComparingMulticore ATPGandDistributed ATPG
l InvokingMulticore ATPG
l Multicore Interrupt Handling
l Understanding the Processes SummaryReport
l Multicore Limitations

See Also
Running Distributed ATPG

Comparing Multicore ATPG and Distributed ATPG
Multicore ATPG is different than distributed ATPG, which is described in “Running Distributed
ATPG.” Distributed ATPG launchesmultiple slave processes on a computer farm or on several
standalone hosts. The slave processes read an image file and execute a fixed command script.
ATPGdistributed technology does not differentiate betweenmultiple CPUs and separate
workstations.
When compared to ATPGdistributed technology, multicore ATPGhas several advantages:

l It is easier to use. You simply need to specify the number of slaves to use. There is no need
to set up the environment for slaves, and no need to debug network or computer farm
issues. Also, it is not necessary for themaster to write a binary image file or for the slaves

Running Multicore ATPG 13-34

TetraMAX ATPG User Guide K-2015.06-SP4

to read it.
l It is more efficient in using compute resources. Multicore ATPGshares netlist information
among slaves and themaster. Thismeans the overall memory usage ismuch lower than
the total memory usage of distributed ATPG.

l It reduces communication overhead by running all involved processes on onemachine. It
also improves the efficiency of parallelism by sharingmore information among processes.
This often results in better QoR compared to distributed ATPG.

Althoughmulticore ATPGoffers better memory utilization (<50 percent increase per core)
compared to distributed ATPG (~100 percent increase per slave), the entire memorymust
reside on a singlemachine.
Multicore ATPGand distributed ATPGprovide similar efficiency in reducing ATPG runtime. The
runtime improvement frommulticore processing is limited by the number of cores and CPUs on
a single host. With distributed ATPG, however, runtime continues to improve asmore hosts are
added across the network.

Invoking Multicore ATPG
Multicore ATPG is activated using the following set_atpg command:
set_atpg -num_processes < number | max >

The number specification refers to the number of slave processes that are used in ATPG. If max
is specified, then TetraMAX ATPGcomputes themaximumnumber of processes available in
the host, based on number of CPUs. If TetraMAX ATPGdetects that the host has only one
CPU, then single-process ATPG is performed instead of multicore ATPGwith only one slave.
To turn off multicore ATPG, specify set_atpg -num_processes 0.
Do not specifymore processes than the number of CPUs available on the host. You should also
consider whether there is other CPU-intensive processes running simultaneously on the host
when running the number of processes. If toomany processes are specified, performance will
degrade andmight be worse than single-process ATPG. On some platforms, TetraMAX ATPG
cannot compute the number of CPUs available and will issue an error if max is specified.

Multicore Interrupt Handling
To interrupt themulticore ATPGprocess, use “Control-c” in the samemanner as halting a single
process. If a slave crashes or is killed, themaster and remaining slaveswill continue to run. This
behavior is consistent with the default behavior of distributed ATPG.
If themaster crashes or is killed, the slaveswill also halt. In this case, there are no ongoing
processes, dangling files, or memory leakage.
You can also interrupt themulticore ATPGprocess from the TetraMAX GUI by clicking the Stop
button. At this point, themaster process sends an abort signal to the slave processes and waits
for the slaves to finish any ongoing interval tasks. If this takes an extended period of time, you
can click the Stop button twice. This action causes themaster process to send a kill signal to the
slaves, and the prompt immediately returns. Note that clicking the Stop button twice terminates
all slave processeswithout saving any data gathered since the last communication with the
master. For more information on the Stop button, see "Command Entry."

Running Multicore ATPG 13-35

TetraMAX ATPG User Guide K-2015.06-SP4

Understanding the Processes Summary Report
Memory consumption needs to bemeasured to tune the global data structure to improve the
scalability of multicore architecture. Legacymemory reports are not sufficient because they do
not deal with issues related to “copy-on-modification.” To facilitate collecting performance data,
a summary report of multicore ATPG is printed at the end of ATPGwhen the -level expert
option is specified with the set_messages command. The summary report appears as shown
in Example 1.

Example 1: Processes SummaryReport
Processes Summary Report

Process Patterns Time(s) Memory(MB)
----------- ---------- ----------- -------------------------------
--
ID pid Internal CPU Wall Shared Private Total Pattern
--
-
0 7611 1231 0.53 35.00 67.78 30.54 98.32 5.27
1 7612 626 35.68 35.00 64.87 22.31 87.18 0.00
2 7613 605 35.50 35.00 64.71 22.47 87.18 0.00
Total 1231 71.71 35.00 67.78 75.32 143.10 5.27
--
--

The report in Example 1 contains one row for each process. The first processwith an ID of “0” is
themaster process. The child processes have IDs of 1, 2, 3, and so forth. The last row is the sum
for eachmeasurement across all processes.
The “pid” is the process ID of that process. The “Patterns” are the total number of patterns
stored by themaster or the number of patterns generated by the slave in this particular ATPG
session. The “Time(s)” includesCPU time and wall time.
The “Memory” measurements are obtained by parsing the system-generated file
/proc/pid/smaps. The file containsmemorymapping information created by theOS while the
process still exists. The /proc/pid/ directory cannot be found after the process terminates. The
tool parses this file at the proper time to gather memory information for the reporting at the end of
parallel ATPG.
The “Memory” measurement includes “Shared”, “Private”, “Total” and “Pattern”. “Shared”
means all processes share the same copy of thememory. “Private” means the process stores
local changes in thememory. The “Total” is the sum of “Shared” and “Private”. The “Pattern”
refers tomemories allocated for storing patterns. The total memory consumption of the entire
system is the “Total” item in the row “Total,” which is the sum of total sharedmemory (the
maximumof sharedmemories for each process) and the total privatememory (the sum of all
privatememory for all processes). Although thememory for patterns is listed separately, it is part
of themaster privatememory.

Running Multicore ATPG 13-36

TetraMAX ATPG User Guide K-2015.06-SP4

Thememory section of the summary report is only available on Linux and AMD64 platforms. No
other platform gives “shared” or “private” memory information in a copy-on-write context. On
other formats, thememory reports gives all “0s” for items other than the patternmemory.

Multicore Limitations
The following ATPG features are not supported bymulticore ATPG:

l Streaming Pattern Validation
l Distributed ATPG
l The -per_cycle option of the report_power command is not recognized.

Running Logic Simulation
Using TetraMAX ATPG, you can run logic simulation and use the graphical schematic viewer
(GSV) to view the logic simulation results.
For combinational and sequential patterns, you can perform the following tasks:

l Perform logic simulation using either the internal or external pattern set.
l Check simulated against expected values from the patterns.
l Perform simulation in the presence of a single failure point to determine the patterns that
would show differences.

l View the effect of any single point of failure for any single pattern.
For combinational patterns, you can also view the logic simulation value from any single pattern
in themost recent 32 patterns in the simulation buffer.
For sequential patterns, you can also save the logic simulation value from any range of patterns
and view this data.
The following sections describe how to run logic simulation:

l Comparing Simulated and Expected Values
l Patterns in the Simulation Buffer
l Sequential Simulation Data
l Single-Point Failure Simulation
l GSV Display of a Single-Point Failure

Note: In addition to standard logic simulation, you can also improve simulation runtime by
launchingmultiple slaves to parallelize fault and logic simulation to work on a single host. This
process is described in “RunningMulticore Simulation”.

Comparing Simulated and Expected Values
You can compare the simulation results against the expected values contained in the patterns
during logic simulation. To do this, use the Compare option of the Run Simulation dialog box, or

Running Logic Simulation 13-37

TetraMAX ATPG User Guide K-2015.06-SP4

the -nocompare option of the run_simulation command. For more information, see
“PerformingGoodMachine Simulation”.
Example 1 shows a transcript of a simulation run that had no comparison errors; 139 patterns
were simulated with zero failures.

Example 1 SimulationWith NoComparison Errors
TEST-T> run_simulation
Begin good simulation of 139 internal patterns.
Simulation completed:
 #patterns=139, #fail_pats=0(0),
 #failing_meas=0(0), CPU time=4.61

Example 2 shows a transcript of a simulation run with comparison errors. In this report, the first
column is the pattern number, and the second column is the output port or scan chain output.
The third column is present if the port is a scan chain output and contains the number of scan
chain shifts that occurred to the point where the error was detected. The last column, shown in
parentheses, is the simulated/expected data.

Example 2 SimulationWith Comparison Errors

TEST-T> run_simulation
Begin simulation of 139 internal patterns.

1 /o_sdo2 23 (exp=0, got=1)
4 /o_sdo2 23 (exp=1, got=0)
6 /o_sdo2 23 (exp=1, got=0)
7 /o_sdo2 23 (exp=1, got=0)
8 /o_sdo2 23 (exp=0, got=1)

 : : : :
123 /o_sdo2 23 (exp=0, got=1)
124 /o_sdo2 23 (exp=1, got=0)
129 /o_sdo2 23 (exp=1, got=0)
132 /o_sdo2 23 (exp=1, got=0)
Simulation completed: #patterns=139, #fail_pats=41(0),
#failing_meas=41(0), CPU time=4.97

Patterns in the Simulation Buffer
During ATPG, TetraMAX ATPGprocesses potential patterns in groups of 32 using an internal
buffer called the Simulation Buffer. Immediately after completion of ATPG, you can select any of
the last 32 patterns processed and display the resulting logic values on the pins of objects in the
GSV window. You can use the Setup dialog box to select pattern data and provide an integer
between 0 and 31 for the pattern number.
Alternatively, you can execute the following commands:
TEST-T> set_pindata pattern NN
TEST-T> refresh schematic

For an example, see “Displaying Pattern Data”.

Running Logic Simulation 13-38

TetraMAX ATPG User Guide K-2015.06-SP4

Sequential Simulation Data
Sequential simulation data is typically from functional patterns. This type of data is stored in the
external pattern buffer. When the simulation type in the Run Simulation dialog box is set to Full
Sequential, you can select a range of patterns to be stored. After the simulation is completed,
you can display selected data from this range of patterns using the pin data type “sequential sim
data.”
For example, with gates drawn in the schematic window, execution of the following commands
generates the display shown in Figure 1.
TEST-T> set_simulation -data 85 89
TEST-T> run_simulation -sequential

The pin data in the display shows the sequential simulation data values from the five patterns;
each pattern has a dash (–) as a separator. Some patterns result in a single simulation event
value and other patterns result in three values.

Figure 1 Sequential Simulation Data for Five Patterns

Single-Point Failure Simulation
You can simulate any single point of failure for any single pattern by checking the Insert Fault box
in the Run Simulation dialog box and running the error site and stuck-at value, or by using a
command such as the following:
TEST-T> run_simulation -max_fails 0 amd2910/ incr/U42/A 1

Example 3 shows the result of executing this command. TetraMAX ATPG reports the signature
of the failing data to the transcript as a sequence of pattern numbers and output ports with
differences between the expected data and the simulated failure.

Example 3 Signature of a Simulated Failure
TEST-T> run_simulation -max_fails 0 /amd2910/ incr/U42/A 1

Begin simulation of 139 internal patterns with pin /amd2910/ incr/

U42/A stuck at 1.
 85 /o_sdo2 23 (0/1)
 94 /o_sdo2 23 (0/1)
Simulation completed: #patterns=139, #fail_pats=2(0),
 #failing_meas=2(0), CPU time=2.02

GSV Display of a Single-Point Failure
You can display simulation results for a single-point failure in the GSV. To do so, click the
SETUP button on theGSV toolbar to display the Setup dialog box.
To view the difference between the goodmachine and faultymachine simulation for a specific
pattern,

Running Logic Simulation 13-39

TetraMAX ATPG User Guide K-2015.06-SP4

1. In the Setup dialog box, under Pin Data, choose Fault SimResults.
2. Click the Set Parameters button. The Fault SimResults Parameters dialog box appears.
3. Enter the pin path name or gate ID of the fault site, the stuck-at-0 or stuck-at-1 fault type,

and the pattern number that is to be simulated in the presence of the fault.
4. ClickOK to close the Fault SimResults Parameters dialog box.
5. ClickOK again to close the Setup dialog box.

TheGSV displays the fault simulation results, as shown in Figure 2.

Figure 2 Fault Simulation Results DisplayedGraphically

In Figure 2, pin A of gate 1216 is the site of the simulated stuck-at-1 fault. The output pin X
shows 0/1, where the 0 is the goodmachine response and the 1 is the faultymachine response.
You can trace the effect of the faultymachine throughout the design by locating logic values
separated by a forward slash (/), representing the good/badmachine response at that pin.

Data Volume and Test Application Time Reduction
Calculations
The equations for calculating data volume and test application time reduction for running
TetraMAX ATPGon compressed scan designs are as follows:

Test Data Volume Reduction =
(Scan Test Data Volume)/
(Scan Compression Test Data Volume)

Test Application Time Reduction =
(scan mode test application time)/
(ScanCompression_mode test application time)

These calculations are explained in the following sections:

l Test Data VolumeCalculations
l Test Application TimeReduction Calculations

Test Data Volume Calculations
The following information is stored on the tester in each test cycle:

l Forced value on input (signal or clock waveform)
l Value expected on output (strobed output)
l Whether output value should be strobed or not (output mask)

On every output, there are two bits of information per cycle. In the following two equations, this
accounts for the factor of three in the scan-test-data-volume equation and the factor of two in the

Data Volume and Test Application Time Reduction Calculations 13-40

TetraMAX ATPG User Guide K-2015.06-SP4

scan-compression-test-data-volume equation. The compression calculation is written differently
because it accounts for the number of inputs and outputs to the compression logic.

You can use the following formulas to expand the test data volume reduction equation:

Scan Test Data Volume =
3*(length of the longest Scan mode scan chain)*
(number of scan chains in Scan mode)*
(number of Scan mode patterns)
Scan Compression Test Data Volume =
(length of longest ScanCompression_mode scan chain)*
(number of scan_in + 2*(number of scan_out))*
(number of patterns)

The test data volumemight not match thememory used by the tester because each ATE uses
the test data volume differently. However, the tester can optimize thememory content. It can
allocatememory differently, depending on the brand or version of the tester and the channels
and cycles used. In such cases, the factors 2 and 3 in the scan-test-data-volume and scan-
compression-test-data volume formulas, respectively, might not match the data in the tester
memory.
The following ratio indicates the test data volume reduction that can be achieved:

Test Data Volume Reduction =
(Scan Test Data Volume)/
(Scan Compression Test Data Volume)

The test data volume reduction value calculated with this formula is just an estimate of the
improvements you can get by using compression.

Test Application Time Calculations
The test application time reduction is an estimate for the improvements you can achieve by using
compression. You can determine this reduction by taking the ratio of scan versus scan-
compression test-application time.
The test-application-time-reduction equation can be expanded by using the following formulas:

Scan Test Application Time =
(longest chain in Scan mode)*
(number of patterns in Scan mode)
Scan Compression Test Application Time =
(longest scan chain in ScanCompression_mode)*
(number of patterns in ScanCompression_mode)

The test application time reduction that can be achieved as follows:

Test Application Time Reduction =
(scan mode test application time)/
(scanCompression_mode test application time)

Data Volume and Test Application Time Reduction Calculations 13-41

TetraMAX ATPG User Guide K-2015.06-SP4

If you expand this equation, using the previous test application time equations for scan and scan
compression, you get the following:

Test Application Time Reduction =
((longest chain in Scan mode)*
(number of patterns in Scan mode))/
((longest scan chain in ScanCompression_mode)*
(number of patterns in ScanCompression_mode))

See Also
Distributed ATPGLimitations

Data Volume and Test Application Time Reduction Calculations 13-42

14
Fault Simulation
Fault simulation determines the test coverage obtained by an externally generated test pattern.
To perform fault simulation, you use functional test patterns that were developed to test the
design and have been previously simulated in a logic simulator to verify correctness. The
functional test patterns should contain the expected values, unless you are using the Extended
Value Change Dump (VCD) format. The expected values tell TetraMAX ATPGwhen and what
to measure.
The following topics describe fault simulation:

l Fault Simulation Design Flow
l Preparing Functional Test Patterns for Fault Simulation
l Reading the Functional Test Patterns
l Initializing the Fault List
l PerformingGoodMachine Simulation
l Performing Fault Simulation
l Combining ATPGand Functional Test Patterns
l RunningMulticore Simulation
l Per-Cycle PatternMasking

14-1

TetraMAX ATPG User Guide K-2015.06-SP4

Fault Simulation Design Flow
The fault simulation design flow prepares functional test patterns for fault simulation, reads the
test patterns, initializes the fault list, performs goodmachine simulation, performs fault
simulation, and reviews the test coverage.
Figure 1 shows the basic fault simulation design flow.

Fault Simulation Design Flow 14-2

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1 Fault Simulation Design Flow

Fault Simulation Design Flow 14-3

TetraMAX ATPG User Guide K-2015.06-SP4

Preparing Functional Test Patterns for
Fault Simulation
The ATPGand fault simulation algorithms emphasize speed and efficiency over the ability to use
or simulate gate timing delays. There are corresponding limitations on functional test patterns.
The requirements for test patterns are described in the following sections:

l Pattern Compliance with Automated Test Equipment (ATE)
l Checking Patterns for Timing Insensitivity
l Checking Patterns for Recognizable Formats

Pattern Compliance with ATE
Because the functional test patterns are used by ATE, youmust verify that the patterns comply
with requirements of ATE. Each brand andmodel of ATE has its own list of restrictions. The
following general list of characteristics is usually acceptable:

l The input stimuli, clocks, and expected response outputs can be divided into a sequence of
identical tester cycles.

l Each tester cycle is associated with a timing set. There are a fixed number of timing sets.
l The test cycle defines the state values to be applied as inputs andmeasured as outputs,
and the associated timing set defines the cycle period and the timing offsets within the
cycle when inputs are applied, clocks are pulsed, and outputs are sampled.

l The functional patterns are regular, with the timing of input changes and clock pulse
locations constant from one cycle to the next.

l The functional pattern set maps into four or fewer timing sets.
Every ATE has its own set of rules for timing restrictions, including the following examples:

l Minimumandmaximum test cycle period
l Minimumandmaximumpulse width
l Proximity of a pulsed signal to the beginning or end of a cycle
l Proximity of two signal changes to one another
l Accuracy and placement of measure strobes
l Placement accuracy of input transitions

Checking Patterns for Timing Insensitivity
Functional test patternsmust be timing insensitive within each test cycle. The design can have
no race conditions that depend on gate delays that must be resolved on nets that reach a
sequential device, a RAMor ROM, or a primary output port.

Preparing Functional Test Patterns for Fault Simulation 14-4

TetraMAX ATPG User Guide K-2015.06-SP4

To check for timing insensitivity:

1. Simulate the design in a logic simulator without timing and use a unit-delay or zero-delay
timingmode.

2. If the simulation passes, simulate it again with all timing events expanded in time by five or
ten times.

If the functional test patterns pass under these conditions, they can be considered timing
insensitive.

Timing Sensitivity
The following examples cause timing sensitivity:

l A pulse generator: An edge transition of an input port results in a pulse on an output port
or at the data capture input of an internal register. This pulsed value occurs at a specific
delay from the input event and, unless the output ismeasured at the correct time or the
internal register is clocked at the correct time, the pulsed value is lost. This type of design
fails simulation in the absence of actual timing.
You can correct this situation in one of two ways:

l Hold the triggering port fixed to a constant value in the functional patterns.
l Add some shunting circuitry (enabled in some sort of test mode) that blocks the
internal propagation of the pulsed value.

l Timing-critical measurements: An input port event at offset 0 ns turns on an output
driver in 100 nanoseconds (ns), but the patterns are set to measure a Z value at 90 ns
before the driver is turned on. Although thismeasurement is correct in the real device,
TetraMAX ATPGuses only unit delays and reports a simulationmismatch.
You can correct this situation bymeasuring at 110 ns and changing the expected data to
the appropriate non-Z value.

l Multiple active clocks or asynchronous set/reset ports in the same cycle:With
careful attention to timing, correct use of clock trees, and good analysis tools, you can
design blocks of logic with intermixed clock zones that operate correctly with functional
patternswhenmore than one clock is active. However, because TetraMAX ATPGuses
zero delay and not gate timing, simulating designs that contain more than one active clock
can result in the erroneous identification of internal race conditions and subsequent
elimination of functional test patterns.

l Usemaster-slave clocking in your design.
l Use resynchronization latches between clock domains.
l Arrange your test patterns so that in any one cycle you have only one active clock.

Preparing Functional Test Patterns for Fault Simulation 14-5

TetraMAX ATPG User Guide K-2015.06-SP4

Preparing Your Design for Fault Simulation
The process for preparing your design for fault simulation is generally the same as preparing for
the ATPGdesign flow:

1. Preprocessing the Netlist
2. Reading the Design and Libraries
3. Building the ATPGDesignModel
4. Declaring Clocks (optional)
5. Running DRC

Preprocessing the Netlist
If necessary, preprocess the netlist for compatibility with TetraMAX ATPG. For more
information, see Netlist Requirements.

Reading the Design and Libraries
Aswith ATPG, for TetraMAX ATPG fault simulation you first invoke TetraMAX ATPG, read in
the design netlist, and read in the librarymodels. For details, see Reading the Netlist and
Reading LibraryModels.
Note the following example command sequence:
% tmax

BUILD-T> read_netlist spec_asic.v
BUILD-T> read_netlist spec_lib/*.v -noabort

Building the ATPG Design Model
To build the ATPGdesignmodel for fault simulation, you use the same run_build_model
command as for ATPG. For fault simulation, enter the following command:
BUILD-T> run_build_model top_module_name

Example 1 run_build_model Transcript

BUILD-T> run_build_model spec_asic
--
Begin build model for topcut = spec_asic ...
--
End build model: #primitives=101004, CPU_time=13.90 sec,
Memory=34702381
--
Begin learning analyses...
End learning analyses, total learning CPU time=33.02

Preparing Your Design for Fault Simulation 14-6

TetraMAX ATPG User Guide K-2015.06-SP4

Declaring Clocks
Although the nonscan functional stimuli provide all inputs, youmight want to declare clocks so
that TetraMAX ATPGcan perform its clock-related DRC checks. Declaring clocks is optional.
Some clock violations found during run_drc can affect the simulator and it might be necessary to
remove add clocks commands.
If certain ports in the functional stimuli are operated in pulsed fashion within a cycle, youmight
want to provide this information to TetraMAX ATPGby declaring these ports to be clocks.
A typical command sequence for declaring a clock is shown in the following example:
DRC-T> add_clocks 0 CLK
DRC-T> add_clocks 1 RESETB

Running DRC
Running DRC with nonscan functional test patterns tends to be simpler than running DRC for
ATPG, because the additional check for scan chains and other ATPG-only checks do not need
to be performed.

DRC for Nonscan Operation
For nonscan operation, if you have defined a clock, you do not need to specify an STL procedure
file unless it is necessary for defining port timing. To run DRC without a file, enter the following
commands:
DRC-T> set_drc -nofile
DRC-T> run_drc

To run DRC with a file, enter the following command:
DRC-T> run_drc filename

Note the following:
l If you encounter DRC violations that apply to ATPGbut are not relevant to the fault grading
of nonscan functional patterns, adjust the DRC rule severity by using the set_rules
rule_id warning command, and then execute the run_drc command again.

l In some cases, external functional VCDe patterns are not always compliant with
TetraMAX behaviors -- particularly when the clocks are active at the same time that PIs
change state. The basic rule is to define clocks in DRC if there are no C-rule violations in
the design. If there are C violations, consider passing all signals as inputs and not defining
any signals as clocks.

Example 2 shows a transcript of run_drc for a nonscan operation.

Example 2 Running DRC for NonscanOperation

DRC-T> set_drc -nofile
DRC-T> run_drc
--
Begin scan design rule checking...
--

Preparing Your Design for Fault Simulation 14-7

TetraMAX ATPG User Guide K-2015.06-SP4

Begin Bus/Wire contention ability checking...
Bus summary: #bus_gates=4, #bidi=4, #weak=0, #pull=0, #keepers=0
 Contention status: #pass=0, #bidi=4, #fail=0, #abort=0,
#not_analyzed=0
 Z-state status : #pass=0, #bidi=4, #fail=0, #abort=0,
#not_analyzed=0
Bus/Wire contention ability checking completed, CPU time=0.02 sec.

--
Begin simulating test protocol procedures...
Test protocol simulation completed, CPU time=0.00 sec.
--
Begin scan chain operation checking...
Scan chain operation checking completed, CPU time=0.00 sec.
--
Begin clock rules checking...
Warning: Rule C3 (no latch transparency when clocks off) failed 5
times.
Clock rules checking completed, CPU time=0.02 sec.
--
Begin nonscan rules checking...
Warning: Rule S23 (unobservable potential TLA) failed 5 times.
Nonscan cell summary: #DFF=0 #DLAT=10 tla_usage_type=none
Nonscan behavior: #CX=5 #LS=5
Nonscan rules checking completed, CPU time=0.03 sec.
--
Begin contention prevention rules checking...
Contention prevention checking completed, CPU time=0.00 sec.

Begin DRC dependent learning...
DRC dependent learning completed, CPU time=0.00 sec.
--
DRC Summary Report
--
Warning: Rule S23 (unobservable potential TLA) failed 5 times.
Warning: Rule C3 (no latch transparency when clocks off) failed 5
times.
There were 10 violations that occurred during DRC process.
Design rules checking was successful, total CPU time=0.21 sec.
--

DRC for Scan Operation
For scan operation, the STL procedure file you specify should contain, at aminimum, the scan
chain definitions, the waveform timing definitions, and the load_unload and Shift
procedure definitions. You can define clocks, primary inputs constraints, and primary input
equivalences on the command line or within the STL procedure file, or you can use a
combination of both.
To run DRC with a STIL procedure file, enter the following command:
DRC-T> run_drc filename

Preparing Your Design for Fault Simulation 14-8

TetraMAX ATPG User Guide K-2015.06-SP4

Reading Functional Test Patterns
You can read functional test patterns using the Set Patterns dialog box, or by running the set_
patterns command at the command line.
If you are reading external patterns in VCDE format, you need to specify the trigger conditions
for measurement. In the Set Patterns dialog box, use the Strobe Position option and related
options; or in the set_patterns command, use the -strobe option.
The following sections describe how to read functional test patterns:

l Using the Set PatternsDialog Box
l Using the set_patternsCommand
l Specifying Strobes for VCDE Pattern Input

Using the Set Patterns Dialog Box
To read in the functional test patterns using the Set Patterns dialog box:

1. From themenu bar, choose Patterns > Set Pattern Options. The Set Patterns dialog box
appears.

2. Click External.
3. In the Pattern File Name text field, enter the name of the pattern file, or locate it using the

Browse button.
4. ClickOK.

Using the set_patterns Command
The following example shows how to read functional test patterns using the set_patterns
command:
TEST-T> set_patterns -external data.vcde -strobe rising CLK \
 -strobe offset 50 ns

TetraMAX ATPGautomatically determines the type of patterns being read and whether they are
in standard or GZIP format, and handles all variations automatically.
The following example transcript show output from the set_patterns external
command:
TEST-T> set_patterns ext patterns.v
End parsing Verilog file patterns.v with 0 errors;
End reading 41 patterns, CPU_time = 0.02 sec, Memory = 2952

For examples of functional patterns, see Pattern Input.

Reading Functional Test Patterns 14-9

TetraMAX ATPG User Guide K-2015.06-SP4

Specifying Strobes for VCDE Pattern Input
Functional patterns in VCDE format do not contain measure information. Therefore, when you
read in VCDE patternswith the Set Patterns dialog box or the set_patterns command, you need
to specify the trigger conditions for measuring expected values. You can specify strobes that
occur at a fixed periodic interval, or you can specify strobe trigger conditions based upon events
occurring at a specified primary input port, output port, or bidirectional port.
In the Set Patterns dialog box, when you select External as the pattern source, the Strobe
Position option and related options are displayed. These options apply to reading VCDE
patterns only. The set of options changes according to the Strobe Position setting.
The Strobe Position can be set to any one of the following states:

l None: This option is not supported for VCDE input.
l Period: Strobes occur at a fixed periodic interval, starting in each cycle at the offset value
specified in the Offset field.

l Event: A strobe is triggered by any event occurring on the port specified in the Port Name
field. Any event at that port causes a strobe, including a transition with no level change
such as 1 to 1 or 0 to 0.

l Rising: A strobe is triggered by each transition to 1 on the port specified in the Port Name
field. Any transition to 1 causes a strobe, including 0 to 1, 1 to 1, X to 1, or Z to 1.

l Falling: A strobe is triggered by each transition to 0 on the port specified in the Port Name
field. Any transition to 0 causes a strobe, including 1 to 0, 0 to 0, X to 0, or Z to 0.

For the Event, Rising, and Falling strobemodes, you can specify an offset value in the Offset
field. By default, the offset is 0, which causes the strobe to occur just before the trigger event. In
other words, themeasure occurs just before processing of the VCDE data change that is the
trigger event.
Tomake the strobe occur at a specific time after the trigger event, specify a positive offset value.
Negative offsets for strobes are not supported.
Each period and offset settingmust be a positive integer or zero. You specify the time units in the
Unit fields: seconds, milliseconds, microseconds, nanoseconds, picoseconds, or femtoseconds.
To specify the strobes using the command-line interface, use the -strobe option of the set_
patterns command. For details on the command syntax, see the online help for the set_patterns
command.
Figure 1 shows some timing diagramswith the strobe points resulting from various strobe
specification settings.

Reading Functional Test Patterns 14-10

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1 VCDE Strobe Specification Examples

Each timing diagram shows the primary I/O signals A, B, and C. The vertical dashed lines
represent the strobe times. In the first example, the strobes are periodic and independent of the
data stream. In the second and third example, the strobes are based on port A and port C,
respectively.

Reading Functional Test Patterns 14-11

TetraMAX ATPG User Guide K-2015.06-SP4

Initializing the Fault List
The following sections show you how to initialize a fault list:

l Using the Add Faults Dialog Box
l Using the add_faults Command

Using the Add Faults Dialog Box
To initialize the fault list using the Add Faults dialog box,

1. From the Faultsmenu, choose Add Faults. The Add Faults dialog box appears.
For descriptions of these controls, seeOnline Help for the add_faults command.

2. To add all potential faults (themost common usage), click All.
3. ClickOK.

Using the add_faults Command
You can also initialize the fault list for all faults using the add_faults command:
TEST-T> add_faults -all

You can also define fault lists by reading faults or nofaults from a file or by defining specific
hierarchical blocks for adding or removing faults:
TEST-T> read_faults saved_faults_file
TEST-T> read_faults saved_faults_file -retain

The double-read sequence shown in this example is necessary to restore the exact fault codes
saved to the file.
In addition, you can read in a fault list generated by the TetraMAX ATPGpatterns and thereby
determine the cumulative fault grade for a combination of ATPGand functional test patterns. For
details, see Setting Up the Fault List and Combining ATPGand Functional Test Patterns.

Performing Good Machine Simulation
You should perform a goodmachine simulation using the functional patterns before running a
fault simulation, to compare the TetraMAX simulation responses to the expected responses
found in the patterns. If the goodmachine simulation reports errors, there is little value in
proceeding to run fault simulation.
As part of setting up the goodmachine simulation, refer to contention checking as described in
"Choosing Settings for Contention Checking."

Initializing the Fault List 14-12

TetraMAX ATPG User Guide K-2015.06-SP4

The following sections show you how to set up other goodmachine simulation parameters:
l Using the Run Simulation Dialog Box
l Using the set_simulation and run_simulation Commands

Using the Run Simulation Dialog Box
To set up the goodmachine simulation parameters using the Run Simulation dialog box,

1. Click the Simulation button in the command toolbar at the top of the TetraMAX ATPG
main window. The Run Simulation dialog box appears.
For descriptions of these controls, see the online help for the run_simulation
command.

2. Select required options.
3. Click Set to set the simulation options, or click Run to set the options and begin the good

machine simulation.

Using the set_simulation and run_simulation Commands
To set up the fault simulator from the command line, use a combination of the set_
simulation command and appropriate options of the run_simulation command:
DRC-T> set_simulation -measure pat -oscillation 20 2 -verbose
TEST-T> run_simulation -sequential

For the complete syntax and option descriptions, seeOnline Help for each command.
Example 1 shows a transcript of a simulation run that has nomismatches between the simulated
and expected data. For an example with simulationmismatches, see Comparing Simulated and
Expected Values.

Example 1 GoodMachine Simulation Transcript

TEST-T> run_simulation -sequential
Begin sequential simulation of 36 external patterns.
Simulation completed: #patterns=36/102, #fail_pats=0(0),
#failing_meas=0(0)

Performing Fault Simulation
After performing a goodmachine simulation to verify that the functional patterns and expected
data agree, you can perform a fault grading or fault simulation of those patterns. Performing fault
simulation includes setting up the fault simulator, running the fault simulator, and reviewing the
results.
The following sections describe how to run fault simulation:

l Using the Run Fault Simulation Dialog Box
l Using the run_fault_simCommand
l Writing the Fault List

Performing Fault Simulation 14-13

TetraMAX ATPG User Guide K-2015.06-SP4

Note: The set_simulation command described in the "PerformingGoodMachine
Simulation" section sets the environment for fault simulation aswell as for goodmachine
simulation. Many of the options in the Run Simulation dialog box are also included in the Run
Fault Simulation dialog box.

Using the Run Fault Simulation Dialog Box
To set up fault simulation parameters using the Run Fault Simulation dialog box,

1. Click the Fault Sim button in the command toolbar at the top of the TetraMAX ATPGmain
window. The Run Fault Simulation dialog box appears.
For descriptions of these controls, seeOnline Help for the run_fault_sim command.

2. Select required options.
3. Click Set to close the dialog box and set the simulation options, or click Run to set the

options and begin the faultymachine simulation.

Using the run_fault_sim Command
You can also set up fault simulation parameters using the run_fault_sim command:
TEST-T> run_fault_sim -sequential

The following example shows a typical transcript of a fault simulation run is shown in Example 1.

TEST-T> run_fault_sim -sequential
--
Begin sequential fault simulation of 4540 faults on 36 external
patterns.
--
#faults pass #faults cum. #faults test process
simulated detect/total detect/active coverage CPU time
--------- ------------- ------------- -------- --------
1675 550 1675 550 3990 13.57% 3.72
3326 669 1651 1219 3321 29.36% 7.41
4540 390 1214 1609 2931 40.22% 11.13
Fault simulation completed: #faults_simulated=4540,test_
coverage=40.22%

You review test coverage in the sameway as for ATPG. For details, see Reviewing Test
Coverage .
The following command generates a summary of fault simulation.
TEST-T> report_summaries

Writing the Fault List
Youwrite fault lists for fault simulation in the sameway as you do for the ATPG flow. The
following write_faults commandwrites (saves) a fault list.
TEST-T> write_faults file.dat -all -uncollapsed -rep

Performing Fault Simulation 14-14

TetraMAX ATPG User Guide K-2015.06-SP4

Combining ATPG and Functional Test Patterns
If your design supports scan-based ATPG, you can create ATPG test patterns in addition to
functional test patterns. Combining ATPGpatternswith functional test patterns can often
produce amore thorough andmore complete set of test patterns than using either method
alone.
If your design allows both ATPGand functional testing, you can combine the resulting test
patterns. The following sections describe the variousmethods for combining test patterns:

l Creating Independent Functional and ATPGPatterns
l Creating ATPGPatterns After Functional Patterns
l Creating Functional Patterns After Creating ATPGPatterns

Creating Independent Functional and ATPG Patterns
If you do not want to combine the effects of functional test patterns and ATPGpatterns, you can
create them independently. The functional test patterns are fault-graded in an appropriate tool,
and you obtain a test coverage value for the ATPGpatterns that you create using TetraMAX
ATPG.
To determine the test coverage overlap, youmust perform a detailed comparison of the fault lists
from bothmethods. You should expect overlap. In fact, youmight prefer redundancy.

Creating ATPG Patterns After Functional Patterns
If complete functional patterns are to be part of the test flow, use a combined approach with
ATPGpatterns following functional patterns. The goal of ATPG is to create patterns to test faults
not tested by the functional patterns.
The following steps show a typical flow:

1. Use TetraMAX ATPG to fault-grade the functional patterns.
2. Review the resulting test coverage.
3. Write the uncollapsed fault list resulting from the fault simulation.
4. Use TetraMAX ATPG to create ATPGpatterns for the fault list you created in step 3.

Example 1 shows a command file that implements this flow.

Example 1 Creating ATPGPatterns After Functional Patterns
#
--- ATPG follows Fault Grade flow
#
read_netlist spec_design.v -del # read netlist
read_netlist spec_lib.v # read library modules
run_build_model # form in-memory design image
add_clocks 0 CLK # define clock
add_clocks 1 RESETB # define async reset

Combining ATPG and Functional Test Patterns 14-15

TetraMAX ATPG User Guide K-2015.06-SP4

run_drc # DRC without a procedure file
set_patterns -external b010.vin # read in external patterns
set_simulation -measure pat # set up for fault sim
run_simulation -sequential # perform good machine simulation

add_faults -all # add all faults
run_fault_sim -sequential # perform fault grade
report_summaries # report results
write_faults pass1.flt -all -uncol -rep # save fault list
#
--- switch to SCAN-based ATPG for more patterns
#
drc -force # return to DRC mode
set_patterns -delete # clear out external patterns
set_patterns -internal # switch to int pattern
generation
run_drc spec_design.spf # define scan chains and
procedures
read_faults pass1.flt -retain # start with fault list from
pass1
set_atpg -abort 20 -merge high # setup for ATPG
run_atpg # create ATPG patterns
report_summaries # report coverage results
write_patterns pat.v -form verilog -replace # save patterns
write_faults pass2.flt -all -uncollapsed -rep # save cumulative
fault
list

Creating Functional Patterns After ATPG Patterns
Use a combined approach with functional patterns following ATPGpatterns if you want to
minimize the effort of creating functional test patterns. On a full-scan design, the ATPGpatterns
achieve a very high coverage and the functional patterns can be created to test for faults that are
untestable with ATPGmethods.
The following steps show a typical flow:

1. Use TetraMAX ATPG to create ATPGpatterns.
2. Review the resulting test coverage.
3. Save the uncollapsed fault list resulting fromATPG.
4. Save the collapsed fault list of the nondetected faults, which are the faults in the ND, AU,

and PT categories. For an explanation of these categories, see Fault Categories and
Classes.

5. Use the nondetected fault list to guide your construction of functional patterns to test for
the remaining faults.

6. When the functional patterns are ready, fault-grade them using the uncollapsed fault list
from the ATPG (generated in step 3 above) as the initial fault list.

Combining ATPG and Functional Test Patterns 14-16

TetraMAX ATPG User Guide K-2015.06-SP4

Example 2 shows a command file sequence that illustrates this flow.

Example 2 Creating Functional Patterns After ATPGPatterns
#
--- ATPG before Fault Grade
#
read_netlist spec_design.v -del # read netlist
read_netlist spec_lib.v # read library modules
run_build_model # form in-memory design image
add_clocks 0 CLK # define clock
add_clocks 1 RESETB # define async reset
add_pi_constraints 1 TEST # define constraints
run_drc spec_design.spf # define scan chains and
procedures
add_faults -all # seed faults everywhere
run_atpg -auto_compression # create ATPG patterns
write_patterns pat.v -form verilog -replace # save patterns
write_faults pass1.flt -all -uncollapsed -rep # save cumulative
fault list
#
--- switch to Fault Grade mode
#
drc -force # clocks will still be defined
remove_pi_constraints -all # don't constrain when using ext
patterns
set_drc -nofile
run_drc # switch to test mode
set_patterns -external b010.vin # read in external patterns
set_simulation -measure pat # set up for fault sim
run_simulation -sequential # perform good machine simulation

read_faults pass1.flt # seed the fault list
read_faults pass1.flt -retain # start with fault list from ATPG

run_fault_sim -sequential # perform fault grade
report_summaries # report results
write_faults pass2.flt -all -uncollapsed -replace # save fault
list

Running Multicore Simulation
Multicore simulation is amethodology that enables you to improve simulation runtime by
launchingmultiple slaves to parallelize fault and logic simulation to work on a single host. You
can specify the number of processes to launch based on the number of CPUs and available
memory on themachine.

Running Multicore Simulation 14-17

TetraMAX ATPG User Guide K-2015.06-SP4

Note:Multicore simulation provides similar runtime reductions and works the sameway as the
multicore ATPGarchitecture described in RunningMulticore ATPG.
The following topics describe how to usemulticore simulation and analyze its performance:

l InvokingMulticore Simulation
l Interrupt Handling
l Understanding the Processes SummaryReport
l Resimulating ATPGPatterns
l Limitations

Invoking Multicore Simulation
Multicore simulation is activated by the following set_simulation command:
set_simulation –num_processes <number | max>

The number specification refers to the number of slave processes used during simulation. If
max is specified, then TetraMAX ATPGcomputes themaximumnumber of processes available
in the host, based on number of CPUs. If TetraMAX ATPGdetects that the host has only one
CPU, then single-process simulation is performed instead of multicore simulation with only one
slave. Note that you should not specifymore processes than the number of CPUs available on
the host. You should also consider whether there are other CPU-intensive processes running
simultaneously on the host when running the number of processes. If toomany processes are
specified, performance will degrade andmight be worse than single-process simulation. On
some platforms, TetraMAX ATPGcannot compute the number of CPUs available and will issue
an error if max is specified.

Interrupt Handling
To interrupt themulticore simulation process, use Control-c ; in the samemanner as a single
process. If a slave ends or is killed, themaster and remaining slaveswill continue to run.
If themaster ends or is killed, the slaveswill also halt. In this case, there are no ongoing zombie
processes, dangling files, or memory leakage.

Understanding the Processes Summary Report
Memory consumption needs to bemeasured to tune the global data structure to improve the
scalability of multicore architecture. Legacymemory reports are not sufficient because they do
not deal with issues related to copy-on-modification. ; To facilitate collecting performance data, a
summary report of multicore simulation is printed automatically at the end of the simulation
processwhen the -level expert option is used with the set_messages command. The
summary report appears as shown in Example 1.

Example 1 Example Processes SummaryReport

Processes Summary Report

--

Running Multicore Simulation 14-18

TetraMAX ATPG User Guide K-2015.06-SP4

 Process Patterns Time(s) Memory(MB)
----------- ---------- --------------- -------------------------

ID pid Internal CPU Elapsed Shared Private Total Pattern

--

 0 7611 1231 0.53 35.00 67.78 30.54 98.32 5.27
 1 7612 626 35.68 35.00 64.87 22.31 87.18 0.00
 2 7613 605 35.50 35.00 64.71 22.47 87.18 0.00
 Total 1231 71.71 35.00 67.78 75.32 143.10 5.27

--
-

The report in Example 1 contains one row for each process. The first processwith an ID of 0 ; is
themaster process. The child processes have IDs of 1, 2, 3, and so forth. The last row is the
sum for eachmeasurement across all processes.
The pid ; column lists the process IDs. The Patterns ; are the total number of patterns stored
by themaster or the number of patterns generated by the slave in this particular simulation
session. The columns listed under Time(s) ; include CPU time and wall time.
The Memory ; measurements are obtained by parsing the system-generated file
/proc/pid/smaps. The file containsmemorymapping information created by theOS while the
process still exists. The /proc/pid/ directory cannot be found after the process terminates. The
tool parses this file at the proper time to gather memory information for the reporting at the end of
parallel simulation.
The Memory ; measurement includes Shared, ; Private, ; Total, ; and Pattern. ; The
Shared ; column refers to all processes that share the same copy of thememory. The
Private ; column refers to the process stores local changes in thememory. The Total ;
column is the sum of Shared ; and Private. ; The Pattern ; column refers tomemories
allocated for storing patterns. The total memory consumption of the entire system is the Total ;
item in the row Total, ; which is the sum of total sharedmemory (maximumof shared
memories for each process) and the total privatememory (sum of all privatememory for all
processes). Although thememory for patterns is listed separately, it is part of themaster private
memory.
Due to a lack of OS support, theMemory section of the summary report is only available on Linux
and AMD64 platforms. No other platform gives shared or privatememory information in a copy-
on-write context. On other formats, thememory reports all 0 ;s for items other than the pattern
memory.
Note: The report in Example 1 is printed only when the set_messages command is set to -
expert. Otherwise, a default summary report, similar to the following example, is printed out:
End parallel ATPG: Elapsed time=35.00 sec, Memory=143.10MB.

Processes Summary Report

Running Multicore Simulation 14-19

TetraMAX ATPG User Guide K-2015.06-SP4

Resimulating ATPG Patterns
You can resimulate ATPGpatterns tomask out the observe values for anymismatched patterns
verified with run_simulation command. This feature is enabled when bothmulticore ATPG
and ATPGpattern re-simulation are enabled, as shown in the following example:
set_atpg -resim_atpg fault_sim
set_atpg -num_processes 2
run_atpg –auto

The command output is similar to single-process ATPGpattern simulation with mismatch
maskingmessages. The process summary report is automatically printed out at the end of
ATPG, logic simulation, and fault simulation; this report is similar to the process summary report
for the corresponding standalone commands.

Limitations
There are several run_fault_sim and run_simulation command options that are not
supported bymulticore simulation.
The unsupported run_fault_sim options are as follows:

l -detected_pattern_storage—This option stores the first detection pattern for
each fault. In multicore fault simulation, the patterns are not simulated in the order of the
pattern number occurrence.

l -distributed—This option is used to launch distributed fault simulation only. It cannot
be used in conjunction with multicore fault simulation.

l -nodrop_faults

l -store—This option copies the functional patterns that detect faults into the internal
pattern set. In multicore fault simulation, the pattern simulation order is not associated with
the original pattern generation order.

The unsupported run_simulation options are as follows:
l -sequential

l -sequential_update

l -update

l -store

See Also
RunningMulticore ATPG

Per-Cycle Pattern Masking
A common practice for test engineers is to replace 0s and 1swith Xs in scan patterns on the
tester. The goal, in this case, is to mask specificmeasures that mismatch on the tester.

Per-Cycle Pattern Masking 14-20

TetraMAX ATPG User Guide K-2015.06-SP4

The per-cycle patternmasking feature enables you to use amasks file to identify themeasures
tomask out. Then, masked patterns can be written out, and, optionally, test coverage can be
recalculated, or the patterns can be simulated.
The following sections describe per-cycle patternmasking:

l Flow Options
l Masks File
l Running the Flow
l Limitations

Flow Options
There are two flows available for running per-cycle patternmasking: the tester flow and the
simulation flow.
The following steps are for the tester flow:

1. The original patterns are written out from TetraMAX ATPG.
2. A few mismatches occur on the tester.
3. The patterns andmismatches are read into TetraMAX ATPG.
4. Mismatches aremasked in the pattern.
5. Masked patterns are optionally fault simulated again.
6. Masked patterns are written out from TetraMAX ATPG.
7. All patterns pass on the tester.

The following steps are for the simulation flow:

1. The original patterns are written out from TetraMAX ATPG.
2. Mismatches occur during fault simulation.
3. The patterns andmismatches are read into TetraMAX ATPG.
4. Mismatches aremasked in the pattern.
5. Masked patterns are optionally fault simulated again.
6. Masked patterns are written out from TetraMAX ATPG.
7. All patterns pass during simulation.

Masks File
Amasks file contains themeasures used tomask in the patterns. It uses the same format as the
failure log file used for diagnostics and can be pattern-based or cycle-based. The pattern-based
format with chain name from parallel STILDPV simulation is also supported. See “Providing
Tester Failure Log Files” for details of the file format.
You can create amasks file as a result of running patterns on a tester. Note that only STIL or
WGL patterns files can be used with a cycle-based format masks file. A binary pattern file cannot
bemasked with the cycle-based format masks file.

Per-Cycle Pattern Masking 14-21

TetraMAX ATPG User Guide K-2015.06-SP4

You can also create themasks file by collectingmismatches that occur during simulation, in
serial or parallel mode, of STIL patterns. See “Predefined Verilog Options” in the Test Pattern
Validation User Guide for information on the +tmax_diag option that controls this process.

Running the Flow
The flow consists of first reading the patterns in the external buffer along with themasks file. This
read step will perform themasking of the patterns. You can then write the updated patterns so
you can use them. Finally, you can optionally calculate the new test coverage with themasked
cycles. It is possible to update binary, WGL or serial-STIL patternswith failures from the parallel
simulation of STIL patterns; and then, to write the parallel STILmasked patterns for simulation.
To read the patterns in the external buffer and read in themasks file, use the following set_
patterns command:
set_patterns -external patterns_file -resolve_differences masks_
file

For example, the following command reads in the pat.stil patterns file and the mask.txt
masks file, and creates a report that indicates the total number of X measures added in the
external patterns:
set_patterns -external pat.stil -resolve_differences mask.txt
End parsing STIL file pat.stil with 0 errors.
End reading 200 patterns, CPU_time = 33.40 sec, Memory = 5MB
6 X measures were added in the external patterns.

Next, use the write_patterns -external command to write out the new vectors stored in
the external patterns buffer. Then, if you want to calculate the new test coverage, it is
recommended that you fault simulate the new patternswith run_fault_sim.
The flow is shown in the following example:
TEST-T> set_patterns -external pat.stil.gz -resolve_differences
mask.txt
TEST-T> write_patterns pat.masked.stil.gz -format STIL \
 -compress gzip -external
TEST-T> run_fault_sim

An alternatemethod for fault simulating the patterns and saving them so they can run on the
tester is to use first run_atpg -resolve_differences and then write_patterns. In
this case, the difference with previousmethod is that the run_atpg -resolve_
differences command fault grades the external patternswith the addedmasks, and,
patterns that don’t contribute to the test coverage are removed.
The advantage of using the alternatemethod is that if a large number of failures are used during
per-cycle patternmasking, it is likely that many patterns run on the tester are useless and thus
removing themwill reduce the test time. The drawback is that new failures could appear
because of the patterns suppression. This is why it is recommended that you perform a check
with the run_simulation command after run_atpg -resolve. If new failures occur, you
must mask the patterns another time using set_patterns -resolve_differences.
An alternate flow is shown in the following example:
TEST-T> set_patterns -external pat.stil.gz -resolv_differences
mask.txt
TEST-T> add_faults -all

Per-Cycle Pattern Masking 14-22

TetraMAX ATPG User Guide K-2015.06-SP4

TEST-T> run_atpg -resolve_differences
TEST-T> run_simulation
TEST-T> write_patterns pat.masked.stil.gz -format STIL -compress
gzip \
 -external

You can also use this feature when the patterns are split after ATPG. In this case, make sure you
generate the failures used for masking by using the log of the cycle-based failures from the
tester. Also, the cycle count must be reset from the execution of a particular split pattern set to
the next split pattern set. The flow is shown in following example:
set_patterns –external <pattern_filename_0_to_mask> -resolve
<failures_reset_0>
write_patterns …
set_patterns -delete
set_patterns –external <pattern_filename_1_to_mask> -resolve
<failures_reset_1>
write_patterns …
set_patterns –delete
etc. …

Note: You should specify the set_diagnosis -cycle_offset commandwhen using a
cycle-based failures log file for masking and an offset is applied to the cycle.

Limitations
The following limitations apply to this flow:

l It is not possible to write masked full-sequential patterns in parallel format.
l The binary pattern file cannot bemasked with a cycle-based format masks file.
l For patternswith multiple load-unloadswith measures on the scanout in each unload, only
the failures for the first unload can bemasked.

Per-Cycle Pattern Masking 14-23

15
On-Chip Clocking Support
On-Chip Clocking (OCC) support is common to all scan ATPGand Adaptive Scan
environments. This implementation is intended for designs that require ATPG in the presence of
PLL and clock controller circuitry.
OCC support includes phase-locked loops, clock shapers, clock dividers andmultipliers, etc. In
the scan-ATPGenvironment, scan chain load and unload are controlled through an ATE clock.
However, internal clock signals that reach state elements during capture are PLL-related.
The following sections describe on-chip clocking support:

l OCC Background
l OCC Definitions, Supported Flows, Supported Patterns
l OCC Limitations
l DFT Compiler to TetraMAX Flow
l OCC Support in TetraMAX
l OCC-Specific DRC Rules

15-1

TetraMAX ATPG User Guide K-2015.06-SP4

OCC Background
At-speed testing for deep submicron defects requires not onlymore complex fault models for
ATPGand fault simulation, like transition faults and path delay faults, but also requires the
accurate application of two high-speed clock pulses to apply the tests for these fault models. The
time delay between these two clock pulses, referred to as the launch clock and the capture clock,
is the effective cycle time at which the circuit is tested.
A key benefit of scan-based at-speed testing is that only the launch clock and capture clock need
to operate at the full frequency of the device under test. Scan shift clocks and shift datamight
operate at much slower speed, thus reducing the performance requirements of the test
equipment. However, complex designs often havemany different high frequency clock domains,
and the requirement to deliver a precise launch and capture clock for each of these from the
tester can add significant or prohibitive cost on the test equipment. Furthermore, special tuning is
often required to properly control the clock skew to the device under test.
One common alternative for at-speed testing is to leverage existing on-chip clock generation
circuitry. This approach uses the active controller, rather than off-chip clocks from the tester, to
generate the high speed launch and capture clock pulses. This type of approach generally
reduces tester requirements and cost, and can also provide high speed clock pulses from the
same source as the device in its normal operatingmodewithout additional skews from the test
equipment or test fixtures.
To use this approach, additional on-chip controller circuitry is included to control the on-chip
clocks in test mode. The on-chip clock control is then verified, and at-speed test patterns are
generated which apply clocks through proper control sequences to the on-chip clock circuitry
and test mode controls. DFT Compiler and TetraMAX ATPGsupport a comprehensive set of
features to ensure that:

l The test mode control logic for the OCC operates correctly and has been connected
properly.

l Test mode clocks from theOCC circuitry can be efficiently used by TetraMAX ATPG for at-
speed test generation.

l OCC circuitry can operate asynchronously to shift and other clocks from the tester.

OCC Definitions, Supported Flows,
Supported Patterns
Note the following definitions as they apply to OCC:

l Reference Clocks—The frequency reference to the PLL. It must bemaintained as a
constantly pulsing and free-running oscillator or the circuitry will lose synchronization.

l PLL Clocks—The output of the PLL. A free-running source that also runs at a constant
frequencywhichmight not be the same as the reference clock.

OCC Background 15-2

TetraMAX ATPG User Guide K-2015.06-SP4

l ATE Clocks—Shifts the scan chain typically slower than a reference clock. Youmust
manually add this signal (a port) when inserting the OCC. Note that the ATE clock cannot
be a reference clock, and it does not capture.

l Internal Clocks—TheOCC is responsible for gating and selecting the PLL clocks and
ATE clocks, and for creating the internal clocks, which satisfy ATPG requirements.

l External Clocks—The primary inputs of a design which clock flip-flops directly through
combinational logic not generated fromPLLs.

OCC is supported in the following flows:
l DFT Compiler-to-TetraMAX flow (for details, see Chapter 7, “Using On-Chip Clocking,” in
theDFT Compiler User Guide Vol. 1: Scan)

l Non-DFT Compiler to TetraMAX Flows:
l Basic Scan with On-Chip Clocking
l Adaptive Scan with On-Chip Clocking

Note the following pattern support available in OCC:

Format Synchronous Single Pulse Synchronous Multi-Pulse Asynchronous

STIL Yes Yes Yes

STIL99 Yes Yes No

WGL Yes Yes No

Others Yes No No

OCC Limitations
Note the following limitations for OCC support:

l Youmust use generic capture procedures for internal/external clocking. For more
information, see “Creating Generic Capture Procedures."

l You cannot use theOCC fromDFT Compiler with the set_delay -launch_cycle
last_shift command. However, you can use it with the set_delay -launch_
cycle extra_shift command if it is used in combination with pipelined scan enable.
In this case, the scan_en pinmust be connected to the non-pipelined scan enable input.

l Multi-cycle paths can only be tested when they are defined in a MultiCyclePath block
for synchronizedmulti frequency clocking. Youmust also specify the set_drc -
multiframe_paths command.

l The clock frequency of the PLL generating internal clocks cannot change dynamically—
must be constant (i.e., programmable bitsmust be nonscan and constant during ATPG).

l Do not use the reference clock as your ATE clock or shift clock.
l End-of-cycle measure is not compatible with PLL reference clocks. With PLL reference
clocks defined, ATPGcan generate patternswith the following sequence of events:

OCC Limitations 15-3

TetraMAX ATPG User Guide K-2015.06-SP4

l forcePI
l measurePO
l pulse reference clocks
Whenwriting such patterns out in STIL (or any other external format), the vector that
contains themeasurePOmust also pulse reference clocks (by definition reference
clocksmust be pulsed in every vector). But the end-of-cycle measure timingmeans
the order of events is reversed in this vector: pulse reference clocksmeasurePO.
This is incorrect and the pattern will likely fail on silicon. A new message has been
added that will flag you to correct the timing:
Warning: Reference Clock <ON_time> < measure_time> in
waveformtable. All PO measures were masked. (M664)

l Clock bitsmust hold state during capture.

l Avoid using reference clock for flip-flops inside the design.
l Programmable PLLs (test_setup is critical andmust not become corrupt during the entire
ATPGprocess).
MacroDefs {
 "test_setup" {
 W "_default_WFT_";
 C {
 "all_inputs" = \r26 N;
 "all_outputs" = \r8 X;
 }
 V {
 "ateclk" = P;
 "clk" = P;
 "pll_reset" = 1;
 }
 V {
 "test_mode" = 1;
 "pll_bypass" = 0;
 "pll_reset" = 0;
 "test_se" = 0;
 }

OCC Limitations 15-4

TetraMAX ATPG User Guide K-2015.06-SP4

 }
}

The pll_resetmust be constrained to stay in a consistent state while shifting data from
the clock chain. TheOCC Controller goes through the initialization sequence one time and
returns to a state to be controlled from the clock chain only. Therefore, the pll_reset
must be constrained to stay in a consistent state.

l If the reference clock period is an integer divisor of the test_default_period, then patterns
can be written in the STIL, STIL99 andWGL formats.

l If the reference clock is not an integer divisor to the test_default_period, the only format
that can be written in a completely correct way is STIL. Other formats (including STIL99)
cannot include the reference clock pulses and a warning is printed indicating that these
pulsesmust be added back to the patternsmanually.

l Make sure you constrain the scan enable to the off-state in the TetraMAX command file
since it is not specified in the OCC protocol file.

l The tmax2pt.tcl script supportsOCC. However, since there is no timing information
for internal clocks in the TetraMAX database, the timing that is written out is nominal and
might not match the design’s actual clock timing.

DFT Compiler to TetraMAX Flow
This flow automatically writes out the STIL procedure file for TetraMAX ATPGand the Verilog
netlist.
For details on this flow, refer to “Using On-Chip Clocking,” in theDFT Compiler User GuideVol.
1: Scan).
Figure 1 illustrates the basic DFT Compiler to TetraMAX ATPGdesign flow.

DFT Compiler to TetraMAX Flow 15-5

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1: DFT Compiler to TetraMAX ATPGFlow

The basic DFT Compiler-to-TetraMAX ATPGdesign flow consists of the following steps:

1. Edit your netlist to meet the requirements of TetraMAX ATPG (see "Netlist
Requirements").

2. Read the netlist (see "Reading in the Netlist").
3. Read the librarymodels (see "Reading LibraryModules")

DFT Compiler to TetraMAX Flow 15-6

TetraMAX ATPG User Guide K-2015.06-SP4

4. Build the ATPGdesignmodel (see "Building the ATPGModel")
5. Read in the STIL test protocol file, automatically generated byDFT Compiler (see

"Selecting the Pattern Source").
6. PerformDRC andmake any necessary corrections (see "Performing Test Design Rule

Checking").
To run with PLL active, specify the following command:
run_drc <STIL_file> -patternexec <test_mode>

To run with PLL bypassed, specify the following command:
run_drc <STIL_file> -patternexec <test_mode>_occ_bypass

When using default test modes, use one of the following:
run_drc <scan_STIL_file> -patternexec Internal_scan
run_drc <scan_STIL_file> -patternexec Internal_scan_occ_bypass
run_drc <compression_STIL_file> -patternexec ScanCompression_
mode
run_drc <compression_STIL_file> -patternexec ScanCompression_
mode_occ_bypass

7. Prepare the design for ATPGby setting up the fault list, and setting the ATPGoptions
(see "Preparing for ATPG").
Depending on the ratio between the _default_WFT_ and theOCC clocks, the set_
atpg -min_ateclock_cycles commandmight be needed.
The capture sequence for OCC clocks uses the multiclock_capture procedure (if
generic capture procedures are used). There are asmany of these as the number of
launch and capture clocks required. The SynopsysOCC controller requires an ATE clock
falling edge to occur after the scan enable has become inactive to start its count, then
emits its first clock to correspond with the sixth following clock coming from the PLL. If the
scan enable becomes active again before all of the pulses required from theOCC
controller are emitted, then the capture pulses are truncated and the patternswill fail
simulation.
When the ratio of the slowest PLL clock period to the ATE clock period is not high enough
to ensure that all OCC clock pulses are emitted, the set_atpg -min_ateclock_
cycles command should be used to add to the number of ATE clock cycles.

8. Run ATPG (see "Running ATPG").
9. Review the test coverage and rerun ATPG if necessary (see "Reviewing Test

Coverage").
10. Save the test patterns and fault list (see "Writing ATPGPatterns").

Note: You should not use anyOCC IP that is not created byDFT Compiler with TetraMAX
ATPG. If you have this type of IP, you should refer to the “User-Defined Instantiated Clock
Controller and Chain Insertion Flow” section in theDFT Compiler User Guide.

DFT Compiler to TetraMAX Flow 15-7

TetraMAX ATPG User Guide K-2015.06-SP4

OCC Support in TetraMAX
OCC support in TetraMAX ATPGprovides for automated handling of internal clocks in a generic
manner. This automation is enforced by using clock design rules that validate user-specified
clock controller settings.
The following sections describe OCC support in TetraMAX ATPG:

l Design Set Up
l OCC Scan ATPGFlow
l Waveform and Capture Cycle Example
l Using SynchronizedMulti Frequency Internal Clocks
l Using Internal Clocking Procedures

Design Set Up
When a design contains both internal clocks (commonly driven by PLL sources), and external
(primary input) clocks, the TetraMAX ATPGdefault operation is to use both clock sources for
test generation. In some clock-tracing situations, internal clockswill take precedence over
external sources, however thismight not eliminate all ambiguity, especially when both clock
sources are presented to the same internal element.
TetraMAX ATPGallows for control of capture clocks that are issued during ATPGon a per-
pattern basis. This gives ATPG the flexibility of deciding what internal clocks that should be
pulsed in a given capture cycle, instead of incurring the overhead of pulsing all internal clocks
every capture cycle. Note that generic capture procedures should be used exclusively. Also,
because the pulse placements of different OCC clocks cannot be predicted, you should always
use the following command:
set_delay -common_launch_capture_clock

Note: If you are using synchronousmulti frequency internal clocks, you should not use this
example. Instead, TetraMAX ATPGoffers a specific flow for designs that use synchronousmulti
frequency internal clocks. For details on this process, see “Using SynchronizedMulti Frequency
Internal Clocks." However, if your design contains asyncronous internal clocks, then you should
use the example cited above.
Black boxes are often the sources of the PLL clocks. When PLL clocks are driven by logic, DRC
might fail because of how these clocks are simulated. Simulation events are driven on the
defined PLL clock source, and these events are used to trace theOCC controller functionality.
Other simulation events that propagate through the logic confuse this DRC analysis. To prevent
this problem, you should replace the instances driving the PLL clockswith TIEX primitives:

set_build -instance_modify {pll864/U93 TIEX}
set_build -instance_modify {pll923/U45 TIEX}

OCC Support in TetraMAX 15-8

TetraMAX ATPG User Guide K-2015.06-SP4

OCC Scan ATPG Flow
TheOCC Scan ATPG flow consists of the following steps:

1. Read the design files (see "Reading the LibraryModules").
2. Build the design (see "Building the ATPGModel").
3. Run DRC with the TetraMAX STIL procedure file created byDFT Compiler after scan

insertion in presence of PLL circuitry (see "Performing Design Rule Checking").
4. Run ATPG (see "Running ATPG").

Waveform and Capture Cycle Example
Figure 1 shows an example of the relationship between various clockswhen the design contains
anOCC controller.

Figure 1:Waveform and Capture Cycle Example

Note in Figure 1 that the refclkmust pulse in every vector. This figure also contains
information about pllclk, ateclk, and intclk.

Using Synchronized Multi Frequency Internal Clocks
By default, internal clocks derived from anOCC Controller are considered by TetraMAX ATPG
to be asynchronous to each other. However, you can specify the timing relationships of internal
clocks, thus improving the test quality. This section describes the process for implementing
synchronized internal clocks at one or multiple frequencies in anOCC Controller.
It is important to note that this capability requires the PLL clocks to be synchronized in the design
and requires the OCC Controllers to actually synchronize their output pulses. TetraMAX ATPG

OCC Support in TetraMAX 15-9

TetraMAX ATPG User Guide K-2015.06-SP4

uses the information provided to it and does not do any checking to ensure that this reflects the
actual circuit design.
The following sections describe how to specify synchronizedmulti frequency internal clocks:

l Enabling Internal Clock Synchronization
l ClockChain Reordering
l ClockChain Resequencing
l Finding ClockChain Bit Requirements
l Reporting Clocks
l Reporting Patterns

Enabling Internal Clock Synchronization
To enable internal clock synchronization, specify the ClockTiming block in the STIL
Procedure File . There are several command switches, described later in this section, that can
be used one time this feature is enabled.
The ClockTiming block is placed in the top level of the ClockStructures block, which
already describes other aspects of the internal clocks.
For details on how to enable internal clock synchronization in the STL procedure file, see the
"Specifying SynchronizedMulti Frequency Internal Clocks for anOCC Controller" section.

Clock Chain Reordering
The clock chain has one register bit per clock cycle. The value loaded into this register controls
whether the OCC controller allows a clock pulse from the PLL to propagate during its cycle.
ATPGcalculates the pattern by ordering the clock pulses, and this initial order must be re-
sequenced to reflect period and latency differences between the clocks. See Figure 1.

Figure 1: ClockChains Before Reordering

In Figure 1, note that the order of the clock chain bits is the same as defined in the Cycle
statements of the PLLStructures block, with ATPG frame 0 representing Cycle 0, and so
forth.

OCC Support in TetraMAX 15-10

TetraMAX ATPG User Guide K-2015.06-SP4

Clock Chain Resequencing
By default, clock chain resequencing is done to convert the ATPG frame sequence to an
equivalent duration in terms of clock periods. Since different clocksmight have different periods,
thismight result in very different sequence lengths to cover the same capture time duration.
Latency is ignored when all clocks pulsed in a capture sequence are defined in the same
PLLStructures block, or when the latency period (that is the latency number times the
minimum clock period within the PLLStructures block) is the same even though the clocks
are in different PLLStructures blocks. In this case, resequencing is based on period times
and whether MultiCyclePath blocks are defined. See Figure 2.

Figure 2: ClockChain Resequencing with the Same Latency

Note that in Figure 2, twice asmany bits are needed to represent the 2X clock. For this reason,
clock chains are allowed to have different lengthswhen a ClockTiming block is used.
Latencymust be considered when a capture sequence contains clock pulses of clocks having
different latency periods. In this case, extra padding cycles are added for the clockwith the
shorter latency period so that the clock periods coincide at the first ATPG frame. See Figure 3.

OCC Support in TetraMAX 15-11

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 3: ClockChain Resequencing with Different Latencies

Note that in Figure 3, two clocks from different PLLStructures blockswith the same latency
number have different latency periods because of their different frequencies. This requires an
extra padding bit to be added to its clock chain.
When clock overlapping is enabled, either by the MultiCyclePath statement in the STL
procedure file or by the set_drc -fast_multifrequency_capture on command,
clock chain re-sequencing is required to get the final result. For example, in the Latency 0 case,
see Figure 4.

Figure 4: ClockChain ResequencingWhenClockOverlapping is Enabled

Finding Clock Chain Bit Requirements
The required clock chain lengths can be calculated and combined with the number of internal
clock pulses that are used, based on the set_atpg -capture_cycles specification.
You can also determine the clock chain bit requirements using the following command:
set_messages –level expert

After pattern generation, before the summary is printed, the followingmessage will appear:
Warning: 238 clock pulses rejected. Clock 895 has a 6 bit clock
chain, but needs 13 bits. (M720)

OCC Support in TetraMAX 15-12

TetraMAX ATPG User Guide K-2015.06-SP4

The clock number refers to the clock source, whose instance name can be found using the
report_primitives command. The clock chain length reported is themaximumneeded. If
a M720message is not printed, then the clock chainsmeet or exceed the required length.

Reporting Clocks
To report the structure of the synchronized clock groups as they are used by ATPG, use the
command report_clocks intclocks. If any synchronization groups are active, two extra
columns are printed with the headings sync and period. The example STL procedure file shown
in “ClockTiming Block Example” usesClockTiming CTiming_2, and looks like the following:
int_clock_inst_name gate_id off source sync period cycle
conditions
------------------- ------- --- ------ ---- ------ ----- ---------
--
TOTO/U2 895 0 20 1 1 0 1468=1 (0,4)
... one line for each extra pulse condition ...
TOTO/U5 825 0 19 1 2 0 1487=1 (0,4)
... one line for each extra pulse condition ...
TOTO/U8 755 0 18 1 4 0 1506=1 (0,4)
... one line for each extra pulse condition ...

The sync heading indicates the synchronization group number. The number is arbitrary, but all
internal clocks that are synchronized to each other are in the same synchronization group.
The period heading indicates the period of the clock in units of the fastest clock in the same
synchronization group. They are normalized to 1 since the actual period is not used by ATPG,
only the relationships between the different periods. Note that each synchronization group will
have a clockwith a period of one. This does not mean that their periods are the same, since the
different groups are asynchronous to each other.
To get clock pulse overlapping information, use the report_clocks -capture_matrix
command. The output from this command takes one of two forms. The default form is as follows:
report_clocks -capture_matrix
 Warning: Requested report contained no entries. (M13)

Thismeans that overlapping is not allowed between any clock pairs. This would be expected in
the example STL procedure file (see “ClockTiming Block Example”) if set_drc -internal_
clock_timing CTiming_2 was used because of the lack of Waveform and
MultiCyclePath statements. The non-default form is as follows:
report_clocks -capture_matrix
id# clock_gate period 0 1
--- -------------- ------ ----- -----
0 895 10.0 10.0 10.0
1 825 30.0 10.0 30.0

Thismeans that clock pulse overlapping is allowed. All numbers in thematrix are the time
between the launch and capture pulseswhen this pair of clocks is used. In this example,
captures between any pairs of clocks can bemade at theminimumof the two clocks’ periods, or
in other words, at single-cycle timing.

OCC Support in TetraMAX 15-13

TetraMAX ATPG User Guide K-2015.06-SP4

The timing of the periods and edges of the internal clocks is reported by using the command
report_clocks -intclocks -verbose. For example:
report_clocks -intclocks -verbose
#int_clk_inst_nm gt_id off source sync period LE TE lat cycle
conditions
#---------------- ---- --- ---- ---- ------ -- -- --- ----- -----

#pll_control_M1/U2 6698 0 138 1 1 0 10 5 0 13337=1 (0,4)
1 13336=1 (0,5)
13 13324=1 (0,17)
#pll_control_M2/U2 7347 0 139 1 1 0 10 5 0 13362=1 (0,4)
1 13361=1 (0,5)
13
13349=1 (0,17)
#pll_control_M3/U2 8567 0 187 1 2 5 25 5 0 13387=1 (0,4)
1
13386=1 (0,5)
13 13374=1 (0,17)

Note that the leading/trailing edge information comes from the STL procedure file. Here is the
block that produced the example report:
 SynchronizedClocks M_clocks {
 Clock ICLK1 {Location "pll_controller_M1/U2/Y"; Period
'20ns';
Waveform '0ns' '10ns';
}
 Clock ICLK2 {Location "pll_controller_M2/U2/Y"; Period
'20ns';
Waveform '0ns' '10ns';
}
 Clock ICLK3 {Location "pll_controller_M3/U2/Y"; Period
'40ns';
Waveform '5ns' '25ns';
}
 }

Reporting Patterns
The report_patterns command is useful for finding out the intention of ATPG, but the
report can be too verbose when only the clocking information is required. To get a report that is
tightly focused on the clocking, use the command report_patterns -clocking. For
example:
TEST-T> report_patterns 7 -clocking
 Clocking only:
 Pattern 7 (fast_sequential-parallel_clocking)
 Cycle-based clocking sequence:
 0: TOTO/U2/Z:0100000000
 1: TOTO/U5/Z:1-0-0-0-0-
 Clock Instruction Registers:

OCC Support in TetraMAX 15-14

TetraMAX ATPG User Guide K-2015.06-SP4

 0: 0010000000
 1: 1000000000
 # PLL internal clock pulse: capture_cycle=0, node=TOTO/U5 (191)
 # PLL internal clock pulse: capture_cycle=1, node=TOTO/U2 (242)

The cycle-based clocking sequence field is the test in terms of ATPG frames and the Clock
Instruction Registers field is the clock chain contents after re-sequencing. A dash is
inserted to indicate that the clock operation is determined by a previous value and its period has
not finished yet. It allows columns representing the same time to line up even though they refer
to clocks of different periods.

Using Internal Clocking Procedures
Internal clocking procedures enable you to specify which combinations of internal clock pulses
you want to use and how to generate them.
The following sections describe how to use internal clocking procedures in TetraMAX ATPG:

l Enabling Internal Clocking Procedures
l Performing DRC with Internal Clocking Procedures
l Reporting Clocks
l Performing ATPGwith Internal Clocking Procedures
l Grouping Patterns ByClockingProcedure Blocks
l Writing PatternsGrouped byClocking Procedure
l Reporting Patterns
l Limitations

Enabling Internal Clocking Procedures
To enable internal clocking procedures, you can use either the ClockTiming block or the
ClockConstraints blockwithin the top level of the ClockStructures block.
The ClockTiming block is used for synchronizedmulti frequency clocks. In many cases, you
can use either the ClockTiming block or ClockConstraints block to describe synchronizedOCC
controllers. However, you should first consider using the ClockTiming block because it
provides greater freedom to ATPGand results in fewer patterns for the same coverage. You
should use the ClockConstraints blockwhen the synchronizedOCC controllers are limited
to providing a small fixed set of clock waveforms.
Note that you cannot combine the ClockConstraints and ClockTiming blocks.
For complete details on enabling internal clocking procedures in the STL procedure file, see the
"Specifying Internal Clocking Procedures" section.

Performing DRC with Internal Clocking Procedures
The presence of the ClockConstraints block in the STL procedure file disables some of the
on-chip clocking checks normally performed during DRC. In particular, no checking is done to
ensure that the specified InstructionRegister values cause the required clock pulses to
be generated. In this case, the intention is to support clock controllers whose behavior cannot be
understood through zero-delay gate-level simulation. Clock effects from the defined clock pin

OCC Support in TetraMAX 15-15

TetraMAX ATPG User Guide K-2015.06-SP4

name are simulated to ensure that capture behavior is valid. Clock-grouping checks are not
performed.
You can definemore than one named ClockConstraints block, but you can use only one for
any single DRC or ATPG run. Youmust select the required ClockConstraints block using
the set_drc -clock_constraints command, as shown in the following example:
set_drc –clock_constraints constraints1

If you do not specify the set_drc -clock_constraints command, none of the
ClockConstraints blocks is used.
Timing information is not provided, whichmeans clocks are assumed to be in the order specified.
All clocks that pulse in the same frame are assumed to pulse simultaneously without disturbing
each other. The trailing edges of all clock pulses in the first frame are assumed to occur before
the leading edges of the clocks in the second frame. If these assumptions are violated in the
actual design, timing exceptionsmust be used to prevent simulationmismatches.
You can use the set_drc -num_pll_cycles command to specify the sequential depth of
the constraints. Procedureswith a small number of frames are padded with clock-off values.
Procedureswith a large number of frames are degenerated if all of the extra frames are at clock-
off values; otherwise, they are unusable. This enables the definition of multiple constraints of
different depth in a single Constraints blockwhile ensuring that only the procedures of the
appropriate depth are used. The set_drc -num_pll_cycles and set_atpg -capture
commandsmust match, but they can differ from the PLLCycles declaration in the
ClockStructures block. The commands specify the sequential depth to be used in this
particular run, while the PLLCycles declaration indicates themaximum sequential depth
supported by the clock controller.

Reporting Clocks
You can use the -constraints option of the report_clocks command to report
information on clocking procedures as they are used by ATPG. To report details for a given
procedure, use the report_clocks -constraints –procedure name command. To
report more detail for all procedures, use the report_clocks -constraints -all
command.
For example,
TEST> report_clocks –constraints -all
 --
 Clock Constraints constraints1:
 Maximum sequential depth: 2
 Defined Clocking Procedures: 3
 Usable Clocking Procedures: 3
 PLL clocks off Procedure: ClockOff

U0to1:
 CLKIR=10010
 dutm/ctrl1/U17/Z=P0
 dutm/ctrl2/U19/Z=0P

U1to0:
 CLKIR=01010

OCC Support in TetraMAX 15-16

TetraMAX ATPG User Guide K-2015.06-SP4

 dutm/ctrl1/U17/Z=0P
 dutm/ctrl2/U19/Z=P0

ClockOff:
 CLKIR=00000
 dutm/ctrl1/U17/Z=00
 dutm/ctrl2/U19/Z=00

Note:When procedureswith different frame counts are reported, the shorter procedures are
shownwith zeros padded to the left so that all procedures are reported with the same depth.
This does not mean that the procedures should be written this way. ATPG ismore efficient when
all procedures are written with as few frames as possible.

Performing ATPGwith Internal Clocking Procedures
The internal clocking procedures feature fully supports two-clock optimized ATPG, basic scan
ATPG, and fast-sequential ATPG. Full-sequential ATPG is not supported and no patterns are
generated when internal clocking procedures are defined.
When two-clock optimized ATPG is used, all usable clocking proceduresmust have two frames
for each clock. When basic scan ATPG is used, all usable clocking proceduresmust have one
frame for each clock.
As a result of using internal clocking procedures, ATPGcan use only a subset of the available
clock pulse sequences. The sequences cannot be used to force ATPG to generate a pattern that
it could not otherwise generate.
When a procedure hasmultiple clocks andmultiple frames, ATPGcan only capture transition or
fault effects using clocks that pulse in the last frame. Clockswhose last pulse is in a preceding
frame can only be used to launch transitions or set up conditioning to detect faults captured by
other clocks. Make sure you provide other procedureswhere these clocks pulse in the last
frame; otherwise, fault coverage is reduced.

Grouping Patterns By ClockingProcedure Blocks
In some situations, youmight want to group patterns into sets, each of which uses only one of
the defined ClockingProcedure blocks. To group patterns, specify the following command
before the run_atpg command:
set_atpg –group_clk_constraints { first_pass middle_pass final_
pass }

The three arguments are specified in terms of percentages of the fault list. These numbers are
specified just one time, but they are applied for each individual clocking procedure. ATPG
categorizes each fault by the clocking procedures that can test it; it considers only the
appropriate subset as it generates tests for each clocking procedure.
The first_pass specification is the percentage of the fault list that is targeted in the first pass
through each clocking procedure. The first pass results in long blocks of patternswith just one
clocking procedure.
The middle_pass specification is the percentage of the fault list that is targeted by subsequent
passes through each clocking procedure. These passes are repeated until the final_

OCC Support in TetraMAX 15-17

TetraMAX ATPG User Guide K-2015.06-SP4

passnumber is reached. Themiddle passes result in shorter blocks of patternswith just one
clocking procedure.
The final_pass specification is the percentage of the fault list targeted by the final pass in
which any clocking procedure is used. In this pass, there is no guarantee that any two
consecutive patterns share the same clocking procedure.

Forcing a Single Group Per Clocking Procedure
The following example forces a single group for each clocking procedure with no exceptions:
set_atpg –group_clk_constraints { 100 0 0 }

The drawback of this particular specification is that ATPGefficiency, both in runtime and in fault
detections per pattern, decreases significantly after most of the fault list has been targeted. All
faults that are detectable by the first clocking proceduremust be targeted beforemoving on to
the next clocking procedure, which results in a larger pattern count than if other arguments are
chosen.

Enabling ATPG to Achieve Better Efficiency
You can define a set of numbers that allow ATPG to achieve better efficiency and results in a
lower overall pattern count, as shown in the following example:
set_atpg –group_clk_constraints { 85 5 2 }

This command creates a set of pattern groups by clocking procedure:
ClockingProcedure_1 (0-85%)
ClockingProcedure_2 (0-85%)
…..
ClockingProcedure_N (0-85%)
ClockingProcedure_1 (85-90%)
ClockingProcedure_2 (85-90%)
…..
ClockingProcedure_N (85-90%)
ClockingProcedure_1 (90-95%)
ClockingProcedure_2 (90-95%)
…..
ClockingProcedure_N (90-95%)
ClockingProcedure_1 (95-98%)
ClockingProcedure_2 (95-98%)
…..
ClockingProcedure_N (95-98%)
Mixed ClockingProcedure’s (98-100%)

Note: The drawback to this approach is that the grouping is less strict.

Writing Patterns Grouped by Clocking Procedure
By default, the write_patterns command saves all patterns into a single pattern file. You
can use the write_patterns -occ_load_split command to split patterns into a
separate file for each clocking procedure. This command is compatible with all pattern formats.

OCC Support in TetraMAX 15-18

TetraMAX ATPG User Guide K-2015.06-SP4

When patterns are grouped using the command set_atpg -group_clk_constraints {
100 0 0 }, only one pattern file is saved for each clocking procedure. If clocking procedures
are grouped less strictly, or are not grouped at all, more pattern files are saved. A new pattern
file is saved each time the clocking procedure changes from one pattern to the next, which can
result in a large number of pattern files. Because of this, you should use the write_patterns
-occ_load_split command only in combination with the set_atpg -group_clk_
constraints command.

Reporting Patterns
You can use the report_patterns -clocking command to find out which clocking
procedure is used in each capture cycle. For example,
TEST> report_patterns 7 -clocking
Clocking only:
Pattern 7 (fast_sequential)
Clocking Procedures: U0to1
// PLL internal clock pulse: capture_cycle=0, node=dutm/ctrl1/U17
(64)
// PLL internal clock pulse: capture_cycle=1, node=dutm/ctrl2/U19
(94)

To get a summary of the number of clocking procedures of each type that was used in the
pattern set, specify the report_patterns –clk_summary command:
TEST> report_patterns -all -clk_summary
Pattern Clocking Constraints Summary Report

#Used Clocking Procedures
#U0to1 6
#U1to0 5

Limitations
The following limitations apply when using internal clocking procedures in TetraMAX ATPG:

l TetraMAX DRC does not perform checking to ensure that the specified
InstructionRegister values cause the generation of the required clock pulses.

l TetraMAX DRC does not perform clock-grouping checks, and accepts all clock pulses
specified in the same frame as simultaneous pulseswithout disturbing each other.

l TetraMAX ATPGassumes that the trailing edges of all clock pulses in one frame occur
before the leading edges of the clocks in the next frame. It is not possible to specify
overlapping clock pulses.

l Full-sequential ATPG is not supported because it can generate bad patterns.
l When a procedure hasmultiple clocks andmultiple frames, TetraMAX ATPGcan only
capture transition or fault effects using clocks that pulse in the last frame. Clockswith a last
pulse in a preceding frame can only be used to launch transitions or set up conditioning to
detect faults captured by other clocks.

l Only single-load patterns are supported. You do not need to explicitly disable the

OCC Support in TetraMAX 15-19

TetraMAX ATPG User Guide K-2015.06-SP4

generation of multi load patterns because TetraMAX ATPGwill not attempt to generate
them.

See Also
Specifying Internal Clocking Procedures

OCC-Specific DRC Rules
Test DRC involves analysis of many aspects of the design. Among other things, DRC checks
the following:

l C28 - Invalid PLL source for internal clock
l C29 - Undefined PLL source for internal clock
l C30 - Scan PLL conditioning affected by nonscancells
l C31 - Scan PLL conditioning not stable during capture
l C34 - Unsensitized path between PLL source and internal clock
l C35 - Multiple sensitizations between PLL source and internal clock
l C36 - Mistimed sensitizations between PLL source and internal clock
l C37 - Cannot satisfy all internal clocks off for all cycles
l C38 - Bad off-conditioning between PLL source and internal clock
l C39 - Nonlogical clock C connects to scancell
l C40 - Internal clock is restricted

Reference clocks are used only during design rule checking and are non-logical for pattern
generation. PLL clocks are used during scan design rule checking (Category S – Scan Chain
Rules) and clock design rule checking (Category C –ClockRules). Pattern generation does not
consider PLL clocks. Internal clocks are used for all capture operations, and normal clock rule
checking is applied to these so that TetraMAX ATPGcan perform these and other DRC checks,
youmust provide information about clock ports, scan chains, and other controls bymeans of a
STIL test protocol file. The STIL file can be generated fromDFT Compiler, or you can create one
manually as described in “STIL Procedure Files.”

OCC-Specific DRC Rules 15-20

16
Path Delay Fault and Hold Time
Testing
The TetraMAX DSMTest option enables you to use path delay fault testing to perform test
generation to detect critical path delay faults. This option generates themost effective tests
possible while providing the highest coverage of critical paths. TetraMAX ATPGalso includes
features to read, manage, and analyze paths from static timing analysis tools such as
PrimeTime.
Most of the fault models supported by TetraMAX ATPGare intended to test maximumdelays (or
setup times), whether they are delay-based fault models (transition and dynamic bridging) or
path-based fault models (path delay). Even the static fault models (stuck-at and bridging) are
simulated so that the fault effect appears as a setup violation. The hold time fault model is
different in that it testsminimumdelays. In other respects, the hold time flow is very similar to the
path delay ATPG flow
The following sections describe path delay fault and hold time testing:

l Path Delay Fault Theory
l Path Delay Testing Flow
l Obtaining Delay or Hold Time Paths
l Hold Time ATPGTest Flow
l Generating Path Delay Tests
l Handling Untested Paths

Note: Youwill need a Test-Fault-Max license to use the path delay fault or hold time fault testing
features. This license is also checked out if you read an image that was saved with the fault
model set to path delay.

16-1

TetraMAX ATPG User Guide K-2015.06-SP4

Path Delay Fault Theory
The single stuck-at fault model (stuck-at-0 or stuck-at-1) plays an important part in
manufacturing test. However, you can achieve higher quality testing when you target other fault
models, such as the path delay fault model, in addition to the single stuck-at model.
The path delay fault model is useful for testing and characterizing critical timing paths in your
design. Path delay fault tests exercise the critical paths at speed (the full operating speed of the
chip) to detect whether the path is too slow because of manufacturing defects or variations.
Path delay fault testing targets physical defects that might affect distributed regions of a chip. For
example, incorrect field oxide thicknesses could lead to slower signal propagation times, which
could cause transitions along a critical path to arrive too late. By comparison, stuck-at, IDDQ,
and transition delay faults are generally targeted at single-point defects.
Path delay faults are tested using the following sequence:

l The first vector initializes the path before applying the launch event, typically a clock pulse.
l The launch event generates the second vector, which propagates a logic transition along
the entire path.

l A second clock pulse, occurring one at-speed cycle after the launch clock, captures the
resulting transition at the end of the path.

The following sections describe the path delay fault testing theory:
l Path Delay Fault TermDefinitions
l Models for Manufacturing Tests
l Models for Characterization Tests
l Testing I/OPaths

Path Delay Fault Term Definitions
Table 1 lists the definitions for key terms used in path delay fault testing.

Terms Definitions

at-speed clock A pair of clock edges applied at the same
effective cycle time as the full operating
frequency of the device.

capture clock capture
clock edge

The clock used to capture the final value
resulting from the second vector at the tail of
the path.

Table 1 Definitions of Terms

Path Delay Fault Theory 16-2

TetraMAX ATPG User Guide K-2015.06-SP4

Terms Definitions

capture vector The circuit state for the second of the two delay
test vectors.

critical path A path with little or no timing margin.

delay path A circuit path from a launch node to a capture
node through which logic transition is
propagated. A delay path typically starts at
either a primary input or a flip-flop output, and
ends at either a primary output or a flip-flop
input.

detection, robust (of a
path delay fault)

A path delay fault detected by a pattern
providing a robust test for the fault.

detection, non-robust
(of a path delay fault)

A path delay fault detected by a pattern
providing a non-robust test for the fault.

false path A delay path that does not affect the
functionality of the circuit, either because it is
impossible to propagate a transition down the
path (combinationally false path) or because
the design of the circuit does not make use of
transitions down the path (functionally false
path).

launch clock launch
clock edge

The launch clock is the first clock pulse; the
launch clock edge creates the state transition
from the first vector to the second vector.

launch vector The launch vector sets up the initial circuit
state of the delay test.

off-path input An input to a combinational gate that must be
sensitized to allow a transition to flow along the
circuit delay path.

on-path input An input to a combinational gate along the
circuit delay path through which a logic
transition will flow. On-path inputs would
typically be listed as nodes in the Path Delay
definition file.

Table 1 Definitions of Terms (Continued)

Path Delay Fault Theory 16-3

TetraMAX ATPG User Guide K-2015.06-SP4

Terms Definitions

path A series of combinational gates, where the
output of one gate feeds the input of the next
stage.

path delay fault A circuit path that fails to transition in the
required time period between the launch and
capture clocks.

scan clock The clock applied to shift scan chains.
Typically, this clock is applied at a frequency
slower than the functional speed.

test, non-robust A pair of at-speed vectors that test a path
delay fault; fault detection is not guaranteed,
because it depends on other delays in the
circuit.

test, robust A pair of at-speed vectors that test a path
delay fault independent of other delays or delay
faults in the circuit.

Table 1 Definitions of Terms (Continued)

Models for Manufacturing Tests
Path delay fault ATPG targets individual path delay faults and then simulates each test
generated against the remaining undetected faults in the fault list using both robust and non-
robust path delay fault models suitable for pass/fail manufacturing tests. By default, TetraMAX
ATPGuses an auto relaxation scheme that provides both efficient ATPGand the flexibility of
multiple path delay fault models.
Themanufacturing test off-path inputs of various gates, for both the on-path input rising and
falling, are shown in the following example:
set_delay -nodiagnostic_propagation (default manufacturing tests)

Path Delay Fault Theory 16-4

TetraMAX ATPG User Guide K-2015.06-SP4

Models for Characterization Tests
TetraMAX ATPGcan also generate single-path sensitization tests that have unambiguous
diagnostic results. Such tests are useful to measure individual path delays on a physical device
for design characterization purposes.With these tests, any failure can be directly related to a
specific path delay fault. You can determine themaximumoperating frequency of each testable
critical path by varying the at-speed test cycle time and associating failures to the paths being
tested.

Path Delay Fault Theory 16-5

TetraMAX ATPG User Guide K-2015.06-SP4

The characterization test off-path inputs of various gates, for both the on-path input rising and
falling, are shown in the following example:
set_delay -diagnostic_propagation (characterization tests)

Testing I/O Paths
You can also use TetraMAX ATPG to generate test patterns that exercise paths from an input
pin to a flip-flop or from a flip-flop to an output pin. Unlike internal paths, physical at-speed testing
of I/O paths generally requires,

Path Delay Fault Theory 16-6

TetraMAX ATPG User Guide K-2015.06-SP4

l High-speed, high-bandwidth ATE equipment
l A low-skew test fixture
l Very accurate placement of input signal edges
l Very accurate placement of output strobe delays

It is also important to be aware that the electrical environment of the test fixturemight differ
significantly from the system in which the device was designed to operate. Consequently, issues
such as poorly terminated transmission lines and output driver simultaneous-switching current
might cause excessive ringing on the input pins and additional delays on the output pins.
For these reasons, at-speed testing is not recommended for I/O paths unless ATE expertise
exists for general high-speed testing issues and the electrical requirements for test fixtures are
well understood in advance of their design.

Path Delay Testing Flow
PrimeTime generates the critical path information you need to input for a path delay ATPG test
run as shown in Figure 1.

Figure 1 Path Delay Test Flow

TetraMAX ATPGsupports ATPGand fault simulation for scan-based path delay fault testing
with the following features:

l Reads critical paths reported by PrimeTime
l Supports a comprehensive set of path (P) rules
l Most rule violations can be analyzed and debugged in the GSV
l Clockwaveforms in the STL procedure file are checked to ensure theymatch static timing
analysis conditions

l Identifies combinational false paths and other untestable paths

Path Delay Testing Flow 16-7

TetraMAX ATPG User Guide K-2015.06-SP4

l Generates a full range of tests supporting both robust and non-robust path delay fault
models

Figure 2 shows the basic TetraMAX ATPGsteps and checkpoints to generate an effective set of
path delay tests.

Figure 2 Path Delay Test Generation Flowchart

Launch and capture events are pertinent only to transition and path delay fault environments. If
the fault model is set to the default model (stuck), then the launch and capture events are likely to
be dropped. TetraMAX ATPGwill attempt to maintain this information when possible, However,
because of the variety of flows and the ability to process patterns generated for one fault model
under a different model (for instance, regrading transition patterns under a stuckmodel), care
must be exercised if this information needs to bemaintained. Before the write_patterns
operation is executed in the file that reads-back the binary patterns, add the set_faults -
model transitioncommand. Then, the launch and capture events will remain across all
outputs.

Path Delay Testing Flow 16-8

TetraMAX ATPG User Guide K-2015.06-SP4

Obtaining Delay or Hold Time Paths
TetraMAX ATPG requires an input list of critical paths to target for path delay fault and hold time
test generation. TetraMAX ATPGcan read an ASCII file containing the critical paths reported by
a static timing analysis tool, such as PrimeTime, or you can specify these pathsmanually in an
ASCII file.
The following sections describe how to obtain delay or hold time paths:

l Importing PrimeTime Path Lists
l Path Definition Syntax
l Translating Timing Exceptions

Importing PrimeTime Path Lists
The pt2tmax.tcl file included with TetraMAX ATPGconsists of a Tcl procedure, called write_
delay_paths, which is used for both internal and I/O path selection. This Tcl procedure
generates a list of critical paths in the required DSMTest format according to the criteria you
specify.
Note:Youwill need to set the case analysis in PrimeTime to correspond with the device in test
mode and operating on the tester. This can be done automatically using the script written by the
write_timing_constraints command in the tmax2pt.tcl utility (see Appendix D).
You should never use negative-slack (failing) paths for hold time ATPG. For path delay ATPG,
youmight want to exclude negative-slack paths, depending on the application of the patterns. To
prevent negative-slack paths from being included in the path file, you should first run the
write_exceptions_from_violations pt2tmax.tcl command, then run the write_
delay_paths command. One of the effects of the write_exceptions_from_
violations command is that it sets all violating paths as false paths in PrimeTime, so theywill
not be considered by the write_delay_paths command.When running the write_
exceptions_from_violations command, make sure to use either the –delay_type
min or -delay_type min_max switches for hold paths, and either the -delay_type max
or -delay_type min_max switches for delay paths.
The write_delay_paths procedure is used for both delay paths and hold time paths. Note
that it isn’t necessary to write out hold time paths to or from I/O ports, or use different launch and
capture clocks, since ATPGwill not attempt to detect these paths.
The syntax for write_delay_paths procedure is as follows:
write_delay_paths

filename
[-capture clock_name]
[-cell pin_name]
[-clock clock_name]
[-delay_type <max | min>]
[-group group_name]
[-help]
[-IO [-each]]

Obtaining Delay or Hold Time Paths 16-9

TetraMAX ATPG User Guide K-2015.06-SP4

[-launch clock_name]
[-man]
[-max_paths num_paths]
[-net pin_name]
[-noZ]
[-nworst num_per]
[-pba]
[-slack crit_time]
[-version]

Argument Definition

filename Name of the file where the paths are written.

-capture clock_name Selects the paths ending at the clock_name
domain. The -capture option is incompatible
with the -clock, -group, and -IO options.

-cell pin_name Selects the path(s) for each input of a cell
connected to the pin_name. The -cell option is
incompatible with the -each and -net options.

-clock clock_name Selects the paths in clock_name domain.

-delay_type <max |
min>

The max argument (the default) writes paths
suitable for path delay ATPG. The min switch
writes paths suitable for hold time ATPG.

-each Selects the path(s) for each I/O. The -IO option
must also be specified. The -each option is
incompatible with the -cell and -net options.

-group group_name Selects paths from the existing group_name or
selects a list of path groups and writes delay
paths for every path group in the list. -The -
max_paths option is applied separately to each
group. The -group option is incompatible with
the -capture, -clock, -IO, and -launch
options.

-help Prints syntax information for this procedure.

-IO Writes I/O paths. The default is to only write
internal paths.

-launch clock_name Selects paths starting from the specified clock
domain. The -launch option is incompatible
with the -clock, -group, and -IO options.

Obtaining Delay or Hold Time Paths 16-10

TetraMAX ATPG User Guide K-2015.06-SP4

-man Prints help information for this procedure.

-max_paths num_paths Specifies the maximum number of paths to be
written. The default is 1.

-net pin_name Selects the path(s) for each fanout connected
to the specified pin_name. The -net option is
incompatible with the -cell and -each options.

-noZ Suppresses paths through three-state enables.
Note that this option is case-sensitive.

-nworst num_per Specifies the number of paths to each endpoint.
The default is 1.

-pba Uses the exhaustive-effort level of path-based
analysis to gather paths.

-slack crit_time Writes paths with a slack less than the specified
crit_time. The default is 1,000,000.

-version Reports the version number.

Note that the write_delay_paths procedure and options accept abbreviations. The
pt2tmax.tcl file, found under $SYNOPSYS/auxx/syn/tmax, must first be sourced:
pt_shell> source pt2tmax.tcl

To select a set of target critical paths, use the write_delay_paths command:
pt_shell> write_delay_paths -slack 6 -max_paths 100 \
 paths.import

Path Definition Syntax
The following syntax is used to define critical delay paths. Keywords are shown in bold and
arguments are shown in italics. Brackets ([]) enclose optional blocks, and a vertical bar (|)
indicates that one of several fieldsmust be specified.
$path {

[$name path_name ;]
[$cycle required_time ;]
[$slack slack_time ;]
[$launch clock_name ;]
[$capture clock_name ;]

 $transition {
 pin_name1 ^ | v | = | ! ;
 pin_name2 ^ | v | = | ! ;
 …
 pin_nameN ^ | v | = | ! ;
]+
 }

Obtaining Delay or Hold Time Paths 16-11

TetraMAX ATPG User Guide K-2015.06-SP4

[$condition {
 pin_name1 0 | 1 | Z | 00 | 11 | ZZ | ^ | v ;
 pin_name2 0 | 1 | Z | 00 | 11 | ZZ | ^ | v ;
 …
 pin_nameN 0 | 1 | Z | 00 | 11 | ZZ | ^ | v ;
 }]
}

Where,
l $name - Assigns a name to the delay path
l $cycle - Time between launch and capture clock edges
l $slack - Available timemargin between the $cycle time and calculated delay of the path
l $launch - Launch clock primary input to be used
l $capture - Capture clock primary input to be used
l $transition - (Required) Describes the expected transitions of path_startpoint, output
pins of path cells, and path_endpoint.

l $condition - (Optional) allows the user to addmore constraint for testing the associated
path.

l Argument signal notation: V - falling transition ^ - rising transition = - transition same as
previous node ! - transition inverted with respect to first node in the path 0 - nodemust be
set to "0" during V2 1 - nodemust be set to "1" during V2 Z - nodemust be set to "Z" during
V2 00 - nodemust be set to "0" during V1 and remain during V2 11 - nodemust be set to
"1" during V1 and remain during V2 ZZ - nodemust be set to "Z" during V1 and remain
during V2

The following example of a path definition file shows two path delay faults that may be created
manually or by a third-party timing analysis tool:
$path {
 $name path_1 ;
 $transition {
 P201/C4/DESCTL/EN_REG/Q ^ ;
 P201/C4/DESCTL/C0/U62/CO ^ ;
 P201/C4/DESCTL/C0/U66/X v ;
 P201/C4/DESCTL/C0/Q2_REG/D v ;
 }
}
$path {
 $name path_2 ;
 $transition {
 . ;
 . ;
 . ;
 }

Translating Timing Exceptions
For complete details on this process, see “Specifying Timing Exceptions From an SDC File”.

Obtaining Delay or Hold Time Paths 16-12

TetraMAX ATPG User Guide K-2015.06-SP4

Hold Time ATPG Test Flow
The hold time ATPG test flow is the same as the path delay ATPG flow, except that instead of
running the set_faults -model path_delay command, you need to specify the set_
faults -model hold_time command. The hold_time argument specifies the ATPG
and fault simulation commands to use the hold time fault model andmust be specified before you
add faults.
The standard hold time ATPG flow includes the following commands:

l run_drc

l set_faults -model hold_time

l add_delay_paths hold_path_file

l add_faults -all

l run_atpg

You can use normal reporting commands such as report_summaries faults and
report_delay_paths. The fault types are reported as FTF (fast to fall) and FTR (fast to
rise).
In the hold time ATPG test flow, all set_delay commands are ignored because the hold time
path transition is launched and captured in a single clock cycle. Hold time faults are usually
detected by the basic scan pattern type, although fast-sequential ATPG is also supported.
Multiple-clock patterns are generated when the hold time pathmust be set up or when its effects
are propagated through nonscan elements such asmemories.
Note: You can usually reduce the pattern count by first fault-simulating the stuck-at patternswith
the hold time fault model, and then using ATPG to create new patterns to detect the undetected
paths.
All pathsmust start with a state element (DFF, DLAT, or memory) andmust end with an edge-
triggered state element (DFF or edge-triggeredmemory); only combinational gates can be
situated between the starting and ending elements. The source and destination pointsmust
capture on the same edge of the same clock. If the source and destination points are clocked by
different clocks, the clocksmust be either synchronized internal clocks (see “Specifying
SynchronizedMulti Frequency Internal Clocks”) or equivalent external clocks (see the
description of the add_pi_equivalences command in TetraMAX Online Help). If these
conditions are not satisfied, the path is declared ATPGUntestable (fault status AN).
The edge information provided in the path file is only used for the source point of the path. If the
path goes through XOR gates or multiple paths, then the polarity at the destination point and the
path actually taken by the transitionmight differ fromwhat was specified.
In the fault modeled by the TetraMAX fault simulator, the launching nodemakes its transition too
early. The captured node is assumed to be on time, and all off-path inputs are also assumed to
be on time. If these assumptions result in a 0/1 difference in the output, then the fault is detected.
See the representations of a path delay test pattern in Figure 1 and a hold time test pattern in
Figure 2.

Hold Time ATPG Test Flow 16-13

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1 Path Delay Test Pattern

Hold Time ATPG Test Flow 16-14

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 2 Hold Time Test Pattern

Generating Path Delay Tests
The following sections describe how to generate path delay tests:

l Flow for Generating Path Delay Tests
l Using set_delayOptions
l Reading and Reporting Path Lists
l Analyzing Path Rule Violations
l Viewing Delay Paths
l Path Delay ATPGOptions
l Internal Loopback and False/Multicycle Paths
l Creating At-SpeedWaveformTables
l Maintaining At-SpeedWaveform Table Information
l MUXClock Support for Path Delay Patterns

Generating Path Delay Tests 16-15

TetraMAX ATPG User Guide K-2015.06-SP4

Flow for Generating Path Delay Tests
The following steps show you how to generate a set of path delay tests:

1. Start TetraMAX ATPG.
2. Read in the libraries and netlists.
3. Build a circuit model.
4. Run DRC (you can use delay waveform tables in the STL procedure file):

run_drc filename.spf

5. Depending on the ATE functionality, set the delay testing options:
set_delay -nopi_changes
set_delay -nopo_measures

6. Read in the delay paths:
add_delay_paths filename

7. Analyze any P rule errors or warnings.
Use the following command to remove any paths that were read:
remove_delay_paths pathname

8. Display a delay path (optional):
report_delay_paths path_name -display -pindata

9. Add path delay faults:
set_faults -model path_delay

10. Run ATPG:
run_atpg -auto

11. Analyze low path delay coverage (optional):
report_faults -class AU
analyze_faults path_name -slow rise -display -verbose -fault_
simulation

12. Write the path delay test patterns:
write_patterns patname.stil -format stil
write_patterns patname.wgl -format wgl

Note:Many of the commands described in this flow have other options that you can use to
adjust TetraMAX ATPG to your unique requirements.

Using set_delay Options
After passing DRC, and before reading in a list of critical paths, you can use the set_delay
command to specify any options related to path delay testing.
Note that the launch cycle setting has no effect on full-sequential ATPG. TetraMAX ATPGuses
either a last-shift or a system clock for the launch cycle. To prevent last-shift launch behavior,
constrain the scan enable signal to its inactive value using the add_pi_constraints
command.

Generating Path Delay Tests 16-16

TetraMAX ATPG User Guide K-2015.06-SP4

Reading and Reporting Path Lists
After setting the delay options, you can read delay faults into TetraMAX ATPGusing the add_
delay_paths command. This command reads in a path delay definition file. You can remove
paths frommemorywith the remove_delay_paths command. To display paths in text
format, use the report_delay_paths command. By using the -verbose option, you can
include in the report information regarding launch and capture clocks and nodes, transition
direction of faults, fault status, and the vector in which detection took place.

Analyzing Path Rule Violations
You can analyze the P rule violations using theGSV. For example, to view additional information
on P20 violations, enter the following commands:
report_violations P20
analyze_violations P20-3

Viewing Delay Paths
You can use the report_delay_paths path_name -display -pindatacommand to
report delay paths and view them in theGSV. The displayed data includes any path
requirements (transitions and conditions) annotated to the wires of the design or primitive
elements in the path.

Path Delay ATPG Options
Fast-sequential ATPG is the default for path delay tests and usually provides adequate
coverage of most testable paths. In some cases, full-sequential ATPGcan achieve slightly
higher coverage. The recommended flow is to first generate path delay patternswith fast-
sequential ATPG , then top off with full-sequential patterns, if they provide improvement. You
can enable full-sequential ATPGusing the -full_seq_atpg option of the set_atpg
command. The following options can improve vector generation and pattern compression with
full-sequential ATPG:
set_atpg -full_seq_abort_limit seq_max_remade_decs

set_atpg -full_seq_time max_secs_per_fault

set_atpg -full_seq_merge [low | medium | high]

If the fault report printed after ATPG indicates that some faults were aborted (undetected), you
can increase the time limit beyond 10 seconds (the default), and rerun ATPGon the remaining
faults. Raising themerge effort allows TetraMAX ATPG to generate fewer vectors for the same
fault coverage. The default is to not merge patterns.

Internal Loopback and False/Multicycle Paths
You can generate transition and path delay tests while ensuring that you will not get tests that
"loopback" through a bidirectional port or tests for false/multicycle paths that begin at a specific

Generating Path Delay Tests 16-17

TetraMAX ATPG User Guide K-2015.06-SP4

start point. The following six commands implement this capability:
add_slow_bidis port_name | -all>

remove_slow_bidis port_name | -all>

report_slow_bidis

add_slow_cells instance_path | gate_id

remove_slow_cells instance_path | gate_id | -all

report_slow_cells

The add_slow_bidis commandmodifies the associated BUS primitives to output an X if any
tristate driver (TSD) or switch (SW) primitives are not driving a Z onto the BUS primitive. The
value observed on the primary inout (PIO) primitive continues to be the resolved value of the
BUS primitive before thismasking operation. If all TSD and SW primitives are driving a Z onto
the BUS primitive, the BUS behavior is not modified. This includes the behavior if the PIO
primitive is also driving a Z, or if there are weak input values.
An error message is issued if the add_slow_bidis command is specified for a port that is not
an inout or does not exist. The add_slow_bidis -all command issues amessage showing
the number of portsmodified.
The add_slow_cells commandmodifies the simulation behavior of DFF or DLAT cells in two
ways:

l For Basic-Scan patterns, the DFF/DLAT gets loaded with an X if the adjacent scan cell
(closer to the scan out) is being loaded with a different value (that is, if the last scan shift
creates a transition on the DFF/DLAT output). The capture and unload behavior of the
DFF/DLAT is not modified. When setting a scan cell value with this attribute, Basic-Scan
ATPGalso attempts to set the adjacent scan cell with this same value before pattern
merging, if it has not already been set.

l For Fast-Sequential and Full-Sequential patterns, the DFF/DLAT outputs an X if data
captured by a clock changes the state of the DFF/DLAT, or if a set/reset changes the state
of the DFF/DLAT. The DFF or DLAT continues to output an X until the next load operation.
However, the capture and internal state behavior is not modified and this internal state
value, not an X, is observed by an unload operation. Full-sequential ATPGwill continue to
apply the “robust fill” algorithm before random fill. This decreases the probability that the
launch clock creates a transition from scan cells feeding off-path inputs, including anywith
this attribute.

Creating At-Speed WaveformTables
Path delay tests are generated during both the fast-sequential and full-sequential test modes.
These tests conform to user constraints through defined clocks and specified primary input
constraints. The timing for these vectors adhere to one of several timingWaveformTables in the
STIL procedure file.
If there are no additional waveform tables in the STL procedure file, then the default timing (_
default_WFT_) is used for all path delay test vectors. However, special timing can be defined for
the launch and capture events in ancillary timing waveform tables. These tables are as follows:

l _launch_WFT_
l _capture_WFT_

Generating Path Delay Tests 16-18

TetraMAX ATPG User Guide K-2015.06-SP4

l _launch_capture_WFT_

When using generic capture procedures, the allclock_launch, allclock_capture, and allclock_
launch_capture procedures are used. Each procedure calls aWFT specifically associated with
it.

Each table can use different timing definitions for inputs, clocks, and output strobes. The path
delay test vectors can use these timing definitionswhen applied to the device under test to detect
faults defined in the path definition file.
The following example shows a _capture_WFT_ timingWaveformTable in the context of a STL
procedure file:
Timing {
 WaveformTable "_default_WFT_" {
 Period ’100ns’;
 Waveforms {
 "TxClk" { 01Z { ’0ns’ D/U/Z; } }
 "TxClk" { P { ’0ns’ D; ’50ns’ U; ’80ns’ D; } }
 "_default_In_Timing_"{01ZN {’0ns’ D/U/Z/N; } }
 "_default_Out_Timing_"{X {’0ns’ X; } }
 "_default_Out_Timing_" { HLT { ’0ns’ X; ’4ns’ H/L/T; } }
 }
 }
 WaveformTable "_capture_WFT_" {
 Period ’20ns’;
 Waveforms {
 "TxClk" { 01Z { ’0ns’ D/U/Z; } }
 "TxClk" { P { ’0ns’ D; ’5ns’ U; ’10ns’ D; } }
 "_default_In_Timing_"{01ZN {’0ns’ D/U/Z/N; } }
 "_default_Out_Timing_"{X {’0ns’ X; } }
 "_default_Out_Timing_" { HLT { ’0ns’ X; ’4ns’ H/L/T; } }
 }
 }
}

A path delay test cycle uses the same order of events as for other fault models:
l Force primary inputs
l Measure primary outputs (optional)
l Pulse a clock

Given this order of events, one or two test cycles are required to launch and capture a path delay
fault. For most paths, a two-cycle test is generated to apply a launch clock pulse and a capture
clock pulse. However, a full-sequential delay fault requiring a launch on the rising (leading) edge
of a clock and a capture on the falling (trailing) edge of the same clock generates a one-cycle test
that uses the “_launch_capture_WFT_”. For a delay path fault test that requires a launch in one
clock domain and a capture in another clock domain, two vectors are generated, and thus use “_
launch_WFT_” for the launch vectors, and “_capture_WFT_” for the capturing vector.

Generating Path Delay Tests 16-19

TetraMAX ATPG User Guide K-2015.06-SP4

If two or more different at-speed frequencies need to be used for different clock domainswithin
your design, youmight consider the following exampleWaveformTable definition. This example
shows two input clockswith their launch and capture timing defined (see Figure 1).
WaveformTable "_launch_WFT_" {
 Period ’40ns’;
 Waveforms {
 "CLK1" { 01Z { ’0ns’ D/U/Z; } }
 "CLK1" { P { ’0ns’ D; ’5ns’ U; ’10ns’ D; } }
 "CLK2" { 01Z { ’0ns’ D/U/Z; } }
 "CLK2" { P { ’0ns’ D; ’30ns’ U; ’35ns’ D; } }
 "_default_In_Timing_"{01ZN {’0ns’ D/U/Z/N; } }
 "_default_Out_Timing_"{X {’0ns’ X; } }
 "_default_Out_Timing_" { HLT { ’0ns’ X; ’4ns’ H/L/T; } }
 }
 }
WaveformTable "_capture_WFT_" {
 Period ’40ns’;
 Waveforms {
 "CLK1" { 01Z { ’0ns’ D/U/Z; } }
 "CLK1" { P { ’0ns’ D; ’30ns’ U; ’35ns’ D; } }
 "CLK2" { 01Z { ’0ns’ D/U/Z; } }
 "CLK2" { P { ’0ns’ D; ’5ns’ U; ’10ns’ D; } }
 "_default_In_Timing_"{01ZN {’0ns’ D/U/Z/N; } }
 "_default_Out_Timing_"{X {’0ns’ X; } }
 "_default_Out_Timing_" { HLT { ’0ns’ X; ’4ns’ H/L/T; } }
 }
}

Figure 1 TwoDifferent At-Speed Times

Generating Path Delay Tests 16-20

TetraMAX ATPG User Guide K-2015.06-SP4

Maintaining At-Speed Waveform Table Information
The presence of launch and capture operations is pertinent only under transition and path delay
environments. To ensure this information remains in a pattern set through various flows, such as
importing patterns into TetraMAX ATPG (see “Selecting the Pattern Source”), specify the
appropriate fault model for these patterns. See “Specifying Transition-Delay Faults” for
transition patterns for the apppropriate set_faults -model command.

MUXClock Support for Path Delay Patterns
Testing of internal paths in DSMTest requires that the system clock be applied at-speed to the
device under test. MUXClock, a common technique for applying the system clock at-speed,
merges (or multiplexes) two patternswithin a single, uniform cycle to create the at-speed clock.
MUXClock is supported only for full-sequential ATPG, so youmust use the set_atpg -
full_seq_atpg -nofast_path_delay command.
For MUXClock vector formatting, two additional clock waveformsD (double) and E (early) need
to be defined for the at-speed test. Definitions of the waveforms used during scan chain shifting
and normal (slow) system cycles are contained in the STIL procedure file.
MUXClock is a single waveform table/timeset construct that eliminates switching waveform
tables between the default path delay waveform tables for launch, capture, and launch_capture
operations and reduces requirements on ATE to support this timing flexibility.
By overlapping both the launch and capture events in one tester cycle, it is possible for ATE
timing accuracy to be higher than acrossmultiple vectors. Also, it is possible to place the launch
and capture events closer together in a single vector than normally permitted when separate
vectors were required. This feature, however, requires testers to support flexible double-pulse
definitions in STIL, and relies onMUX constructs inWGL that tie multiple tester channels
together to generate a flexible double-pulse waveform.
The following formats are supported by theMUXClock technique:

l WGL (using theWGL ":mux" construct)
l STIL (usingmultiple pulsed waveformsP, E, and D)
l MUXClock is not supported with clock_grouping
l MUXClock is not supported with scan compression designs

Enabling MUXClock Functionality
Thewaveform table sections in the STL procedure file need to bemodified to support
MUXClock behavior for delay test vectors. The typical waveform table section specifies values
that are applied during the scan shift and normal system tester cycles. Two additional waveform
definitions are required to specify the at-speed clock.

Generating Path Delay Tests 16-21

TetraMAX ATPG User Guide K-2015.06-SP4

Delay Test Vector Format
The following example shows aWaveformTable section for theMUXClock technique:
Timing {

WaveformTable "_default_WFT_" {
 Period '100ns';
 Waveforms {

"all_inputs" { 0 { '0ns' D; } }
"all_inputs" { 1 { '0ns' U; } }
"all_inputs" { Z { '0ns' Z; } }
"all_outputs" { X { '0ns' X; } }
"all_outputs" { H { '0ns' X; '40ns' H; } }
"all_outputs" { T { '0ns' X; '40ns' T; } }
"all_outputs" { L { '0ns' X; '40ns' L; } }
"CK" { P { '0ns' D; '75ns' U; '85ns' D; } }
"CK" { D { '0ns' D; '45ns' U; '55ns' D; '75ns' U;

'85ns' D; } }
"CK" { E { '0ns' D; '45ns' U; '55ns' D; } }

 }
}

}

In the waveform table, all signals identified as clocks in the designmust have two additional
waveforms present. These waveforms use theWaveformCharacters D (double-pulse), and E
(early-pulse). This brings the count of pulsed-waveforms for clocks up to 3: P, D, and E. These
pulses have the following requirements:

l The edges of the E pulsemust align with the edges of the first D pulse
l The edges of the P definitionmust align with the edges of the second D pulse

Also, the timing of all pulses, including the E pulse, must occur after the timing of the input edges
and the output measures. In MUXClockmode, all path delay launch and capture operations are
performed in a single cycle (described next); therefore, the timing of all eventsmust follow the
forcePI/measurePO/clock-pulse sequence. Because there is only one cycle, an option to define
multiple cycles does not exist. Visually, the set of waveforms for an active-high clock to define an
MUXClock operation appear similar to that shown in Figure 2

Generating Path Delay Tests 16-22

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 2 MUXClock: Active-High ClockWaveforms

WhenMUXClockwaveforms have been defined, theWGL output will contain references to two
WGLmuxparts for each clock signal in the design. An example of this construct for theWGL
signals and timeplate sections is as follows.
"CK" ["CK_Epulse", "CK_Ppulse"] :mux input;
-
-
-

timeplate "_default_WFT_" period 100ns
"CK_Ppulse" := input [0ps:D, 75ns:S, 85ns:D];
"CK_Epulse" := input [0ps:D, 45ns:S, 55ns:D];
-
-
-

Limitations of MUXClock Support for Path Delay Patterns
The following limitations apply to MUXClock support for path delay patterns:

l Output pattern files containingMUXClockwaveforms are not yet readable in TetraMAX
ATPG.

l Bidirectional clocks in a design are not supported inWGL output whenMUXClock
definitions are present. STIL output supports bidirectional clocks in the design.

Generating Path Delay Tests 16-23

TetraMAX ATPG User Guide K-2015.06-SP4

ATPG Requirements to Support MUXClock
For MUXClock to function, the set_delay command options -nopi_changes and -nopo_
measuresmust be used. In MUXClockmode, there can be no change of PI state or detectable
PO information between the end-of-launch and the start-of-capture: the only event that can
happen in the capture operation is a clock pulse.

Handling Untested Paths
This following sections explain false and untestable paths, and describes how you can handle
them:

l Understanding False Paths
l Understanding Untestable Paths
l Reporting Untestable Paths
l Analyzing Untestable Faults

Understanding False Paths
A false pathmight be caused by a portion of combinational logic that is configured so a path can
never be fully exercised. In other words, the path can never propagate a high-to-low or low-to-
high transition from the startpoint to the endpoint. Figure 1 illustrates a false path, ABCD.

Figure 1 False Path Example

The transition cannot be propagated to output D because of a blockage created by the X0 pin
driving U2 and subsequently U4. TetraMAX ATPG identifies combinationally false pathswhen
reading paths and classifies the associated path delay fault as undetectable-redundant (UR).
False pathswill also be flagged with a P21 rule violation (on-path values not satisfiable).

Handling Untested Paths 16-24

TetraMAX ATPG User Guide K-2015.06-SP4

Understanding Untestable Paths
TetraMAX DSMTest might prove a path delay fault to be untestable for one of the following
reasons:

l It is a sequentially false path. Such paths cannot be tested in a functional mode, because
logic prevents the required state transitions.

l ATPGconstraints or tester limitationsmight prevent some true paths from being tested.
DSMTest restrictionsmust adhere to all ATPGconstraints.

l Redundant logic (for circuit speed) prevents a single path from being independently tested.
Multiplier arrays are a good example of such circuits.
Note: If there are reconverging paths, youmight want to use the -allow_
reconverging_paths option to the set_delay command. The default is -
noallow_reconverging_paths

l Paths that requiremultiple launch or capture events are not usually supported by
TetraMAX ATPGand are declared untestable.
Note:Multicycle paths can often be tested if the appropriate clock timing is applied

l Other TetraMAX ATPG restrictionsmight cause paths to be declared untestable. These
paths are usually flagged with a P-rule violation.

l Paths through RAMs or ROMsmodeled with memory primitives are not supported by
TetraMAX ATPGand are declared untestable.

Reporting Untestable Paths
A specific path delay fault might not be testable due to either a path rule violation or a failure of
path delay ATPG to find a test for the path. You can generate a list of P rule violations using the
report_violations P command. For analyzing undetectable and untestable paths, check
the results of rules P19, P20, P21, P22, P23, and P24.
The following example shows how to review untestable paths after ATPG:
TEST-T> report_faults -class AU
str AN path8
str AN path9

To display the delay for a particular path use the following command:
TEST-T> report_delay_paths path_name -verbose -display

Adding the -display option to the command displays the path in the GSV, where you can
annotate ports with delay path data by selecting delay data from the pindata list in the Setup
dialog box or by including the -pindata option.
Figure 2 shows a path being displayed in the GSV.

Figure 2 Path Display Example

Handling Untested Paths 16-25

TetraMAX ATPG User Guide K-2015.06-SP4

Analyzing Untestable Faults
If a fault has been classified as ATPGUntestable, you can use the analyze_faults path_
name -slow r | f command to display the path in the GSV so you can analyze it. For
example, Figure 3 shows the displayed result of entering
analyze_faults CLK_0 -slow f -display

Figure 3 Analyze Untestable Faults Display

TetraMAX ATPGperforms fault analysis for the specified path. An incremental approach to test
generation is pursued in which the sensitization requirements for the path are attempted one
node at a time, until a path node is added that causes a justification failure or a test is generated.
With the -display option, pattern values for the last successful justification are shown in the
GSV for the specified path.

Handling Untested Paths 16-26

TetraMAX ATPG User Guide K-2015.06-SP4

TetraMAX Commands for Path Delay Fault Testing Example
In this example, the scan enable signal is constrained as in the transition fault testing using
system clock launch. However, this step is not needed if the circuit can support last shift launch.
This example also uses commands specific to path delay testing such as the following:

l The set_delay -mask_nontarget_paths command, which ensures that
TetraMAX ATPGdoes not generate expected values onmulti cycle or false paths

l The set_delay -relative_edge command, which causes TetraMAX ATPG to
inject both a slow-to-rise and a slow-to-fall fault for each path when you run the add_
faults -all command

The following example also shows the pattern reporting commands that are unique to path delay
testing:
read_netlist ckt.v

run_build_model test_ckt

set_delay -nopi_changes -nopo_measures # if needed
set_delay -mask_nontarget_paths
set_delay -common_launch_capture_clock # if needed
set_delay -relative_edge # if required

add_capture_masks dff0 # if needed
add_slow_cells dff1 # if needed
add_slow_bidi -all

add_pi_constraints 0 scan_enable

run_drc ckt.spf

add_delay_paths ckt.paths

set_faults -model path
add_faults -all

run_atpg -auto

report_patterns -all -path_delay # if required
report_patterns -all -slack # if required

You can optionally run the following command
analyze_faults path0 -slow r -verbose -display -fault_sim

Handling Untested Paths 16-27

17
Quiescence Test Pattern Generation
TetraMAX ATPGallows you to generate test patterns specifically targeted for quiescence, or
IDDQ, testing. You can also verify IDDQ test patterns and choose IDDQstrobe points in existing
patterns for maximum fault coverage.
The following topics describe the process for IDDQ test pattern generation:

l WhyDo IDDQTesting?
l About IDDQPattern Generation
l Limitations
l Fault Models
l DRC Rule Violations
l Generating IDDQTest Patterns
l Using IDDQCommands
l IDDQBridging
l Design Principles for IDDQTestability

17-1

TetraMAX ATPG User Guide K-2015.06-SP4

Why Do IDDQ Testing?
IDDQ testing can detect certain types of circuit faults in CMOS circuits that are difficult or
impossible to detect by other methods. IDDQ testing, when used to supplement standard
functional or scan testing, provides an additional measure of quality assurance against defective
devices.
IDDQ testing detects circuit faults bymeasuring the amount of current drawn by a CMOS device
in the quiescent state (a value commonly called “IddQ”). If the circuit has been designed
correctly, this amount of current is extremely small. A significant amount of current indicates the
presence of one or more defects in the device.
The following sections describe IDDQ testing in detail:

l CMOS Circuit Characteristics
l IDDQTestingMethodology
l Types of Defects Detected
l Number of IDDQStrobes

CMOS Circuit Characteristics
An important characteristic of CMOS circuits is that they draw almost no current in the quiescent
state. “Quiescent” means that the inputs are stable and the circuit is inactive. System designers
sometimes take advantage of this characteristic by having a power down or sleepmode in which
the device stops operating, but retains its internal state andmemory contents, thus conserving
battery charge while the device is idle.
Figure 1 shows a schematic diagram of a typical CMOS inverter. The inverter has twoMOS
transistors, one NMOS and the other PMOS. The two transistor gates are tied together to make
the inverter input, and the two drains are tied together to make the inverter output.

Figure 1 CMOS Inverter Schematic Diagram

Why Do IDDQ Testing? 17-2

TetraMAX ATPG User Guide K-2015.06-SP4

When the input is low, the upper transistor is on and the lower transistor is off, which pulls the
output up to the supply voltage (VDD).When the input is high, the upper transistor is off and the
lower transistor is on, which pulls the output to ground.
During a logic transition, a significant amount of current can flow while the capacitive load on the
output node is charged up to VDD or discharged to ground. However, in the quiescent state, the
only current that flows is the very small leakage current through the transistor that is off.
To ensure that no current flows in the quiescent state, every nodemust be pulled either low or
high, and not allowed to float. For example, if the input of the inverter is allowed to float, the
voltage could drift to an intermediate value, putting both transistors into a partially on state. This
would allow a steady-state current to flow fromVDD through the two transistors to ground.
A logical NAND gate usesmultiple PMOS transistors in parallel at the top andmultiple NMOS
transistors in series at the bottom, as shown in Figure 2. For each combination of input values,
the power supply current is extremely small in the quiescent state because the path fromVDD to
ground is blocked by at least one off transistor.

Figure 2 CMOS NAND Gate Schematic Diagram

IDDQ Testing Methodology
IDDQ testing is different from traditional circuit testingmethods such as functional or stuck-at
testing. Instead of looking at the logical behavior of the device, IDDQ testing checks the integrity
of the nodes in the design. It does this bymeasuring the current drain of the whole chip at times
when the circuit is quiescent. Even a single defective node can easily cause ameasurable
amount of excessive current drain. In order to place the circuit into a known state, the IDDQ test
sequence uses ATPG techniques to scan in data, but it does not scan out any data.

Why Do IDDQ Testing? 17-3

TetraMAX ATPG User Guide K-2015.06-SP4

For example, consider the short-to-ground defect shown in Figure 3. Depending on the
controllability and observability characteristics of the defective node, this defect might be
detectable as a stuck-at-0 fault using functional or scan testing.

Figure 3 Short-to-Ground Defect

With IDDQ testing, this defect can be detected even if the node is not observable. You only need
tomaintain the input of the inverter at logic 0, which turns on the upper transistor and places the
output of the inverter at logic 1.
It is normal for current to flow during switching, but after the device has settled for a period of
time, nomore current should flow. At this point, an IDDQstrobe detects the excessive current
drain through the upper transistor and the short to ground. The current drain of a single defect
such as this can be orders of magnitude larger than the normal current drain of the entire device
in the quiescent state.
Similarly, an IDDQstrobe can detect a short to VDD. For example, in the inverter circuit shown
in Figure 3, you only need tomaintain the input of the inverter at logic 1, which turns on the lower
transistor and places the output of the inverter at logic 0. After the device has settled, an IDDQ
strobe detects the current drain through the short fromVDD to the node and the lower transistor.

Types of Defects Detected
IDDQ testing can detect many kinds of circuit defects that are difficult or impossible to detect by
functional or stuck-at testing, such as three-state enable nodes, redundant logic, high-resistance
faults, scan chain control/data paths, undetectable faults, possibly detected faults, ATPG
untestable faults, and bridging faults.
For example, consider the defect shown in Figure 4, a resistive path to ground. This nodemight
pass initial stuck-at testing, but fail after burn-in or during actual use by the customer. IDDQ
testing can immediately detect this type of fault due to the excessive current drain when the node
is at logic 1, even if the node is not observable by stuck-at testing.

Why Do IDDQ Testing? 17-4

TetraMAX ATPG User Guide K-2015.06-SP4

IDDQ testing can partially or completely replace costly burn-in testing. Burn-in means testing the
device using functional or scan testing, operating the device for a period of time under normal
conditions, and then running the same tests to find any early failures in the lifetime of the device.
IDDQ testing can detect many burn-in type defects.
IDDQ testing can also detect bridging faults. A bridging fault is a short between two different
functional nodes in the design. An IDDQstrobe detects a fault of this type if one node is at logic 0
while the other is at logic 1.

Figure 4 Resistive Path to Ground

Number of IDDQ Strobes
IDDQ testing can provide very high fault coverage with just a few strobes. The first IDDQstrobe
typically detects half of all short-to-ground and short-to-VDD faults. IDDQ test patterns attempt
to change or toggle asmany nodes as possible in subsequent patterns to quickly increase fault
coverage.
After the circuit nodes are forced to a known state, a certain amount of inactive time is required
to allow the nodes to settle before the IDDQmeasurement. The required settling time depends
on the CMOS technology used and the required testing threshold. A tester time “budget” of 10 or
20 IDDQstrobes is typically allowed for testing each device. This number of strobes is usually
enough to achieve satisfactory fault coverage.

About IDDQ Pattern Generation
Figure 1 shows the IDDQ testing flow using TetraMAX ATPG test-pattern generation. The
ATPGalgorithm attempts to sensitize all IDDQ faults and apply IDDQstrobes to test all such
faults. TetraMAX ATPGcompresses andmerges the IDDQ test patterns, just like ordinary
stuck-at patterns.

About IDDQ Pattern Generation 17-5

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1 IDDQTesting Flow

While generating IDDQ test patterns, by default TetraMAX ATPGavoids any condition that
could cause excessive current drain, such as strong or weak bus contention or floating buses.
TetraMAX ATPGgenerates an IDDQ test pattern and an IDDQ fault coverage report. It
generates quiescent strobes by using ATPG techniques to avoid all bus contention and float
states in every pattern it generates. The resulting test pattern has an IDDQstrobe for every
ATPG test cycle. In other words, the output is an IDDQ-only test pattern.
After the test pattern has been generated, you can use PowerFault simulation to verify the test
pattern for quiescence at each strobe. The simulation does not need to perform strobe selection
or fault coverage analysis because these tasks are handled by TetraMAX ATPG. Refer to the
Test Pattern Validation User Guide for details about PowerFault.
TetraMAX ATPGsupports IDDQ testing in the following ways:

l It lets you generate test patterns that are targeted for IDDQ testing.
l It adds IDDQverification and analysis capabilities into your Verilog simulator.

If you use the TetraMAX stuck-at model to generate standard test patterns, you can then use
PowerFault technology to select the best strobe times in the resulting test patterns.
Note:An alternative approach is to use an existing set of stuck-at ATPGpatterns and have the
Verilog/PowerFault simulation select appropriate IDDQstrobe times from those patterns. This is
described in section “Selecting Strobes in TetraMAX Stuck-At Patterns” in the Test Pattern
Validation User Guide

About IDDQ Pattern Generation 17-6

TetraMAX ATPG User Guide K-2015.06-SP4

IDDQ Limitations
Note the following limitations for IDDQsupport:

l A Parallel Verilog or Parallel STIL testbench for scan compressionmode patterns does not
contain the iddq_capture annotations. A Serial Verilog and Serial STIL testbench for scan
compressionmode contains the iddq_capture annotations.

l The VerilogDPV flow does not support mixed STIL and IDDQgrading using PowerFault
IDDQ. Refer to the Test Pattern Validation User Guide for details about PowerFault.

Fault Models
TetraMAX ATPGoffers a choice of fault models: stuck-at, IDDQ, transition, bridging, and path
delay faults. You specify the IDDQ fault model to generate test patterns specifically for IDDQ
testing.
With an IDDQ fault model, TetraMAX ATPGdoes not attempt to observe the logical behavior of
the device at the outputs. Instead, it tries to toggle asmany nodes as possible into both states
while avoiding conditions that violate quiescence. Any node defects can be detected by the
excessive current drain that they cause. In this case, TetraMAX ATPGattempts to sensitize
each node in the design, but does not try to propagate faults to the device outputs.
TetraMAX ATPGsupports two IDDQ fault models:

l Pseudo-Stuck-At Fault Model (the default)
This fault model considers the functionality of each individual cell. It is similar to the
standard stuck-at ATPGmodel, except that every cell output is considered observable by
IDDQ testing. The fault site at a gate input requires sensitization and propagation to an
output of the same gate (but not to an output of the device) to be given credit for IDDQ fault
detection. In other words, to be considered detected, a fault must cause an incorrect value
at the output of the cell.

l Toggle Fault Model
This fault model is a simple, net-onlymodel that does not consider gate functionality. Each
fault site only needs to have its state controlled to be given credit for IDDQ fault detection.
The togglemodel is less computationally intensive than the pseudo-stuck-at model, but it is
not guaranteed to detect as wide a range of faults inside cells.

DRC Rule Violations
TetraMAX ATPGperforms a wide range of test design rule checking (DRC) when you use the
run_drc command. SomeDRC rule violations indicate that your designmight not be IDDQ

IDDQ Limitations 17-7

TetraMAX ATPG User Guide K-2015.06-SP4

testable or not fullymodeled for IDDQquiescence checking, or might require additional ATPG
effort to achieve circuit quiescence. To help avoid DRC violations, follow the design guidelines in
Design Principles for IDDQTestability.
To view a list of rule violations after you perform design rule checking, use the report_rules
command. Example 1 shows a typical DRC violation report.

Example 1 DRC Violation Report

TEST-T> report_rules -fail
rule severity #fails description
---- -------- ------ ---------------------------------
B6 warning 2 undriven module inout pin
B7 warning 178 undriven module output pin
B10 warning 32 unconnected module internal net
B13 warning 2 undriven instance input pin
S23 warning 64 unobservable potential TLA
S29 warning 1 invalid dependent slave operation
C3 warning 32 no latch transparency when clocks off
C6 warning 1 TE port captured data affected by new
capture
Z1 warning 289 bus contention ability check
Z2 warning 289 Z-state ability check
Z4 warning 360 bus contention in test procedure

Table 1 lists TetraMAX ATPGdesign rule violations that warrant investigation if you plan to
generate IDDQ test patterns.

Rule Description, severity Significance for IDDQ testing

B5 Undefined module
referenced, error

Incomplete model; nonquiescent
circuitry could be missing

B7 Undriven module output
pin, warning

Possible floating net; could be just an
unused net

B9 Undriven module internal
net, warning

Possible floating net; could be just an
unused net

B12 Undriven instance input
pin, error

Likely to be a floating net

B18 Three-state and non-three-
state drivers combined,
warning

Might require more ATPG effort to
avoid bus contention

N2 Unsupported construct,
warning

Incomplete model; nonquiescent
circuitry could be missing

Table 1 DRC Rule Violations and IDDQSignificance

DRC Rule Violations 17-8

TetraMAX ATPG User Guide K-2015.06-SP4

Rule Description, severity Significance for IDDQ testing

Z1 Bus capable of contention,
warning

Might require more ATPG effort to
avoid bus contention

Z2 Bus capable of holding Z
state, warning

Might require more ATPG effort to
avoid floating buses

Z3 Wire capable of contention,
error

Likely to be a wired-net contention

Z7 Unable to prevent
contention for circuit, error

ATPG cannot find nonquiescent circuit
state

Z8 Unable to prevent
contention for bus, warning

ATPG cannot avoid bus contention

X1 Sensitizable feedback path,
warning

Possible circuit oscillation

Table 1 DRC Rule Violations and IDDQSignificance (Continued)

For more information about TetraMAX ATPGdesign rule checking, see Performing Test Design
Rule Checking.

Generating IDDQ Test Patterns
The following sections describe how to generate IDDQ test patterns:

l IDDQTest Pattern Generation Flow
l Using the iddq_capture Procedure
l Off-Chip IDDQMonitor Support

IDDQ Test Pattern Generation Flow
The following steps show you how to generate IDDQ test patterns:

1. Set the fault type to IDDQwith the set_faults command.
2. Select the appropriate IDDQ fault model, either pseudo-stuck-at or togglemodel, with the

set_iddq command.
3. Create the fault list with the add_faults or read_faults command.
4. Set themaximumnumber of IDDQstrobeswith the set_atpg -patterns command.
5. Run pattern generation with the run_atpg command.

Generating IDDQ Test Patterns 17-9

TetraMAX ATPG User Guide K-2015.06-SP4

For example, here is a typical IDDQATPGsession:
TEST-T> set_faults -model iddq
TEST-T> set_iddq -toggle # pseudo-stuck-at is the default
TEST-T> add_faults -all
TEST-T> set_atpg -patterns 20 # budget of 20 IDDQ strobes
TEST-T> run_atpg -auto_compression

The order of the steps is important. You cannot create the fault list until you have selected the
IDDQ fault model.
After you generate the IDDQ test patterns, you can use PowerFault simulation technology to
verify the patterns for quiescence. For more information, refer to the Test Pattern Validation
User Guide.
If you generate stuck-at patterns and you want to use PowerFault to select IDDQstrobes from
the pattern set, see “Selecting Strobes in TetraMAX Stuck-At Patterns” in the Test Pattern
Validation User Guide.

Using the iddq_capture Procedure
When you create IDDQpatterns, TetraMAX ATPGdefines a procedure, called iddq_
capture, in the pattern output file. This procedure (shown in the following example) is used
when an IDDQmeasure is performed:
"iddq_capture" {

W "_default_WFT_";
F { "testmode"= 1; }
V { "_pi"=\r379 # ; "_po"=\j \r276 X ; }
IddqTestPoint;
V { "_po"=\r276 # ; }
}

}

TetraMAX ATPGgenerates the default iddq_capture procedure when IDDQ test patterns
are written and the input STL procedure file does not define an iddq_capture procedure. If
you not define the iddq_capture procedure in the input STL procedure file, make sure you
specify the write_drc_file command after the write_patterns command so the
iddq_capture procedure is preserved in the output STL procedure file.

You should use the new STL procedure file in subsequent runs to provide the same iddq_
capture procedure. Since default flows change in various releases, it is important to preserve
the default behavior for these patterns. WhenWGL IDDQpatterns are written, V4 errors will
occur if these patterns are read in a context that does not define the iddq_capture
procedure. You can eliminate these problems in subsequent flows by saving the new STL
procedure file with the complete set of procedures.

You can also define customized iddq_capture procedures in the STIL procedure file and
pass them into the flow.

Generating IDDQ Test Patterns 17-10

TetraMAX ATPG User Guide K-2015.06-SP4

Off-Chip IDDQ Monitor Support
You can transfer information into off-chip IDDQmonitors as part of your IDDQ test data.
Typically, an off-chip IDDQmonitor is an additional hardware unit placed physically adjacent to
the device under test (DUT). Themonitor is used to perform current measurements and typically
has extra signals that you use to control when and how IDDQmeasurements are performed.
Off-chip IDDQmonitors require two fundamental constructs to be supported at test. One
construct is to support the definition of additional signals present on themonitors as part of the
test flow. The second construct is the application of specific procedure calls at the IDDQ
measurement points.
The following sections describe how to include off-chip IDDQmonitor signals in your testing:

l Specifying Additional Signals in the Netlist
l Defining the iddq_capture Procedure to Support Additional Signals

Specifying Additional Signals in the Netlist
Monitor signals are not part of the DUT nor are they part of the tester. They exist adjacent to the
DUT on the loadboard or some location near the DUT for signal measurement integrity. While
not part of the DUT, these signals are required because theymust toggle during IDDQ testing
Define these signals in an additional hierarchical level that cone timeptually represents the DUT
and off-chip IDDQmonitor as a single unit, as shown in Figure 1. The only requirement in the
flow is the presence of the additional monitor signals; a representation of themonitor itself is not
required or expected.

Figure 1 Hierarchical DesignWith DUT and IDDQMonitor

The following Verilog netlist shows how references to these signals could look, where the prefix
MONITOR_ is used on all the off-chip IDDQmonitor signals for easy identification:
// new top_module of design and MONITOR signals
module AAA_W_QSTAR (MONITOR_MD, MONITOR_CLK, MONITOR_DOUT,

... other design signals ...);
input MONITOR_MD, MONITOR_CLK ;
output MONITOR_DOUT ;

Generating IDDQ Test Patterns 17-11

TetraMAX ATPG User Guide K-2015.06-SP4

...
AAA DUT (... other design signals ...);
endmodule; // AAA_W_MONITOR

// top design module
module AAA (... other design signals ...);
...

Defining the iddq_capture Procedure to Support Additional Signals
Using off-chip IDDQmonitors affects how you define the iddq_capture procedure because
the DUT needs to be controlled in particular during the capture operation. You can expand the
iddq_capture template to support operation of the additional IDDQmonitor pins. The iddq_
capture procedure will vary depending on operations present to manipulate the IDDQmonitor
or to returnmeasurement data.
Because themonitor control signals are part of the netlist sent to TetraMAX ATPG, these signals
need to be specified as “Fixed” signals in the flow for all other applications; that is, held at their
inactive states except during IDDQ testing.
The following example represents an application where the IDDQmeasurement/settling time is
defined in aWaveformTable with minimal functionality, supporting only themaintenance of the
input states during this period. There are no requirements on the name of thisWaveformTable.
The prefix MONITOR_ is used on all the off-chip IDDQmonitor signals for easy identification.
Timing {

WaveformTable "_default_WFT_" {
 Period '100ns';
 Waveforms {

"_default_In_Timing_" { 0 { '0ns' D; } }
"_default_In_Timing_" { 1 { '0ns' U; } }
"_default_In_Timing_" { Z { '0ns' Z; } }
"_default_In_Timing_" { N { '0ns' N; } }
"_default_Clk0_Timing_" { P { '0ns' D; '50ns' U;

'80ns' D; } }
"_default_Out_Timing_" { X { '0ns' X; } }
"_default_Out_Timing_" { H { '0ns' X; '40ns' H; } }
"_default_Out_Timing_" { T { '0ns' X; '40ns' T; } }
"_default_Out_Timing_" { L { '0ns' X; '40ns' L; } }

 }
}
WaveformTable "_IDDQ_MEASUREMENT_WFT_" {

 Period '100us';
 Waveforms {

"_default_In_Timing_" { 0 { '0us' D; } }
"_default_In_Timing_" { 1 { '0us' U; } }
"_default_In_Timing_" { Z { '0us' Z; } }
"_default_In_Timing_" { N { '0us' N; } }
"_default_Out_Timing_" { X { '0us' X; } }

 }
}

Generating IDDQ Test Patterns 17-12

TetraMAX ATPG User Guide K-2015.06-SP4

}
Procedures {

"load_unload" {
 W "_default_WFT_";
 // establish inactive states on the monitor during
Shift
 V {"sdo"=X; "CLK"=0; "MONITOR_MD"=1; "MONITOR_CLK"=0;\
 "MONITOR_DOUT"=X; }
 Shift { V { "__si"=#; "__so"=#; "CLK"=P; } }

}
"capture*" { // All Capture

Routines
Except iddq_capture
 // Hold monitor inactive
 F { "MONITOR_MD"=1; "MONITOR_CLK"=0; "MONITOR_DOUT"=X;
}
 W "_default_WFT_";
 V { ... }

}
"iddq_capture" {

 W "_default_WFT_";
 V { "_pi"=\r15 # ; "_po"=\j \r7 # ; }
 IddqTestPoint;
 W "_IDDQ_MEASUREMENT_WFT_";

V { "MONITOR_MD"=0; "_out"=XXX ; } // Activate monitor
measurement
 W "_default_WFT_";
 V { "MONITOR_DOUT"=H; } // Detect successful
measurement (pass)

}
} // end Procedures

The following examplemerges the _pomeasure operation into the IDDQmeasurement vector.
It requires amore completeWaveformTable to support themeasure operation on the outputs
but reduces vector count in the iddq_capture procedure by one. Only theWaveformTable
and iddq_capture changes are shown here. The prefix MONITOR_> is used on all the off-
chip IDDQmonitor signals for easy identification.
Timing {

WaveformTable "_IDDQ_MEASUREMENT_WFT_" {
 Period '100us';
 Waveforms {

"_default_In_Timing_" { 0 { '0us' D; } }
"_default_In_Timing_" { 1 { '0us' U; } }
"_default_In_Timing_" { Z { '0us' Z; } }
"_default_In_Timing_" { N { '0us' N; } }
"_default_Out_Timing_" { X { '0us' X; } }
"_default_Out_Timing_" { H { '0us' X; '98us' H; } }

Generating IDDQ Test Patterns 17-13

TetraMAX ATPG User Guide K-2015.06-SP4

"_default_Out_Timing_" { T { '0us' X; '98us' T; } }
"_default_Out_Timing_" { L { '0us' X; '98us' L; } }

 }
}

}

Procedures {
"iddq_capture" {

 W "_default_WFT_";
 V { "_pi"=\r15 # ; "_out"= XXX ; }
 IddqTestPoint;
 W "_IDDQ_MEASUREMENT_WFT_";
 V { "MONITOR_MD"=0; "_po"=\r7 # ; } // Activate monitor
measurement
 W "_default_WFT_";
 V { "MONITOR_DOUT"=H; } // Detect successful measurement
(pass)

}
}

The following examplemaintains the current IDDQ test sequence with the addition of the extra
cycles for themonitor’s operation at the end.While consistent with current IDDQconstructs, this
operation requires themost total cycles per IDDQ test. This construct can operate with aminimal
measureWaveformTable, or a larger WaveformTable, depending on whether the outputs are
masked in themonitor’smeasure cycle. Because no state changes are occurring, these outputs
can remain in their previousmeasured state in the next two vectors (requiring amore complete
WaveformTable), or can bemasked (requiring less definitions in themonitor’smeasure
WaveformTable). The prefix MONITOR_ is used on all the off-chip IDDQmonitor signals for easy
identification.
Procedures {

"iddq_capture" {
 W "_default_WFT_";
 V { "_pi"=\r15 # ; "_out"= XXX ; }
 IddqTestPoint;
 V { "_po"=\r7 # ; }
 W "_IDDQ_MEASUREMENT_WFT_";
 V { "MONITOR_MD"=0; } // Activate monitor measurement.
 // Note outputs still tested
 W "_default_WFT_";
 V { "MONITOR_DOUT"=H; } // Detect successful measurement
(pass)

}
}

Generating IDDQ Test Patterns 17-14

TetraMAX ATPG User Guide K-2015.06-SP4

Using IDDQ Commands
You can use the set_faults command to set the fault model. If you select the IDDQ fault
model, you can use the set_iddq command to specify the quiescence constraints and
toggle/no-togglemodel type. The add_atpg_constraints command lets you set IDDQ-
specific ATPGconstraints on nodes in the design. These commands are described in the
following sections:

l Using the set_faults Command
l Using the set_iddq Command
l Using the add_atpg_constraints Command

Using the set_faults Command
To generate IDDQ-only test patterns, use the set_faults -model iddq command. You
can specify the quiescence constraints and toggle/no-togglemodel with the set_iddq
command.
To generate standard stuck-at test patterns, use the set_faults -model stuck
command. This is the default model.
For the complete syntax and option descriptions, see the online help for the set_faults
command.

Using the set_iddq Command
The float, strong, weak, and write options of the set_iddq command allow you to
specify the conditions required for quiescence. TetraMAX will not generate a pattern that fails to
meet an enabled restriction.
The assertive option float, strong, weak, or writemeans that the restriction is enforced.
The restrictionsminimize conditions that could cause excessive current drain, such as strong or
weak bus contentions or floating buses. The negative option nofloat, nostrong, noweak, or
nowritemeans that the restriction is removed and the condition is allowed. By default, all the
assertive options are in effect and all restrictions are enforced. To allow a condition for IDDQ test
pattern generation, use the appropriate negative option.
By default, the individual restrictions operate in the followingmanner:

l The float restrictionmeans that every BUS gatemust not be at the Z state during an
IDDQmeasure.

l The strong restrictionmeans that the IDDQmeasuremust be contention-free for strong
drivers of BUS gates.

l The weak restrictionmeans that BUS gateswith weak inputsmust not compete with other
strong or weak BUS inputs during an IDDQmeasure.

l The write restrictionmeans that RAMsmust not have an active write port during an
IDDQmeasure.

Using IDDQ Commands 17-15

TetraMAX ATPG User Guide K-2015.06-SP4

The -atpg or -noatpg option determineswhether the test generator attempts to satisfy all
the IDDQconstraints during pattern generation (-atpg), or only checks and discards patterns
that fail to meet these constraints after completion of pattern generation (noatpg). The default
setting is -noatpg.
The option toggle or notoggle option selects the type of IDDQ fault model. This selection
is valid only if you have selected the IDDQ fault model with the set_faults -model iddq
command. The default selection is notoggle, which selects the pseudo-stuck-at fault model.
To select the togglemodel instead, use the toggle option. These twomodels are described in
Pseudo-Stuck-At Fault Model.

Using the add_atpg_constraints Command
The add_atpg_constraints command lets you define constraints that apply during the
generation of test patterns. For example, you can use this command to force a particular internal
node to the value 1 at the clock-on time for all test patterns.
In this command, you specify an arbitrary name to identify the constraint, the value of the
constraint (0, 1, or Z), and the place in the design where the constraint is to be applied. You can
optionally specify when the constraint must be satisfied by using the drc or iddq option.
By default, the constraint must be satisfied only at clock-on time for test pattern generation.
Using the drc optionmeans that the constraint must also be satisfied during DRC procedures
and ATPGanalyses.
Using the iddq optionmeans that the constraint only has to be satisfied during IDDQmeasure
strobes, and only if the IDDQ fault model has been selected with the set_faults -model
iddq command. An IDDQmeasure strobe corresponds to the time in the tester cycle when
outputs aremeasured, as specified by theWaveformTable block in the run_drc test protocol
file.

IDDQ Bridging
You can use the IDDQbridging fault model to generate additional patterns and increase the
IDDQcoverage. This fault model, which is specified using the set_faults -model iddq_
bridging command, behaves differently than the regular IDDQ fault model. Regular IDDQ
fault model has two versions of the samemodel (Toggle or Pseudo-Stuck-At). The fault model
for IDDQbridging is only of type Toggle. Thismeans that the fault site at a gate input does not
require propagation to an output of the same gate to be given credit for IDDQbridging fault
detection.
In regular scanmode, unload values are written in the patterns to facilitate load/unload
overlapping by the tester. However, capture is not in effect when using the IDDQbridge fault
model, and the unload values are exactly the same as the load values.
When the IDDQbridging fault model is specified, the set_iddq -toggle command is invalid
because only one version of themodel is available.
The IDDQbridging fault model is similar to the bridging fault model except that bridging faults are
directly observed by an IDDQstrobe rather than by propagating the fault effect to a scan cell.
The primary purpose of performing IDDQbridging fault ATPG is to detect faults by inserting

IDDQ Bridging 17-16

TetraMAX ATPG User Guide K-2015.06-SP4

correct values into the fault nodes. As a result, there are no observation requirements. For
example, to detect the IDDQbridging fault named ba0 node1 node2, where the aggressor
node is node1 and victim node is node2, APTGsets the node1 logic value to 0 and the node2
logic value to 1.
The IDDQbridging fault model uses the same fault codes as the bridging fault model. The
existing add_faults -node_file and -bridge_location options are used to read net
pairs and add the IDDQbridging faults. The IDDQbridgingmeasurement criteria is adjusted by
a separate set_iddq command, as is the case with the regular IDDQ fault model. During
ATPG, the detection of one pair of bridges implies the detection of another pair. This behavior
can be controlled using the set_iddq -bridge_equivalence command.
The run_atpg and run_fault_sim commands check out the Test-Fault-Max license.
The flow to generate IDDQbridging patterns is as follows:
set_fault -model iddq_bridging
optional setting of measurement critera
set_iddq nofloat
add_faults -node pair.txt
run_atpg -auto
write_patterns iddq_bridging.stil -format stil

Note the following limitations related to IDDQbridging ATPG:
l The analyze_faults command is not supported when using the IDDQbridging fault
model.

l The strength-based optimizations used for the regular bridging fault model are not
supported for the IDDQbridging fault model.

l Full-sequential ATPGdoes not support the IDDQbridging fault model.

Design Principles for IDDQ Testability
The following design principles apply to designing your circuits for IDDQ testability:

l I/OPads
l Buses
l RAMs and Analog Blocks
l Free-RunningOscillators
l Circuit Design
l Power andGround
l ModelsWith Switch/FET Primitives
l Connections
l IDDQDesign-for-Test Rule Summary

Note: IDDQ testing and PowerFault simulation ismore efficient and reliable if you follow these
requirements. For details about PowerFault, see the Test Pattern Validation User Guide.

Design Principles for IDDQ Testability 17-17

TetraMAX ATPG User Guide K-2015.06-SP4

I/O Pads
Put I/O pads on a separate power rail, if possible. Then you can test the I/O and core logic
separately as described in “Using PowerFault Technology” in the Test Pattern Validation User
Guide.
If I/O pads and core logic share the same power rail, use I/O pads that have controllable pullups
rather than passive pullups. This will allow the pullups to be gated out during IDDQ testing.
Slew control for I/O pinsmust be disabled or I/O pinsmust be put on a separate rail. If I/O pads
and core logic share the same power rail, all DC paths from power to ground (such as slew
control) must be disabled during IDDQ testing. There are two strategies to achieve this:

l Use controllable pullups/pulldowns so that they can be gated out during IDDQ testing. This
is the preferredmethod.

l Drive pads so that pullups/pulldowns not active (for example, drive a pad with a pullup to
VDD). Have the testbench drive pads that have both pullups and pulldowns to VDD (or to
VSS if you aremeasuring ISSQ).

Buses
Use fullymultiplexed bus drivers so that only one driver can be active at a time. Furthermore,
always drive a bus if possible, as described in the “Using PowerFault Technology” in the Test
Pattern Validation User Guide.
If buses cannot always be driven, gate buses at the receivers as described in “Using PowerFault
Technology” in the Test Pattern Validation User Guide.
If buses can’t be driven or gated, use keeper latches. Model keeper latches structurally as
described in “Using PowerFault Technology” in the Test Pattern Validation User Guide.
Avoid internal pullups and pulldowns. If possible, either drive or gate a bus to prevent it from
floating. If pullups and pulldownsmust be used, model them structurally as described in “Using
PowerFault Technology” in the Test Pattern Validation User Guide.
Avoid tri1, tri0, wor, and wand wire types. Use pullup/pulldown primitives instead.

RAMs and Analog Blocks
Check your databook tomake sure you do not hardwire your RAM into a high-current state.
RAMs and analog blocks that have high-current states require either a sleepmode or a separate
power supply.
If your chip uses a sleepmode for RAMor analog blocks, prevent IDDQstrobing when the
blocks are not in sleepmode by doing one of the following,

l Avoid invoking the strobe_try commandwhen the chip is in a high-current state.
l Use the disallow command to tell PowerFault when RAMor analog blocks are in high-
current states.

If RAMor analog blocks are on a separate power rail and PowerFault reports them as leaky, use
the allow command to have PowerFault ignore them.

Design Principles for IDDQ Testability 17-18

TetraMAX ATPG User Guide K-2015.06-SP4

Free-Running Oscillators
Avoid free-running oscillators, if possible, because they draw current. If youmust use a free-
running oscillator, disable it during IDDQ testing, or put the affected circuitry on a separate
power rail. Use the disallow command to tell PowerFault when the oscillator is running.

Circuit Design
To prevent current drain through the substrate, connect the bulk node for n-type transistors to
VSS and the bulk node for p-type transistors to VDD.
Avoid degraded voltages. For example, avoid using an NMOS transistor to serve as a pass gate.

Avoid circuits that put the gate and drain or source nodes of a transistor in the same transistor
group.
Avoid circuits that create control loops among transistor groups. Obviously, control loopsmust
exist to implement flip-flops and latches, but using certain flip-flop and scan chain design rules
canmake bridging faultsmore testable.
Avoid circuits that use charge sharing or charge retention. Bridging faults within dynamic
(domino) logic cells are difficult to detect with IDDQ testing. Furthermore, the output voltage of
dynamic logic cellsmight degrade during an IDDQmeasurement, causing the inputs to the
following static logic block to float.

Power and Ground
Declare supply0, supply1, tri0, and tri1 nets fed in from the testbench so that they have the same
type in the DUT. For example, if tbench.VDD1 is a supply1 net in the testbench and it is
connected to tbench.dut.vdd1, make sure that tbench.dut.vdd1 is also declared as a supply1 net.

If you are using Verilog-XL, do not use cell ports for VSS/VDD. Use a local supply0 or supply1
net, or a 'b0 or 'b1 constant to connect terminals and ports inside cells to VSS/VDD.
If you are using VCS, connect terminals and ports to supply0 or supply1 nets instead of using 'b0
or 'b1 constants.

Models With Switch/FET Primitives
Try to limit switchmodeling to three-state cells.
Use user-defined primitives (UDPs) or standard logic gates to build models for multiplexers, flip-
flops, and latches.
Avoid tran, tranif0, and tranif1 primitives. Instead, use cmos, nmos, and pmos
primitives.
Avoid having channels of switch primitives in series extend betweenmodule scopes.

Design Principles for IDDQ Testability 17-19

TetraMAX ATPG User Guide K-2015.06-SP4

Do not pass three-state values (Zs) through switches or field effect transistors (FETs). If a net
can take on a three-state value, make the receivers (loads) strength-restoring gates, not switch
primitives.

Connections
Maintain cell-level hierarchy and avoid creating a very large cell containingmany Verilog
primitives at the same level. Limit each bottom-level cell to a few hundred primitives at most.
(Most ASIC libraries have only a few primitives per bottom-level cell.)
Do not use continuous assignments to connect nets to nets.
Do not use continuous assignments to implement three-state drivers.
Do not usemismatched drivers tomodel latches and flip-flops. If possible, use UDPs.
Do not connect registers directly to gate terminals. Connect registers to wires (via continuous
assignments or module ports), and then connect the wires to gate terminals.
All internal buses should have gate loads. Each internal bus should fan out to at least one gate
input, instead of fanning out to only behavioral statements (such as continuous assignments and
event control for always blocks).
PowerFault ismost accurate at identifying leaky states when used with gate-level models and
libraries. Avoid using RTLmodels because theymight not contain enough structural information
to allow identification of floating nodes and drive contention.

IDDQ Design-for-Test Rule Summary
The following design-for-test (DFT) rules summarize the design principles for IDDQ testing:

1. Define an IDDQ test mode signal that does not contend with the scan test mode signal.
2. Use separate power rails for the I/O and coremodules.
3. Use fully complementary, fully static CMOS.
4. Use separate power rails for analog and nonstatic CMOSmodules.
5. Use separate power rails for unknown or otherwise IDDQ-untestable cores.
6. For RTLmodules, specify any known input conditions and sequences that cause internal

contention. Use ATPGconstraints or IDDQ allow or disallow statements (or
both).

7. For RTLmodules, specify any known input conditions and sequences that cause internal
floating.

8. Use transistors to enable and disable pullups and pulldowns. Disable themwith the IDDQ
test mode signal.

9. Using the IDDQ test mode signal, disable three-state and bidirectional outputs that
require pullups or pulldowns.

10. Each internal three-state nets requires one of the following: a bus holder, one-hot enable
logic, or logic to gate off all bits of the bus except for the least significant using the IDDQ
test mode signal.

11. Each compiled SRAMor ROM requires one of the following: 100 percent CMOS circuitry,

Design Principles for IDDQ Testability 17-20

TetraMAX ATPG User Guide K-2015.06-SP4

a separate power rail, or a defined condition controlled by the IDDQ test mode signal that
guarantees quiescence.

12. Do not allow SRAMandDRAMoutputs to go to the Z state unless a bus holder is present
on the output.

13. Each compiled data path cell must either be 100 percent static CMOS or allow quiescence
control with the IDDQTest Mode signal.

14. Do not allow any unconnectedmodule or cell inputs.

Additional System-on-a-Chip Rules
The following rules apply to system-on-a-chip (SOC) applications:

1. Each coremust have a test isolationmode. Each coremust not be affected by other cores
or user-defined logic, andmust not affect other cores or user-defined logic. Each core
must not be allowed or required to propagate contention or float conditions.

2. All cores and user-defined logic sharing a power rail must be quiescent during the time
each core is being IDDQ-tested.

3. It must be possible to stop the clock. The coremust have a bypass clock signal from the
tester (a primary I/O).

Design Principles for IDDQ Testability 17-21

18
Transition-Delay Fault ATPG
The transition-delay fault model is used to generate test patterns to detect single-node slow-to-
rise and slow-to-fall faults. For thismodel, TetraMAX ATPG launches a logical transition upon
completion of a scan load operation, and a pulse on capture clock procedure is used to observe
the transition results.
The following topics describe how to use the transition-delay fault model:

l Using the Transition-Delay Fault Model
l Specifying Transition-Delay Faults
l Pattern Generation for Transition-Delay Faults
l Pattern Formatting for Transition-Delay Faults
l Specifying Timing Exceptions From an SDC File
l Slack-Based Transition Fault Testing

Note: You need a Test-Fault-Max license to use the transition-delay
fault ATPG feature. This license is also checked out if you read an image that was saved with the
fault model set to transition.

18-1

TetraMAX ATPG User Guide K-2015.06-SP4

Using the Transition-Delay Fault Model
The transition-delay fault model is similar to the stuck-at fault model, except that it attempts to
detect slow-to-rise and slow-to-fall nodes, rather than stuck-at-0 and stuck at-1 nodes. A slow-
to-rise fault at a defect means that a transition from 0 to 1 on the defect does not produce the
correct results at themaximumoperating speed of the device. Similarly, a slow-to-fall fault
means that a transition from 1 to 0 on a node does not produce the correct results at the
maximumoperating speed of the device.
To detect a slow-to-rise or slow-to-fall fault, the APTGprocess launches a transition with one
clock edge and then captures the effect of that transition with another clock edge. The amount of
time between the launch and capture edges should test the device for correct behavior at the
maximumoperating speed.
The following sections describe how to use the transition-delay fault model:

l Transition-Delay Fault ATPG Flow
l Transition-Delay Fault ATPGTimingModes
l STIL Protocol for Transition Faults
l Creating Transition Fault Waveform Tables
l DRC for Transition Faults
l Limitations of Transition-Delay Fault ATPG

Transition-Delay Fault ATPG Flow
The ATPGprocess for transition-delay faults is similar to the process for stuck-at faults. Figure 1
shows the typical steps for performing transition-delay fault ATPG.

Using the Transition-Delay Fault Model 18-2

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1 Transition-Delay Fault Test Flow

Transition-Delay Fault ATPG Timing Modes
TetraMAX ATPG transition-delay fault ATPGsupports several ATPGmodes for applying
transition-delay tests. You select the requiredmodewith the set_delay -launch_cycle

Using the Transition-Delay Fault Model 18-3

TetraMAX ATPG User Guide K-2015.06-SP4

command. The followingmodes are supported:
l Launch-On Shift (LOS)—Specified by the last_shift option, TetraMAX ATPG
launches a logic value in the last scan load cycle when the scan enable is active, that is, in
scan-shift mode. It exercises target transition faults and then captures new logic values in a
system clock cycle when the scan enable is inactive, that is, in capturemode. Figure 2
shows the clock and scan enable timing for thismode.

l System Clock—Specified by the system_clockoption (the default ATPGmode for
transition-delay faults), TetraMAX ATPG launches a logic value using a normal system
clock. It exercises target transition faults and then captures the new logic valueswith a
subsequent system clock. Figure 3 shows the clock and scan enable timing for thismode.

l Launch-On Extra Shift (LOES)—Specified by the extra_shift option, TetraMAX ATPG
launches a logic value a logic value based on onemore shift than launch on shift mode.
This ensures that all clock domains receive their last scan shift before the internally-
controlled capture clock pulse. Unlike launch-on shift mode, launch-on extra shift mode
does not place additional timing requirements on an on-chip clocking controller.

l Any—Specified by the any option, TetraMAX ATPGattempts launch-on shift mode first,
and then goes to launch-on capture or launch-on extra shift, depending on the pipelined
SE constraint, or goes to bothmodes if it’s unconstrained. .

The following sections explain some of the key characteristics of the timingmodes:
l Launch-On Shift Mode Versus SystemClock LaunchMode
l Using Launch-On Extra Shift Timing

Launch-On Shift Mode Versus System Clock Launch Mode
One of themajor differences between launch-on shift mode and system clockmode is that for
the launch-on shift mode, the scan enable signal must switch between a launch and capture
cycle, whichmight not be possible depending on the design and cycle time. For details, see
“DRC for Transition Faults”.
Figure 2 and Figure 3 show the clockwaveform pertaining to launch on shift mode and system
clockmode for a typical target transition fault that is between registers. If the target fault is
between primary inputs and registers, or if the target fault is between registers and primary
outputs, then you can expect just one clock pulse, either launch or capture, or no clock pulse.

Using the Transition-Delay Fault Model 18-4

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 2 Last Shift Launch Timing

Figure 3 SystemClock Launch Timing

Launch-on shift mode generates only basic-scan patterns, using a single capture procedure
between scan load and scan unload.
By default, when using the run_atpg -auto_compress command for the system clock
mode, TetraMAX ATPGuses a highly optimized two-clock ATPGprocess that has some
features of both the basic-scan and fast-sequential engines. The patterns generated by this

Using the Transition-Delay Fault Model 18-5

TetraMAX ATPG User Guide K-2015.06-SP4

process are only two clock cycles long and listed as Fast Sequential patterns in the TetraMAX
ATPGpattern summary.
To use system clockmode, fast-sequential ATPGmust be enabled before starting the ATPG
process. You enable fast-sequential ATPGand specify its effort level with the -capture_
cycles option of the set_atpg command. For details, see “Using the set_atpg Command”.
The two-clock process, used with the run_atpg -auto_compress command by default, will
automatically set the -capture_cycles option to 2.
If there is a need for more than two capture cycles— for example, if there arememories in the
circuit — you can set the capture cycles to a number larger than 2 before issuing the run_atpg
-auto_compress command. In this case, TetraMAX ATPGwill first run the optimized two-
clock process for all the faults that can be detected in two capture cycles and then run fast-
sequential ATPGwith the larger number of capture cycles for any remaining undetected faults.

Using Launch-On Extra Shift Timing
Because of additional requirements placed on the on-chip clocking controller, launch-on shift
mode has somemajor drawbackswhen used with internal clocking. However, launch-on extra
shift mode providesmany of the advantages of launch-on shift mode, without placing an extra
burden on the on-chip clocking controller.
You should set the set_delay -launch_cycle -extra_shift command before
running the run_drc command. This directs DRC to perform different clockmatrix checking for
the launch cycle; because no disturbance will come from the functional data inputs of the scan
registers— only from their scan inputs. Thismight result in better coverage. If this setting is not
made until after the run_drc command, then the effect is identical to the set_delay –
launch_cycle system_clock command, and the patternswill still be generated correctly
but not quite as efficiently.
It is recommended that you first run transition-delay fault ATPGusing launch-on extra shift
mode, followed by a second run on the undetected faults with launch-on capture. In comparative
testing, this process resulted in higher coverage with fewer patterns relative to running ATPG
with only launch-on capture. Example 1 shows an example of this flow.

Example 1 Typical Flow for Using Launch-On Extra Shift Mode

set_delay –launch_cycle extra_shift

Other delay settings are the same for LOES and LOC
set_delay –common_launch_capture_clock –nopi_changes
add_po_masks -all
run_drc design_with_loes.spf –patternexec Internal_scan
set_faults –model transition
run_atpg –auto
write_patterns design_with_loes.stil –format stil
write_faults design_with_loes.faults –all
drc –force

Prepare to change the LOSPipelineEnable constraint value
remove_pi_constraints –all
set_delay –launch_cycle system_clock

Using the Transition-Delay Fault Model 18-6

TetraMAX ATPG User Guide K-2015.06-SP4

set_delay –common_launch_capture_clock –nopi_changes
add_po_masks -all
run_drc design_with_loc.spf –patternexec Internal_scan
set_faults –model transition
read_faults design_with_loes.faults –retain_code

Many faults that are AU for LOES can be detected by LOC
update_faults -reset_au
run_atpg –auto
write_patterns design_with_loc.stil –format stil

ATPG in launch-on extra shift mode uses the two-clock optimized fast-sequential ATPGengine.
Regular fast-sequential patterns, and full-sequential patterns, if enabled, might also be
generated. This is the same process as launch-on capture. Launch-on shift mode, however, is
different because it uses the basic-scan ATPGengine.

See Also
Using Load_Unload for Last Shift-Launch Transition

STIL Protocol for Transition Faults
By default, TetraMAX ATPGgenerates a capture procedure consisting of the following events:

l Force PI
l Measure PO
l Pulse Clock

You can insert a force PI or measure POevent between a launch and capture cycle. However,
this has a negative impact on the overall quality of a transition test because an extra time delay is
added between launch and capture. Therefore, it is recommended that you use a single-event
capture procedure containing only the pulse clock event.
If there are scan postamble vectors (vectors that follow the scan shift in the load_unload
procedure) in the STL procedure file, the extra time delay for the postamble is inserted between
the launch and capture cycle in the last_shift mode. The extra time delay for last_
shift negatively impacts the overall quality of the test, but will not affect test quality for
system_clock mode. If such a scan postamble exists in the last_shift or any mode
during the ATPGprocess (when you execute the run_atpg command), a warningmessage is
reported (M237).
There can be primary inputs initialized to known values in the scan load and unload procedure of
a STL procedure file. This can cause faults between primary inputs and registers to be ATPG
untestable in the last_shift mode.

See Also
Creating Generic Capture Procedures

Using the Transition-Delay Fault Model 18-7

TetraMAX ATPG User Guide K-2015.06-SP4

Creating Transition Fault Waveform Tables
For transition fault delay paths, you can control the clock speed with different waveform tables:
one for the load_unload procedure “_default_WFT_” and one for the capture procedure “_fast_
WFT_” (as shown in the following example).
Timing {
WaveformTable "_default_WFT_" {
 Period '100ns';
 Waveforms {
 "all_inputs" {01Z {'0ns' D/U/Z;}}
 "all_bidirectionals" {01XZ {'0ns' D/U/X/Z;}}
 "all_bidirectionals" {THL {'0ns' X; '40ns' T/H/L;}}
 "all_outputs" {X {'0ns' X;}}
 "all_outputs" {HLT {'0ns' X; '40ns' H/L/T;}}
 "Pixel_Clk" {P {'0ns' D; '45ns' U; '55ns' D; } }
 }
 }
WaveformTable "_fast_WFT_" {
 Period ’20ns';
 Waveforms {
 "all_inputs" {01Z {'0ns' D/U/Z;}}
 "all_bidirectionals" {01XZ {'0ns' D/U/X/Z;}}
 "all_bidirectionals" {THL {'0ns' X; '8ns' T/H/L;}}
 "all_outputs" {X {'0ns' X;}}
 "all_outputs" {HLT {'0ns' X; '8ns' H/L/T;}}
 "Pixel_Clk" {P {'0ns' D; '9ns' U; '11ns' D; } }
 }
 }
}

The following example shows a load_unload procedure defined in the STIL procedure file for the
preceding “_default_WFT_” waveform table:
"load_unload" {
W "_default_WFT_";
Shift { W "_default_WFT_";

V { "BPCICLK"=P; "Pixel_Clk"=P; "Test_mode"=1; "nReset"=1;
"test_sei"=0; "_so"=###; "_si"=###; }

}
}

The following example shows a three-event capture procedure (the default) followed by its
recommended single-event capture procedure for the “_fast_WFT_” waveform table in the
previous example:
"capture_Pixel_Clk" {
 W "_default_WFT_";
 F { "CSC_test_mode"=0; "Test_mode"=1;}
 "forcePI": V { "_pi"=\r587 # ; "_po"=\j \r101 X ; }
 "measurePO": V { "_po"=\r101 # ; }

Using the Transition-Delay Fault Model 18-8

TetraMAX ATPG User Guide K-2015.06-SP4

 "pulse": V { " Pixel_Clk"=P; "_po"=\j \r101 X ; } }

"capture_Pixel_Clk" {
 W "_fast_WFT_";
 F { "CSC_test_mode"=0; "Test_mode"=1;}
 V { "_pi"=\r587 # ; "_po"=\r101 # ; "Pixel_Clk"=P; } }

Notice that the three pattern events ForcePI, MeasurePO, and PulseClock are in separate
vectors in the first capture procedure, but have been combined into a single vector in the second
capture procedure.
There is another way to do waveform timing for transition fault testing in TetraMAX ATPG.
TetraMAX ATPGallows the use of special waveform tables for at-speed testing; both transition
fault testing and path delay fault testing. There are separate waveform tables for the clock cycle
in which a transition is launched (_launch_WFT_), for the clock cycle in which a transition is
captured (_capture_WFT_), and for cycles in which a transition is both launched and captured
(_launch_capture_WFT_).
The use in transition fault testing is different from the use in path delay testing. For path delay
testing, these special waveform tables are always used. If they are not present in the STIL
procedure file, they are first created and then used.
The difference for transition faults is that these special waveform tablesmust be present in the
STIL procedure file to be used; TetraMAX ATPGwill not create them for transition fault ATPG.
Several additional options for timing support are available. For information about waveform
tables, see “Defining Basic Signal Timing”. To get more details about specialized timing support
for both transition and path delay environments, see the following sections:

l Pattern Formatting for Transition-Delay Faults
l Creating At-SpeedWaveformTables
l MUXClock Support for Transition Patterns

See Also
Generating Generic Capture Procedures

DRC for Transition Faults
In the last_shift mode, the scan enable signal must have a transition between launch and
capture. In the system_clock mode, the scan enable signal must be inactive between
launch and capture, so the add_pi_constraints command (or a constraint in the STIL
procedure file) must be used to set the scan enable signal to inactive. Otherwise, youmight get
patterns in the system_clock modewith the scan enable signal is switching between
launch and capture. This transition fault ATPG requirement does not normally apply to stuck-at
ATPG.
Note: For at-speed ATPG, the ScanEnable, Set, and Reset signals should not pulse during
capture because they are typically slow signals.
You can use the -clock port_nameoption of the set_drc command to enable a specific
clock and to disable other clocks in a design. This option can be useful for transition-delay fault

Using the Transition-Delay Fault Model 18-9

TetraMAX ATPG User Guide K-2015.06-SP4

ATPG if you want to target only those faults that can be launched and captured from a specific
clock (for example, to prevent skew between different clock domains). However, this option
works only in the last_shift mode. In the system_clock mode, you can use the add_
pi_constraints command to disable the clocks that you do not want to be used.

Limitations of Transition-Delay Fault ATPG
The following limitations apply to transition-delay fault ATPG:

l For a target fault between a register and an output, only a launch clock is needed to test. In
TetraMAX ATPG, an output strobe occurs before a clock pulse (when using a single-cycle
capture procedure). This adds an extra capture cycle without a clock pulse just to strobe an
output, whichmight negatively affect the overall quality of the transition-delay fault test. For
this type of fault to be tested effectively, an output strobe after a clock pulse (end of cycle
measure) should be used, which is not supported in the current release.

l For pattern formatting, the FAST_MUXCLOCK (also calledMUXClock) technique is not
supported unless you set the options:

l set_faults -model_transition

l set_delay -launch_type system_clock

l set_delay -nopi_changes

l add_po_masks -all

l set_atpg -capture_cycles > 1

These constraints are necessary to generate patterns appropriate for MUXClock
operation. The FAST_CYCLE technique is not supported in the system_clockmode if
the launch and capture clock are the same.

l The Verilog testbench written out by TetraMAX ATPGonly supports a single period value
for all cycle operations. This implies that a single waveform table can be taken into account
when writing out the testbench. The delay waveform tables are not supported with the
Verilog testbench. The flow is to write out the STIL vectors and then use the Verilog DPV
PLI with VCS. Refer to the Test Pattern Validation User Guide.

Specifying Transition-Delay Faults
To start the transition-delay fault ATPGprocess, you need to select the transition fault model
with the set_faults command. Then you can add faults to the fault list using the add_
faults or read_faults command. You can select all fault sites, a statistical sample of all
fault sites, or individually specified fault sites for the fault list.
The following sections show you how to specify transition-delay faults:

l Selecting the Fault Model
l Adding Faults to the Fault List
l Reading a Fault List File

Specifying Transition-Delay Faults 18-10

TetraMAX ATPG User Guide K-2015.06-SP4

Selecting the Fault Model
You select the transition fault model using the set_faults -model transition
command. You can change the fault model during a TetraMAX ATPGsession so that patterns
produced with one fault model can be fault-simulated with another fault model. To do this, you
need to remove faults and use the set_patterns external command before the fault
simulation run.
The three available transition-delay fault ATPGmodes (last_shift, system_clock, and
any) can be selected by the -launch_cycle option to the set_delay command. The
default is the system_clockmode. This option selection is valid only if the transitionmodel is
selected with the -model transition option. In the anymode, TetraMAX ATPGwill do the
following:

l Attempt to detect all faults using last_shiftmode
l Apply system_clockmode to target faults left undetected by the last_shiftmode

Adding Faults to the Fault List
The add_faults command adds stuck-at or transition faults to fault sites in the design. The
faults added to the fault list are targeted for detection during test pattern generation.
To add a specific transition fault to the design, use the pin_pathname -slow option and
specify R, F, or RF to add a slow-to-rise fault, a slow-to-fall fault, or both types of faults,
respectively. To add faults to all potential fault sites in the design, use the -all option.
The following steps show you how to add a statistical sample of all faults to the fault list:

1. Add all possible transition faults.
add_faults -all

2. Remove all but the required percentage of transition faults (10 percent in this example).
remove_faults -retain_sample 10

Reading a Fault List File
To read a list of faults from a file, use the read_faults command.
A fault file can be read into TetraMAX ATPGand should have the format shown in the following
example. Each node of the design has two associated transition faults: slow-to-rise (str) and
slow-to-fall fault (stf). Attempting to read a fault list containing stuck-at fault notation (sa1 and
sa0) results in an “invalid fault type” error message (M169).
str NC /TOP/EMU_FLK/SYNTOP_GG/NR1/A
stf NC /TOP/EMU_FLK/SYNTOP_GG/U123/Z

Specifying Transition-Delay Faults 18-11

TetraMAX ATPG User Guide K-2015.06-SP4

Pattern Generation for Transition-Delay Faults
The TetraMAX ATPGcommands for transition fault ATPGare the same as the commands for
stuck-at fault ATPG. You should be aware of how the command options affect the operation of
ATPG for the transition-delay fault model.
The following sections describe the various TetraMAX ATPGcommands used for transition-
delay fault ATPG:

l Using the set_atpg Command
l Using the set_delay Command
l Using the run_atpg Command
l Pattern Compression for Transition Faults
l Using the report_faults Command
l Using the write_faults Command

Using the set_atpg Command
The set_atpg command sets the parameters that control the ATPGprocess.
The -merge option is effective in reducing a number of transition patterns in the last_
shift mode.
You can enable Fast-Sequential ATPGby using the command set_atpg -capture_
cycles d, where d is a nonzero value. However, the last_shift mode is based strictly
on the Basic-Scan ATPGengine. Therefore, when you use run_atpg in the last_shift
mode, TetraMAX ATPGuses Basic-Scan ATPGonly and generates Basic-Scan patterns, even
if Fast-Sequential ATPGhas been enabled. No warning or error message is reported to indicate
that Fast-Sequential ATPGhas been skipped.
The system_clock mode is based on Fast-Sequential ATPGengine. If Fast-Sequential
ATPG is not enabled when you use run_atpg in the system_clock mode, TetraMAX
ATPG reports an error message (M236).
When you enable Fast-Sequential ATPGwith the set_atpg -capture_cycles d
command, youmust set the effort level d to at least 2 for the system_clock mode. If you try
to set it to 1 in the system_clock mode, the set_atpg command returns an “invalid
argument” error. For full-scan designs, you can set the effort level d to 2. For partial-scan
designs, a number greater than 2might be necessary to obtain satisfactory test coverage.

Using the set_delay Command
The set_delay command determineswhether the primary inputs are allowed to change
between launch and capture.
The default setting is -pi_changes, which allows the primary inputs to change between
launch and capture. With this setting, slow-to-transition primary inputs can cause the transition
test to be invalid.

Pattern Generation for Transition-Delay Faults 18-12

TetraMAX ATPG User Guide K-2015.06-SP4

The -nopi_changes setting causes all primary inputs to be held constant between launch
and capture, thus preventing slow-to-transition primary inputs from affecting the transition test.
This setting is useful only in the system_clock mode. The -nopi_changes
characteristicmust be set before you use the run_atpg command.
The -nopi_changes option causes an extra unclocked tester cycle to be added to each
generated transition fault or path delay pattern. The use of a set_drc -clock -one_hot
commandmight interfere with the addition of this unclocked cycle and is not recommended for
use when the -nopi_changes option is in effect.
The primary outputs can still bemeasured between launch and capture. Tomask all primary
outputs, use the add_po_masks -all command.

Using the run_atpg Command
The run_atpg command starts the ATPGprocess. The -auto_compression option should
be used.
The -auto_compression option works for transition-delay fault ATPG, but it is not as
effective as it is for stuck-at. Also, when you use the -auto_compression option, youmust
enable the appropriate ATPGmode using the -capture_cycles d option of the set_
atpg command for the transition ATPGmode in effect: Basic-Scan ATPG for the last_
shift mode, or Fast-Sequential ATPG for the system_clock or any mode.
The run_atpg command has three additional ATPGoptions: basic_scan_only, fast_
sequential_only, and full_sequential_only. Under normal conditions, you should
not attempt to use these options to start transition-delay fault ATPG. If you do so, be aware of
the following cases:

l If you use the Full-Sequential ATPGengine with transition faults, you should be aware that
its behavior is not controlled by set_delay -launch_cycle command options. If you
want to avoid last-shift launch patterns and generate only system-clock launch patterns
with the Full-Sequential engine, youmust constrain all scan enable signals to their inactive
values. Conversely, if you want to generate only last-shift launch patterns and avoid all
system-clock launch patterns, you should be aware that there is no way to guarantee that
you will get only last-shift launch patternswith the Full-Sequential engine. Even those last-
shift launch patterns that it might generate will not be identical in form to those generated
by the Basic-Scan ATPGengine.

l The basic_scan_only and fast_sequential_only optionswork for transition-
delay fault ATPGwhen used correctly: basic_scan_only for the last_shift
mode, or fast_sequential_only for the system_clock mode. If you use the
wrong command option, no patterns are generated and no warning or error message is
reported.

Pattern Compression for Transition Faults
Dynamic pattern compression specified by the set_atpg commandworks for transition faults
as it does for stuck-at faults.

Pattern Generation for Transition-Delay Faults 18-13

TetraMAX ATPG User Guide K-2015.06-SP4

Using the report_faults Command
The report_faults command provides various types of information on the faults in the
design.
You can use the -slow option to report a specific transition fault.
The fault classes for transition-delay fault ATPGare the same as for stuck-at ATPG. There are
no specific fault classes that apply only to transition-delay faults. The faults classified asDI
(Detected by Implication) before the ATPGprocess for transition-delay fault ATPGare the same
as for stuck-at ATPG.
The total number of transition faults in a design is the same as the total number of stuck-at faults.

Using the write_faults Command
The write_faults commandwrites fault data to an external file. The file can be read back in
later to specify a future fault list.
You can use the -slow option to write out a specific transition fault to a file.

Pattern Formatting for Transition-Delay Faults
For a transition test to be effective, the time delay between launch and capture should be an at-
speed value, as illustrated in Figure 1.

Figure 1 At-Speed Transition Test Timing

A fast tester might be able to generate two clock pulses (cycles) at the required at-speed value
without dynamic cycle-time switching or other special timing formatting. For these testers,
TetraMAX can generate ready-for-tester transition patterns.

Pattern Formatting for Transition-Delay Faults 18-14

TetraMAX ATPG User Guide K-2015.06-SP4

A slow tester might need dynamic cycle-time switching or a special timing format to test a
transition fault at the required at-speed value. In general, two pattern formatting techniques are
available for slow testers. In TestGen terminology, these two techniques are called FAST_
CYCLE andMUXClock. Figure 2 illustrates these techniques.

Figure 2 Pattern Formatting Techniques

Using the FAST_CYCLE technique, the cycle time is switched dynamically from fast time to
slow time. Using theMUXClock technique, two tester timing generators are logically ORed to
produce two clock pulses in one cycle.
The FAST_CYCLE technique is supported for the following cases:

l The last_shift mode is being used. The waveform format of the scan load and scan
unload procedure in a STL procedure file can be different from that of a capture clock
procedure.

l The system_clock mode is being used and the launch clock is different from the
capture clock. In this case, each capture clock procedure can have its ownwaveform
format.

The FAST_CYCLE operation is supported by defining specificWaveformTables to apply to the
launch and capture vectors. The constructs necessary to support the creation of these test
cycles are the same constructs used for path delay test generation. See the section “Creating
At-SpeedWaveformTables”. The constructs presented in that section are also used to identify
the launch and capture timing for transition-delay tests.
The testgen FAST_MUXCLOCK operation is supported by defining TetraMAXMUXClock
constructs. However, to applyMUXClock behavior to transition tests requires the following set of
options to be specified when transition tests are developed:

l set_faults -model_transition

l set_delay -launch_cycle system_clock

l set_delay -nopi_changes

Pattern Formatting for Transition-Delay Faults 18-15

TetraMAX ATPG User Guide K-2015.06-SP4

l add_po_masks -all

l set_atpg -capture_cycles > 1

These optionswill support the creation of patterns that might merge the launch and capture
operations into a single test vector necessary to support MUXClock application. To create
MUXClock-based patterns use the same constructs defined for MUXClock path delay
definitions. For information on these constructs, seeGenerating Path Delay Tests.

MUXClock Support for Transition Patterns
The following limitations apply to MUXClock support for transition patterns:

l Output pattern files containingMUXClockwaveforms are not yet readable in TetraMAX
ATPG.

l Bidirectional clocks in a design are not supported inWGL output whenMUXClock
definitions are present. STIL output supports bidirectional clocks in the design.

l MUXclock is not supported with clock_grouping. To disablemultiple clocks and dynamic
clocking and use only a single clock for launch and capture, exclude these commands from
your command file:
#set_delay -common_launch_capture_clock

#set_delay -noallow_multiple_common_clocks

l MUXClock is not supported with scan compression designs

Specifying Timing Exceptions From an SDC File
TetraMAX ATPGcan read timing exceptions directly from an SDC (SynopsysDesign
Constraints) file. You can use an SDC file written by PrimeTime or create one independently,
but it must adhere to standard SDC syntax. This section describes the flow associated with
reading an SDC file. Note that this flow is supported only in Tcl mode.
The following sections describe how to specify timing exceptions from an SDC file:

l Reading an SDC File
l Interpreting an SDC File
l How TetraMAX Interprets SDC Commands
l Controlling Clock Timing
l Controlling ATPG Interpretation
l Controlling Timing Exceptions Simulation for Stuck-at Faults
l Reporting SDC Results
l Limitation

Reading an SDC File
You use the read_sdc command to read in an SDC file. Note that youmust be in DRC mode
(after you successfully run the run_build_model command, but before running the run_

Specifying Timing Exceptions From an SDC File 18-16

TetraMAX ATPG User Guide K-2015.06-SP4

drc command) to use the read_sdc command.
Note the following:

l The SDC commands cannot be entered on the command line; theymust be specified in an
SDC file and can only be executed via the read_sdc command.

l The input SDC file must contain only SDC commands— not arbitrary PrimeTime
commands. Constraints files comprised of arbitrary PrimeTime commands interspersed
with SDC commands are unreadable. If the SDC file can be read into PrimeTime using its
read_sdc command, then it can be read into TetraMAX ATPG. If it must be read into
PrimeTime using the source command, then it cannot be read into TetraMAX ATPG.
PrimeTime can write SDC, and this output is valid as SDC input for TetraMAX ATPG.

Interpreting an SDC File
To control how TetraMAX ATPG interprets an SDC file, you can specify the set_sdc
command. This commandwill only work if you specify it before the read_sdc command. As is
the case with the read_sdc command, youmust be in DRC mode to use the set_sdc
command.
Note that the set_sdc command settings are cumulative; this commandmight be runmultiple
times to prepare for a read_sdc command. If multiple read_sdc commands are required, you
can also specify the set_sdc command before each read_sdc command to specify its
verbosity and instance.

How TetraMAX Interprets SDC Commands
TetraMAX ATPGcreates timing exceptions for transition-delay testing based on a specific set of
SDC commands. Some SDC commands also identify the clock or the generated clock source,
and assist in tracing clocks to specific registers. All SDC commandsmust be specified in an SDC
file.
The following list describes the set of SDC commands that are used by TetraMAX ATPG, and
how they are interpreted:

l set_false_path -- This command creates a timing exception for a false path according
to the specified from, to, or through points. TetraMAX ATPGdoes not distinguish between
edges; thismeans, for example, that -rise_from is interpreted the same as -from.

l set_multicycle_path -- This command creates a timing exception for amulticycle
path according to the specified from, to, or through points. TetraMAX ATPGdoes not
distinguish between edges. Thismeans, for example, that -rise_from is interpreted the
same as -from. Setup pathmultipliers of 1 are ignored.

l create_clock and create_generated_clock -- For both of these timing
exception commands, the -name argument and the source_objects are used to identify
either the clock or the generated clock sources. Clocksmust be traced to specific registers
so there are some support limitations. “Virtual clock” definitionswithout a source_object
are ignored. Multiple clocks that are defined with the same source_objects cannot be
distinguished from each other. Note that clocks defined in the SDC file are only used to
identify timing exceptions and only clocks defined by the TetraMAX add_clocks
command or in the STIL protocol are used for pattern generation.

Specifying Timing Exceptions From an SDC File 18-17

TetraMAX ATPG User Guide K-2015.06-SP4

l set_disable_timing -- This command creates a timing exception by disabling timing
arcs between the specified points. TetraMAX ATPGdoes not support library cells in the
object_list.

l set_case_analysis -- This command is used to assist in tracing clocks to specific
registers. Only static logic values (0 or 1, not rising or falling) are supported. This
information is used based on the value set by the set_drc -sdc_environment
command (see the “Controlling Clock Tracing” section for details).

l set_clock_groups -- This command creates a timing exception that specifies
exclusive or asynchronous clock groups between the specified clocks. It works only if the -
asynchronous switch is used and the -allow_paths switch is not used. All other
usages are ignored.

Controlling Clock Timing
You can control clock tracing using the set_sdc -environment switch.

Controlling ATPG Interpretation
In some cases, youmight want to treat multicycle paths below a certain number as if they are
single-cycle paths. To do this, use the set_delay –multicycle_length <N> command.
Based on this option, all set_multicycle_path exceptionswith numbers ofN or less are
ignored. The default is to treat all multicycle paths of length 2 or greater as exceptions.

Controlling Timing Exceptions Simulation for Stuck-at Faults
You can use the set_simulation [-timing_exceptions_for_stuck_at | -
notiming_exceptions_for_stuck_at]command to control timing exceptions
simulation for stuck-at faults. The default is -notiming_exceptions_for_stuck_at.

Reporting SDC Results
There are several ways you can report SDC results. You can report specific types of results
using the report_sdc command (note that this command can only be run in TESTmode.
In addition, you can use the report_settings sdc command to report the current settings
specified by the set_sdc command.
A pindata type related to SDC is available. You can control the display of this pindata type by
running the set_pindata –sdc_case_analysis command:
The format of the data is N/M (N is the case analysis setting from the SDC, andM is the
TetraMAX constraint value). Unconstrained values are printed as X. You can also specify the
display of this pindata type directly from theGSV Setupmenu.

Specifying Timing Exceptions From an SDC File 18-18

TetraMAX ATPG User Guide K-2015.06-SP4

Limitation
The following limitation applies to SDC support in TetraMAX ATPG:

l Multicycle 1 paths cannot be used. In some applications, a set_multicycle_path
command is used for one set of paths, but is followed by another set_multicycle_
path command— with a path_multiplier of 1 on a subset of these paths. This is used to
set that subset back to single-cycle timing. TetraMAX ATPGdoes not support this usage.

Slack-Based Transition Fault Testing
As geometries shrink, it is increasingly important to identify small delay defects. Standard
transition fault testing is insufficient for detecting small delay defects because it focuses only on
finding the simplest and shortest paths.
TetraMAX ATPGuses a special slack-basedmode of transition fault testing to identify small
delay defects. When thismode is activated, TetraMAX ATPGgenerates a specific set of
transition fault tests that systematically identify the longest paths.
Using this testingmethodology, you can extract slack data fromPrimeTime, read this data into
TetraMAX ATPG, and use various TetraMAX ATPGcommands, command options, and flows
related to testing small delay defects.
TetraMAX ATPGuses a single ATPG run to generate tests for both slack-based transition faults
and regular transition faults.
The following sections describe the slack-based transition fault testing process:

l Basic Usage Flow
l Special Elements of Slack-Based Transition Fault Testing
l Limitations

Basic Usage Flow
The basic flow for slack-based transition fault testing includes the following steps:

l Extracting SlackData fromPrimeTime
l Utilizing SlackData in the TetraMAX Flow
l Command Support

Extracting Slack Data from PrimeTime
TetraMAX ATPGuses a specific set of timing data extracted fromPrimeTime. To obtain this
information, you use the report_global_slack PrimeTime command to extract slack data
for all pins fromPrimeTime.
The sequence of commands is shown in the following example:
pt_shell> set timing_save_pin_arrival_and_slack TRUE
pt_shell> update_timing
pt_shell> report_global_slack -max -nosplit > <global_slack_file>

Slack-Based Transition Fault Testing 18-19

TetraMAX ATPG User Guide K-2015.06-SP4

Note: The -max option is used with the report_global_slack command because
PrimeTime considers setupmargins to be "max" and holdmargins to be "min". In this case,
setupmargins are required, so use the -max option to extract theminimum setup slacks.
The output format shown in the following example:
Max_Rise Max_Fall Point
------- -------- --------------------------
4.65 4.40 SE_FMUL10/OP0_L0_reg_23_/Q
* * SE_FMUL10/OP0_L0_reg_23_/SE
-0.82 -0.80 SE_PE0/U16112/A1

Note: A * character is used instead of INFINITY.

Utilizing Slack Data in the TetraMAX Flow
After producing a slack data file, use the read_timing command to read this data into
TetraMAX ATPG. Make sure you specify this command after entering DRC or TESTmode
(after a successfully running the run_build_model or run_drc commands).
When TetraMAX ATPG reads a slack data file, it uses a set of slack-based transition fault testing
processes to construct a pattern for the target fault. If TetraMAX ATPGdoes not read the slack
file, regular transition-delay ATPG is performed.

How TetraMAX Integrates Slack Data
During ATPG, TetraMAX ATPGselects the first available fault from the list of target faults. It
then uses the available slack data for the selected fault, and attempts to construct a delay test
that makes use of the longest available sensitizable path. Secondary target faults for that same
patternmight not have their longest testable path sensitized because some valueswere already
set in the test for the primary target fault. Faults that are detected only by fault simulation without
being targeted by test generation are not necessarily be detected along a long path. However,
the fault simulator will use the slack data to determine the size of defect that could be detected at
that fault site by the pattern.
For maximumefficiency, ATPG typically targets the easiest solution. Thismeans that transition
faults aremore likely detected along the shorter paths or pathswith larger slack. Fault simulation
and ATPG increase the efficiency by accounting for transition faults that are randomly detected
by the tests generated for the targeted fault. Those transition faults detected only by fault
simulation represent a large fraction of the detected faults and are usually detected along paths
with slacks that are randomwith respect to all the paths on which the faults could be detected.

Command Support
Table 1 lists the key commands available to help validate the flow and pattern content.

Slack-Based Transition Fault Testing 18-20

TetraMAX ATPG User Guide K-2015.06-SP4

Command Description

read_timing file_name
[-delete]

Reads inminimum slack data in the defined format
and optionally deletes previous data

report_timing instance_
name |
-all | -max_gates number

Reports pin slack data accepted by TetraMAX ATPG

set_pindata slack Sets the displayed pindata type to show slack data

set_delay
[–noslackdata_for_atpg |
-slackdata_for_atpg

Turns on and off the slack-based transition fault
testing function during ATPG. If slack data exists, the
default is the -slackdata_for_atpg option.

set_delay
[-noslackdata_for_faultsim
|
-slackdata_for_faultsim]

Turns on and off the slack-based transition fault
testing function during fault simulation. If slack data
exists, the default is the -slackdata_for_
faultsim option.

set_delay
–max_tmgn <float |
defect%>

Defines the cutoff for faults of interest for slack-based
transition fault testing generation. Faults with
minimum slacks larger than the -max_tmgn
parameter are targeted by the normal transition fault
ATPGalgorithm rather than by the slack-based
algorithm.

set_delay
-max_delta_per_fault float

Sets a level between the longest path and the path
on which the fault is detected. Full detection is still
credited, and the fault is dropped from further
consideration. The default is zero (full credit is given
only when detection is on theminimum slack path).

report_faults
[–slack tmgn [integer |
float]

Reports a histogram of faults based on theminimum
slack numbers read in by the read_timing
command. This histogram is either fixed in the
number of buckets or fixed in the slack interval
between two consecutive buckets. The fixed number
of buckets is specified by an integer and the fixed
bucket interval is specified with a float. The default is
an integer of 10.

Table 1: Key TetraMAX ATPGCommands for Slack-Based Transition Fault Testing

Slack-Based Transition Fault Testing 18-21

TetraMAX ATPG User Guide K-2015.06-SP4

Command Description

report_faults
–slack tdet [integer |
float]

Reports a histogram of faults based on the slack
numbers for the detection path for each fault
(detection slacks). This histogram is either fixed in
number of buckets or fixed in the slack interval
between two consecutive buckets. The fixed number
of buckets is specified by an integer and the fixed
bucket interval is specified with a float. The default is
an integer of 10.

report_faults –slack delta
[integer | float]

Reports a histogram of faults based on the difference
between detection slacks andminimum slacks. The
reported histogram is either fixed in number of
buckets or fixed in the slack interval between two
consecutive buckets. The fixed number of buckets is
specified by an integer and the fixed bucket interval is
specified with a float. The default is an integer of 10.

report_faults –slack
effectiveness

Reports ameasure of the effectiveness of the slack-
based transition fault set. Themeasure varies from 0
percent (no faults of interest with detection slacks
smaller than the -max_tmgn parameter) to 100
percent (all faults of interest detected on the
minimum-slack path).

report_faults –slack sdql Reports the SDQL (Statistical DelayQuality Level)
value for the pattern set.

set_delay
-sdql_coefficient [A B C D
E]

Specifies the values to be used in either the
power function or the exponential function
when computing the SDQL number. If you do
not specify this option, the defaults of A, B,
C, D, and E are 1, 1, 0, 0, and infinity.

set_delay -sdql_histogram
|
-sdql_power_function |
-sdql_exponential_function

Specifies the type of probability distribution
function used in computing the SDQL.

Table 1: Key TetraMAX ATPGCommands for Slack-Based Transition Fault Testing
(Continued)

Slack-Based Transition Fault Testing 18-22

TetraMAX ATPG User Guide K-2015.06-SP4

Special Elements of Slack-Based Transition Fault Testing
This section describes some of the unique characteristics related to slack-based transition fault
tests. These special elements are described in the following topics:

l Allowing Variation From theMinimum-Slack Path
l Defining Faults of Interest
l Reporting Faults

Allowing Variation From the Minimum-Slack Path
When creating slack-based transition fault tests, the transition fault test generator targets the
path with theminimum slack for the primary target fault. Aswith regular transition fault ATPG,
theremight be secondary target faults that are targeted following the successful generation of a
test for the primary target fault.
Many faults detected during fault simulation are likely not be targeted faults for the test
generator. You need to decide if you are willing to accept a test that detects a transition fault, or a
test that detects the fault along a path with small slack. To specify the type of test you are willing
to accept, use the set_delay –max_delta_per_fault command.
If you are unwilling to accept a fault unless it has been detected along the path that has the
absolute smallest slack for the fault, you can use a setting of 0 for the -max_delta_per_
fault parameter (the default setting). If you want to accept any test that comeswithin 0.5 time
units of theminimum slack for the fault, set -max_delta_per_fault to 0.5. This allows you
to control when faults can be dropped from simulation in a slack-based transition fault ATPG run.

When a fault is detected with a slack that exceeds theminimum slack bymore than the -max_
delta_per_fault parameter, the fault goes into a special sub-category of Detected (DT).
This sub-category is called Transition Partially-detected (TP). A fault that has gone into the TP
categorymight continue to be simulated in hopes of getting a better test for the fault.
A fault detected with a slack equal to or smaller than the -max_delta_per_fault parameter
is placed in the DS category normally used for detected transition faults. A DS category fault is
always dropped from further simulation.
Specifying the -max_delta_per_fault 0 option likely produces the highest quality test set.
However, this specification also likely produces the longest runtimes and the largest test sets.
The -max_delta_per_fault setting allows you to choose an acceptable trade-off point for
test set quality versus runtime and test set size.

Defining Faults of Interest
You can specify how small the slack needs to be for TetraMAX ATPG to target the fault with the
slack-based transition fault test generation algorithm. If you specify the set_delay –max_
tmgn command, the test generator uses the slack-based algorithm to target only those faults
with a slack smaller than the number specified by the -max_tmgn parameter. All faults not
designated as “faults of interest” are targeted by the normal transition fault test generation
algorithm. All faults are fault-simulated even if they are not designated as “faults of interest”
targeted for test generation.

Slack-Based Transition Fault Testing 18-23

TetraMAX ATPG User Guide K-2015.06-SP4

You can use the report_faults –slack tmgn command to examine the distribution of
slacks to determine a reasonable value of the -max_tmgn option. This command prints a
histogram of the slack values that are read in by the read_timing command. You can also
use the report_faults –slack tmgn command to specify how many categories are
included in this report.

Reporting Faults
Slack-based transition fault tests are applied to pathswith a smaller slack than those typically
activated in regular transition fault test generation. The report_faults command includes
several options that facilitate the examination of this data:

l The –slack tdet option prints a histogram that shows the slack of the detection paths.
You can compare this data directly against the output of the –slack tmgn option to see
how close TetraMAX ATPGgot to theminimum slack paths.

l The –slack delta option clearly shows the slack of the detection paths. The reporting
histogram associated with this option is based on the difference between the slacks for the
detection paths and theminimum slack read from the slack data file. A distribution heavily
skewed toward the zero end of the continuum indicates a highly successful slack-based
transition fault test generation.

l The –slack effectiveness option reports ameasure of delay effectiveness based
on how close the slacks for the fault detection paths came to theminimum slacks. If every
fault defined to be of interest is detected on itsminimum slack path, the delay effectiveness
measure would be 100 percent. If no faults of interest are detected on paths that have
slack smaller than the -max_tmgn parameter used to define faults of interest, the delay
effectivenessmeasure is 0 percent.

The output of the report_faults –all command also includes additional fields related to
the slack-based transition fault testing. For more information, see the "Slack-Based Transition
Fault Format" section of the “Understanding the report_faults Output” topic in TetraMAX Help.

Limitations
The following limitations currently apply to slack-based transition fault testing:

l Engine and Flow Limitations
l ATPGLimitations
l Limitations in Support for BusDrivers

Engine and Flow Limitations
Last-shift launch, two-clock, and fast-sequential transition fault testing are supported. There is
currently no support for Full-Sequential mode.

Slack-Based Transition Fault Testing 18-24

TetraMAX ATPG User Guide K-2015.06-SP4

ATPG Limitations
There are two limitations for slack-based transition ATPG:

l Second Smallest Slack
If the path with the smallest slack for a given fault is untestable, TetraMAX ATPGbegins
normal back-tracking in an attempt to find a test along some other path. There is no
guarantee that the second path TetraMAX ATPGwill try is the path with the second
smallest slack. For now, the only guarantee is that the first path tried is the path with the
smallest slack.

l Test Might End Prematurely at PO
When propagating a fault effect along theminimum-slack propagation path, the fault effect
might propagate to a primary output. If this occurs, and the fault can be considered
detected at the primary output, TetraMAX ATPGwill stop trying to propagate the fault
effect along theminimum-slack path. This can produce fault detection on a path with larger
slack than required.
In this case, the detection slack ismeasured accurately and will reflect the detection along
the path with greater slack to the primary output. This is not normally a problem for
transition fault test generation, because the -nopo_measures option is commonly set for
transition faults. If that option is set, then the fault cannot be detected at a primary output so
the propagation along theminimum-slack path will continue uninterrupted.

Limitations in Support for Bus Drivers
Full slack-based transition fault testing support is not available for BUS drivers. TetraMAX
ATPGdoes not choose theminimum slack path when back-tracing through a bus driver if that
path goes through the enable input. TetraMAX ATPGalways chooses the path through the data
input to the driver. This limitation applies to test generation only. The detection slack and the
slack delta are accurately reported in all cases.

Slack-Based Transition Fault Testing 18-25

19
Running Distributed ATPG
TetraMAX distributed ATPG launchesmultiple slave processes on a computer farm or on
several standalone hosts. The slave processes read an image file and execute a fixed command
script. ATPGdistributed technology does not differentiate betweenmultiple CPUs and separate
workstations. Each slave requires asmuchmemory as a single CPU TetraMAX run. Distributed
ATPGoffers both scalability and runtime improvement.
The following topics describe how to run distributed ATPG:

l Command Summary
l Distributed Process Flow
l Verifying Your Environment
l Using Distributed Processing: Step ByStep

See Also
Running Multicore ATPG
Comparing Multicore ATPG and Distributed ATPG

19-1

TetraMAX ATPG User Guide K-2015.06-SP4

Command Summary
The following sections describe the commands associated with setting up and controlling the
distributed processing flow:

l Identifying aWorkDirectory
l AddingMachines to the Distributed Processor List
l Removing aMachine From the Distributed Processor List
l Controlling Timeouts
l Reporting Current SlaveMachines
l Starting Distributed ATPG

Identifying a Work Directory
Themaster and slavemachines have to share a common directory for exchanging data. The
set_distributed -work_dir command specifies which directory to use. This directory
has to be visible to eachmachine involved in distributed processing. The log files from the slaves
are also saved in the work directory. The relevant permissions (read and write) are also required
to be set for eachmachine.
For the complete syntax and option descriptions, seeOnline Help for the set_distributed
command.

Adding Machines to the Distributed Processor List
The add_distributed_processors command adds one or moremachines to the pool of
distributed processors. At least onemachine name needs to be passed as an argument to this
command.
Note:You can executemultiple processes on a uniprocessor machine, but the various
processeswould have to share processor time. Therefore, you will not be able to take full
advantage of the parallelization.
You can specify the processors directly by their host names or you can request the processors
from load balancing software, like LSF or GRID but you cannot combine both of these types.

Removing a Machine From the Distributed Processor List
The remove_distributed_processorscommand removes one or moremachines from
the distributed processor list. If your distributed processor list is populated with load sharing
facility jobs, you cannot remove just one processor. Use the -all option if you want to remove all
the processors.

Command Summary 19-2

TetraMAX ATPG User Guide K-2015.06-SP4

Controlling Timeouts
The set_distributed command allows you to control the amount of time the system is given
to perform various distributed processor-related communications. This includes checking the
status of the distributed processors (using an UNIX rsh command), printing statistics regarding
the current job, and waiting for load sharing applicationto schedule the jobs. This command is
provided for your convenience and is not mandatory to start a distributed job. .

Reporting Current Slave Machines
The report_distributed_processors command reports all machines currently in the list
of distributed processors and identifies the distributed working directory.

Starting Distributed ATPG
The following options of the run_atpg command add additional controls to start distributed
processing and ATPGmodes:
auto basic_scan_only | fast_sequential_only |full_sequential_only
distributed

As is the case with a uniprocessor flow, TetraMAX ATPGworkswith one or more pattern
generation engines.

Distributed Processing Flow
Figure 1 shows the steps necessary to complete a distributed fault simulation or ATPG task. The
methodology and flow remains the same as in single-processor fault simulation or ATPG tasks.

Distributed Processing Flow 19-3

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1 Distributed Processing Flow

Verifying Your Environment
Each time TetraMAX ATPGstarts a distributed process, it issues the tmax command. As a
consequence, be sure you have the tmax script directly accessible from each distributed
processor machine. Do not alias this script to another name or TetraMAX ATPGwill not be able
to spawn distributed processes. The safest approach is to have the path to this script added in
your PATH environment variable. For example:

Verifying Your Environment 19-4

TetraMAX ATPG User Guide K-2015.06-SP4

setenv SYNOPSYS /softwares/synopsys/2004.12
set path = ($SYNOPSYS/bin $path)

For a discussion about the use of the SYNOPSYS_TMAX environment variable, see “Specifying
the Location for TetraMAX Installation”.

Remote Shell Considerations
If you are running distributed processing by directly running the host names, TetraMAX ATPG
relies on the rsh (remsh for HP platforms) UNIX command to start a process on a distributed
processor machine. This command is very sensitive to the user environment, so you could
experience some problems because of your UNIX environment settings. In case you get an
error message while adding a distributed processor, refer to themessage list at the end of this
document to find out the reason and some advice on how to solve the problem.
You need to have special permissions to start a distributed processwith a rsh (or remsh)
command. In a classical UNIX installation, those permissions are given by default, however your
system administrator might have changed them. If you experience any issue with starting slaves
and suspect it is due to this command, enter the following:
rsh distributed_processor_machine "tmax -shell"
If you get an error message, it is related to your local UNIX environment. Contact your system
administrator to solve this issue.

Tuning Your .cshrc File
You should pay special attention to what you put in your .cshrc file. Avoid putting commands that
exercise the following behavior:

l Are interactive with the user (that is, the system asking the user to enter something from
the keyboard). Because you will not have the ability to answer (distributed processes are
transparent to the user), it is likely that the processwill halt waiting for an answer to a
question you will never get.

l Require someGUI display. Your DISPLAY environment variable will not point to your
master machine when the rsh (or remsh) command starts a distributed process. As a
consequence, the systemwill put the task “tty output stoppedmode” on the distributed
processor machine, and your master will wait for a process that has quit running.

If you have any trouble using the add_distributed_processors command, youmight
want to have a dedicated .cshrc file for running your distributed tasks. A basic configuration
should help you get through these issues.

Checking the Load Sharing Setup
If you are planning to run distributed ATPGwith load-sharing software, make sure you have the
following information available to you.

l Path to the load sharing application(bsub for LSF and qsub for GRID)
l Required options (like project name or queue name)

Verifying Your Environment 19-5

TetraMAX ATPG User Guide K-2015.06-SP4

The TetraMAX ATPGsession for themaster must be run on amachine that is a valid submit
host capable of submitting jobs to load sharing software.

Using Distributed Processing: Step By Step
The following sectionswho you how to use distributed processing:

l Building the Design and Running DRC
l Selecting the Fault Model and Creating the Fault List
l Setting Up the Distributed Environment
l Setting Up a Distributed EnvironmentWith Load Sharing
l Starting Distributed Fault Simulation
l Starting Distributed ATPG
l Saving Results
l Distributed Processor Log Files

Building the Design and Running DRC
Using the same process as you would use for a uniprocessor run, you have to build an internal
representation of the design to start running fault simulation or test pattern generation.

Example Script

BUILD-T> read_netlist Libs/*.v -delete -library -noabort
BUILD-T> run_build_model top_level
DRC-T> set_drc top_level.spf
DRC-T> run_drc

Selecting the Fault Model and Creating the Fault List
Note that N-detect ATPGand fault simulation are not supported for distributed ATPG.

Distributed Fault Simulation
Everything supported during uniprocessor fault simulation is also supported during distributed
fault simulation. There is no limitation added by this feature. The fault list can be created either
with the add_faults command or read from a file.

Distributed ATPG
Every fault model and ATPGengine is supported the sameway it is in uniprocessor mode.

Using Distributed Processing: Step By Step 19-6

TetraMAX ATPG User Guide K-2015.06-SP4

The following is a quick summary of the support for distributed ATPGand the various fault
models:

l The stuck-at fault model is supported by basic-scan, fast-sequential, and full-sequential
ATPG

l The path delay fault model is supported by fast-sequential, and full-sequential ATPG
l The transition fault model is supported by basic-scan, fast-sequential, and full-sequential
ATPG

l The IDDQ fault model is supported by basic-scan and fast-sequential ATPG
l The bridging fault model is supported by basic-scan and fast-sequential ATPG

Example Scripts for Selecting Fault Models
Example 1:
TEST-T> set_faults -model stuck
TEST-T> add_nofaults top_level/module1/sub_mod
TEST-T> add_faults -all

Example 2:
TEST-T> set_faults -model transition
TEST-T> set_delay -nopi_change -nopo_measure
TEST-T> set_delay -launch last_shift
TEST-T> read_faults specFaultList.flt

Setting Up the Distributed Environment
The first thing you have to do is to define a working directory. This is where all the files required
for exchanging data between the variousmachines and their log files are stored. This directory
must be accessible by eachmachine involved in the distributed process and theymust be able to
read from and write to this directory, as shown in the following example:
TEST-T> set_distributed -work_dir /home/dist/work_dir

Theworking directorymust be specified using an absolute path name starting from the root of
the system. Relative paths are not supported in the current TetraMAX ATPG release. If you do
not specify a working directory, the current directory is used as the default work directory.
After you set the working directory, youmight want to populate the distributed processors list; for
example:
TEST-T> add_distributed_processors zelda nalpari

Arch: sparc-64, Users: 22, Load: 2.18 2.14 2.17
Arch: sparc-64, Users: 1, Load: 1.45 1.41 1.40

These commands help youmaintain this list:
l add_distributed_processors

l remove_distributed_processors

l report_distributed_processors

For everymachine, you automatically get the type of platform (Architecture), as well as the
number of users currently logged on that machine and the processor load. You can add asmany
distributed processes as you want on onemachine. However, you should know in advance the

Using Distributed Processing: Step By Step 19-7

TetraMAX ATPG User Guide K-2015.06-SP4

number of processors on that machine in order not to start more distributed processes than the
number of available processors. Even if it is technically possible, the various processeswould
have to share time on the processors; thus you will not be able to take full advantage of the
parallelization.
TetraMAX ATPGsupports heterogeneousmachine architectures (sparcOS5, Linux, and HP-
UX). For example,
TEST-T> add_distributed_processors proc1_sparcOS5 proc2_Linux \

proc3_HPUX

You can visualize the current list of machines in the list of distributed processors with the
report_distributed_processors command; for example:
TEST-T> report_distributed_processors

Working directory ==> “/remote/dtg654/atpg/dfs” (32bit)
-------****-------
MACHINE: zelda [ARCH: sparc-64]
MACHINE: nalpari [ARCH: sparc-64]
-------****-------

You get both the name of themachine and its architecture. If you see the samemachine name
several times, thismeans that several distributed processeswere launched on thismachine.
The working directory is also displayed in the report along with the type of files in use (32- or 64-
bit). This type of file is automatically determined by themaster machine. If themaster machine is
a 32-bit machine, then distributed processeswill have to be 32-bit also. If themaster is a 64-bit
machine, then everything has to follow 64-bit conventions.
Youmight want to remove somemachines from this list (for example because of an overloaded
machine). In this case, you can use the remove_distributed_processors command;
for example:
TEST-T> remove_distributed_processors zelda
TEST-T> report_distributed_processors

Working directory ==> “/remote/atpg/dfs” (32bit)
-------****-------
MACHINE: nalpari [ARCH: sparc-64]
-------****-------

You can use the report_settings distributed command to get a list of the current
timeout and shell settings; for example:
BUILD-T> report_settings distributed

distributed = shell_timeout=30, slave_timeout=100,
print_stats_timeout=30, verbose=-noverbose,
shell=rsh;

Setting Up a Distributed Environment With Load Sharing
TetraMAX ATPGalso supports the load sharing facility (LSF) andGRID networkmanagement
tools. When you are using load sharing, jobs are submitted to a queue instead of to specific
machines. The load sharing systemmanager then decides on whichmachine the job is started.
This allows you tomaximize the usage efficiency of your network.

Using Distributed Processing: Step By Step 19-8

TetraMAX ATPG User Guide K-2015.06-SP4

To populate the distributed processor list, you need to use the add_distributed_
processors command to specify the absolute path to the LSF andGRID submission
executables (bsub), as well as the number of slaves to be spawned and additional options. For
using LSF to launch the slaves, all of these optionsmust be specified. For using GRID to launch
the slaves, all of these optionsmust be specified aswell as the -script option of the set_
distributed command. If you do not have any additional options to pass to bsub, you can
pass empty options using -options " ". For descriptions of these options, see the online
help for the add_distributed_processors command.
Note the following example:
BUILD-T> add_distributed_processors \
 -lsf /u/tools/LSF/mnt/2.2-glibc2/bin/bsub -nslaves 4 \
 -options "-q lb0202"
BUILD-T> report_distributed_processors

Working directory ==> "/remote/dtgnat/Distributed"
(32bit)

-------****-------
MACHINE **lsf** [ARCH: linux]
MACHINE **lsf** [ARCH: linux]
MACHINE **lsf** [ARCH: linux]
MACHINE **lsf** [ARCH: linux]
-------****-------

Notice that instead of getting some distributed processors in the report, you see **lsf**. This is
because no job has been started yet, and thus, no distributed processor has been assigned to
the job. After you issue the run_atpg -distributed command (or the run_fault_sim
-distributed command), four jobs are assigned to four distributed processors. However,
this is transparent to you.
You cannot remove only one distributed processor from the list when you are using the LSF
environment. If you simply want to change the current number of distributed processors in the
pool, you have to issue a new add_distributed_processors commandwith the correct
value for the -nslaves option. Every time you issue an add_distributed_processors
command under the LSF environment, it overrides the previous definition of your distributed
processor list. Here is an example:
BUILD-T> add_distributed_processors \
-lsf /u/tools/LSF/mnt/2.2-glibc2/bin/bsub -nslaves 3 \
-options "-q lb0202"
BUILD-T> report_distributed_processors

Working directory ==> "/remote/dtgnat/Distributed"
(32bit)

-------****-------
MACHINE **lsf** [ARCH: linux]
MACHINE **lsf** [ARCH: linux]
MACHINE **lsf** [ARCH: linux]
-------****-------

Using Distributed Processing: Step By Step 19-9

TetraMAX ATPG User Guide K-2015.06-SP4

Starting Distributed Fault Simulation
After the functional vectors are read into the TetraMAX external pattern buffer, you simply need
to add the -distributed option to the run_fault_sim command to trigger the
parallelization of the process; for example:
TEST-T> run_fault_sim -distributed
Master: Saving patterns for slaves ...
Master: Saving image of session for slaves ...
Master: Spawning the slaves ...
Master: Starting distributed process with 2 slaves .
..
Slaves: About to get licenses ...
Slaves: About to restore master's session ...
Slaves: About to read in patterns ...
Master: Removing temporary files ...
Master: Sending 98 faults to slaves ...
Master: End sending faults. Time = 0.00 sec.

#patterns #collapsed faults test process
simulated inactive/active coverage CPU time
--------- ----------------- -------- ----------
Fault simulation completed: #patterns=32
 Uncollapsed Path_delay Fault Summary Report

fault class code #faults
------------------------------ ---- ---------
Detected DT 61

detected_by_simulation DS (2)
detected_robustly DR (59)

Possibly detected PT 0
Undetectable UD 0
ATPG untestable AU 33

atpg_untestable-not_detected AN (33)
Not detected ND 4

not-controlled NC (4)

total faults 98
test coverage 62.24%
fault coverage 62.24%
ATPG effectiveness 95.92%

Pattern Summary Report

#internal patterns 0
#external patterns (pat.bin) 32

#full_sequential patterns 32

Using Distributed Processing: Step By Step 19-10

TetraMAX ATPG User Guide K-2015.06-SP4

Events After Starting A Distributed Run
First, themaster machine writes an image of the database in the working directory. This image is
a binary file containing everything the distributed processors need to know to process the fault
simulation. This file can be rather large, because it is based on the size of your design, so as
soon as the database is read by the slaves, it is deleted from the disk. Next, the distributed
processes are started (see themessage in the example report shown in the next section). If
something goeswrong at this step (problemwith starting the slave processors), TetraMAX
ATPGwill notify you and stop.
After the distributedmachines read the database, they are in the same state as themaster with
respect to the information about the design. The fault list is then split among the various
processors and they all start to run concurrently. Whenever a slave processor finishes its job, it
sends some information back to themaster machine and then it shuts down. If any of the slaves
unexpectedly dies during the process, themaster machine will detect it and that process stops.
An error message is issued to notify you. After every slave processor finishes, themaster
machine computes the fault coverage and prints out the final results.

Interpreting Distributed Fault Simulation Results
The transcript that follows shows the relevant information displayed during distributed fault
simulation.
TEST-T> run_fault_sim -distributed
Master: Saving patterns for slaves ...
Master: Saving image of session for slaves ...
Master: Spawning the slaves ...
Slaves: About to get licenses ...
Slaves: About to restore master’s session ...
Slaves: About to read in patterns ...
Master: Removing temporary files ...
Master: Sending 98 faults to slaves ...
Master: End sending faults. Time = 0.00 sec.

#patterns #collapsed faults test process
simulated inactive/active coverage CPU time
--------- ----------------- -------- ----------
--------- ----------------- -------- ----------
Fault simulation completed: #patterns=32
Uncollapsed Path_delay Fault Summary Report

fault class code #faults
------------------------------ ---- ---------
Detected DT 61
detected_by_simulation DS (2)
detected_robustly DR (59)
Possibly detected PT 0
Undetectable UD 0
ATPG untestable AU 33
atpg_untestable-not_detected AN (33)

Using Distributed Processing: Step By Step 19-11

TetraMAX ATPG User Guide K-2015.06-SP4

Not detected ND 4
not-controlled NC (4)

total faults 98
test coverage 62.24%
fault coverage 62.24%
ATPG effectiveness 95.92%

 Pattern Summary Report

#internal patterns 0
#external patterns (pat.bin) 32
#full_sequential patterns 32

Where:
#patterns simulated = The number of patterns simulated
#collapsed faults inactive = The number of faults TetraMAX ATPGhas already processed

Starting Distributed ATPG
Distributed ATPGworks in a similar way as distributed fault simulation. You simply have to add
the -distributed switch on the run_atpg command line to trigger a distributed job; for
example:
TEST-T> run_atpg -distributed -auto

Themaster process sends the fault information to the distributed processors in a collapsed
format. Thus, all reports refer to the collapsed fault list. Note that the reported faults will not add
up: there is a difference between collapsed and non-collapsed faults. Themaster only sends
active faults.
Each slave contains all the faults. In this case, the fault list is not split; only the ATPGprocess is
split. The slave log files try to report uncollapsed faults, but since they only receive collapsed
faults information, the number reported is actually collapsed faults.
Example 1 shows how themaster collapse fault list correlates to the slaves uncollapsed fault list.
In this case, 1715195 is the key number of faults that appear in both reports. Note that even
though the slave file reports the faults as uncollapsed, the faults are actually the collapsed list
from themaster.

Using Distributed Processing: Step By Step 19-12

TetraMAX ATPG User Guide K-2015.06-SP4

Example 1 Comparing theMaster Collapse Fault List to the SlavesUncollapsed Fault List

From master log file:
report_faults -summary -collapse
 Collapsed Stuck Fault Summary Report

fault class code #faults
------------------------------ ---- ---------
Detected DT 802240
Possibly detected PT 0
Undetectable UD 34404
ATPG untestable AU 127879
Not detected ND 1715195

total faults 2679718
test coverage 30.33%

run_atpg -auto -dist
Master: Saving image of session for slaves ...
Master: Spawning the slaves ...
Master: Starting distributed process with 3 slaves ...
Slaves: About to get licenses ...
Slaves: About to restore master's session ...
Master: Removing temporary files ...
Master: Sending 1715195 faults to slaves ...
Master: End sending faults. Time = 14.00 sec.

From slave log file:
run_atpg -auto

* NOTICE: The following DRC violations were previously *
* encountered. The presence of these violations is an *
* indicator that it is possible that the ATPG patterns *
* created during this process might fail in simulation. *
* *
* Rules: C8 *

ATPG performed for stuck fault model using internal pattern
source.
--

#patterns #patterns #faults #ATPG
faults test process
simulated eff/total detect/active red/au/abort coverage CPU
time
--------- --------- ------------- ------------ -------- -----

Begin deterministic ATPG: #uncollapsed_faults=1715195, abort_

Using Distributed Processing: Step By Step 19-13

TetraMAX ATPG User Guide K-2015.06-SP4

limit=10...

If you have some vectors in the external buffer before starting distributed ATPG, they are
automatically transferred into the internal buffer. The new vectors created during distributed
ATPGare added to this existing set of vectors. After the run is complete, you will have both the
external vectors and the ATPGcreated vectors in the internal pattern buffer. If you do not want
to merge those sets, you have to clean the external buffer before starting distributed ATPGby
issuing a set_patterns -delete command.
As the following transcript shows, TetraMAX ATPGstarts the various processes and issues
some informational messages to keep you informed at the beginning of the run. A warning or
error message is issued if TetraMAX ATPGcannot proceed. Then, TetraMAX ATPGstarts
generating the vectors.
run_atpg -auto -distributed
Master: Saving image of session for slaves ...
Master: Spawning the slaves ...
Master: Starting distributed process with 2 slaves ...
Slaves: About to get licenses ...
Slaves: About to restore master's session ...
Master: Removing temporary files ...
Master: Sending 5918 faults to slaves ...
Master: End sending faults. Time = 1.00 sec.

#patterns #collapsed faults test process

total inactive/active coverage CPU time
--------- ----------------- -------- ----------
Compressor unload adjustment completed:
#patterns_adjusted=241,
#patterns_added=0,
CPU time=1.00 sec.

Uncollapsed Stuck Fault Summary Report

fault class code #faults
------------------------------ ---- ---------
Detected DT 8109
Possibly detected PT 0
Undetectable UD 10
ATPG untestable AU 28
Not detected ND 11

total faults 8158
test coverage 99.52%
fault coverage 99.40%
ATPG effectiveness 99.87%

 Pattern Summary Report

#internal patterns 243

Using Distributed Processing: Step By Step 19-14

TetraMAX ATPG User Guide K-2015.06-SP4

Where:
#patterns total = The total number of patterns generated up to this point.
#collapsed faults inactive = The number of collapsed faults already processed by TetraMAX
ATPG.
#collapsed faults active = The number of collapsed faults not yet processed.
processCPU time = The time consumed up to this point.
At the end of the pattern generation process, TetraMAX ATPGautomatically prints a summary
for the faults and the vectors.
Note:

When using the set_atpg -patterns max_patterns command, for some
designs that run quickly, themaster sends a signal to stop the slaves. However,
because of a network delay for this signal, the pattern count is alreadymet;
therefore the pattern count might already have exceeded the limit.

Saving Results
The following sample script shows you how to save results:
TEST-T> set_faults -summary verbose
TEST-T> report_faults -summary
TEST-T> report pattern -summary
TEST-T> write_faults final.flt -all -collapsed -compress gzip -
replace
TEST-T> write_patterns final_pat.bin.gz \
 -format binary -compress gzip -replace
TEST-T> write_patterns final_patv -format verilog_single_file -
replace

Distributed Processor Log Files
When you run distributed ATPGor distributed fault simulation, the tool creates a log file in the
work directory for each slave. The name of this log file is derived from the name of themaster log
file appending a number to it. For example, if themaster log file is defined with a set_
messages log run.log -replace command, a command that indicates you are running
distributed ATPGwith four slaves, the log files that are created would be called “run.log.1,"
“run.log.2,” “run.log.3,” and “run.log.4.”
The tool creates the slave log files to give you visibility to the activity happening on the slaves.
Note that if you run distributed ATPGmultiple times in the same session, the slave log files are
overwritten by each run. If you want to prevent the slave log files from being overwritten, you can
either save a copy or redefine the work directory by issuing a set_distributed -work_
dir command before starting a new distributed run.

Using Distributed Processing: Step By Step 19-15

TetraMAX ATPG User Guide K-2015.06-SP4

Distributed ATPG Limitations
The following limitations are associated with distributed ATPG:

l The -analyze_untestable_faults option of the set_atpg command are not
supported.

l N-detect ATPGand fault simulation are not supported.

Distributed ATPG Limitations 19-16

20
Persistent Fault Model Support
TetraMAX ATPGsupports a variety of fault models that abstractly represent real-world defects.
Supportedmodels include the stuck-at, transition, path delay, bridging, dynamic bridging, and
IDDQmodels. Thesemodels are implemented in a serial manner, whichmeans that only one
model is active at any time.
When you change fault models, TetraMAX ATPG flushes the current fault list frommemory,
along with any internal patterns, and starts again from scratch.
The single-fault model approach is inefficient in terms of pattern count and runtime. A set of
transition patterns, for example, will also detect a certain number of stuck-at faults; but transition
ATPGdoes not recognize them. Before you run stuck-at ATPG, you can reduce the stuck-at
pattern count by fault-grading the stuck-at fault list against the transition patterns to prune
previously detected faults. The stuck-at pattern reduction can be quite significant. Conversely,
when you generate transition and stuck-at patterns in isolation, you waste time and patterns
generating tests for stuck-at faults that were already detected by the transition patterns.
Persistent fault model support helps youmanagemultiple fault model flows easily by providing
an automated way for TetraMAX ATPG to perform the following operations:

l Persistent Fault Model Overview
l Direct Fault Crediting
l Persistent Fault Model Operations
l Example CommandsUsed in Persistent Fault Model Flow

20-1

TetraMAX ATPG User Guide K-2015.06-SP4

Persistent Fault Model Overview
The persistent fault model flow is enabled by the set_faults -persistent_fault_
models command.
This flow enables the following behaviors:

l The fault list for the active fault model is saved in a cache.When you return to an inactive
fault model, the saved faults are restored.When path delay faults are preserved, the delay
paths are also preserved.

l The report_faults -summary command prints the total number of faults and the test
coverage for each inactive fault model.

l All other fault-oriented commands continue only to affect the active fault model. This
includes, but is not limited to, the following commands: run_atpg, run_fault_sim,
write_faults, read_faults, add_faults, and remove_faults.

l The fault lists are preserved when you switch to DRC mode. You can't interact with the
lists in DRC mode, but theywill still be available when you return to TESTmode. ATPG
untestable faults (AU) are automatically reset for any fault list that was in the cache during
DRC mode.

l Faults detected in the transition fault model are credited as equivalent stuck-at detects
without fault simulation. This is activated by the update_faults -direct_credit
command.

See Also
IDDQ Testing

Persistent Fault Model Operations
The following sections describe the primary processes associated with the persistent fault model
flow:

l Switching Fault Models
l WorkingWith Internal Pattern Sets
l Manipulating Fault Lists
l Reporting Persistent Fault Models

See Also
Working with Fault Lists
What Are Fault Models?

Persistent Fault Model Overview 20-2

TetraMAX ATPG User Guide K-2015.06-SP4

Switching Fault Models
You can set a different fault model in the persistent fault model flow, even if you have faults in the
active fault model, as shown in Example 1:

Example 1 Example CommandsUsed for Switching Fault Models
set_faults -persistent_fault_models
set_faults -model transition
add_faults -all
run_atpg -auto
(Transition faults exist)
set_faults -model bridging

Note: In this case, if you do not set the -persistent_fault_models option, TetraMAX
ATPGwill issue anM106 error.

Working With Internal Pattern Sets
The internal pattern set, and generated patterns in general, are preserved even if the fault model
is changed in the persistent fault model flow. Thismeans you can run fault simulation with an
alternate fault model, as shown in Example 2.

Example 2 Running Fault SimulationWith an Alternative Fault Model
set_faults -persistent_fault_models
set_faults -model stuck
add_faults -all
set_faults -model transition
add_faults -all
run_atpg -auto
set_faults -model stuck
(Transition fault patterns are preserved as internal pattern set)
update_faults -direct_credit
run_fault_sim

If you need to change primary input (PI) constraints or the STL procedure file, you still need to
return to DRC mode. After you are in DRC mode, the saved internal pattern set is deleted.

Manipulating Fault Lists
The following topics explain how tomanipulate fault lists:

l Automatically Saving Fault Lists
l Automatically Restoring Fault Lists
l Removing Fault Lists
l Adding Faults

Persistent Fault Model Operations 20-3

TetraMAX ATPG User Guide K-2015.06-SP4

Automatically Saving Fault Lists
A fault list is automatically saved in the cache as an inactive fault model when a fault model is
changed or when you go back to DRC mode. Example 3 shows how to save fault lists
automatically.

Example 3 Automatically Saving Fault Lists
set_faults -persistent_fault_models
add_pi_constraint 1 mem_bypass
run_drc compression.spf
set_faults -model stuck
add_faults -all
set_faults -model transition
(Stuck-at fault list is saved)
add_faults -all
run_atpg -auto
drc -f
(Transition fault list is saved)
remove_pi_constraints -all
add_pi_constraint 0 mem_bypass
run_drc compression.spf

Automatically Restoring Fault Lists
A fault list is automatically restored from the cache as an active fault model when a fault model is
reactivated or before exiting DRC mode. See Example 4.
Example 4 Automatically Restoring Fault Lists
set_faults -persistent_fault_models
add_pi_const 1 mem_bypass
run_drc compression.spf
set_faults -model stuck
add_faults -all
set_faults -model transition
(Stuck-at fault list is saved)
add_faults -all
run_atpg -auto
drc -f
(Transition fault list is saved)
remove_pi_constraints -all
add_pi_const 0 mem_bypass
run_drc compression.spf
(Transition fault list is restored)
run_atpg -auto
set_faults -model stuck
(Transition fault list is saved)
(Stuck-at fault list is restored)
update_faults -direct_credit

Persistent Fault Model Operations 20-4

TetraMAX ATPG User Guide K-2015.06-SP4

run_fault_sim

Note: The process of automatically restoring fault lists is equivalent to executing the command
read_faults fault.list -retain_code. Therefore, when you return to DRC mode
and change the STL procedure file, youmight see someminor differences in the fault
summaries obtained before DRC.

Removing Fault Lists
There are several different ways to remove fault lists:

l Use the command remove_faults -all to remove a fault list on an active fault model.
l Use the command set_faults -nopersistent_fault_models to delete all
inactive fault lists from the cache.

l When you return to BUILD mode, all fault lists are automatically removed.

Adding Faults
There are some precautions you need to take when adding faults. Even when the command
set_faults -persistent_fault_models is enabled, faults cannot be added when an
internal pattern set is present. Figure 1 shows the actual situations that are considered when
adding faults.

Figure 1 Process For Adding Faults

Note that the processes described in the “Followed by” column always require a fault list.
However, if an internal pattern is present in any process in the “PatternsGenerated By” column,
you cannot add faults.
If you try to add faults to a different model when an internal pattern set is present, TetraMAX
ATPGwill issue anM104 error.
Example 5 shows an example flow for adding faults.

Persistent Fault Model Operations 20-5

TetraMAX ATPG User Guide K-2015.06-SP4

Example 5 Typical Flow For Adding Faults
set_faults -persistent_fault_models
set_drc compression.spf
run_drc
set_faults -model stuck
add_faults -all
set_faults -model transition
add_faults -all
run_atpg -auto
set_faults -model stuck
(You can't add faults here because internal pattern set is
present)
update_faults -direct_credit
run_fault_sim

Reporting Persistent Fault Models
When the persistent fault model flow is enabled and inactive fault models are present, TetraMAX
ATPGprints additional information when any of the following conditions exist:

l TetraMAX ATPGexits the DRC process
l The ATPGprocess is completed
l The report_summaries command is executed

Example 6 shows an example of an Uncollapsed Stuck Fault SummaryReport.

Persistent Fault Model Operations 20-6

TetraMAX ATPG User Guide K-2015.06-SP4

Example 6 Typical Uncollapsed Stuck Fault SummaryReport
Uncollapsed Stuck Fault Summary Report

fault class code #faults
------------------------------ ---- ---------
Detected DT 2000576

detected_by_simulation DS (1610727)
detected_by_implication DI (389849)

Possibly detected PT 0
Undetectable UD 1331

undetectable-unused UU (504)
undetectable-tied UT (491)
undetectable-blocked UB (295)
undetectable-redundant UR (41)

ATPG untestable AU 18985
atpg_untestable-not_detected AN (18985)

Not detected ND 13052
not-controlled NC (565)
not-observed NO (12487)

total faults 2033944
test coverage 98.42%

Inactive Fault Summary Report

fault model total faults test coverage
---------------- ------------ -------------
Transition 1841908 96.46%

This report shows inactive faults list information. These numbers can be changed using the
set_faults -report [-collapsed | -uncollapsed] command.
When you execute direct fault crediting using the update_faults -direct_credit
command, you will see shorter reports that show how many faults are credited to DS, DI and
NP. These faults are also generated by the set_faults -report [-collapsed | -
uncollapsed] command. Example 7 shows an example report using this command.

Example 7 Report Created Using the update_faults -direct_credit Command
update_faults -direct_credit
15597 stuck-at faults were changed to DS from the inactive
transition fault list.
0 stuck-at faults were changed to DI from the inactive
transition fault list.
0 stuck-at faults were changed to NP from the inactive
transition f ault list.

Persistent Fault Model Operations 20-7

TetraMAX ATPG User Guide K-2015.06-SP4

Direct Fault Crediting
The persistent fault model flow supports direct fault crediting. To understand how this works,
consider an example slow-to-rise (STR) transition fault. A pattern that detects this fault on a
particular nodemust control that node from a 0 to a 1 and observe the result in a specified
amount of time. To detect a stuck-at-0 (SA0) on the same node, only the 1 needs to be
observed, and the timing is irrelevant. Thus, any slow-to-rise detection can be detected as a
stuck-at-0 detection without actually simulating the transition patterns.
Direct fault crediting is enabled by running the update_faults -direct_credit
command.
This command automatically reads back the transition fault list if it is in the cache, and it credits
the following fault models:

l Dynamic bridging (victim only) faults to transition delay faults
l Dynamic bridging faults to static bridging faults
l Dynamic bridging (victim only), static bridging (victim only), and transition delay faults to
stuck-at faults

Example 1 shows a typical direct fault crediting flow.

Example 1 Typical Direct Fault Crediting Flow
set_faults -persistent_fault_models
set_faults -model bridging
add_faults -node_file nodes.txt
run_atpg -auto
set_faults -model transition
(transition fault patterns are preserved as internal pattern
set)
add_faults –all
run_atpg -auto
set_faults -model bridging
update_faults -direct_credit
(Transition fault detections can’t be credited to bridging
faults, so fault simulation is necessary)
run_fault_sim

Example 2 shows an example log of applying direct credit with four fault models.

Example 2 Applying Direct Credit to Stuck-at Faults
set_faults -model stuck
81568 faults moved to the inactive bridging fault list.
419252 stuck faults moved to the active fault list.
3126 stuck AU faults were reset.
update_faults -direct_credit
112790 stuck faults were changed to DS from the inactive dynamic_
bridging fault list.
0 stuck faults were changed to DI from the inactive dynamic_
bridging fault list.

Direct Fault Crediting 20-8

TetraMAX ATPG User Guide K-2015.06-SP4

0 stuck faults were changed to NP from the inactive dynamic_
bridging fault list.
10121 stuck faults were changed to DS from the inactive bridging
fault list.
0 stuck faults were changed to DI from the inactive bridging fault
list.
0 stuck faults were changed to NP from the inactive bridging fault
list.
203578 stuck faults were changed to DS from the inactive
transition fault list.
0 stuck faults were changed to DI from the inactive transition
fault list.
0 stuck faults were changed to NP from the inactive transition
fault list.

Table 1 describes the direct fault crediting process.

Transition Fault Status Existing Stuck-at Fault
Status

Updated Stuck-at Fault
Status

DS Not DS DS

DI Not DS DI

TP (small delay
defect)

Not DS DS

AP Not DT or AP NP

NP Not DT or AP NP

Table 1 Direct Fault Crediting Process

If the -persistent_fault_models option is not enabled, you can apply direct crediting to
stuck-at faults by using -external option if you have transition fault list. Example 3 is a script
example that uses thismethod:

Example 3 Script Example Using the -external Option
run_drc compression.spf
set_faults -model stuck
add_faults -all
update_faults -direct_credit -external transition.flt
run_atpg -auto

See Also
Fault Categories and Classes

Direct Fault Crediting 20-9

TetraMAX ATPG User Guide K-2015.06-SP4

Example Commands Used in Persistent Fault Model
Flow
The following example shows the commands used in a typical persistent fault model flow:
read_netlist des_unit
run_build_model des_unit
set_delay -launch system_clock
#
#Activate persistent fault model feature
#
set_faults -persistent_fault_models
#
Model=Transition memory bypass=No OCC=Yes
#
add_pi constraints 0 memory_bypass
run_drc des_unit.spf -patternexec comp
set_faults -model stuck
add_faults -all
set_fault -model transition
add_faults -all
run_atpg -auto
write_patterns trans_bp0_occ1.bin -format binary
set_faults -model stuck
#
Credit transition detections to stuck-at faults.
#
update_faults -direct_credit
#
Optional step to increase fault coverage
run_fault_sim
#
drc -force
remove_pi_constraints -all
remove_clocks -all
#
Model=Stuck-at memory bypass=Yes OCC=No
#
add_pi_constraints 1 memory_bypass
run_drc des_unit.spf -patternexec comp_occ_bypass
set_fault -model stuck
run_atpg -auto
write_patters stuck_bp1_occ0.bin -format binary
drc -force
remove_pi_constraints -all
remove_clocks -all

Example Commands Used in Persistent Fault Model Flow 20-10

TetraMAX ATPG User Guide K-2015.06-SP4

#
Model=Stuck-at memory bypass=No OCC=No
#
add_pi_constraints 0 memory_bypass_mode
run_drc des_unit.spf -patternexec comp_occ_bypass
set_faults -model stuck
run_atpg -auto
write_patterns stuck_bp0_occ0.bin -format binary

Example Commands Used in Persistent Fault Model Flow 20-11

21
Diagnosing Manufacturing Test
Failures
Because of the complexity of themanufacturing process, the presence of defects in silicon has a
direct impact on yield ramp.When a device fails testing, you can use TetraMAX diagnostics to
quickly isolate the cause and location of the failure, and simplify the analysis process.
The following sections describe the process for applying scan diagnostics tomanufacturing test
failures:

l Diagnostics Flow Overview
l Running the Diagnostics Flow
l Writing and Reading Binary Images
l Reading Pattern Files
l Failure Data Files
l Running Diagnostics
l Performing Scan Chain Diagnostics
l Diagnosing Internal Cell Defects
l Parallel Diagnostics
l Understanding the Diagnosis Report

21-1

TetraMAX ATPG User Guide K-2015.06-SP4

Diagnostics Flow Overview
TetraMAX diagnostics determine the root cause of failures observed during the testing of a chip.
The data obtained from diagnostics identifies cells and scan chains with defects, and any logic
with defects.

To run TetraMAX diagnostics, you need to provide a pattern set created by TetraMAX ATPG in
basic-scan or fast-sequential mode, a failure data file from an ATE, and a binary design image
file. You also use a netlist, librarymodel, and STIL procedure file as input directly into TetraMAX
diagnostics (instead of a binary design image), but thismethod ismuchmore time-consuming
because you have to rebuild the librarymodel and rerun DRC.

Figure 1 shows the recommended TetraMAX diagnostics flow.

Diagnostics Flow Overview 21-2

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1 TetraMAX Diagnostics Flow

Diagnostics Flow Overview 21-3

TetraMAX ATPG User Guide K-2015.06-SP4

Running the Diagnostics Flow
The following steps describe the process for running diagnostics in TetraMAX ATPG:

1. Establish the original ATPGenvironment under which the patternswere created,
including reading the design netlist, reading the librarymodel, running DRC, and running
ATPG. For details, see "ATPGDesign Flow."

2. Write the image to a binary file using the write_image command, as shown in the
following example:
write_image image.gz -compress gzip

Note that this is an optional step. You can run diagnosis using the original netlist, library
model, and rerun DRC. However, a binary image file contains all this information in single
file and eliminates the need to rerun the ATPGprocess before each diagnosis run. For
more information on binary image files, see "Writing and Reading Binary Image Files."

3. Read in the original patterns used to detect the failure. You can use patterns generated by
the Basic-Scan and Fast-Sequential modes, but not the Full-Sequential mode. For more
information, see "Reading Pattern Files."

4. Obtain the failure data file produced from the ATE. For more information, see "Failure
Data Files."

5. Specify any special parameters you want to include for diagnostics using the set_
diagnosis command. For example, youmight want to perform scan diagnostics,
diagnose internal cell defects, or perform parallel diagnostics.

6. Read the failure data file and start the diagnosis by using the RunDiagnosis dialog box, or
by entering the run_diagnosis command at the command line. For details, see
"Running Diagnostics."

7. Analyze the results in the diagnostics summary report.
TetraMAX ATPGdetermines the cause of the failing patterns and generates a diagnosis
report. By default, the diagnostics search for defects in functional logic. If pattern 0 is the
chain test pattern and it fails, then chain diagnosis is performed. For more information, see
"Understanding the Diagnosis Summary."

Note the following:
l DFTMAX compression is supported for both logic and scan chain diagnosis. Serialized
DFTMAX compression is also supported. One of the first actions performed by the
diagnosis engine is to map each individual failure to a scan cell. You can use the -
mapping_report option of the set_diagnosis command to produce a detailed
failuremapping report. Note that in some cases the failuresmight not bemapped
successfully.

l If your diagnostic resolution is low, you can create patterns that bypass the output
compressor. For more information, see “Translating DFTMAX Patterns Into Normal Scan
Patterns”.

l The diagnosis engine does not make any assumptions on the nature of the defect based

Running the Diagnostics Flow 21-4

TetraMAX ATPG User Guide K-2015.06-SP4

on the type of fault tested. Thismeans, for example, that any failures collected while
running transition patterns could lead the diagnosis engine to find the stuck-at fault type.
However, you can specify the logic diagnosis engine to search by preference for a defect of
the delay type by using -delay_type option of the set_diagnosis command.

Writing and Reading Binary Images
To prepare for diagnosis, you can read your design using either of the twomethods:

l Verilog format
You read a Verilog netlist, build the designmodel, prepare the STIL procedure file, and
performDRC. This process is described in detail in the "ATPGDesign Flow" section.

l Binary image format
To use a binary image, you initially perform the same steps as the Verilog format (ATPG
design flow). However, after creating the designmodel, you use the write_image
command to write a binary image that contains the required TetraMAX internal
information, including the netlist, library, SPF, and DRC data. During diagnosis, you can
use the read_image command to read the image file asmany times as necessary
without the need to rerun the ATPG flow.
There aremany other advantages to using a binary image for diagnosis. It simplifies file
management, since you use only a single file that encapsulates the design netlist, library,
and SPF. It is also faster to load during the diagnosis process. Also, you can password-
protect an image file, and garble the instance names, if required.

The following example shows how to write and read a binary image file for diagnostics:

// First time through (ATPG flow)
BUILD> read_netlist top.v
BUILD> read_netlist spec_lib.v -library
BUILD> run_build_model spec_chip
DRC> run_drc spec_chip.spf
TEST> write_image spec_image.gz -compress gzip

// For subsequent runs during diagnosis
BUILD> read_image spec_image.gz

For more information on writing and reading secure binary images, see "Binary Image Files."

Reading Pattern Files
TetraMAX diagnostics requires either a single pattern file corresponding to the patterns that
were run on the tester when the device failed or an entire set of split patterns files along with their
failures files.
The binary pattern format works best in TetraMAX ATPG. STIL or WGL patterns also work,
although the pattern set might bemisinterpreted due to language limitations.
The following sections describe how to use a pattern file:

Reading Pattern Files 21-5

TetraMAX ATPG User Guide K-2015.06-SP4

l Reading Patterns
l ReadingMultiple Pattern Files
l Translating DFTMAX Scan Patterns Into Normal Scan Patterns

See Also
Writing ATPG Patterns

Reading Patterns
TetraMAX diagnostics accepts either basic-scan or fast-sequential ATPGpatterns.
When reading patterns into TetraMAX ATPG for diagnostics, use binary formats whenever
possible. Other pattern formats, such asWGL and STIL, have limited facilities to accurately store
all the pattern data. When you read back a STIL or WGL pattern file, it is possible that fast-
sequential patterns could be interpreted as a full-sequential patterns, and errors are reported..
You can perform a sanity check to verify that simulation passeswith the patterns you read in by
running the run_simulation command before performing diagnosis.
Use the set_patterns command to read a set of patterns, as shown in the following
example:
set_patterns -external patterns.bin

For details on reading patterns, see "Selecting the Pattern Source."

See Also
Using Split Datalogs to Perform Parallel Diagnostics for Split Patterns

Reading Multiple Pattern Files
Some designs require you to runmultiple TetraMAX pattern files on the tester. Each pattern file
is typically run individually in separate test programs on the tester. When a device fails, the tester
generates one failure log file per TetraMAX pattern file. At the end of all tests, you will have
multiple pattern files and the corresponding failure log file.
TetraMAX diagnosis can readmultiple pattern files andmultiple fail data files so that you can get
a single result from a single diagnosis run. This is supported for DFTMAX compression.
There can be asmany failure log files as there are pattern files. A failure log file is expected to
contain the failures for only the patterns in the corresponding pattern file. Otherwise, an error is
generated.
If there are no failures for any of the patterns in a particular pattern file, the corresponding failure
log file can be nonexistent.. The correspondence between pattern files and failure log files is
specified by a required directive in the failure log file, as explained in the "Failure Data File
Format" topic. An error is generated otherwise.
To usemultiple patterns files, specify the following set_patterns command:
set_patterns -external file –split_patterns

Reading Pattern Files 21-6

TetraMAX ATPG User Guide K-2015.06-SP4

When split pattern files are read, you will need to use the specifymultiple failure log files using
the run_diagnosis command.
By default, TetraMAX ATPGconsiders that the cycle count recorded in the failures file in cycle-
based format is reset to 1 (or the recorded pattern count is reset to 0 for the pattern-based
format) from the execution of one pattern set to the next one. You can use the .first_pattern
directive to change this behavior if the failures are in pattern-based format.

See Also
Using Split Datalogs to Perform Parallel Diagnostics for Split Patterns

Translating DFTMAX Compressed Patterns Into Normal Scan
Patterns
If your design usesDFTMAX compression, you can perform diagnosis on the patterns that
include compression, or create patterns that bypass the output compression. Diagnosing
patterns in compressor mode could reduce diagnostic resolution due to compressor effects.
After a device in compressor mode fails on the tester, if the diagnostic resolution is not high
enough, you can retest it in the scanmode. The translated patterns detect the same defects, but
diagnostic resolution is higher because the compressor no longer affects the unloaded values.
The process involveswriting out a special netlist-independent version of the pattern in binary
format along with the DFTMAX pattern set. The netlist-independent pattern file contains a
mapping of the scan cells and primary inputs to their ATPGgenerated values. This pattern set
can be read back into TetraMAX ATPGafter design is put into the reconfigured scanmode by
reading the scanmode STL procedure file. After the patterns are read back, a simulation is done
internally to compute the expected values to complete the translation process. The internal
patterns can then be written out for the tester to be used in scanmode for diagnosis.

Example Flow
The following example illustrates the translation steps:

1. Read the design with DFTMAX in compressor mode and write out the netlist-independent
pattern format.
run_build_model ...

read STL procedure file for adaptive scan mode
run_drc scan_compression.spf
run_atpg -auto
write out adaptive scan mode patterns
write_patterns compressed_pat.bin -format binary
write_netlist independent patterns that can be translated
set_patterns -netlist_independent
write_patterns compressed_pat.net_ind.bin

2. Read the design with DFTMAX compression in scanmode. Translate the patterns into
scanmode.
run_build_model ...
read STL procedure file for normal scan mode

Reading Pattern Files 21-7

TetraMAX ATPG User Guide K-2015.06-SP4

run_drc scan.spf
read netlist independent patterns
set_patterns -external compressed_pat.net_ind.bin
optional sanity check to verify that simulation passes
run_simulation
write out translated patterns to be re-run on the tester
write_patterns scan_pat.pats -external -format <any format>
write out translated patterns in binary format for
diagnostics
write_patterns scan_pat.bin -external -format binary

Translation Limitations
The following limitations apply to the DFTMAX compression to normal scanmode translation
feature:

l Translation is one-way. You cannot translate scan patterns to compressionmode.
l It supports only Basic-Scan and Fast-Sequential pattern (similar to diagnosis).
l Configuration differences between compressor mode and scanmodemight result in
slightly different coverage numbers.

l Netlist independent patterns are stored inmultiples of 200, as shown in the following
example:
BUILD-T> set_patterns -netlist_independent
TEST-T> write_patterns pats.bin -format binary -serial -
replace
 200 netlist independent patterns were stored, CPU_time=0.00
 400 netlist independent patterns were stored, CPU_time=0.00
End writing file 'pats.bin' with 426 patterns, File_size =
1047744, CPU_time = 0.0 sec.

See Also
DFTMAX User Guide

Failure Data Files
A failure data (or log) file is an ASCII text file that provides the necessary failure information from
a device to perform diagnostics. This file captures the test results of a failing device, including
failing patterns and failing outputs and scan cells. Most ATE vendors automatically generate
failure data files in a format recognizable by TetraMAX.
When testing a chip, if the valuemeasured by the ATE is different than the expected value
indicated in the patterns file, a failure is recorded in the failure data file. Each recorded failure
includes the vector number, the output port where themismatch occurs, the cycle number within
themismatched vector, and optional expected data.

TetraMAX supports either a pattern-based or cycle-based failure data file.

Failure Data Files 21-8

TetraMAX ATPG User Guide K-2015.06-SP4

The following sections describe failure data files:
l Pattern-Based Failure Data File
l Cycle-Based Failure Data File
l Failure Data File Extensions
l Adding Header Information to a Failure Data File
l Limitations

Pattern-Based Failure Data File
Each line in a failure data file describes a pattern in which the output values detected by the test
equipment did not match the expected values. An example is as follows:
// Pattern Output Cell
 50 vout 55
 50 abus 57
 58 vout 57
 82 xstrb
 82 vout 57
 82 vout 5
 83 abus 90

The format of each line is as follows:
pattern_num output_port [cell_position] [expected_data]

Where:
pattern_num

The TetraMAX pattern number in which the failure occurred, starting with 0 for
the first pattern.

output_port

The name of the output port at which the failure was detected, or the scan
chain name when the pin name is shared among scan groups.

cell_position
This data must be provided if the failure occurred during a scan shift cycle. It is
the number of tester shift cycles that have occurred since the start of the
scanout process. From this value, TetraMAX ATPG determines the position of
the scan chain cell that captured the erroneous data. The cell position of the
scan chain cell closest to the output port is 0, the next one is 1, and so on; for
example:

expected_data
This is an optional argument that describes the expected value of the
measured failure. Its value is either 0 or 1. By default, if this argument is
present, it is checked against the expected data recorded in the patterns. If

Failure Data Files 21-9

TetraMAX ATPG User Guide K-2015.06-SP4

this step succeeds, it is a good indicator that the files used for diagnosis and on
the tester are consistent. To change the default, use the -nocheck_expected_
data option of the set_diagnosis command.

To indicate the expected data during a capture of a scan chain output and use -check_
expected_data option, youmust use the exp= syntax. For example:
103 scan_out3 1 //invalid
103 scan_out3 (exp=1, got=0) //valid
103 scan_out3 exp=1 //valid

Any line in the failure data file that begins with two slash characters is considered a comment
line.
The following example shows another tester data file. In this example, five failing patterns are
reported: pattern numbers 3, 4, 10, 11, and 12.
// pattern 3, port REQRDYO
3 REQRDYO

// pattern 4, port MA[9], scan chain 'c9', 30 shifts
4 MA[9] 30

//pattern 10-12, port NRD, scan chain 'c29', 3 shifts
10 NRD 3
11 NRD 3
12 NRD 3

Note the following:
l The -failure_memory_limit option of the set_diagnosis command helps ease
the failure log file truncation task. This option enables you to specify themaximumnumber
of failures that can be captured by the tester. It also enablesTetraMAX ATPG to
automatically truncate the patterns considered during diagnosis.

l A pattern-based failure log file can also be created using Verilog DPV simulation using the
pre-defined VCS option +tmax_diag. For details, refer to “ Predefined Verilog Options”
section in the Test Pattern Validation User Guide.

Pattern-Based Failure Data File for DFTMAX Serialized Adaptive Scan
The format for DFTMAX serialized adaptive scan technology is similar to the regular format
except that it includes additional piece of information that identifies the bit of a serialized
bitstream containing the failure (bit_position). The pattern-based format of the failure data
file is as follows:
pat_num output_ports cell_pos bit_pos [expect_data]

Where:
pat_num

The TetraMAX pattern number on which the failure occurred. The first pattern is
0.

output_ports
The name of the output port on which the failure was detected.

cell_pos

Failure Data Files 21-10

TetraMAX ATPG User Guide K-2015.06-SP4

This is the position of the scan chain cell that captured the data that was in
error. The cell position of the scan chain cell closest to the output port is 0, the
next one in is 1, and so on.

bit_pos
For each scan chain shift cycles, the serializer is capturing the parallel output of
the output compressor. Then, this information is serialized and shift out on the
scanout pin. The bit_position is the bit of the serialized bitstream where there
is a failure. The first bit_position is 0 and it corresponds to serializer bit close to
the scan out.

expect_data
This optional argument describes the expected value of the measured failure.

Cycle-Based Failure Data File
Most ATE vendors generate failure data directly in the pattern-based failure data file format.
However, some older testers do not support this format. For these testers, you can use a cycle-
based (or vector-based) failure data file format (TetraMAX patterns contain multiple cycles or
vectors). Cycle-based failure log files in TetraMAX format are easier to generate than pattern-
based failure log files.
TetraMAX ATPGsupports both basic-scan and fast-sequential patterns in STIL or WGL format.
The binary pattern format is not supported for cycle-based failure log file diagnosis. TheWGL flat
pattern format is not supported.
If the external pattern buffer contains an unsupported pattern format, TetraMAX ATPGdisplays
an error message when you execute the run_diagnosis commandwith a cycle-based failure
log file.
Cycles (V statements in STIL format or vector statements inWGL format) are counted when you
read patterns using the set_patterns external command. This count identifies the
vectors at pattern boundaries, and the time when shift cycles start within each pattern. If you or
the tester make adjustments that cause the failing cycle/vector to deviate from the corresponding
vectors in the STIL/WGL patterns used for diagnosis (such as combiningmultiple STIL/WGL
vectors into a single tester cycle), youmust make a corresponding change in the cycle-based
failure log tomap back to the vectors in the pattern file.
The following set_diagnosis options are associated with the cycle-based failure log file:

l -cycle_offset integer—You can use this option to adjust the cycle count when
the cycle numbering does not start at 1.

l -show cycles —This option causes the translated pattern-based failure log file to be
reported by the run_diagnosis command.

The following example shows sample output. Comments indicate the failure cycle used to
generate the pattern-based failure. It also showswhether the cycle was a capture or a shift
cycle.
4 po0 # Cycle conversion from cycle 34; fail in capture
4 so 2 # Cycle conversion from cycle 38; fail in shift

The following set of commands show an example flow:
run_drc ...
set_patterns -external pat.stil

Failure Data Files 21-11

TetraMAX ATPG User Guide K-2015.06-SP4

set_diagnosis -cycle_offset 1
run_diagnosis fail.log

Cycle-Based Failure Data File Format
A failure data file contains only failed cycles. The format of each line is as follows:
C output_name cycle [expected_value]

Where:
C

The first character on the line, indicating that the line specifies tester cycles
and not TetraMAX pattern numbers. It helps you identify the type of failure log
file (pattern- or cycle-based).

output_name

A string that can be a PO or a scan chain name (no output compressor).
cycle

An integer indicating the cycle in the external pattern set that failed on the
tester; when the first cycle is cycle 1, not 0. TetraMAX ATPG expects failures
only in cycles where measurements occur; for example, during shift or capture
cycles. Invalid failure cycles can provide inaccurate diagnosis results.

expected_value

An optional 0 or 1, depending on what the pattern specified as the expected
value. By default, if this argument is present, it is checked against the
expected data recorded in the patterns. If this step succeeds, it is a good
indicator that the files used for diagnosis and on the tester are consistent. To
change the default, use the -nocheck_expected_data option of the set_
diagnosis command.

TetraMAX ATPG ignores all other characters in the line, and treats them as comments.

Cycle-Based Failure Data File for DFTMAX Serialized Adaptive Scan
The cycle-based format of the failure log file follows the standard format and is as follows:
C output_port cycle [(expected_data)]

Where:
C

The first character on the line, this parameter indicates that the line specifies
tester cycles and not TetraMAX pattern numbers. It helps you identify the type
of failure log file (pattern- or cycle based).

output_ports
The name of the output port on which the failure was detected.

cycle
An integer that indicates the cycle in the external pattern set that failed on the
tester; when the first cycle is cycle 1, not 0. TetraMAX ATPG expects failures
only in cycles where measurements occur — for example, during shift or
capture cycles. Invalid failure cycles can provide inaccurate diagnosis results.

Failure Data Files 21-12

TetraMAX ATPG User Guide K-2015.06-SP4

(expected_data)
This optional argument describes the expected value of the measured failure.

Failure Data File Extensions
The failure data file can contain the directives to specify settings specific to that failure log file.
These directivesmust be at the top of the failure data file, before any failure data. The directives
cannot be abbreviated. Any other line in the failure log file is interpreted as failure data.
.pattern_file_name string

This directive is required when you are using the split patterns feature. It
specifies the name of the corresponding pattern file to associate the failure log
files to the pattern file. If there are no failures in the patterns corresponding to
a pattern file, this directive is used to make correspondences between pattern
and failure log files. This name is assumed to be just the file name, without the
directory hierarchy.
If the failure log file does not contain this directive, or if the name does not
match, diagnosis is aborted.

.attr_file_name string
This directive can be used to set user-defined attributes for a particular failure
log file; you can then access the specified string value using the Tcl API. For
example, the attribute could describe the ATE clock frequency or the pattern
type used for testing the chip. You could then retrieve the string using the
attribute <attr_file_name> returned by the get_diag_files Tcl API
command. If the name of the directive does not match, the diagnosis process is
aborted.

.cycle_offset <d | continue>
This directive adjusts the cycle count when the cycle numbering does not start
at 1 for cycle-based failure log files. The d parameter is an integer in tester
cycles. The purpose of continue is for ease of use. The string argument
continue indicates that the cycle count is not reset from the previous pattern
set. The default is to reset the cycle count to 1. This directive only applies to
split pattern diagnosis.
When used, this directive overrides the -cycle_offset option of the set_
diagnosis command for this pair of pattern/failure log files. Normally, the
cycle count is reset to 1 for every pattern set.

.first_pattern <d | continue>
By default, TetraMAX ATPG assumes the pattern count is reset from one
pattern set to the next one. For cases not complying with the default, this
directive adjusts the pattern count when the pattern numbering does not start
at 0 for pattern-based failure log files. The d parameter is an integer in the
pattern. The purpose of continue is for ease of use. The string argument
continue indicates that the pattern count is not reset from the previous
pattern set. The default is to reset the pattern count to 0. For instance, if the

Failure Data Files 21-13

TetraMAX ATPG User Guide K-2015.06-SP4

first pattern file contains 11 patterns, and the pattern count is continue, then
the directive for the failures log file should contain the directive: .first_
pattern 11

.truncate d
All patterns numbered greater than d in this failure log file are ignored. The
pattern numbers begin at 0 for each failure log file. The argument d specifies
the last pattern for which complete failures were captured. It should not
exceed the number of patterns in the corresponding pattern file.
When used, this directive overrides the -truncate option of the run_
diagnosis command.

.incomplete_failures
Ignores patterns in the range beginning with the last failing pattern recorded in
this failure log file, to the last pattern in the corresponding pattern file, unless
there is only one failing pattern in this file.
When used, this directive overrides the -incomplete_failures option of the
set_diagnosis command.

.failure_memory_limit d
Ignores patterns in the range beginning with the last failing pattern recorded in
this failure log file, to the last pattern in the corresponding pattern file, if the
number of failures in this file is at least d. The argument d is a decimal number
that specifies the number of failures that the tester can capture.
When used, this directive overrides the -failure_memory_limit option of the
set_diagnosis command.

Adding Header Information to a Failure Data File
You can insert a header section into a failure data file to include additional data from the ATE,
such as key-value pairs information, the device name, job name, or truncation status. This
information is passed to the output of the write_ydf command during physical diagnostics (for
more information on physical diagnostics, see "Using Physical Data for Diagnostics").

Not all information in the header section is passed to the Yield Explorer Data Format (YDF)
output used for physical diagnostics. Only data described in a configuration file, called the
header schema file, is retrieved when running diagnostics.

The following sections describe how to insert a header section into a failure data file:

l Creating a Header Section
l Updating the Header Section
l Creating a Header Schema File
l Examples

Failure Data Files 21-14

TetraMAX ATPG User Guide K-2015.06-SP4

Creating a Header Section
The header sectionmust appear in a failure log file immediately after the .pattern_file_
name directive. All key-value pairs entered in a header section are associated with the
corresponding pattern file specified by this directive.

To start the header section, youmust specify the .header keyword; to finish the header
section, use the .end_header keyword. Each line in the header section is a key-value pair. A
key is a single word separated by tab or space, and the valuemay be one or more words
excluding the special symbols tab, “#” and “\\”.

The following example shows a typical header section:

.pattern_file_name <pattern_file_name>

.header
DEVICE TOPDUT1
LOT K382
WAFER 03
DIEX 112
DIEY 124
VDD_CORE 1.32
VDD_PAD 3.3
TEMP 0300
START_T Nov 25 2011 18:40:10
TRUNCATE Y
.end_header
6977 PAD_34 1
6981 PAD_34 1
6985 PAD_34 1
6989 PAD_34 1
…

Note the following:

l After the header information is read by the write_ydf command, it is included in the
DFTCandidates table in the YDF file. Each keyword constitutes a columnwith entries
specified as strings.

l Only one header section is used for a set of failure log files associated with a single run_
diagnosis command.When split patterns are used, the header section is defined only
one time.

l The header section can be included in any failure log file.
l If duplicate value names are included in the header, the last defined value is used.
l If a custom field in the header matches a standard DFTCandidates Table field, the custom
field is ignored. For example:
TEST-T> set_ydf schema.txt -schema
--

Failure Data Files 21-15

TetraMAX ATPG User Guide K-2015.06-SP4

YDF Schema Set Summary
--

LOT used as a standard column in DFTCandidate segment ...
Skipping ...
WAFER used as a standard column in DFTCandidate segment ...
Skipping ...
DIEX used as a standard column in DftCandidate segment ...
Skipping ...
DIEY used as a standard column in DftCandidate segment ...
Skipping ...
YDF Schema has been set for 6 keywords.
CPU_time: 0.00 sec
Memory Usage: 0MB
--

l You can use the set_diagnosis -show key_value_pairs command to print the
values from the header section to the diagnostics report.

Updating the Header Section
If a systematic defect is present, several failures log filesmay contain the same set of failures for
the same or different wafers. In this situation, you do not need to rerun diagnostics, but
TetraMAX ATPGstill needs to read and store the header information.

To enable TetraMAX ATPG to read and store the header information, you will need to use the
run_diagnosis command to execute at least one diagnostics run using the first failures log
file of a set of files which have similar failures. You will then need to use the -update_header
option of the run_diagnosis command to execute another TetraMAX diagnostics run using
the second failure log file:

run_diagnosis second_failure_log_file -update_header

For this second run, TetraMAX ATPGskips the diagnostics analysis while preserving all the
results produced from the first run_diagnosis command. During the diagnostics execution,
TetraMAX ATPGalso reads all the failure log files, and updates the key-value pairs of the
header in internal memory for the write_ydf command. Note that TetraMAX ATPGdoes not
check tomake sure both sets of tester failures are identical.

Creating a Header Schema File
The header schema file defines the custom columns that are included in the EDCT (Electrical
Defect Candidate Table) file. The schema specifies the set of keywords and their respective
string argument field sizes. If the size is not specified for a given keyword, a default string size of
256 is assumed. A typical schema file is shown in the following example:

DEVICE 128
LOT 256
WAFER 128
DIEX 64

Failure Data Files 21-16

TetraMAX ATPG User Guide K-2015.06-SP4

DIEY 64
… …
… …
… …

After you create the header schema file, youmust define it using the -schema option of the
set_ydf command, as shown in the following example:

set_ydf header_schema_file -schema

You need to set the header schema file only one time; all successive diagnosis run results
appended to the same EDCT file will adhere to the original specified header schema file. When
performing an append operation on an existing EDCT file, TetraMAX ATPG retrieves the
header schema from the EDCT file and fills in the appropriate values for the keywords from the
failure log file.

However, if you update the diagnosis results for a particular EDCT file to a new file, you will need
to define a new header schema file using the set_ydf command. If a new schema is not
specified, TetraMAX ATPGadheres to the header schema specified earlier in the session. If no
schema is specified, TetraMAX ATPGdoes not write the custom columns.

An example script is provided in Example C to illustrate handlng thecustom columns in the
EDCT file during diagnosis.

If a value name is duplicated in the schema file, an error is issued at the time the write_ydf
command is executed.

Examples
The examples in this section include the following cases:

l Example A: Header Schema File for Split Pattern SetWith Two Pattern Files
l Example B: Header Schema File for Split Pattern SetWith Three Pattern Files
l Example C: Flow for Handling Custom columns in the EDCT File

Example A: Header Schema File for Split Pattern Set With Two Pattern Files
In this example, the 15 key-value pairs are defined in the header section and passed to the
write_ydf command using one list of 15 string pairs: <key>-<value>.

.header
DEVICE 1604
LOT PL924
WAFER 03
DIEX 122
DIEY 122
VDD_CORE 1.32
VDD_PAD 3.3
V2_PAD N/A
TEMP 0300

Failure Data Files 21-17

TetraMAX ATPG User Guide K-2015.06-SP4

JOB_NAM 1604_SW
JOB_REV 02
FLOOR_ID AF6E
FLOW_ID EWS1
START_T Nov 25 2011 18:40:10
TRUNCATE Y
.end_header
.pattern_file_name <pattern_file1>
6977 PAD_34 1
6981 PAD_34 1
6985 PAD_34 1
6989 PAD_34 1
…
.pattern_file_name <pattern_file2>
7977 PAD_34 1
7981 PAD_34 1
7985 PAD_34 1
7989 PAD_34 1

Example B: Header Schema File for Split Pattern Set With Three Pattern Files
In this example, TetraMAX ATPG associates the header with all pattern files: <pattern_
file1>, <pattern_file2>, and <pattern_file3>. The header section associated with
the second file includes eight key-values.

.pattern_file_name <pattern_file1>
6977 PAD_34 1
6981 PAD_34 1
6985 PAD_34 1
6989 PAD_34 1
…
.pattern_file_name <pattern_file2>
.header
DEVICE 1604
LOT PL924
WAFER 03
DIEX 122
DIEY 122
VDD_CORE 1.32
START_T Nov 25 2011 18:40:10
TRUNCATE Y
.end_header
7977 PAD_34 1
7981 PAD_34 1
7985 PAD_34 1
7989 PAD_34 1
…..
.pattern_file_name <pattern_file3>
9977 PAD_34 1
9981 PAD_34 1
9985 PAD_34 1

Failure Data Files 21-18

TetraMAX ATPG User Guide K-2015.06-SP4

9989 PAD_34 1
……

Example C: Flow for Handling Custom Columns in the EDCT File
TEST_T> set_messages -log example.log -replace
TEST_T> set_command noabort
TEST_T> read_image mydesign.phy.img.gz
TEST_T> set_physical_db -hostname host01 -port_number 9998
TEST_T> set_physical_db -top_design top_specdevice
TEST_T> set_physical_db -device [list "specDevice" "1"]
TEST_T> match_names –verify all
TEST_T> run_drc mydesign_scan.spf
TEST_T> set_patterns -external mydesign_pat.bin
TEST_T> run_diagnosis sample1.ff
TEST_T> set_ydf schema1.sch -schema
TEST_T> set_diagnosis –show key_value_pairs

// A completely new YDF file is created with the results of last
// diagnostics run (Note -replace)

TEST_T> write_ydf mydesign-diag1.ydf -replace \
 -device TESTDEVICE -version 1 \
 -candidates -cell -instance_cell \
 -cell_instance_pin_net -net_path \
 -net_contact_position -net_layer -edct
TEST_T> run_diagnosis sample2.ff

// The same YDF file is updated with the results of last
// diagnostics run (Note -append). The same header schema file is
used

TEST_T> write_ydf mydesign-diag1.ydf -append -candidates \
 -cell -instance_cell -cell_instance_pin_net \
 -net_path -net_contact_position -net_layer -edct
TEST_T> run_diagnosis sample3.ff
TEST_T> set_ydf schema2.sch -schema

// A completely new YDF file is created with the results of last
// diagnostics run (Note -replace). A new header schema file is
used

TEST_T> write_ydf mydesign-diag2.ydf –replace \
 -device TESTDEVICE -version 2 \
 -candidates -cell -instance_cell \
 -cell_instance_pin_net -net_path \
 -net_contact_position -net_layer -edct
TEST_T> run_diagnosis sample4.ff

// The same YDF file is updated with the results of last

Failure Data Files 21-19

TetraMAX ATPG User Guide K-2015.06-SP4

// diagnostics run (Note -append). The same header schema file is
used

TEST_T> write_ydf mydesign-diag1.ydf -append -candidates \
 -cell -instance_cell -cell_instance_pin_net \
 -net_path -net_contact_position -net_layer -edct
TEST_T> exit

Failure Data File Limitations
The following limitations are associated with failure data files:

l Only STIL andWGL patternswith cycle-based failure data files are supported.
TetraMAX ATPGdoes not support binary patterns. However, it supports the binary pattern
format for pattern-based failure data files.

l The -truncate option of the run_diagnosis command is not supported with cycle-
based diagnosis.

l TheWGL flat pattern file is not supported.

Running Diagnostics
To start the diagnostics process, you can use either the RunDiagnosis dialog box in the
TetraMAX GUI or the specify the run_diagnosis command at the command line.

Using the Run Diagnosis Dialog Box
To start the diagnosis using the RunDiagnosis dialog box, perform the following steps:

1. Click the Diagnosis button in the command toolbar at the top of the TetraMAXmain
window. The RunDiagnosis dialog box appears.

2. Fill in the dialog box.
For descriptions of these controls, see TetraMAX Help for the run_diagnosis (and
set_diagnosis) command(s).

3. ClickOK.

Using the run_diagnosis Command
You can start the diagnosis at the command line using the run_diagnosis command, as
shown in the following example:
TEST-T> run_diagnosis chipA_failure.dat -display

Performing Scan Chain Diagnostics
Functional logic diagnostics assumes that scan data is properly loaded and unloaded. If patterns
show failures during the chain test, a chain defect is interfering with the loading and unloading

Failure Data Files 21-20

TetraMAX ATPG User Guide K-2015.06-SP4

processes. TetraMAX scan chain diagnostics isolates the defects that affect scan chain shifting.
You can use both standard scan patterns and DFTMAX patterns for scan chain diagnostics. If
you are testing an X-tolerant design, TetraMAX ATPGcan generate additional chain test
patterns that use the X-tolerant modes to directly observe a group of chains at the scan outputs.
For more information on this process, see the "Creating Test Patterns for Diagnosing Scan
Chain Failures" section.
The following sections explain how to perform scan chain diagnostics:

l Running Scan Chain Diagnostics
l Understanding the Scan Chain Diagnosis Report
l Diagnosing Defects Related to Power Issues

Running Scan Chain Diagnostics
To enable scan chain diagnostics, specify either the -auto option of the set_diagnosis
command or the -chain_failure option of the run_diagnosis command. For optimal
accuracy, you should use failure data from ten or more patterns. Always provide TetraMAX
ATPGwith asmany failures as possible, including failures that occur when running the chain test
pattern. The following example shows how to set up and run scan chain diagnosis:
set_patterns -external pat.stil
set_diagnosis -auto
run_diagnosis fail.log

Understanding the Scan Chain Diagnosis Report
Scan chain diagnosis identifies several types of defects that affect shifting, including slow clock
signals that cause a hold time violation and reset lines stuck at an active value.
The output diagnosis report identifies the location of stuck-at, slow-to-rise, slow-to-fall, fast-to-
rise or fast-to-fall faults. The latter two fault types address hold time problems that affect the scan
chain shift operation.
To isolate the location of the defect, TetraMAX scan chain diagnosis analyzes the control and
observability of scan cells. For example, assume that a stuck-at fault prevents scan cell A from
shifting to scan cell B. In this case, scan cell A, and all cells located before it, drive valid values to
functional logic. These cells appear as tied cells when they are unloaded, and are therefore
unobservable. Scan cell B, and all cells that follow it, drive invalid values to functional logic, but
theymight capture observable valid values.
The diagnosis report includes a set of possible defect locations (chain, cell position, and instance
name). It also includes amatch percentage score that indicates the confidence of each location.
This score is a percentage that measures the degree to which a failure on the tester matches a
simulated chain defect at that location. The predicted type of defect is also included in the
diagnosis report. For example:

fail.log scan chain diagnosis results: #failing_patterns=79
--
defect type=fast-to-rise
match=100% chain=c0 position=178 master=CORE/c_rg0 (46)
match=100% chain=c0 position=179 master=CORE/c_rg2 (57)

Failure Data Files 21-21

TetraMAX ATPG User Guide K-2015.06-SP4

match= 98% chain=c0 position=180 master=CORE/c_rg6 (54)

The example report indicates that a fast-to-rise defect is likely the cause of the failures. It also
identifies the three scan cell locations that have an output with the physical defect. Some chain
test patterns do not fail on the tester, even though the failures appear to be related to a chain
defect. Also, the tester might not collect all failures for the chain test patterns. In both cases, scan
chain diagnostics cannot analyze or locate the defect location. To address these situations, use
the -assume_chain_defect option of the run_diagnosis command to specify a defect
location and force TetraMAX ATPG to obtain the scores.

Diagnosing Defects Related to Power Issues
TetraMAX ATPGcan also improve the characterization and diagnosis of chain defects related to
power issues. To screen failures based on switching activity, TetraMAX ATPGuses the quiet
chain test patterns instead of regular chain test patterns. Specify the -quiet_chain_test
option of the set_atpg command to enable the run_atpg command to generate quiet chain
test patterns.
For more information, see the "Applying Quiet Test Patterns" section.

Diagnosing Internal Cell Defects
By default, TetraMAX logic diagnostics detects fault candidates at the input or output pin of a
cell. You can also use subnet diagnostics to highlight an issue that occurs on a net (for more
information on detecting faults on subnets, see Reporting Physical Subnet ID Data). Because of
technology geometry shrinkage, a defect is sometimes located inside a cell. This type of defect,
called an internal cell defect, can have a significant impact on yield.
The set_diagnosis -cell_aware command enables TetraMAX diagnostics to detect
internal cell defects, assist in classifying the defects, and enhance thematch score of the fault
candidates.
If you set the -cell_aware option, each internal cell defect candidate is assigned the Internal_
cell_type classification and a behavior type. A candidate is identified as a receiver or driver if the
defect is located inside a part of the cell connected to a pin or if it is outside the cell on the net
connected to a pin. If the defect is located inside the cell and not on a particular pin, it is identified
as the cell_internal type.

Detecting and Classifying Internal Cell Defects
The following steps describe how to diagnose internal cell defects:

1. Prepare the input for running diagnostics, as described in Running the Diagnostics Flow.
2. Specify the set_diagnosis -cell_aware command to enable

TetraMAX diagnostics to detect and classify internal cell defects.
3. Specify the run_diagnosis command to start the diagnostics process.

Diagnosing Internal Cell Defects 21-22

TetraMAX ATPG User Guide K-2015.06-SP4

4. Review the diagnosis report to identify internal cell defects (see Examples of Reporting
Internal Cell Defects).

Examples of Reporting Internal Cell Defects
The following example shows an internal cell defect identified as a receiver type:
--
match=100.00%, #explained patterns: <failing=2, passing=96>
strf DS aph0/U332/A (nd2_1)
Internal_cell_type (receiver)
--

The following example shows an internal cell defect identified as a driver type:
--
match=100.00%, #explained patterns: <failing=2, passing=96>
strf DS aph0/U17/Z (bf_6)
Internal_cell_type (driver)
--

The following example shows an internal cell defect type (cell_internal) located inside the cell
and not on a particular pin:

--
match=100.00%, (TFSF=83/TFSP=0/TPSF=0), #perfect/partial match:
<failing=34/34, passing=42>
sa1 DS CORE/\I_ENC/I_CSC/r189/U2_7/B (fa1a2)
Internal_cell_type (cell_internal)
--

Parallel Diagnostics
You can diagnosemultiple failure logs in parallel in a single TetraMAX session with a single
run_diagnosis command. This approach, called parallel diagnostics, improves volume
diagnostics throughput and ismuchmorememory efficient than invokingmultiple TetraMAX
sessions. It is especially useful when processing a large number of failure files.

The following sections describe how to run parallel diagnostics:
l Specifying Parallel Diagnostics
l Converting Serial Scripts to Parallel Scripts
l Using Split Datalogs to PerformParallel Diagnostics for Split Patterns
l Diagnosis Log Files
l Parallel Diagnostics Limitations

See Also
Running Multicore ATPG

Parallel Diagnostics 21-23

TetraMAX ATPG User Guide K-2015.06-SP4

Specifying Parallel Diagnostics
To specify parallel diagnostics, use the -num_processes option of the set_diagnosis
command. This option sets the number of cores to use during parallel diagnostics. You can
specify the number of processes to launch based on the number of CPUs and the available
memory on themulticoremachine.
The following example configures parallel diagnostics to use four cores:
set_diagnosis -num_processes 4

You can also define a post processing procedure to run concurrently with a parallel diagnostics
run, as shown in the following example:

proc pp {} {
 write_ydf -edct -append edct.ydf
 set datalog [get_attribute [index_collection \

[get_diag_files -all] 0] name]
 foreach_in_collection cand [get_candidates -all] {
 echo [get_attribute $cand pinpath] \
 $datalog >> candidates.list
 }
}
set_diagnosis –post_procedure pp

In the previous example, a procedure called pp specifies the write_ydf command and
several Tcl API-based commands. This procedure is executed using the -post_procedure
option of the set_diagnosis command.

Note that when you usemultiple slave cores, each processwrites the same report file.

To disable a post processing procedure, specify the following command:

set_diagnosis -post_procedure none

When parallel diagnostics is enabled, you can specify a list of datalogs in the run_diagnosis
command, as shown in the following example:

set_diagnosis -num_processes 4
run_diagnosis [list {datalogs/ff_[1-9].log} \

{datalogs/ff_[1-9][0-9].log} \
{datalogs/ff_100.log}]

Note that wildcards are also accepted when specifying datalogs, as shown in the following
example:

run_diagnosis datalogs/ff_*.log

Parallel Diagnostics 21-24

TetraMAX ATPG User Guide K-2015.06-SP4

Converting Serial Scripts to Parallel Scripts
You can convert an existing serial mode script to a parallel mode script, and then run parallel
diagnostics for any number of cores.

The following example is a script snippet used for volume diagnosis in serial mode:

for {set i 1} {$i <= 100} {incr i} {
 set fail_log datalogs/ff_${i}.log
 run_diagnosis $fail_log
 write_ydf -edct -append edct.ydf
 set datalog [get_attribute [index_collection \

[get_diag_files -all] 0] name]
 foreach_in_collection cand [get_candidates -all] {
 echo [get_attribute $cand pinpath]\
 $datalog >> candidates.list
 }
}

The following example shows how the script snippet in the previous example appears as a
parallel script that uses four cores:

set_diagnosis –num_processes 4
proc pp {} {
 write_ydf -edct -append edct.ydf
 set datalog [get_attribute [index_collection \

[get_diag_files -all] 0] name]
 foreach_in_collection cand [get_candidates -all] {
 echo [get_attribute $cand pinpath] \
 $datalog >> candidates.list
 }
}
set_diagnosis –post_procedure pp
run_diagnosis [list {datalogs/ff_[1-9].log} \

{datalogs/ff_[1-9][0-9].log} \
{datalogs/ff_100.log}]

Using Split Datalogs to Perform Parallel Diagnostics for Split Patterns
You can use split datalogs to perform parallel diagnostics for split patterns.

The following example shows a serial mode script snippet used for diagnostics with split
datalogs:

set_patterns –external p1.bin –split
set_patterns –external p2.bin –split
set_patterns –external p3.bin -split
for {set i 1} {$i <= 100} {incr i} {
 run_diagnosis datalogs/ff_${i}.p1.log \

Parallel Diagnostics 21-25

TetraMAX ATPG User Guide K-2015.06-SP4

 –file “datalogs/ff_${i}.p2.log datalogs/ff_${i}.p3.log”
 write_ydf -edct -append edct.ydf
 set datalog [get_attribute [index_collection \

[get_diag_files -all] 0] name]
 foreach_in_collection cand [get_candidates -all] {
 echo [get_attribute $cand pinpath] \
 $datalog >> candidates.list
 }
}

The following example shows how the script snippet in the previous example appears as a
parallel mode script that uses four cores:

set_patterns –external p1.bin –split
set_patterns –external p2.bin –split
set_patterns –external p3.bin -split
set_diagnosis –num_processes 4
proc pp {} {
 write_ydf -edct -append edct.ydf
 set datalog [get_attribute [index_collection \

[get_diag_files -all] 0] name]
 foreach_in_collection cand [get_candidates -all] {
 echo [get_attribute $cand pinpath] \
 $datalog >> candidates.list
 }
}
set_diagnosis –post_procedure pp
run_diagnosis datalogs/ff_*.p1.log \
 –file “datalogs/ff_*.p2.log datalogs/ff_*.p3.log”

See Also
Reading a Split Patterns File

Diagnosis Log Files
When you run parallel diagnosis, the diagnosis log is stored inmultiple files— one file is created
for each core. The name of the diagnosis log file is based on the name of the tool log file specified
by the set_messages command and is appended with the core ID.
The following example specifies a log file called diag.log:

set_messages –log diag.log –replace –level expert

When you specify parallel diagnostics to usemultiple cores, separate diagnosis log files are
created for each core, as shown in the following example:

diag.log.1
diag.log.2
diag.log.3
diag.log.4

Parallel Diagnostics 21-26

TetraMAX ATPG User Guide K-2015.06-SP4

Each datalog file is processed for a different slave core, as specified in the tool log file:

run_diagnosis datalogs/ff_*.log
Perform diagnosis with 100 failure files.
 Starting parallel processing with 4 processes.
 --
 Failure file >> output log
 ------------------------------------ ------------------------
 datalogs/ff_100.log diag.log.1
 datalogs/ff_101.log diag.log.2
 datalogs/ff_102.log diag.log.3
 datalogs/ff_103.log diag.log.4
 datalogs/ff_104.log diag.log.4
 datalogs/ff_105.log diag.log.2
 datalogs/ff_106.log diag.log.3
 datalogs/ff_107.log diag.log.1
 ...
--
 End parallel diagnosis: Elapsed time=14.33 sec, Memory=596.61MB.
 Processes Summary Report
--

In the last example, the total memory consumed by parallel diagnostics is 596.61MB and the
total elapsed runtime is 14.33 seconds.

A slave core diagnosis log file is similar to a single core diagnosis log file. The following example
is an excerpt from the diag.log1 file:

==
Performing diagnosis with failure file datalogs/ff_100.log
Diagnosis will use 2 chain test patterns.
Check expected data completed: 196463 out of 196463 failures were
checked
Failures for COMPRESSOR patterns
--
pattern chain pos# output pin_names
------- -------- ---- --------------------------
0 41 0 OUT_0 OUT_1 OUT_5
0 41 3 OUT_0 OUT_1 OUT_5
0 41 4 OUT_0 OUT_1 OUT_5
0 41 7 OUT_0 OUT_1 OUT_5
0 41 8 OUT_0 OUT_1 OUT_5
0 41 11 OUT_0 OUT_1 OUT_5
0 41 12 OUT_0 OUT_1 OUT_5
0 41 15 OUT_0 OUT_1 OUT_5
0 41 16 OUT_0 OUT_1 OUT_5
0 41 19 OUT_0 OUT_1 OUT_5

datalogs/ff_100.log scan chain diagnosis results: #failing_
patterns=400
--

Parallel Diagnostics 21-27

TetraMAX ATPG User Guide K-2015.06-SP4

defect type=stuck-at-1
match=100.00% chain=41 position=214 master=CORE_U1/vys2/U_L0/U_
FONTL/FF_pp1_reg_1_ (FSDX_1)
CPU_time=1.25 #sim_patterns=10 #sim_failures=5001
--
YDF Candidates Schema with 0 entries retrieved. ----------------

Following physical data tables generated for all elements:
- EDCT
CPU_time: 0.00 sec
Memory Usage: 0MB
--
Performing diagnosis with failure file datalogs/ff_107.log
Diagnosis will use 2 chain test patterns.
Check expected data completed: 157974 out of 157974 failures were
checked
Failures for COMPRESSOR patterns
...

You can specify the -level expert option of the set_messages command to produce a
parallel processing summary report for each core after the run_diagnosis command
process is completed:
Process Patterns Time(s) Memory(MB)
------- -------- ---------------- -----------------------------
ID pid External CPU Elapsed Shared Private Total Pattern
--
0 3449 401 0.09 14.33 296.45 0.14 296.59 1.81
1 3461 0 14.20 14.32 251.91 75.18 327.10 0.00
2 3462 0 8.71 8.80 251.93 70.98 322.91 0.00
3 3463 0 10.66 10.77 251.94 72.02 323.9 0.00
4 3464 0 10.81 10.98 251.96 81.84 333.80 0.00
Total 401 44.47 14.33 296.45 00.17 596.61 1.81

--

Note: In this example, the total memory usage for running parallel diagnostics is less than
600MB. However, runningmultiple TetraMAX sessionswould require almost 1.2GB.

Parallel Diagnostics Limitations
The run_diagnosis command checks out one Test-Diagnosis license key and one Test-
Faultsim license key for each process enabled by the set_diagnosis -num_processes
command. The run_diagnosis command issues a warningmessage if the number of
specified failure data files is less than the number of enabled processes.
Note the following restrictions and limitations:

l If you specifymore cores than the number of datalogs to be analyzed, the enhanced
performance provided by parallel diagnostics is compromised because parallelization is
applied to each datalog.

Parallel Diagnostics 21-28

TetraMAX ATPG User Guide K-2015.06-SP4

l For small designs youmight not see a significant performance improvement, especially if
diagnosis for a single datalog takes only a few seconds.

l There is currently nomethod available for redirecting the diagnosis log into an independent
file for each datalog. All datalogs processed in a specific slave core are appended into a
single file.

Understanding the Diagnosis Report
The run_diagnosis command produces a report used for diagnosing failing devices. This
format for this report depends on the settings youmake using either the set_diagnosis or
run_diagnosis commands.

This section describes the following diagnosis report formats:

l Standard Format
l DFTMAX Format
l Verbose Format
l Standard Report with Net Data
l Standard Report with Composite Fault Model Data
l Stuck-Open Faults in Subnets Report
l PHDS Physical Diagnosis Report
l Scan Chain Diagnosis Format

Standard Format
The following example shows a typical diagnosis report produced by the run_diagnosis
-display command. In this case, the -display option enables you to also graphically

display the diagnosis results in the schematic viewer of the TetraMAX GUI, as shown in Figure
1.
TEST-T> run_diagnosis /project/mars/lander/chipA_failure.dat \

-display
Diagnosis summary for failure file /project/mars/lander/chipA_
failure.dat
#failing_pat=4, #failures=5, #defects=2, #faults=3, CPU_time=0.05
Simulated : #failing_pat=4, #passing_pat=35, #failures=5

Fault candidates for defect 1: stuck fault model, #faults=1,
#failing_pat=3,
#passing_pat=36, #failures=3

match=100.00%, #explained patterns: <failing=3, passing=36>
sa1 DS de_d/data3_reg_0_/Q (S003)
sa1 -- de_d/U211/A (SELX2)
--
Fault candidates for defect 2: stuck fault model, #faults=2,

Understanding the Diagnosis Report 21-29

TetraMAX ATPG User Guide K-2015.06-SP4

#failing_pat=2,
#passing_pat=37, #failures=2
--
match=100.00%, #explained patterns: <failing=2, passing=37>
sa1 DS de_encrypt/C264/U36/O (L434ND)
sa0 -- de_encrypt/C264/U36/I1 (L434ND)
sa0 -- de_encrypt/C264/U36/I2 (L434ND)
sa0 -- de_encrypt/C264/U28/O (L434ND)
sa1 -- de_encrypt/C264/U26/I2 (L434ND)

match=50.00%, #explained patterns: <failing=1, passing=37>
sa1 DS de_encrypt/C264/U28/I1 (L434ND)

This example shows that the four failing patterns in the failure log file were resolved to two
defects. The first defect came from three failing patterns and was resolved to one fault location
and its fault-equivalent location. The second defect came from two failing patterns and was
resolved to two fault locations. The first fault location has a 100 percent match score and has
four faults-equivalents. The second fault location of the second defect has a 50 percent match
score.
The fields in this report are described as follows:
#failing_patterns

This field identifies the total number of failing patterns in the failure file. A
pattern is assumed to include both a measure of all POs and an unload of the
scan chain.

#failures
Located in the main header, this field identifies the number of failures in the
failure log file. In each defect's header, it shows the number of failures the
candidates in that defect caused.

#defects
This field indicates the number of different defects that appear to be causing
the failures.

#faults
Indicates the number of collapsed faults. In the main header, it indicates the
total number of faults. In each defect's header, it shows the number of faults in
that defect group.

Simulated : #failing_pat=, #passing_pat= #failures
Displays the number of failing and passing patterns that were simulated, and
the number of failures in the simulation.

Fault candidates for defect : <> fault model
The header for each defect displays the fault model used for that defect group.
Then, there is the list all the fault candidates for a given defect. The fault list is
given in the following format:

l First column: fault type. It could be sa0 for stuck-at-0 or sa1 for stuck-at-1.
l Second column: detection technique. It could be: “DS” (detected by simulation). This is
the representative fault. “- -”. This is an equivalent fault.

Understanding the Diagnosis Report 21-30

TetraMAX ATPG User Guide K-2015.06-SP4

l Third column: fault location (pin pathname)
l Fourth column: module name of the defective cell.

match=%
This indicates the match score of the set of fault candidates based on how well
they match the defective device response on the tester.

#explained pattern: <failing: , passing:>
This indicates the number of failing and passing patterns that are explained
with the fault candidate.

If logic diagnostics fails to find any candidates, the report appears as shown in the following
example:
#failing_patterns=7, #defects=0, #unexplained_fails=7, CPU=19.56

 Unexplained pattern list:
 3 6 8 12 13 25 67

 No candidate because all failing patterns are unexplained.

By using the -display option of the run_diagnosis command or by checking the Display
Results in Viewer check box in the RunDiagnosis dialog box, you can display the instances and
fault locations graphically, as shown in Figure 1. For this schematic, the pin display data format
has been set to Fault Data, where the format is stuck-at-0/stuck-at-1.

Figure 1 Diagnosis Data DisplayedGraphically

You can identify each of the defect locations by the DS (detected by simulation) code on the pin
corresponding to either a fault site or a fault equivalent. The DS notationmarks all potential fault
sources that could cause the same failing data pattern. The notationDS/-- indicates that a stuck-
at-0 fault at that point in the design would cause the failure, and the notation --/DS indicates that

Understanding the Diagnosis Report 21-31

TetraMAX ATPG User Guide K-2015.06-SP4

a stuck-at-1 at that point in the design would cause the failure. TetraMAX ATPGshows all
potential failure sites that would cause the same failure data patterns.
In this example, the diagnosis by TetraMAX ATPG finds two independent areas of failure in the
design. The graphical schematic viewer (GSV) display of Figure 1 shows the two corresponding
independent groups of logic. According to the diagnosis, the faulty circuit location for each failure
is displayed along the path.

DFTMAX Format
When the diagnosis is run for DFTMAX patterns, the report includes in its header a section that
displays themapping of the failures. This report is an intermediate report and is not intended to
be a complete report. It includes only those cases that have a unique choice during the first
phase of DFTMAX failuremapping procedure.
To print a completemapping report, you have to use the run_diagnosis -only_report_
failures command or the set_diagnosis -mapping_report command. The format of
the later report is explained in “Understanding the FailureMapping Report." The format of -
only_report_failures is documented in the description of the run_diagnosis
command. You should use this report because it is short and easy to understand.
The following example shows how this additional section appears in the diagnosis report:
--
 pattern chain pos# output pin_names
 ------- ---------------- ---- -----------------------------------
 9 1 4 test_so1 test_so2 test_so3
 14 1 3 test_so1 test_so2 test_so3
 15 1 4 test_so1 test_so2 test_so3
 48 1 4 test_so1 test_so2 test_so3
 52 1 4 test_so1 test_so2 test_so3

 Failure mapping completed: #failing_pats=5, #skipped_pats=0,
#masked_cycles=0, CPU_time=0.00

This section includes a header which describes the column printed after it. The failuresmapping
results are printed next, followed by a failuremapping one line summary.
The columns are described as follows:

l pattern -- the failing pattern number
l chain -- the failing scan chain
l pos# -- the failing scan shift present in the failures log file
l output pin_names -- the names of the output pins where the failures are observed

The default number of failures reported are 10. You can change this by running the command
set_diagnosis -max_report_failures <N>.
The failuremapping one-line summary shows the number of failing patterns that were
processed (#failing_pats). When failures for a particular cycle could not bemapped back,
the #masked_cycles is incremented. In the previous example, no cycle has beenmasked.
When toomany cycles per pattern aremasked, the entire pattern is skipped. This is indicated by
the #skipped_pats. In the previous example, no pattern has been skipped by themapping

Understanding the Diagnosis Report 21-32

TetraMAX ATPG User Guide K-2015.06-SP4

process.When #masked_cycles and #skipped_pats are equal to 0, this is an indicator
that themapping step of the diagnosis is doing a good job.
When tail pipeline registers are present, the failures log file indicates the scan cell indexwhich is
failing + N, where N is the depth of the tail pipeline register. Then, the column pos# in the
previous report is not the failing scan cells index. To precisely determine the failing scan cell
index, execute the command run_diagnosis <failure_log> -only_report_
failures.

Verbose Format
When the -verbose option is used for either the set_diagnosis or run_diagnosis
commands, additional information is added to the report. An example is as follows:
#failing_pat=15, #failures=17, #defects=2, #faults=8, CPU_
time=0.01
Simulated : #failing_pat=15, #passing_pat=36, #failures=17
--
Fault candidates for defect 1: stuck fault model, #faults=1,
#failing_pat=14, #passing_pat=37, #failures=14
Observable points:
782
--
Explained pattern list:
2 16 20 21 23 25 34 37 38 39 40 45 47 49
--
match=100.00%, (TFSF=14/TFSP=0/TPSF=0), #perfect/partial match:
<failing=14/14, passing=37>
sa0 DS mic0/pc0/add_247/U41/Z (ND2I)
sa0 -- mic0/pc0/add_247/U40/B (ENI)

In addition to the standard report, the verbose report contains the following information:
l Observable points—The list of gate IDs in which the failures generated by all fault
candidates from this defect group occurred.

l Explained pattern list—The list of the all patternswhich could be explained by
all fault candidates from this defect group. Some fault candidates in the same defect could
explain some patterns and other candidate other patterns. But the list is the union of all
explained patterns.

l TFSF=N1/TFSP=N2/TPSF=N3—These are thematch score components. See run_
diagnosis –rank_fault for more details.

l #perfect/partial match: <failing=N1/N2, passing=N3> —This data
indicates the number of failing patterns that are perfectly or partially explained by the fault
candidate. A perfect matchmeans that the failures observed on the tester are perfectly
matching (without any other failure either in simulation or on the tester). It also indicates the
number of passing patterns that are explained with the fault candidate.

Understanding the Diagnosis Report 21-33

TetraMAX ATPG User Guide K-2015.06-SP4

Standard Report with Net Data
If you specify the -report_net_data d option of the set_diagnosis command, the
diagnosis report includes the output of report_nets command for each candidate. An
example is shown in the following example.
 #failing_pat=13, #failures=13, #defects=1, #faults=1, CPU_time=-
0.00
 Simulated : #failing_pat=13, #passing_pat=20, #failures=13
 --
 Fault candidates for defect 1: stuck fault model, #faults=1,
#failing_pat=13, #passing_pat=20, #failures=13
 Observable points:
 646
 --
 match=100.00%, (TFSF=13/TFSP=0/TPSF=0), #perfect/partial match:
<failing=13/13, passing=20>
 sa0 DS mic0/pc0/U69/Z (IV2)
 progcount_test_1/n34 _INTERN ()
 I \prog_counter_q_reg[1]/D
 O U69/Z
 sa1 -- mic0/pc0/U69/A (IV2)
 progcount_test_1/n79 _INTERN ()
 O U68/Z
 I U69/A
 sa1 -- mic0/pc0/U68/Z (MX1T)
 progcount_test_1/n79 _INTERN ()
 O U68/Z
 I U69/A
 sa0 -- mic0/pc0/\prog_counter_q_reg[1]/D (DFF2)
 progcount_test_1/n34 _INTERN ()
 I \prog_counter_q_reg[1]/D
 O U69/Z

In this example, the representative fault candidate is a stuck-at-0 fault on the instance
mic0/pc0/U69/Z. The net information displayed as a result of running the following
command: report_nets n34 -module progcount_test_1. The report indicates that
the net n34 is of type _INTERN (connect internal pins) and inmodule progcount_test_
1 it connects the output of instance U69/Zand the input of instance \prog_counter_q_reg
[1]/D.
The same type of information is then given for the three remaining equivalent fault candidates.

Standard Report with Composite Fault Model Data
You can use the -composite option of the set_diagnosis command to perform amore
precise fault ranking using complex fault models, such as bridging or transition faults. Composite
fault types are based on TetraMAX ATPGcomponent fault types. They are only used in a

Understanding the Diagnosis Report 21-34

TetraMAX ATPG User Guide K-2015.06-SP4

diagnosis report to better describe the observed behavior of a defect on the tester. If such defect
behavior is observed, the logic diagnosis engine used in standard flow will report the composite
fault by default. For the ranking flow, TetraMAX diagnostics ranks only component fault types.
The composite fault types are as follows:

l sa01—The fault location can behave as a stuck-at 0 on some patterns and a stuck-at 1
on others. This could be a coupled open defect or a bridge type defect. On nets with fanout
branches, it is possible for this fault type to appear as stuck-at 0 on some patterns and
stuck-at 1 on others. For ranking, this fault model can produce optimistic scores.

l strf—The fault location can cause a delay on both rising and falling transitions (slow-to-
rise-fall). The traditional fault models of str and stf are unidirectional.

l bAND or bOR—The defect location behaves as a wired-AND or wired-OR type bridge.
Both nodes of the bridging fault are simulated and reported.

l bDOM—The defect location behaves as the victim node of a dominant bridge. Ranking
scores are based on the fault simulation at the fault site for failing and passing patterns.
Thismight result in optimistic ranking scores since thismodel alwaysmatches the tester for
passing patterns. The scores are optimistic only when the aggressor is unknown. Only the
victim node is reported.

The following example report show how the diagnosis report appears with composite fault
model data:
 #failing_pat=6, #failures=20, #defects=4, #faults=5, CPU_
time=0.44
 Simulated : #failing_pat=6, #passing_pat=75 #failures=23

 Fault candidates for defect 1: stuck fault model, #faults=1,
#failures=2

 match=100.00%, #explained patterns: <failing=2, passing=72>
 sa01 DS ENC/I_RC/U1569/B (and2c3)
 --
 Fault candidates for defect 2: transition fault model, #faults=1,
#failures=1

 match=100.00%, #explained patterns: <failing=1, passing=73>
 str DS ENC/I_RC/U1685/Y (inv1a3)
 stf -- ENC/I_RC/U1685/A (inv1a3)
 --
 Fault candidates for defect 3: stuck fault model, #faults=2,
#failures=2

 match=100.00%, #explained patterns: <failing=2, passing=72>
 sa0 DS ENC/I_RC/U1697/Y (inv1a3)
 sa1 -- ENC/I_RC/U1697/A (inv1a3)
 sa0 DS ENC/I_RC/U2074/B (ao4f3)
 --
 Fault candidates for defect 4: bridging fault model, #faults=1,
#failures=1

 match=33.33%, #explained patterns: <failing=1, passing=71>

Understanding the Diagnosis Report 21-35

TetraMAX ATPG User Guide K-2015.06-SP4

bAND DS ENC/I_RC/U1685/Y ENC/I_RC/U1697/Y (inv1a3)

#failing_patterns
This indicates the total number of failing patterns in the failure file. A pattern is
assumed to include both a measure of all POs and an unload of the scan chain.

#failures
In the main header, shows the number of failures in the failure log file. In each
defect's header, it shows the number of failures the candidates in that defect
caused.

#defects
This indicates the number of different defects that appear to be causing the
failures.

#faults
Indicates the number of collapsed faults. In the main header, it indicates the
total number of faults. In each defect's header, it shows the number of faults in
that defect group.

Simulated : #failing_pat=, #passing_pat= #failures
Displays the number of failing and passing patterns that were simulated, and
the number of failures in the simulation.

Fault candidates for defect : <> fault model
The header for each defect displays the fault model used for that defect group.
Then, there is the list all the fault candidates for a given defect. The fault list is
given in the following format:
l First column: fault type.
l Second column: detection technique. It could be: “DS” (detected by simulation). This is the
representative fault. “- -”. This is an equivalent fault.

l Third column: fault location (pin pathname)
l Fourth column: module name of the defective cell.

match=%
This indicates the match score of the set of fault candidates based on how well
they match the defective device response on the tester.

Fault types:
sa01:

Fault location behaves like a sa0 on some patterns, and a sa1 on others. This
could be a coupled open or a bridge type defect.

strf:
Fault location can cause a delay on both rising and falling transitions (slow-to-
rise-fall).

bAND or bOR:
The defect location behaves as a wired AND or wired OR type bridge. Examples
are provided below:

match=100.00%, (TFSF=15/TFSP=0/TPSF=0), #perfect/partial

Understanding the Diagnosis Report 21-36

TetraMAX ATPG User Guide K-2015.06-SP4

match: <failing=15/15, passing=31>
bAND DS mic0/pc0/add_247/U14/Z (ENI) mic0/alu0/U89/Z
(ND2I)
--
match=100.00%, (TFSF=24/TFSP=0/TPSF=0), #perfect/partial
match: <failing=24/24, passing=51>
bOR DS mic0/pc0/add_238/U76/Z (ENI) mic0/alu0/U12/Z
(ND2I)

Note that both nodes of the bridge are reported. The library cells are also
provided in parenthesis.

bDOM:
The defect location behaves as the victim node of a dominant bridge.
By default, only the victim node is reported. An example is as follows:

match=100.00%, (TFSF=24/TFSP=0/TPSF=0), #perfect/partial
match: <failing=24/24, passing=56>
bDOM DS mic0/pc0/add_233/U39/Z (ND2I)
bDOM -- mic0/pc0/add_233/U26/A (AN2I)

However, if the likely bridging pairs or ranking flow is used, then both nodes
can be included in the report. An example is provided below:

match=100.00%, (TFSF=75/TFSP=0/TPSF=0), #perfect/partial
match: <failing=75/75, passing=92>
bDOM DS mic0/pc0/add_233/U39/Z (ND2I) mic0/alu0/U16/ZN
(INV2I)

Note that the library cells are provided in parenthesis.
The following example shows how stuck-open faults in the diagnosis subnets report:

 #--
 # Defect 1: stuck fault model, #faults=1, #failing_pat=6,
#passing_pat=14,#failures=35
 #--
 # match=100.00%, #explained patterns: <failing=6, passing=14>
 # sa01 DS top/i_p0/E (mx2a3)
 # subnet_id=2

Note that the first line in the previous example describes the fault type (sa01) and the net driver
(top/i_p0/E). Then, subnet_id= is the subnet id where the defect could be.

PHDS Physical Diagnosis Report
 TEST-T> run_diagnosis fail_56.log
 Setting top-level physical design name to 'RISC_CHIP'

Understanding the Diagnosis Report 21-37

TetraMAX ATPG User Guide K-2015.06-SP4

 Check expected data completed: 241 out of 241 failures were
checked
 Diagnosis summary for failure file fail_56.log
 #failing_pat=30, #failures=241, #defects=1, #faults=1, CPU_
time=1.08
 Simulated : #failing_pat=30, #passing_pat=96, #failures=194

 Defect 1: stuck-at fault model, #faults=1, #failing_pat=30,
#passing_pat=96, #failures=241
 Observable points:
 1693 1687 1696 1699 1672 1530 1529
 --
 Explained pattern list:
 40 41 47 48 50 51 54 55 58 59 67 69 70 71 72 73 77 78 79 80 85
88
 92 93 94 95 97 98 99 101
 --
 match=100.00%, #explained patterns: <failing=30, passing=96>
 sa01 DS I_RISC_CORE/I_ALU/U14/ZN (inv0d1)
 Pin_data: X=747110 Y=652790, Layer: METAL (38)
 Cell_boundary: L=746115 R=747345 B=650175 T=653865
 Subnet_id=4
 --
 Total Wall Time = 22.97 sec PHDS Query Time = 22.13 sec
 PHDS queries: subnets(added/total)=10/40 bridges(added/total)
=28/58

The PHDS physical diagnosis report includes the physical location of the failing pin and cell.

Where:

Pin_data:

l X is the horizontal coordinate of one of the vertices of the pin associated with the location of
the fault candidate.

l Y is the vertical coordinate of one of the vertices of the pin associated with the location of
the fault candidate.

l Layer is the physical layer where the pin object is defined.
Cell_boundary:

l L is the horizontal coordinate of the leftmost boundary of the cell identified with the fault
candidate.

l R is the horizontal coordinate of the rightmost boundary of the cell identified with the fault
candidate.

l B is the vertical coordinate of the bottommost boundary of the cell identified with the fault
candidate.

l T is the vertical coordinate of the topmost boundary of the cell identified with the fault
candidate.

Understanding the Diagnosis Report 21-38

TetraMAX ATPG User Guide K-2015.06-SP4

Also note that the performance data in the PHDS diagnosis report is slightly different than the
standard diagnosis report:

l TheCPU_time is strictly the time that TetraMAX is active. This time does not include the
PHDS query time. In the previous example, the CPU_time is approximately 1 second,
even though the diagnosis run took almost 23 seconds.

l The PHDS diagnosis report includes the wall time and the time it takes to query the PHDS
database during diagnosis.

l The second line in the report displays the number of extracted subnets and the number of
bridge pairs queried in the PHDS database compared to the total number of subnets and
bridging pairs identified during the previous diagnosis run. This data helps you identify any
matching issues between the logical and physical names during diagnosis.

l The subnets and bridges extracted during a diagnosis run are displayed as “added”. The
“total” includes subnets and bridges extracted in previous diagnosis runs. For example, if
the next diagnosis run extracts 10 subnets and 22 bridges, the second line appears as
follows:
PHDS queries: subnets(added/total)=10/50 bridges(added/total)
=22/80

Scan Chain Diagnosis Format
fail.log scan chain diagnosis results: #failing_patterns=79

 defect type=stuck-at-1
 match=100% (TFSF=500/TFSP=0/TPSF=0) chain=c0 position=178
master=CORE/c_rg0 (46)
 match=100% (TFSF=500/TFSP=0/TPSF=0) chain=c0 position=179
master=CORE/c_rg2 (57)
 match= 98% (TFSF=500/TFSP=10/TPSF=0) chain=c0 position=180
master=CORE/c_rg6 (54)
 CPU=0.26 #sim_patterns=57 #sim_cells=64

#failing_patterns
Indicates the total number of failing patterns in the failure file.

defect type
The predicted type of defect. It could be stuck-at, slow-to-rise, slow-to-fall,
fast-to-rise, or fast-to-fall.Note: The polarity of the reported defect affects
the scan output of the top candidate for each scan chain. It is not necessarily
the same for all scan cells because an inverter might be present in the scan
path. The exact polarity can be retrieved using the Tcl API.

match
A percentage score that measures how well failures seen on the tester match a
simulated chain defect at that location. The components of the match score
(TFSF, TFSP, TPSF) calculation are displayed in the verbose report.

chain

Understanding the Diagnosis Report 21-39

TetraMAX ATPG User Guide K-2015.06-SP4

Indicates the chain name where the defect is diagnosed.
position

Indicates the position in the chain where the defect is diagnosed.
master

Indicates the scan cell instance name of the diagnosed defect.

Next, follow these performance indicators:
CPU

Indicates the CPU time of the chain diagnosis run.
#sim_patterns

Indicates the number of patterns used during the chain diagnosis simulation.
#sim_cells

Indicates the number of cells used during the chain diagnosis simulation.
The chain diagnostics can also appear as follows:
./failures/fail8g16.log scan chain diagnosis results: #failing_
patterns=1
 --
 Warning: Insufficient data to locate stuck-at-0 fault in chain
48.
 --

This example reports that the number of failures contained in the failures log file is sufficient to
determine the behavior and the chain name of the fault candidate. But it fails to accurately locate
the failing scan cells. More failures are needed.
The report can also appear as follows:
./failures/fX7.log scan chain diagnosis results: #failing_
patterns=1
 --
 Scan chain diagnosis failed to identify any fault candidate.
 --

This example indicates that the scan chain diagnostics failed to find a fault candidate that match
the failures seen on the tester.

Understanding the Diagnosis Report 21-40

22
Using Physical Data for Diagnostics
Physical diagnostics provides significantly higher defect isolation accuracy and precision than
standard scan diagnostics, and improves the effectiveness of volume diagnostics.
Using a PHDS (Physical Data Store) database, TetraMAX ATPGcan dynamically extract likely
bridging pairs, subnet information, and layout data for the diagnostics fault candidates during the
diagnostics process. TetraMAX ATPGcan also produce a dedicated physical diagnostics report
that includes full physical descriptions of all diagnostics candidates organized by data type.

The following sections describe how to use physical data to perform diagnostics:
l Physical Diagnostics Flow Overview
l Using TetraMAX to Create a PHDS Database
l Reading a PHDS Database
l NameMatching Using a PHDS Database
l Setting Up and Running Physical Diagnostics
l Static Subnet Extraction Using a PHDS Database
l Writing Physical Data for Yield Explorer

22-1

TetraMAX ATPG User Guide K-2015.06-SP4

Physical Diagnostics Flow Overview
You can use Yield Explorer or TetraMAX ATPG to create a PHDS database used for physical
diagnostics. After loading a PHDS database into the data access process (DAP) server or the
data access server (DAS), you can use TetraMAX ATPG to extract the physical information and
perform diagnostics.

Figure 1 Flows for Using a PHDS Database for Physical Diagnostics

Physical Diagnostics Flow Overview 22-2

TetraMAX ATPG User Guide K-2015.06-SP4

Note the following:
l For information on creating a PHDS database using Yield Explorer, see theYield Explorer
User Guide.

l For information on creating a PHDS database using TetraMAX, see the "Using
TetraMAX to Create a PHDS Database" section.

See Also
Reading a PHDS Database

Using TetraMAX to Create a PHDS Database
To create a PHDS database, you need access to all the LEF/DEF files relevant to the partition of
the design on which you are performing diagnostics. Although you can extract a physical
database for an incomplete LEF/DEF set, you can only perform logical diagnostics for the blocks
associated with anymissing files. This is expected behavior in some cases, such as for
memories or hardened IP.

In addition to the design LEF/DEF files, a technology file (commonly referred to as a "techlef") is
usually required. This file contains a description of the physical properties of the design (metal
layers, routing grid, etc.). The information in the technology LEF file is sometimes included
directly in the design LEF files. If you include the string "tech" (case insensitive) in the name of
the file (for example, "technology.lef" or “any.tech.lef.gz”), the file is automatically recognized as
a technology file. You can also use the set_physical_db –technology_lef_file
command to specify the technology file name.

Translating a LEF/DEF Database into a PHDS Database
The following steps describe how to translate a LEF/DEF database into a PHDS database for
use in TetraMAX ATPG:

1. Specify the locations of the LEF and DEF directories.
set_physical_db -lef_directory ./lef -def_directory ./def

The LEF and DEF directories can bemerged, if necessary.
2. Specify the name of the top-level DEF file.

set_physical_db -top_def_file top_design.def

You can use any name for the top_design.def file.

3. Specify the location of the output PHDS directory.
set_physical_db -database ./phds

4. Specify the name of the design associated with the LEF/DEF database that you want to
translate.

Using TetraMAX to Create a PHDS Database 22-3

TetraMAX ATPG User Guide K-2015.06-SP4

set_physical_db -device [list DES 4]

You can use any name regardless of the actual design name. The -device option also
requires that you specify the device version (in the example, 4 is used).

5. Create the PHDS database.
write_physical_db -replace -verbose

This command translates the LEF/DEF database into the specified PHDS database (the
phds directory is used in the example). Youmust use the -replace option to overwrite
any previously loaded device with same name and version.

After the PHDS database is created, a confirmationmessage appears, as shown in the
following example:

Writing Physical Database...
LEF input directory : ./lef
DEF input directory : ./def
Top DEF file name : top_design.def
PHDS output directory: ./phds
Device name : DES
Device version : 4
Successfully created Physical Database.

You can specify the -verbose option of the write_physical_db command to create the
following detailed reports of the PHDS creation process:

l Log file from the LEF/DEF loader: phds/server/log/di/trn
l Log file from the PHDS loader: phds/server/log/di/array

The PHDS loader is amultithreaded process. By default, it uses four cores: one core is used for
themain process and three cores are used to load a subset of the data.

See Also
Physical Diagnostics Flow Overview
Reading a PHDS Database
Setting Up and Running Physical Diagnostics

Reading a PHDS Database
TetraMAX ATPGcan use a PHDS database to perform dynamic extraction of likely bridging
pairs, subnet information, and layout data for the diagnostic fault candidates.

This section describes how to set up a PHDS database for use in TetraMAX ATPG. The initial
setup steps for the flow are different depending on whether you use Yield Explorer or
TetraMAX ATPG to create a PHDS database. Figure 2 shows how to read a PHDS database.

Reading a PHDS Database 22-4

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 2: Reading a PHDS Database for Physical Diagnosis

The following sections describe how to use TetraMAX ATPG to read a PHDS database for
physical diagnosis:

l Starting and Stopping the DAP Server Process
l Setting Up a Connection to the PHDS Database

See Also
Using TetraMAX to Create a PHDS Database
Setting Up and Running Physical Diagnostics

Starting and Stopping the DAP Server Process
TheDAP (Data Access Process) server process is used to access a PHDS database created by
TetraMAX ATPG. Youmust start this process before you can access and query a PHDS
database created by TetraMAX ATPG.

Reading a PHDS Database 22-5

TetraMAX ATPG User Guide K-2015.06-SP4

A PHDS database created by Yield Explorer is stored on a DAS (Data Access Server) server. In
this case, you do not need to start the DAP server process. Instead, your next step is establish a
connection to the PHDS database (see the "Setting Up a Connection to the PHDS Database"
section).

To start the DAP server process:

1. Identify the location of the PHDS database.
set_physical_db -database ./phds

2. Specify any available port on the host in which TetraMAX ATPG is currently running.
set_physical_db -port_number 9990

The default, 9998, is used if this command is not specified.

3. Start the data access process.
open_physical_db

When the DAP server process starts, the followingmessage prints:

Starting Data Access Process...
Hostname : ighost101
Port Number : 9990
Physical Database Directory: ./phds
Successfully started Data Access Process.

If the process is already running, you will see the followingmessage:
Starting Data Access Process...
Hostname : ighost101
Port Number : 9990
Physical Database Directory: ./phds
Data Access Process is already running.

To stop the DAP server process, specify the close_physical_db command:
BUILD-T> close_physical_db
Stopping Data Access Process...
Hostname : ighost101
Port Number : 9990
All kernel objects removed. Exiting the process...
Successfully stopped Data Access Process.

The PHDS database created from TetraMAX ATPGuses the DAPListener process. To keep
the server process alive, make sure you exit the current TetraMAX session. The DAPListener
process halts if TetraMAX ATPG runs in the background. You can perform this operation from
any TetraMAXmode (BUILD, DRC or TEST).

Reading a PHDS Database 22-6

TetraMAX ATPG User Guide K-2015.06-SP4

Setting Up a Connection to the PHDS Database
Before performing physical diagnostics, youmust establish a connection between the
TetraMAX logical image and the PHDS database. To create this link:

1. Make sure the appropriate design image is loaded in DRC or TESTmode in your current
TetraMAX session.
TEST-T> read_image i044_image.dat

2. Use the set_physical_db command to identify the hostname and port number of the
PHDS server containing the PHDS database.
TEST-T> set_physical_db -hostname ighost101 -port_number 9990

 Setting host name ('ighost101') for physical connection.
 Setting port number ('9990') for physical connection.
 Connecting to physical database.
 Successfully connected to physical database.
 Available Devices:

 DES 1
 DES 2
 DES 3
 DES 4
 TST 1

If the connection is successful, a list of available devices is printed, as shown in the
example.

Note: You should always specify the port number when connecting to an existing DAP.
The default is not used in this case.

3. If you are using anOracle-based PHDS database created by Yield Explorer, youmust
include a user name and password to establish a connection.
TEST-T> set_physical_db -hostname ighost101 \
 -port_number 9990 -user tester -password safe1234
 Setting user name ('tester') for physical connection.
Setting password ('safe1234') for physical connection.
 Setting host name ('ighost101') for physical connection.
 Setting port number ('9990') for physical connection.
 Connecting to physical database.
Successfully connected to physical database.
 Available Devices:

 DES 1
 DES 2
 DES 3
 DES 4
 TST 1

Reading a PHDS Database 22-7

TetraMAX ATPG User Guide K-2015.06-SP4

4. Use the -device option of the set_physical_db command to specify the current
device and version.
TEST-T> set_physical_db -device "DES 4"
Connecting to physical database.
Successfully connected to physical database.
Setting device name ('DES') and device version ('4') for
physical connection.

5. Use the -top_design option of the set_physical_db command to specify the top-
level DEF design name.
TEST-T> set_physical_db -top_design top_def_design_name

Name Matching Using a PHDS Database
TetraMAX diagnostics uses physical informationmapped to logical instances to improve the
accuracy and precision of diagnosis callouts. After diagnosis, TetraMAX writes the physical
information for the diagnosis candidates for use in physical failure analysis. This process can be
compromised due to logical pin namesmismatching with the corresponding physical names in
the LEF/DEF database.

To resolve instance name conflicts, matching should be performed on the logical names from the
Verilog netlist to the physical names in the LEF/DEF database before running diagnosis. If the
logical names and physical namesmatch, namematching rules will be created for later use in
diagnosis. The following sections describe how to perform namematching for all instance pins
using a PHDS database:

l NameMatching Overview
l Understanding the NameMatching Coverage Report
l Reporting the NameMatching Coverage
l Using NameMatching for Diagnostics

Name Matching Overview
For standard physical diagnosis, TetraMAX diagnostics dynamically searches a PHDS
database andmatches logical candidate instance nameswith the corresponding physical names
using existing namematching rules. The namematching feature performs this namematching
process before running diagnosis. You can then create a set of rules to resolve name
mismatches in subsequent diagnosis runs.

To perform namematching, you use both the set_match_names and match_names
commands. The set_match_names command specifies the namematching rules you want to
apply, if any, and the match_names command prints a report of the namematching coverage.

For example, you can use the match_names command to create an initial namematching
report for a subset of instances. Next, you can use the set_match_names command to

Name Matching Using a PHDS Database 22-8

TetraMAX ATPG User Guide K-2015.06-SP4

specify the replacement of a specific instance prefix with another instance prefix from the
flattened logical instance names. You can then perform namematching again to generate a final
report that uses the preferred instance prefix.

The namematching report includes pin-level analysis data, hierarchical mismatch behavior, and
a namematch summary.

Understanding the Name Matching Coverage Report
The match_names command creates a namematching report that you can use to analyze the
matching of logical candidate instance nameswith the corresponding physical names.

The following example shows sample output for the match_names command:

TEST-T> match_names
Setting top level physical design name to 'RISC_CHIP'
 Performing Pin Level Analysis
 Matched 564 of 884 instance pins
 Checking for logical wrapper
 Checking for physical wrapper
 Checking for differences in the lowest hierarchy levels
 Performing Hierarchy Level Analysis
 Module Inst Count Matched Unmatched Unmatched Names
 ------------ ------------ ------- --------- --------------
 STACK_TOP 1 0 1 320

Name Match Summary

Number of instance names matched: 564
Number of mismatches found: 320
Percent Correct = 63.80%
CPU_time: 0.02 sec
Query_time: 2.61 sec
Total_time: 2.62 sec
Memory usage summary: 0MB
--
Closing connection to physical database.

Note the following sections of the sample report:

l Performing Pin Level Analysis—TetraMAX diagnostics attempts tomap every pin in
the design to its logical equivalent, and displays the total results.

l Checking for logical and physical wrappers—For the logical and physical wrappers,
TetraMAX diagnostics attempts to find the top-level hierarchies to explain mismatch
behavior.

l Checking for differences in the lowest hierarchy levels—TetraMAX diagnostics
attempts to explain mismatches at the lowest level hierarchies. Themodule level results
are displayed in descending order relative to the highest number of unmatched names
found. After reviewing this report, you should specify a series of set_match_names

Name Matching Using a PHDS Database 22-9

TetraMAX ATPG User Guide K-2015.06-SP4

commands to find the correct match for each name.
l Name Match Summary—This section summarizes the namematching results. It
contains the following fields:

l Number of instance names matched— indicates the number of logical names for
which an instance can be found.

l Number of mismatches found— indicates the number of logical names for which
nomatch was found.

l Percent Correct— indicates the final coverage of the namematching process

You can also use the -auto option of the set_match_names command to perform automatic
namematching to resolve hierarchy conflicts.

Reporting the Name Matching Coverage
TetraMAX diagnostics creates a coverage report that displays the success of the static name
matching process between the logical and physical names. The flow for this process is as
follows:

1. Start TetraMAX.
For details, see "Invoking TetraMAX."

2. Read the design image.
read_image design.img.gz

3. Connect to an existing PHDS database.
set_physical_db -hostname host01 -port_number 9998
set_physical_db -top_design top_design_name
set_physical_db -device [list "Device_name" "1"]

4. Use the match_names command to perform namematching for a subset of the
instances.
match_names -sample 1

This command reports namematching for 1% of the logical names.
5. Use the set_match_names command to specify the namematching rules, if needed.

set_match_names -sub_prefix [list "dut/" ""]

Note that the physical names include an extra level of hierarchy (dut/). The
set_match_names command removes this string from the physical names and finds a
match with the logical names.

6. Perform namematching again to get the final report.
match_names -sample 1

Name Matching Using a PHDS Database 22-10

TetraMAX ATPG User Guide K-2015.06-SP4

Using Name Matching Results for Diagnostics
You can use the namematching flow to identify logical to physical naming conflicts and create
appropriate namematching rules that you can use later in diagnostics. The flow consists of the
following steps:

1. Start TetraMAX.
For details, see "Invoking TetraMAX."

2. Read the design image.
read_image design.img.gz

3. Connect to an existing PHDS database.
set_physical_db -hostname host01 -port_number 9998
set_physical_db -top_design top_design_name
set_physical_db -device [list "Device_name" "1"]

4. Use the following command to automatically create the namematching rules (optional).
set_match_names -auto

5. Use the match_names command to perform namematching for all instances:
match_names

6. Use the following command to view the automatically createdmatch name rules
(optional):
report_settings match_names

7. Based on the remainingmismatches, use the set_match_names command to specify
the namematching rules , then rerun the match_names command, as shown in Step 5. .
set_match_names -sub_str [list "dut_0/" "DUT0/"]

8. Restart TetraMAX.
9. Read the design image.

read_image design.mapped.img.gz

10. Connect to an existing PHDS database.
set_physical_db -hostname host01 -port_number 9998
set_physical_db -top_design top_design_name
set_physical_db -device [list "Device_name" "1"]

11. Read the patterns into an external buffer.
set_patterns -external design.pat.bin.gz

12. Define the namematching rules. For example:
set_match_names -sub_prefix {top_i i_core}

13. Run the diagnosis
run_diagnosis design.datalogs

Name Matching Using a PHDS Database 22-11

TetraMAX ATPG User Guide K-2015.06-SP4

Setting Up and Running Physical Diagnostics
To perform physical diagnostics, you first need to extract the physical data structures from the
PHDS database. You can then perform diagnostics using the run_diagnosis command.

You can use the set_physical -tolerance command and the set_physical_db
-device command to specify a series of parameters for extracting specific types of data from
the PHDS database.

When extracting bridges, TetraMAX ATPGsearches and extracts neighbor nets based on a
default distance per layer tolerance. This tolerance ismeasured from the boundary of the net, as
shown in Figure 1.

Figure 1: Net Tolerance for Bridge Extraction

The tolerance distance is equal to the pitch if this data exists in the technology information. If not,
the default is 1000nm. You can determine the appropriate tolerance by analyzing technology
data, such as pitch distance. To set a tolerance level, use the
-tolerance option of the set_physical command.

Running Physical Diagnostics
The following steps describe how to set the extraction parameters from the PHDS database,
extract physical data, run physical diagnostics, and write the physical data for Yield Explorer:

1. Use the set_physical_db -device command to query the PHDS database for
technology information, including routing layers and tolerances for each layer.
set_physical_db -device [list "RISC" "1"]
 Connecting to physical database.
 Successfully connected to physical database.
 Setting device name ('RISC') and device version ('1') for
physical connection.
 Retrieving layers and tolerance values for device ('RISC')
and device version ('1')
 Layer Tolerance

Setting Up and Running Physical Diagnostics 22-12

TetraMAX ATPG User Guide K-2015.06-SP4

----- ---------
METAL 410
METAL2 410
METAL3 410
METAL4 515
METAL5 810
METAL6 970

2. If required, use the set_physical -tolerance command to specify a tolerance for
extracting neighbor nets for specific layers. Use the Tcl list syntax to specify each layer
and its tolerance setting, as shown in following example:
set_physical -tolerance [list METAL 50 METAL2 100 METAL3 200 \
 METAL4 300 METAL5 400]

3. Perform physical diagnosis on the PHDS database using the run_diagnosis
command. For example:
run_diagnosis /project/mars/lander/chipA_failure.dat

4. Use the write_ydf command to write the physical data, as shown in the following
example:
write_ydf chipA.ydf –candidate -append

When running physical diagnostics, TetraMAX ATPGdynamically retrieves the physical data
based on the instance names. If a match exists, TetraMAX ATPGaccesses the physical data.
You can also performmatch naming using the physical IDs created before running diagnostics.
For more information on this process, see "Static Subnet Extraction Using a PHDS Database."

See Also
Using TetraMAX to Create a PHDS Database
Reading a PHDS Database

Static Subnet Extraction Using a PHDS Database
You can improve the runtime for physical diagnostics by statically extracting subnet information
from a PHDS database before running diagnostics. The default flow, dynamic subnet extraction,
is performed during diagnostics. Static subnet extraction is only recommendedwhen you run
volume diagnostics on a large number of failing parts. Otherwise, the additional runtime required
for static extraction is greater than the total reduction in diagnosis runtimes.

The static subnet extraction flow consists of the following steps:

1. Start TetraMAX.
For details, see "Starting TetraMAX."

2. Read the logical image.
read_image original.img.gz

Static Subnet Extraction Using a PHDS Database 22-13

TetraMAX ATPG User Guide K-2015.06-SP4

3. Connect to an existing PHDS database.
set_physical_db -hostname host01 -port_number 9998
set_physical_db -top_design top_design_name
set_physical_db -device [list "Device_name" "1"]

4. Perform extraction of all subnet information. At the end of the extraction process, all
subnet data is saved in the TetraMAX database.
extract_nets -all

Only driver pins with more than two fanouts are extracted since they are the only pins with
subnets. Subnets from driver pins are extracted in groups of 500 tominimize server
overloading.

5. Report statistics, as needed, for the extracted subnets (optional).
The following example reports statistics for a design in which 286 nets have a subnet:
TEST-T> report_layout -summary
Subnets : #nets=286, #subnets=1191, max_subnets=51, memory=0MB
Subnets_distribution: <10(88.46%) <20(98.25%) <30(98.95%) <50
(99.65%)
<60(100.00%)
Receivers_per_net: <10(84.62%) <20(97.90%) <30(98.95%) <50
(99.65%)
<60(100.00%)

6. Write the physical image containing the subnet information.
write_image new.img.gz -compress gzip -replace

7. Exit TetraMAX.
exit

8. Start TetraMAX.
For details, see "Starting TetraMAX."

9. Read the physical image.
read_image new.img.gz

10. Connect to an existing PHDS database.
set_physical_db -hostname host01 -port_number 9998
set_physical_db -top_design top_design_name
set_physical_db -device [list "Device_name" "1"]

11. Set diagnostics to query only candidate physical information and bridging information.
set_diagnosis -use_phds [list candidates bridges]

12. PerformDiagnostics.
run_diagnosis fail.log

13. Exit TetraMAX.
exit

Static Subnet Extraction Using a PHDS Database 22-14

TetraMAX ATPG User Guide K-2015.06-SP4

Writing Physical Data for Yield Explorer
After completing the physical diagnostics process, you can write the diagnostics candidates, and
all related physical information, to a Yield Explorer Data Format (YDF) file. Yield Explorer uses
this file for volume diagnostics analysis.

To write physical data for Yield Explorer, specify the write_ydf command after each
run_diagnosis command. The write_ydf commandmust include the name of the YDF
file. You can specify this command using the -candidates option or without any options. For
example:

run_diagnosis /project/mars/lander/chipA_failure.dat
write_ydf top_chip.ydf -candidates

The write_ydf command prints the physical data for the diagnostics candidates in all tables in
the output YDF file. This data enables Yield Explorer to perform volume diagnostics analysis.
You should use the -replace option if you want to create a new file to store each diagnostics
candidate. You can use the -append option if you want to store all candidates in a single file.
The following example reports the physical data elements for the diagnostics candidates to a
single file:

write_ydf top_chip.ydf –candidates -append

By default, the write_ydf command does not write the chain definition table. To write this
table, which displays chain definition data for the entire database, youmust specify the
-chain_def option. You only need to write this table one time, as shown in the following
example:

write_ydf top_chip.chain_def.ydf –chain_def

Youmight prefer to write individual tables to a specific file. If you specify one or more physical
data options, TetraMAX ATPG reports only the physical data tables related to the specified
options.

If you specify the following example, TetraMAX ATPG reports only the physical data for the vias
and the LEFmacro cells in their respective tables:

write_ydf top_chip.ydf -replace -via -cell

See Also
Using TetraMAX to Create a PHDS Database
Reading a PHDS Database

Writing Physical Data for Yield Explorer 22-15

23
Bridging Fault ATPG
A bridging defect (also known as a short), is a common defect in semiconductor devices. This
defect causes two normally unconnected signal nets in a device to become electrically
connected due to extramaterial or incorrect etching.
These type of defects can be detected if one of the nets (the aggressor) causes the other net
(the victim) to take on a faulty value, which can then be propagated to an observable location.
Although there is a strong correlation between stuck-at coverage and bridging coverage, there is
no guarantee that a set of patterns generated to target stuck-at faults will achieve similar
coverage for a set of bridge faults.
The following sections describe the bridging fault model and fault simulation APTG flow:

l Detecting Bridging Faults
l Bridging Fault Flows
l Using StarRC to Generate a Bridge Fault List
l Bridging Fault Model Limitations
l Running the Dynamic Bridging Fault ATPGFlow

Note: Youwill need a Test-Fault-Max license to use this feature. This license is also checked out
if you read an image that was saved with the fault model set to bridging.

See Also
IDDQBridging

23-1

TetraMAX ATPG User Guide K-2015.06-SP4

Detecting Bridging Faults
The following sections describe how to detect bridging faults:

l How Bridging Faults Are Defined
l Bridge Locations
l Strength-Based Patterns

How Bridging Faults are Defined
TetraMAX ATPGdefines a bridging fault by type and a set of two nodes (which can be instance
pins or net names). The type is either bridging fault at 0 (ba0) or bridging fault at 1 (ba1) (see
Figure 1). The first node is called the victim node and the second node is called the aggressor
node.

Figure 1 Bridging Fault Types ba0 and ba1

A ba0 bridging fault is considered detected if the stuck-at-0 fault at the victim node is detected at
the same time the fault-free value of the aggressor node is at 0. Similarly, a ba1 bridging fault is
considered detected if the stuck-at-1 fault at the victim node is detected at the same time the
fault-free value of the aggressor node is at 1.

Bridge Locations
The victim and aggressor nodes are specified by bridge location. A bridge location is a
hierarchical path to any of the following:

l Cell instance input pin
l Cell instance output pin
l Net name

Faults on bidirectional pins are ignored. Input pins can be used only if the set_faults -
bridge_input command is specified.
Although a net can havemany names as it traverses the hierarchy of a design, TetraMAX ATPG
does not store them all. If you specify a net name as a bridge location that TetraMAX ATPG
recognizes (those accepted by the report_primitives command), it is used tomap the
fault to the single output pin connected to that net.

Detecting Bridging Faults 23-2

TetraMAX ATPG User Guide K-2015.06-SP4

Net names are internally translated to an instance pin. This pin pathmust be a valid stuck-at fault
site. Instances dropped during the build processwith a B22 warningmessage cannot be used. A
warning is given if you specify an invalid bridge location.

Strength-Based Patterns
A bridge defect has complex analog effects due to parameters such as the strength of the driver,
resistance of the bridge, and wire characteristics. Therefore, it is not always clear when a bridge
is detected by the pattern generated considering only logical behavior. Some researchers have
speculated that patterns can be adjusted to improve the odds of detecting bridging faults. The
basic premise is that forcing the aggressor to drive stronger and the victim to drive weaker
increases the chance of the bridge being detected.
Patterns that use this principle can be generated when the victim or aggressor is on the output
pin of a primitive gate having a dominant value (AND, OR, NAND, or NOR). A more stringent
detection criteria can then be imposed. The ATPGprocess can be given additional soft
constraints to optimize the drive strengths after the normal bridging fault detection requirements
aremet. Soft constraints are those that the ATPGprocess attempts tomeet on a best-effort
basis. If the soft constraints are not met, the pattern is still retained for detection of bridging
faults.
With the addition of strength-based patterns, bridge fault detection can be classified into the
following detection types:

l Minimal detection – theminimum condition for the detection of ba0 & ba1 faults, as
previously described.

l Fully optimized detection – a detection where the conditions specified in Table 1 aremet.
For maximizing inputs with a specific value, all inputs of the driving gatemust be at the
specified value. Tominimize the inputs at a specific value, only one of the driving gate’s
inputsmust be at the specified value.

l Partially optimized detection – a detected bridging fault that is neither minimal nor fully
optimized.

Table 1 Strength-Optimized Detection of Bridging Faults

Detecting Bridging Faults 23-3

TetraMAX ATPG User Guide K-2015.06-SP4

Bridging Fault Flows
The following sections describe bridging faults and how they fit into an overall flow and in
TetraMAX ATPG:

l Bridging Faults and theOverall TetraMAX Flow
l Bridging Fault Flow in TetraMAX

Bridging Faults and the Overall TetraMAX Flow
The overall flow for bridging faults is shown in Figure 1. Stuck-at fault ATPG is run immediately
after synthesis, and before place and route in some flows. Bridging fault ATPGand fault
simulation is usually run following the completion of place and route on full-chip designs.

Figure 1 Overall Flow for Bridging Faults

There aremultiple ways you can generate bridge pairs. Two possibilities are
l Extract bridging pairs from the layout using an IFA-based scheme
l Use an extracted coupling capacitance report

A flow based on capacitance extraction is shown in “Using StarRC to Generate a Bridge Fault
List”. TetraMAX ATPGcan read the coupling capacitance report directly fromStarRC. Third-
party capacitance extraction tools can be used to generate coupling capacitance reports if the
node list is in the TetraMAX format.
It is not possible to accuratelymodel fault effects for bridges that involve clock/set/reset lines and
bridges that produce combinational loops. Therefore, you should filter out these types of bridges.

Bridging Fault Flow in TetraMAX
Figure 2 shows the bridging fault flow in TetraMAX ATPG. The typical commands used in this
flow are identified in the subsections that follow. For details regarding command usage and
option descriptions, seeOnline Help.

Bridging Fault Flows 23-4

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 2 Bridging Fault Model in TetraMAX

Setup
These commands are typically used at the beginning of a command file, because they have an
effect on subsequent commands:

l set_faults -model bridging – This command ismandatory for bridging faults.
l set_atpg -optimize_bridge_strengths – This command can be used based on
whether or not TetraMAX ATPGshould optimize drive strength on the driving gates of the
victim and aggressor nodes.

l set_faults -bridge_input – This command can be used to accept input pins of
instances as bridge locations.

Input Faults
The list of bridging pairs can be supplied in any combination of the following three ways:

l Command file – A set of add_faults commands that can be sourced by a script: add_
faults [-bridge_location <bridge_location1> [bridge_
location2>] [-bridge <0|1|01>] [-aggressor_node <first |
second | both>]This command can be used to add bridging faults.

l Fault list file – Generated by a report_faults or write_faults command and read
by the read_faults command. Only ba0 and ba1 fault types are expected.

l Node file – A list of bridging node pairs: add_faults <-node_file <name>>[-
bridge <0|1|01>] [-aggressor_node <first | second | both>]In its
simplest form, the node file format is a pair of bridge locations per line, separated by a
space. An unmodified coupling capacitance report fromStarRC can also be used. For
details, see topic “Node File Format for Bridging Pairs” in the online help. A suggested flow
of using the Synopsys StarRC capacitance extraction tool for bridge fault list generation is
described in “Using StarRC to Generate a Bridge Fault List”.
A bridge fault list should not include clocks and asynchronous set or reset signals. Proper
detection status cannot be guaranteed for these faults.

Manipulating the Fault List
The following commands and options are useful for manipulating the fault list:

l add_nofaults – This command can be used to set “no fault” status on victim nodes to
prevent the associated bridging fault from being added to the fault list.

l remove_faults <[-bridge_location <bridge_location1> <bridge_
location2>] | -all | -retain_sample <d> | -class <fault_
class>> [-bridge <0|1|01>] [-clocks][-agressor_node <first |

Bridging Fault Flows 23-5

TetraMAX ATPG User Guide K-2015.06-SP4

second | both>] [-non_strength_sensitive]

This command can be used to remove bridging faults.

Examining the Fault List
The following options of the report_faults command can be used to examine a fault list,
both before and after fault ATPGand simulation: [bridge_location1 [bridge_
location2]] [-bridge <0|1|01>] [-agressor_node <first | second |
both>] [-bridge_feedback] [-bridge_strong]

The format of the report is in four columns:
l Fault type (ba0 or ba1)
l Fault detection status code
l Bridge location of the victim node
l Bridge location of the aggressor node

For example:
ba0 NC nodeA nodeB
ba1 NC nodeA nodeB
ba0 NC nodeB nodeA
ba1 NC nodeB nodeA

Fault Simulation
Fault simulation of bridging faults is usually done to determine which bridges are detected by
other existing patterns, such as those generated for stuck-at faults. Typically, many bridges are
detected by patterns targeting other fault models.
For bridging faults with either or both nodes driven by gateswith dominant values (AND, OR,
NAND, or NOR), use the run_fault_sim -strong_bridge command to require a fully
optimized detection. When this option is used, the fault ismarked as detected only if the criteria
for fully optimized bridging fault detection ismet.

Running ATPG
Bridging fault ATPGattempts to set the victim and aggressor bridge locations at opposite values,
while attempting to detect the value of the victim net.
If you plan on issuing a run_atpg -auto_compression command, you first need to create
an explicit fault list by either issuing an add_faults or read_faults command.
If you issue a set_atpg -optimize_bridge_strengths command, ATPGattempts to
generate patternswith fully optimized detections on a best effort basis. This assumes that the
TetraMAX libraries aremodeled in amanner that would producemeaningful strength-based
patterns. For example, gateswith dominant values should be instantiated so that the correct
transistors are activated or deactivated.

Analysis
After running ATPGor fault simulation, you can use the report_faults and write_
faults commands to analyze fault detection status. You can invoke automated analysis and

Bridging Fault Flows 23-6

TetraMAX ATPG User Guide K-2015.06-SP4

schematic display by using the analyze_faults <bridge_location1 bridge_
location2 -bridge <0|1>> command.

Example Script
Example 1 shows a script for bridging fault support. This script generates tests for bridging faults
followed by stuck-at faults. Youmight want to experiment with the reverse order aswell to see
whichmethod produces better results.

Example 1 Script for Bridging Faults

read netlist and libraries, build, run_drc
read_netlist design.v -delete
run_build_model design
run_drc design.spf

bridging faults
set_faults -model bridging

allow instance input pins to be valid victim sites
set_faults -bridge_input

to optimize strengths during atpg
set_atpg -optimize_bridge_strengths

read in fault list
add_faults -node_file nodes.txt

run atpg with merging
set_atpg -merge high
run_atpg -auto_compression

write the bridging patterns out
write_patterns bridge_pat.bin -format binary -replace

now fault simulate bridge patterns with stuck-at faults
this part is intended to reduce the set of patterns by not
generating
patterns for stuck-at faults detected by the bridging patterns
remove_faults -all
set_faults -model stuck
add_faults -all

read in bridging pattern
set_patterns -external bridge_pat.bin

fault simulate
run_fault_sim

generate additional stuck-at patterns

Bridging Fault Flows 23-7

TetraMAX ATPG User Guide K-2015.06-SP4

set_atpg -merge high
set_patterns -internal
run_atpg -auto_compression

Using StarRC to Generate a Bridge Fault List
The bridging fault model requires a pair of locations to bridge. Because all pairs of nets would
result in an intractably large fault set for ATPGor fault simulation, a set of bridge pairs that are
likely candidates are used. This information is generated using layout information, because nets
in close proximity aremore likely to be bridged.
The flow currently supported by Synopsys uses finding nets with high coupling capacitance
using StarRC. Some studies have shown there is a correspondence between capacitance and
likelihood of bridging.
This section describes the process of generating a bridging fault list. It assumes you have some
knowledge of StarRC and that your environment is properly set up and licensed. See the
StarRC documentation for more details. If StarRC is not available, any capacitance extraction
tool that generates a coupling capacitance report can be used. Synopsys does not support third-
party tools or flows.
If high accuracy is a requirement, the coupling capacitance report from a normal run of StarRC
can be used as a bridge pair list. If a small set of bridge faults is used, or if a higher accuracy
bridge fault list is required, a separate run of TCAD characterization and extraction is required to
remove the effect of varying dielectric constants across layers.
If a coupling capacitance report from a normal StarRC run is used, ensure that the report has
enough net pairs for bridging fault ATPGand for fault simulation. The remainder of this section
may be skipped if this is the flow you choose.
The process involves three primary steps, which are described in the following sections:

l TCAD Characterization – using grdgenxo, a part of the StarRC tool set. This is done only
one time for a given fabrication process and bridge probability.

l Capacitance Extraction and coupling capacitance report generation using StarXtract. This
is a separate run from the normal capacitance extraction run.

l Running TetraMAX

TCAD Characterization
TCAD characterization is run one time per process and bridging probability. It need not be run
multiple times for each process corner. Only the layer locations are important. The process
parameters themselves play almost no role in this procedure.
Edit a copy of the Interconnect Technology Format (ITF) file supplied by your foundry. It is used
by StarRC to compute bridging likelihood. You edit the ITF file so the dielectric constants have
less of an effect in generating the bridging pairs.

Using StarRC to Generate a Bridge Fault List 23-8

TetraMAX ATPG User Guide K-2015.06-SP4

Generating a Resistance and Capacitance (GRD) Model.
The following steps assume that inter layer bridging ismuch less likely than intra layer bridging:

1. Change all DIELECTRIC statements between the topmetal and poly layers as follows,
depending on each dielectric’s location.
To determine if a dielectric is between layers or between conductors on the same layer,
create a diagram of the layers. See the section on DIELECTRIC statements in StarRC
documentation for more information.

2. For dielectrics between different layers, change “ER” to 0.1.
3. For dielectrics between conductors on the same layer, change “ER” to some constant

value; for example 1.
These numbers can be adjusted based on data from the foundry on bridge probabilities.
For example, if some layers have higher defect densities, the intra layer ER values can be
increased for that layer. This effectively sets the probability of intralayer bridges to be 10X
the probability of interlayer bridges, based on the simplified parallel-plate capacitance
equation (C = e*A/d, where E is the dielectric constant,A is the area of the conductors
facing each other, and d is the distance between the conductors).

4.

Do TCAD characterization by running the field solver on the ITF file; for example, and
create the .nxtgrd file.
% grdgenxo spec.itf

This produces a .nxtgrd (resistance and capacitancemodel) file that is used by StarRC.
This step can be done parallel to starting other jobs in the same directory on different
machines. The speedup is almost linear relative to the number of processors. See the
StarRC documentation for details.

Extracting Capacitance
Before beginning this process, you need to supply these files:

l Post-layout data in the form of aMilkyway database, LEF/DEF files, or Calibre files.
l The .nxtgrd file from the TCAD characterization step in the preceding section.
l A layer mapping file that maps the layer names in the ITF file to the layout layer names.
This layer mapping file is created only one time per process and should already exist for
normal extraction.

Make sure the SYNOPSYS environment variable ($SYNOPSYS) is set to the Synopsys root
directory for StarRC.

Running StarRC in GUI or Batch Mode
To run StarRC in GUI Mode:

1. Start StarRC with the GUI option, for example:
% StarXtract -clean -gui &

Using StarRC to Generate a Bridge Fault List 23-9

TetraMAX ATPG User Guide K-2015.06-SP4

TheMilkyway database is assumed to exist. Other layout database formats have a similar
flow.

2. Set up the extraction run.
3. Choose Setup > Timing. In the TimingWizard, enter:

Drop down – Set to the layout data format (Milkyway is assumed).
Data format – If Milkyway or Hercules data:
BLOCK – Typically the design name. Most often there is a file with this name under the
CEL view if you are usingMilkyway. Check the CEL directory under theMilkyway
directory.
MILKYWAY DATABASE – The directory name containing theMilkyway database. If
LEF/DEF or Calibre, specify the appropriate input values.
TCAD GRD FILE – Path to the .nxtgrd file.
MAPPINGFILE –Name of mapping file.
EXTRACTION –RC
COUPLE_TO_GROUND –
NOCOUPLING_MULTIPLIER – 1
Then clickOK.

4. Choose Setup > Noise. In the NoiseWizard, enter:
COUPLINGREPORT FILE –Name of output file containing coupling report.
COUPLINGABS THRESHOLD – 0.1
COUPLINGREL THRESHOLD – 1FF
COUPLINGREPORTNUMBER –Number of the top net pair to report.
A rule of thumb for the number of pairs is that it should be on the order of magnitude of the
stuck-at faults in the design.
Then clickOK.
The default extraction should not consider power and ground signals as coupling
partners. The preceding settings should prevent “smart decoupling,” because all coupling
capacitancesmust be preserved.

5. Choose File > Run to begin the extraction.

Run StarRC in BatchMode using a command file similar to the following examle:

1. BLOCK: <design name>
MILKYWAY_DATABASE: <milkyway db>
TCAD_GRD_FILE: <nxtgrd file>
MAPPING_FILE: <mapping file>
EXTRACTION: C
COUPLE_TO_GROUND: NO
COUPLING_MULTIPLIER: 1
COUPLING_REPORT_FILE: <output coupling capacitance
report file>
COUPLING_ABS_THRESHOLD: 1e-15
COUPLING_REL_THRESHOLD: 0.1
COUPLING_REPORT_NUMBER: <number of nets to include in

Using StarRC to Generate a Bridge Fault List 23-10

TetraMAX ATPG User Guide K-2015.06-SP4

report>
2. Specify the command file on the command line; for example:

StarXtract [options] star_cmd

Coupling Capacitance Report
An example coupling capacitance report follows. Note that some net pairsmay be repeated in
the opposite order with the victim and aggressor switched, as seen in the last 2 pairs. TetraMAX
ATPGwill add the faults twice.
* 632 worst couplings list in decreasing order:
* % coupling victim aggressor
100 3.33e-18 timer/se_7_cnt/K2370 timer/se_7_cnt/I2370
61.2 1.66e-15 io_c0[7] io_c1[9]
60.5 9.26e-17 timer/m_cnt/L2865 timer/m_cnt/T2128
60.4 2.77e-15 io_c3[5] io_c3[3]
59.7 2.29e-15 io_c4[7] io_c4[12]
57.5 2.33e-15 io_c4[14] io_c4[15]
54.9 7.97e-15 io_c2[14] io_c2[0]
54.1 7.97e-15 io_c2[0] io_c2[14]
...

Running TetraMAX
The StarRC coupling capacitance report can be directly read in by TetraMAX ATPGusing the
add_faults -node_file command. TetraMAX ATPGautomatically recognizes a StarRC
report and adds the necessary faults.
Do not use the netlist before place and route as is sometimes used. Use only the postroute
netlist for TetraMAX ATPG. Otherwise, the signal namesmight not match.
Do not use an image file when adding faults that include net names, because net names are not
preserved in the image file. An alternative is to perform the following steps:

1. Read the netlist
2. Build
3. PerformDRC
4. Add the net name-based bridge faults
5. Write out the fault list

The output fault list is pin-path based that can be read in subsequent TetraMAX runs that use the
image file.

Using StarRC to Generate a Bridge Fault List 23-11

TetraMAX ATPG User Guide K-2015.06-SP4

Bridging Fault Model Limitations
Using the bridging fault model has the following limitations:

l No oscillation effects are considered. The aggressor remains at the fault-free value. Fault
effects from a victim in the fanin cone is dropped at the aggressor.

l Full-Sequential ATPGand Full-Sequential fault simulation are not supported.
l Bidirectional pins cannot be faulted.
l Basic-Scan ATPGand fault simulation assumes clocks and asynchronous sets/resets are
at constant values per pattern.

l There is no fault collapsing for bridging faults.
l No detection by implication (DI) credit is given.
l Nomethod for generating bridging node pairs is provided within TetraMAX ATPG.
l Net names cannot be used for bridging locations if the read_image commandwas used.
Only net names given by the report_primitives command are supported.

Running the Dynamic Bridging Fault ATPG Flow
The following sections describe how to run the dynamic bridging fault ATPG flow:

l Understanding the Dynamic Bridging Fault Model
l Preparing to Run Dynamic Bridging Fault ATPG
l Fault Simulation
l Running ATPG
l Analyzing Fault Detection
l Example Script
l Limitations

Understanding the Dynamic Bridging Fault Model
The TetraMAX dynamic bridging fault model combines two fault models:

l The static bridging fault model, which observeswhether the value on the aggressor
node will override the value on the victim

l The transition fault model, which observeswhether the transition at the fault site is too
slow for the rated clock speed

Based on the combined usage of these two fault models, the dynamic bridging fault model can
be used to analyze transition effects in the presence of a specified value on a bridge-aggressor
node.
TetraMAX ATPGdefines two types of dynamic bridging faults:

Bridging Fault Model Limitations 23-12

TetraMAX ATPG User Guide K-2015.06-SP4

l Bridge slow-to-rise (bsr)—a slow-to-rise fault exists on the victim node while the
aggressor node is at 0.

l Bridge slow-to-fall (bsf)—a slow-to-fall fault exists on the victim node while the
aggressor node is at 1.

The fault location is the same as that used for (static) bridging faults, except that the cell instance
input pin cannot be faulted. See “Bridge Locations” for more information.
Note that since a list of dynamic bridging nodes is required to run ATPG, the dynamic bridging
fault model and fault simulation process is usually run after completing place and route on full-
chip designs. Also note that you cannot add all faults using the dynamic bridging fault model. To
add all faults, you will need to explicitly create a fault list before running ATPGusing the -auto
option.

Preparing to Run Dynamic Bridging Fault ATPG
To enable dynamic bridging fault ATPG, specify the following command:
set_faults -model dynamic_bridging

The following tasks are required to set up TetraMAX ATPG to run dynamic bridging fault ATPG:
l Specifying a List of Input Faults
l Manipulating the Fault List
l Examining the Fault List

Specifying a List of Input Faults
You can use any combination of the following three files to supply a list of dynamic bridging pairs
(referred to as a fault list):

l

Command file—This file, which can be sourced from a script, contains a set of add_
faults commands that specify dynamic bridging pairs. The syntax for using the add_
faults command for this purpose is as follows:
add_faults [-bridge_location bridge_location1 bridge_
location2]
[-dynamic_bridge <r|f|rf>] [-dominant_node <first | second |
both>]

l Fault list file—This file is generated by either the report_faults command or the
write_faults command and is read by the read_faults command. Note that only
bsr and bsf fault types are valid in this list.

l

Node file—This file contains a list of dynamic bridging node pairs, specified in terms of
nodes, using the following syntax for the add_faults command:
add_faults <-node_file name>[-dynamic_bridge <r|f|rf>]
[-dominant_node <first | second | both>]

The format for a node file is to specify a pair of bridge locations on each line, separated by a
space. You can also use an unmodified coupling capacitance report generated from the
Synopsys StarRC capacitance extraction tool. Additional details are also covered in the
“Node File Format for Bridging Pairs” topic in TetraMAX Online Help.

Running the Dynamic Bridging Fault ATPG Flow 23-13

TetraMAX ATPG User Guide K-2015.06-SP4

Note: The command file, fault list file, and node file should not include clocks and asynchronous
set or reset signals, because proper detection status cannot be guaranteed for these faults.

Manipulating the Fault List
You can use the following commands and options tomanipulate the fault list:

l

add_nofaults—This command can be used to set a “no fault” status on victim nodes to
prevent the associated dynamic bridging fault from being added to the fault list. The syntax
for this command is as follows:
add_nofaults < instance_name | pin_pathname | -Module name >

l

remove_faults—This command can be used to remove dynamic bridging faults. The
syntax for this purpose is as follows:
remove_faults < [-bridge_location bridge_location1
bridge_location2]
| -all | -retain_sample <d> > [-dynamic_bridge <r|f|rf>]
[-clocks][-dominant_node <first | second | both>]

Examining the Fault List
The following options from the report_faults command can be used to examine a fault list,
both before and after fault ATPGand simulation:
[bridge_location1 bridge_location2]
[-dynamic_bridge <r|f|rf>]
[-dominant_node <first | second | both>]

The format of the generated report contains the following four columns:
l Column 1: Fault type (bsr or bsf)
l Column 2: Fault detection status code
l Column 3: Dynamic bridge location of the victim node
l Column 4: Dynamic bridge location of the aggressor node

Note the following example report:
bsr NC nodeA nodeB
bsf NC nodeA nodeB
bsr NC nodeB nodeA
bsf NC nodeB nodeA

Fault Simulation
Youwill need to perform fault simulation on the dynamic bridging faults to determine which
dynamic bridging faults are detected by other existing patterns (such as those generated for
stuck-at faults or transition faults). Typically, a large number of dynamic bridges are detected by
patterns that target other fault models.
To run a fault simulation on the existing patterns, specify the run_fault_sim command. (You
can see how to run this command in the “Example Script” section.)
Note that fault simulation for dynamic bridging fault does not support Full-Sequential mode. An
error is issued if you attempt to use thismode.

Running the Dynamic Bridging Fault ATPG Flow 23-14

TetraMAX ATPG User Guide K-2015.06-SP4

Running ATPG
The dynamic bridging fault ATPGprocess attempts to launch a transition along the victimwhile
holding the aggressor at a static value. If you plan on issuing a run_atpg -auto_
compression command, you will first need to create an explicit fault list by specifying either
an add_faults or read_faults command.
Dynamic bridging fault ATPGcan be run using the following ATPGmodes: Basic-scan (launch
on last shift), TwoClocks, and Fast-Sequential. An example of waveforms that are typically
applied in the case of Fast-Sequential launch on system clock is shown in Figure 1. In the
presence of a bsr fault, the transition initiated because of the launch cycle at the victim node is
delayed (dashed line) and the capture cycle detects the fault.

Figure 1 Dynamic Bridge Fault DetectionWaveforms for Launch on SystemClock

Note that dynamic bridging fault ATPGdoes not support Full-Sequential mode. An error is
issued if this is attempted. Also, strength-based pattern generation similar to what exists for the
TetraMAX bridging fault model is not supported.

Analyzing Fault Detection
After running ATPGor fault simulation, you can use the report_faults and write_
faults commands to analyze the fault detection status. You can invoke automated analysis
and schematic display by using the following analyze_faults command options:
analyze_faults <bridge_location1 bridge_location2 –dynamic_bridge
<r|f>>

Running the Dynamic Bridging Fault ATPG Flow 23-15

TetraMAX ATPG User Guide K-2015.06-SP4

Example Script
The following example shows a script for dynamic bridging fault support. This script generates
tests for dynamic bridging faults, followed by stuck-at faults. Youmight want to experiment by
reversing the order to see whichmethod produces better results.
read netlist and libraries, build, run_drc
read_netlist design.v -delete
run_build_model design
run_drc design.spf

set fault model to dynamic bridging
set_faults -model dynamic_bridging

read in fault list
add_fault -node_file nodes.txt

run_atpg
run_atpg -auto_compression

write the bridging patterns out
write_patterns dyn_bridge_pat.bin -format binary -replace

now fault simulate dynamic bridge patterns with stuck-at faults
this part is intended to reduce the set of patterns
by not generating patterns for stuck-at faults
detected by the dynamic bridging patterns
remove_faults -all
set_faults -model stuck
add_faults -all

read in dynamic bridging pattern
set_patterns -external dyn_bridge_pat.bin

fault simulate
run_fault_sim

generate additional stuck-at patterns
set_patterns -internal
run_atpg -auto_compression

Limitations
The dynamic bridging fault ATPG feature currently has the following limitations:

l Full-Sequential ATPGand Full-Sequential fault simulation are not supported.
l The dominant node effect is based on its fault-free value. There is no ability to consider

Running the Dynamic Bridging Fault ATPG Flow 23-16

TetraMAX ATPG User Guide K-2015.06-SP4

feedback effects that result from a dynamic bridge.
l There is no fault collapsing for dynamic bridging faults.
l Strength-based pattern generation is not supported.
l Input and bidirectional pins cannot be faulted.
l Proper detection status cannot be guaranteed for dynamic bridging pairs, including clocks
and asynchronous sets/resets.

l TetraMAX ATPGdoes not provide detection by implication (DI) credit.
l TetraMAX ATPGdoes not provide amethod for internally generating dynamic bridging
node pairs.

l Only net names given by the report_primitives command are supported.

Running the Dynamic Bridging Fault ATPG Flow 23-17

24
Power Aware ATPG
A typical ATPG run targets asmany faults as possible within a particular pattern. However, this
approach can cause unintended ATE failures for designs containing a large number of flip-flops
that toggle at any given time.
The TetraMAX power aware ATPG feature calculates the fanout of clock-gating structures and
other clock sources during DRC. This approach enables you to specify capture and shift power
budgets for generating power aware ATPGvectors. You can specify a budget as a percentage
of scannable flip-flops and thereby limit the number of flip-flops that can toggle.
TetraMAX ATPG lowers the overall peak and average flip-flop switching by selectively turning
on and off the respective clock-gating cells which control the flip-flops. This selective switching
affects capture for stuck-at testing and launch and capture for transition fault testing.
Power aware ATPG is not intended to be used for power analysis. TetraMAX ATPGefficiently
estimates the relative power of test patterns, which generally correlates well with actual power
consumption. However, this approach is not a precise calculation of the actual power metrics.
Performing a full power analysis during ATPGcauses an unacceptable increase in runtime and
is therefore not used for power aware ATPG.
The following sections describe how to prepare for and use power aware ATPG:

l Input Data Requirements
l Setting a Power Budget
l Preparing Your Design
l Running Power Aware ATPG
l Applying Quiet Chain Test Patterns
l Testing with Asynchronous Primary Inputs
l Power Reporting ByClockDomain
l Setting a Capture Budget for Individual Clocks

24-1

TetraMAX ATPG User Guide K-2015.06-SP4

l Retention Cell Testing
l Limitations

Input Data Requirements
The following input data is required to use the power aware ATPG feature within TetraMAX
ATPG:

l Netlists
l Library
l STIL procedure file
l Tcl command script containing the build, run_drc, run_atpg and other commands.

Setting a Power Budget
To run power aware ATPG, you need to set a power switching budget using the
-power_budget option of the set_atpg command. You can specify the power switching
budget using either of the followingmethods:

l Specify themaximumpercentage of scannable flip-flops that are budgeted to change
during capture. For example:

set_atpg -power_budget 48

l Specify the min keyword to use theminimum recommended switching budget based upon
the clock-gating analysis. For example:

set_atpg -power_budget min

You can set the power switching budget any time before running the run_atpg command.
For complete information on how to determine the power switching budget, see the following
section, "Preparing Your Design."

Preparing Your Design
Power aware ATPG is intended for designs that contain clock-gating cells in the context of
ATPG. You will need to perform an initial analysis of your design to identify all clock-gating cells
and calculate the recommended setting for the set_atpg -power_budget command.
The power analysis performed by TetraMAX ATPGuses information from the STL procedure
file and data specified by the add_pi_constraints command. If your design has a
constraint in which the clock-gating cells are always transparent, this power analysis will not

Input Data Requirements 24-2

TetraMAX ATPG User Guide K-2015.06-SP4

show these clock-gating cells and they are not usable within the context of power aware ATPG.
Thismeans you need to constrain scan-enable ports to their respective off-state for basic-scan,
two-clock, and fast-sequential modes for test pattern generation and gated-clock (latch)
identification.
Also note the following:

l All global signals capable of enabling a large proportion of the clock gating
cells must be disabled.

l All synchronous set and reset signals described as clocks with TetraMAX
ATPG must be inactive or constrained to their respective off-state.

Reporting Clock-Gating Cells
After your design successfully passes the DRC process, use the
report_clocks –gating -verbose command to report the clock-gating cells and
calculate the recommended low-power ATPGbudget percentage, as shown in the following
example:
report_clocks -gating -verbose
 Clock name: ife_clockdiv2_afe_wrap (0)
 Number of cells directly controlled by the clock: 12077 (22.33%)

 Number of cells controlled by clock through
 a clock gating latch16605 (30.70%)

 Number of cells directly controlled by clock + largest
 clock gating domain: 12097 (22.36%)

 Clock Gating Latch DecoderFrontEnd1/fedcod/dcod_yc/ \
 clk_gate_ramAddr_regx0x/U1 (693893)
 drives 20 (0.04%) scan cells
 ...
 ...
 Minimum Recommended Low-Power ATPG Budget: 22.36% (12097)

You should round-up the recommended low-power ATPGbudget percentage to the next
integer value. In the previous example, 22.36 should be rounded up to 23. This value is
specified by the -power_budget option of the set_atpg command using either of the two
methods:

l You canmanually specify the budget as shown in the following example:
set_atpg -power_budget 23

l You can specify TetraMAX ATPG to automatically use theminimum recommended low-
power ATPGbudget, as shown in the following example:
set_atpg -power_budget min

Preparing Your Design 24-3

TetraMAX ATPG User Guide K-2015.06-SP4

Setting a Strict Power Budget
Use the -power_effort option of the set_atpg command to generate patterns that do not
exceed the power budget specified for capture. The syntax for this option is as follows:
set_atpg -power_effort <high | low>

The default is low. If you set this option to high, TetraMAX ATPGgenerates patterns that do
not exceed the budget specified by the set_atpg -power_budget command. Note that
over-constraining the power budget might cause longer runtimes and generate fewer patterns
when the -power_effort option is set to high. Because of this, you should not set power
budgets below that recommended by the
report_clocks -gating command.

Setting Toggle Weights
Using toggle weighting, you can place a 1 or higher integer number onto flip-flops to represent
larger fan-out nets and cones of logic. You can specify separate weights for both shift and
capture. This feature is specified using the set_toggle_weights command, whichmust be
specified before issuing the run_drc command.
By default, each toggle or transition at a flip-flop is scored as a 1. This scoring only considers the
flip-flop and does not take into account the fan-out of the flip-flop.
The following example shows a typical specification of the set_toggle_weights command:
set_toggle_weights path/to/spec/FF -weight 5 -shift -capture

You can also use the report_toggle_weights command to print a report of all non-default
toggle weights you have applied, as shown in the following example:

report_toggle_weights
 Non-default Toggle Weights:
 Shift Weights:
 a_reg_2_: 5
 Capture Weights:
 a_reg_2_: 5

You can create a Tcl file comprised of numerous calls to the set_toggle_weights
command and a report_toggle_weights command, as shown in the following example:
set_toggle_weights core1/ff1 -weight 5 -shift -capture
set_toggle_weights core1/ff2 -weight 2 -shift
set_toggle_weights core1/ff2 -weight 7 -capture
report_toggle_weights

Source this file, as shown in the following example:
source toggle_weight.tcl

Preparing Your Design 24-4

TetraMAX ATPG User Guide K-2015.06-SP4

Running Power Aware ATPG
After preparing your design, as described in the "Preparing Your Design" section, you are ready
to perform a complete power aware ATPG run and use the report_power command to report
the power data.
The following example script shows the use of the set_atpg and report_power commands
in the complete power aware ATPG flow.
read_netlist –lib $spec_lib.v
read_netlist $spec_design.v

run_build_model $spec_design

add_pi_constraints 0 scan_enable

run_drc $spec_drc_file.spf

report_clocks -gating
set_atpg –power_budget 10

add_faults -all
run_atpg –auto

report_power –per_pattern –percentage

The report_power command produces the report shown in the following example:
--
 Power Analysis Summary
--
Number of Scan Cells 75053
Number of Patterns 0-2680
Average Shift Changes: 2400.38 3.20%
Average Capture Changes: 9058.04 12.07%
Maximum Shift Cell Changes: 37510 49.97% (pattern: 0 cycle:
3411)
Maximum Capture Cell Changes: 30742 40.96% (pattern: 1)

Applying Quiet Chain Test Patterns
Regular scan chain test patterns apply the 0011 sequence to all scan inputs, which can lead to
power issues and unintended ATE failures. However, a quiet chain test patternminimizes

Running Power Aware ATPG 24-5

TetraMAX ATPG User Guide K-2015.06-SP4

switching activity by loading a single scan input with specified pattern data and loads all other
chains with a constant value.
The -quiet_chain_test option of the set_atpg command enables the automatic
generation of quiet chain test patternswhen the run_atpg command is executed.
The set_atpg -load_mode command enables the generation of the quiet chain test for a
particular loadmode or all loadmodes. The set_atpg -load_value command configures
the constant value loaded into the quiet chains.
In legacy scanmode, the 0011 sequence, or any other specified pattern data, is independently
applied to each scan chain, while all other scan chains are set to 0. Thismeans that one pattern
loads the 0011 sequence in a single scan chain at a time. To load N scan chains, where N is the
total number of scan chains, TetraMAX ATPGgeneratesN quiet chain test patterns.
In scan compressionmode, the 0011 sequence or any other specified pattern data is
independently applied to each scan channel, while all other scan channels are set to 0. The
compressor loadmode ismaintained to a constant value, which is 0. One scan channel fans to
multiple chains due to the input load compressor. Thus, to load the P scan channels, where P is
the total number of load compressor scan inputs, TetraMAX ATPGgenerates P quiet chain test
patterns.

Testing with Asynchronous Primary Inputs
Use the -power_aware_asyncs option of the set_atpg command to test asynchronous
sets and resets from primary inputs on legacy scan designs. Note that this feature is not
implemented for DFTMAX designs.
To use this option, your designmust be able to propagate the asynchronous signals to allow
sufficient time for the signals to fit within the given ATE vector.
The following example shows the -power_aware_asyncs option of the power aware ATPG
flow:

…
run_drc
…
set_atpg -power_aware_asyncs
run_atpg -auto
report_power -per_pattern -percentage

Power Reporting By Clock Domain
You can set the -per_clock_domain option of the report_power command to create
individual capture power reports for each clock. By default, the report_power command
creates a consolidated report for all clock domains.
The following example shows the type of report created using the -per_clock_domain
option.

Testing with Asynchronous Primary Inputs 24-6

TetraMAX ATPG User Guide K-2015.06-SP4

report_power -percentage -per_pattern -per_clock_domain
--
 Power Analysis: Per Pattern
--

Shift Results:
 Peak
 pattern load cycle shift cycle switching percentage

 0 0 87 344 48.93%
 1 0 35 361 51.35%
 2 0 5 341 48.51%
 3 0 80 351 49.93%
 4 0 11 337 47.94%
 5 0 23 343 48.79%
 6 0 64 340 48.36%
 7 0 75 361 51.35%
 8 0 6 365 51.92%
 9 0 48 348 49.50%
 Average
 pattern average switching percentage
 0 171.51 24.40%
 1 348.91 49.63%
 2 326.01 46.37%
 3 338.85 48.20%
 4 327.02 46.52%
 5 328.31 46.70%
 6 328.89 46.78%
 7 343.67 48.89%
 8 349.93 49.78%
 9 339.20 48.25%

 Capture Results:
 Peak
 pattern capture cycle switching percentage
 0 0 0 0.00%
 1 2 68 9.67%
 2 1 52 7.40%
 3 1 54 7.68%
 4 1 25 3.56%
 5 1 16 2.28%
 6 1 30 4.27%
 7 1 26 3.70%
 8 1 47 6.69%
 9 1 60 8.53%
 Average
 pattern average switching percentage
 0 0.00 0.00%
 1 41.67 5.93%
 2 27.33 3.89%
 3 30.33 4.31%

Power Reporting By Clock Domain 24-7

TetraMAX ATPG User Guide K-2015.06-SP4

 4 13.33 1.90%
 5 7.00 1.00%
 6 13.00 1.85%
 7 14.00 1.99%
 8 26.00 3.70%
 9 32.67 4.65%

 Capture Results For Clock CLK1:
 Peak
 pattern capture cycle switching percentage
 0 0 0 0.00%
 1 0 0 0.00%
 2 0 0 0.00%
 3 0 0 0.00%
 4 0 0 0.00%
 5 0 0 0.00%
 6 0 0 0.00%
 7 0 0 0.00%
 8 1 19 2.70%
 9 0 0 0.00%
 Average
 pattern average switching percentage
 0 0.00 0.00%
 1 0.00 0.00%
 2 0.00 0.00%
 3 0.00 0.00%
 4 0.00 0.00%
 5 0.00 0.00%
 6 0.00 0.00%
 7 0.00 0.00%
 8 12.33 1.75%
 9 0.00 0.00%

 Capture Results For Clock CLK2:
 Peak
 pattern capture cycle switching percentage
 0 0 0 0.00%
 1 0 0 0.00%
 2 1 32 4.55%
 3 0 0 0.00%
 4 0 0 0.00%
 5 0 0 0.00%
 6 0 0 0.00%
 7 1 26 3.70%
 8 0 0 0.00%
 9 0 0 0.00%
 Average
 pattern average switching percentage
 0 0.00 0.00%
 1 0.00 0.00%
 2 14.00 1.99%

Power Reporting By Clock Domain 24-8

TetraMAX ATPG User Guide K-2015.06-SP4

 3 0.00 0.00%
 4 0.00 0.00%
 5 0.00 0.00%
 6 0.00 0.00%
 7 14.00 1.99%
 8 0.00 0.00%
 9 0.00 0.00%

 Capture Results For Clock CLK3:
 Peak
 pattern capture cycle switching percentage
 0 0 0 0.00%
 1 1 36 5.12%
 2 0 0 0.00%
 3 1 23 3.27%
 4 1 25 3.56%
 5 1 16 2.28%
 6 1 30 4.27%
 7 0 0 0.00%
 8 0 0 0.00%
 9 1 23 3.27%
 Average
 pattern average switching percentage
 0 0.00 0.00%
 1 22.67 3.22%
 2 0.00 0.00%
 3 13.00 1.85%
 4 13.33 1.90%
 5 7.00 1.00%
 6 13.00 1.85%
 7 0.00 0.00%
 8 0.00 0.00%
 9 11.33 1.61%

...

...

...

 Power Analysis Summary

 Number of Scan Cells 703
 Number of Patterns 0-9
 Cycles Per Load 88
 Average Shift Switching 320.23 45.55%
 Average Capture Switching 22.00 3.13%
 Peak Shift Switching 365 51.92%
(pattern: 8 cycle: 6)
 Peak Capture Switching 68 9.67%
(pattern: 1)

Power Reporting By Clock Domain 24-9

TetraMAX ATPG User Guide K-2015.06-SP4

 Peak Capture Switching (CLK1) 19 2.70%
(pattern: 8)
 Peak Capture Switching (CLK2) 32 4.55%
(pattern: 2)
 Peak Capture Switching (CLK3) 36 5.12%
(pattern: 1)
 Peak Capture Switching (CLK4) 0 0.00%
(pattern: 0)
 Peak Capture Switching (CLK5) 0 0.00%
(pattern: 0)
 Peak Capture Switching (CLK6) 31 4.41%
(pattern: 3)
 Peak Capture Switching (CLK7) 37 5.26%
(pattern: 9)
 Peak Capture Switching (CLK8) 0 0.00%
(pattern: 0)
 Peak Capture Switching (CLK9) 36 5.12%
(pattern: 1)
 Peak Capture Switching (CLK10) 0 0.00%
(pattern: 0)
 Peak Capture Switching (CLK11) 28 3.98%
(pattern: 8)
 Peak Capture Switching (SETN) 0 0.00%
(pattern: 0)
 Peak Capture Switching (RSTN) 0 0.00%
(pattern: 0)

Setting a Capture Budget for Individual Clocks
You can use the -power_budget and -domain options of the set_atpg command to set a
capture budget for individual clocks. Youmust specify the -power_budget option before the -
domain option.
The following example sets a capture budget of 55 for clock1:
set_atpg -power_budget 55 -domain clock1

The next example sets a capture budget of 15 to the clock2 and clock3 clock domains:
set_atpg -power_budget 15 -domain {clock2 clock3}

The next example assigns theminimum recommended capture budget for clock4:

set_atpg -power_budget min -domain clock4

After setting a capture budget for the individual clock domains, you can produce a power report
using the -per_clock_domain option of the report_power command, as shown in the
following example:

report_power -per_clock_domain

Setting a Capture Budget for Individual Clocks 24-10

TetraMAX ATPG User Guide K-2015.06-SP4

 Power Analysis Summary

Number of Scan Cells 54093
Number of Patterns 0-64
Cycles Per Load 52
Average Shift Switching 12939.91 23.92%
Average Capture Switching 7867.95 14.55%
Peak Shift Switching 18373 33.97% (pattern: 5 cycle: 12)
Peak Capture Switching 10880 20.11% (pattern: 11)
Peak Capture Switching (clk1) 9860 18.23% (pattern: 16)
Peak Capture Switching (clk2) 154 0.28% (pattern: 62)
Peak Capture Switching (clk3) 6160 11.39% (pattern: 26)
Peak Capture Switching (clk4) 1389 2.57% (pattern: 23)

You can use the following command to set all clocks to use the specified capture budget:

set_atpg -power_budget {min} -domain [get_attribute \
[get_clocks -all] clock_name]

Retention Cell Testing
A retention cell, as recognized by TetraMAX ATPG, is a scan cell that contains a retention pin.
When a retention pin is asserted, it disables all clocks, including asynchronous signals. When a
retention pin is de-asserted, it functions as a normal sequential device. A retention cell is also
designed to retain its current state during sleepmode.
The following sections describe how to use TetraMAX ATPG to test the unique properties of
retention cells:

l Creating the chain_capture Procedure
l Identifying the Retention Cells
l Performing Test DRC
l Generating the Patterns
l Running Fault Simulation
l Limitations

Creating the chain_capture Procedure
TetraMAX ATPGuses a special retention cell chain test to handle retention cell testing. You
need to create a chain test procedure in the STIL procedure file , called the chain_capture
procedure, to work with the retention chain test. TetraMAX ATPG initially runs the chain test
using the data specified in the STL procedure file and then applies it again with the same data
reverted.
For example, if you specify a repeating 0101 for the chain test, TetraMAX ATPG first applies the
chain test with a repeating 0101 and then reapplies it with a repeating 1010.
The chain_capture procedure in the STL procedure file performs the following steps:

Retention Cell Testing 24-11

TetraMAX ATPG User Guide K-2015.06-SP4

1. Turns the SLEEP signal on, and, if necessary, turns off the scan-enable signal.
2. Pulses the clocks.
3. Turns the SLEEP signal off, and turns the scan-enable signal back on if it was previously

turned off.

The chain_capture procedure shown in the following example uses a four-bit retention
register:
“chain_capture” {
 F { “test_mode”=1; _po=\r 78 X; }
 V { “scan_enable”=0; “ret_clk”=0; “reset”=0; “clk”=0; }

 // Load 0110 into retention register to turn retention on.
 V { “ret_in”=0; “scan_enable”=1; “ret_clk”=P; }
 V { “ret_in”=1; “scan_enable”=1; “ret_clk”=P; }
 V { “ret_in”=1; “scan_enable”=1; “ret_clk”=P; }
 V { “ret_in”=0; “scan_enable”=1; “ret_clk”=P; }

 // Pulse capture clock while retention is on.
 V { “ret_clk”=0; “clk”=P; }

 // Load 1001 into retention register to turn retention off.
 V { “ret_in”=1; “scan_enable”=1; “ret_clk”=P; “clk”=0; }
 V { “ret_in”=0; “scan_enable”=1; “ret_clk”=P; }
 V { “ret_in”=0; “scan_enable”=1; “ret_clk”=P; }
 V { “ret_in”=1; “scan_enable”=1; “ret_clk”=P; }
}

You can also implement the retention functionality in a circuit using a special retention register
with a separate clock for that register. The chain_capture procedure enables the retention
process by loading a special value into the retention register.

Identifying Retention Cells
To identify the retention cells you want to test, youmust include two special notations in the cell
library file: `define retention and `undef retention. The `define retention
notationmust be placed before the cell definition. This enables TetraMAX ATPG to detect the
faults on that cell when the special retention cell test generation procedure is used. The `undef
retention notation is placed after the retention cell definition and prevents the next cell in the
cell library from being identified as a retention cell.

Performing Test DRC
After creating the STL procedure file and identifying the retention cells in the cell library file, you
run DRC using the following command sequence:
set_drc -clock -chain _capture
run_drc STL procedure file_file_name

Retention Cell Testing 24-12

TetraMAX ATPG User Guide K-2015.06-SP4

The set_drc –clock -chain_capture command sets the DRC process to use the
retention cell chain test, and the run_drc spf_filename command runsDRC using the
specified STL procedure file.

Generating the Patterns
To generate patterns for retention cell testing, specify the run_atpg full_sequential_
only command.
Note that youmust run the run_atpg command in full-sequential mode. You can also use the
set_atpg -chain_test command to load additional data into the scan chains.
TetraMAX ATPGperforms the following steps to create retention patterns:

1. Loads the scan chains with the SLEEP signal turn off.
2. Runs the chain_capture procedure.
3. Unloads the scan chains.

These steps are performed twice: one time with the data specified for the normal scan chain test
and one time with the same data inverted.

Running Fault Simulation
After the patterns are generated, you need to set up and run the fault simulation using the set_
simulation and run_fault_sim commands.
TetraMAX fault-simulates the generated patterns and the patterns are retained only if they
detect faults. All detected faults are listed asDS (Detected by Simulation) faults. If the first
pattern detects faults but the second pattern does not, only the first pattern is retained.

Limitations
The following limitations apply to retention cell testing:

l You cannot run retention cell testing using either of the following commands:
l run_atpg basic_scan_only
l run_atpg fast_sequential_only

l The Procedure section of the STL procedure file used for retention cell testingmust
contain only the chain_capture procedure and the load_unload procedure.
Incorrect results are possible if any other capture procedures are included in the
Procedure section when the chain_capture procedure is present.

l You cannot use the run_atpg -auto command if full-sequential test generation is
turned off.

Retention Cell Testing 24-13

TetraMAX ATPG User Guide K-2015.06-SP4

Power Aware ATPG Limitations
Note the following limitations related to power aware ATPG:

l Test-mode based clock gating is not supported. Only scan-enable based clock gating is
supported.

l Latch-free clock gating is not supported. Only latch-based clock gating is supported, which
includes cascaded latch-based clock gating structures.

l Only simple clock-gating latches are supported. Combinations of the output of two or more
latcheswhen logically combined with the clock are not supported.

l Full-sequential ATPG is not supported for either the report_power command or Power
Aware ATPG.

l Scan-enable signalsmust be constrained to the off-state for basic-scan, two-clock, and
fast-sequential for test pattern generation and gated-clock (latch) identification. In addition,
all global signals that are capable of enabling a large proportion of the clock-gating cells
must be disabled.

l Maximum switching overshootsmight occur if ATPG requiresmore flip-flops to change in
excess of the power budget to detect a fault.

l Memories are not supported.
l Asynchronous set and reset signalsmust be inactive (in their off state).
l The -domain option of the set_atpg command does not work when specified with the -
calculate_power option of the set_atpg command.

Power Aware ATPG Limitations 24-14

25
Using TetraMAX and DFTMAX Ultra
Compression
DFTMAX Ultra compression is an advanced test compression technology that delivers the
optimal quality of results asmeasured by test time, data volume, design area, congestion, and
time to implementation.

TetraMAX ATPGhas built-in knowledge of DFTMAX Ultra compression and its pattern
decompression and compression technology. Using a design netlist and a STIL procedure file,
TetraMAX ATPGgenerates a set of test patterns specifically intended for the DFTMAX Ultra
test mode.

TetraMAX ATPG is the only ATPG tool that supports pattern generation for designs using
DFTMAX Ultra compression. The TetraMAX versionmust be the same as or later than the
DFTMAX Ultra version used for the design.

The following sections describe how to use TetraMAX ATPGwith DFTMAX Ultra compression:

l Generating Patterns for DFTMAX Ultra Designs
l Manipulating Patterns for DFTMAX Ultra
l High Resolution Pattern Flow for DFTMAX Ultra Chain Diagnostics
l Test Validation and VCS Simulation for DFTMAX Ultra Designs
l Limitations for Using DFTMAX Ultra

25-1

TetraMAX ATPG User Guide K-2015.06-SP4

Generating Patterns for DFTMAX Ultra Designs
The process for generating patterns for DFTMAX Ultra designs is similar to the standard
TetraMAX ATPG flow described in the "Basic ATPGDesign Flow" section. Youmust use either
serial STIL or parallel STIL patterns generated by TetraMAX ATPG. DFTMAX Ultra
compression does not accept any other pattern format.
The followingsectionsdescribehow togeneratepatternsspecifically for aDFTMAX Ultradesign:

l Pattern TypesRequired byDFTMAX Ultra
l Script Example for Generating Patterns for DFTMAX Ultra

Pattern Types Required by DFTMAX Ultra
TetraMAX ATPGgenerates two types of STIL test patterns that can be used byDFTMAX Ultra
compression:

l Serial STIL– These patterns are used for both scan testing and simulation of full scan
testing. The test patterns are applied to the device for testing on the ATE and are used for
simulating the entire test procedure, including serial scan-in data, decompression of the
scan-in data, launch and capture, compression of the scan-out data, and serial scan-out
data.

l Parallel STIL– These patterns are used for fast simulation of the launch and capture
phases of scan testing. The decompressed test patterns are loaded directly into the scan
chains in parallel and bypasses the serial scan-in and scan-out parts of the simulation.

You can write serial or parallel STIL patternswith or without the unified STIL flow. However, to
use the unified STIL flow, youmust explicitly specify the –unified_stil_flow option. The
following example writes STIL patterns using the unified STIL flow:

TEST-T> write_patterns patterns.stil -format stil \
-unified_stil_flow

For details on generating serial and parallel STIL patterns, see the "Writing ATPGPatterns"
section.

After you simulate and validate the results of the test procedure using several test patterns, you
can skip these patterns in future runs. You can then selectively simulate the launch and capture
segments using additional test patterns loaded in parallel.

Script Example for Generating Patterns for DFTMAX Ultra
The following script is an example of a TetraMAX pattern generation session for a chip that uses
DFTMAX Ultra compression:

########## USER INPUTS AND DFTMAX ULTRA OUTPUT FILES #########
set TOP_MODULE_NAME top_module_name
set NETLIST_FILES1 netlist_files1

Generating Patterns for DFTMAX Ultra Designs 25-2

TetraMAX ATPG User Guide K-2015.06-SP4

set NETLIST_FILES2 netlist_files2
set LIBRARY_FILES1 library_files1
set LIBRARY_FILES2 library_files2
set BUILD_CONSTRAINTS_FILE build_constraints_file
set DRC_CONSTRAINTS_FILE drc_constraints_file
set STL procedure file_FILE spf_file
set LOG log_file
setenv SYNOPSYS path_to_tool_installation

############### BUILD SETTINGS ###################
set_messages -level expert -log $LOG -replace
report_version -full
build -force
set_faults -pt_credit 0
set_faults -summary verbose
set_rules N2 warning
set_rules B12 warning
set_rules B5 warning
set_faults -atpg_effectiveness
set_atpg -verbose
set_netlist -redefined_module last
read_netlist $NETLIST_FILES1
read_netlist $NETLIST_FILES2
read_netlist $LIBRARY_FILES1 -library
read_netlist $LIBRARY_FILES2 -library
source -echo $BUILD_CONSTRAINTS_FILE
run_build_model $TOP_MODULE_NAME

############### DRC SETTINGS ###################
source -echo $DRC_CONSTRAINTS_FILE
set_faults -model stuck
run_drc $STL procedure file_FILE

#################### RUN ATPG ####################
add_nofaults -module .*COMPRESSOR.*
add_faults -all
run_atpg -auto_compression
run_simulation –remove_padding_patterns
write_patterns ultra_ser.stil -serial -format stil
write_patterns ultra_par.stil -parallel -format stil -nounified_
stil_flow

Generating Patterns for DFTMAX Ultra Designs 25-3

TetraMAX ATPG User Guide K-2015.06-SP4

Manipulating Patterns for DFTMAX Ultra
You can use the update_streaming patterns command tomodify or remove ATPG-
generated patterns for use in DFTMAX Ultra compression. In some cases, the order in which
you specify this command depends on whether you are using internal or external patterns.

The following topics describe how to use the update_streaming_patterns command to
manipulate ATPG-generated patterns:

l Controlling the Peak and Average Power During Shifting
l Increasing theMaximumShift Length of Patterns
l Optimizing Padding Patterns
l Removing and Reordering Patterns

Controlling the Peak and Average Power During Shifting
You can use the -load_scan_in option of the update_streaming_patterns command
to control the peak and average power during shifting. This option enables you to specify certain
scan-in pins tomaintain a constant value during the shift operations. For example, if you specify
a value of 0 for the test1 scan-in pin, the pattern ismodified so that all test1 pinsmaintain a
constant 0 value during load shifting.
You can specify values for asmany scan-in pins as required using the Tcl list syntax. The
-load_scan_in option reduces overall power consumption during shifting, and it can be used
for both internal and external patterns. However, this option also causes some coverage loss
and simulationmismatchesmight occur if you specify scan-in pins connected to OCC chains.
The following examplemodifies internal patterns for the test_si1 and test_si3 pins after running
ATPG:

TEST-T> run_atpg -auto
TEST-T> update_streaming_patterns -load_scan_in \

{test_si1 0 test_si3 1}

The next example updates external patterns created during ATPGwith the specified values of
the test_si4 and test_si7 scan-in pins:

TEST-T> set_patterns -external pat.stil
TEST-T> update_streaming_patterns -load_scan_in \

{test_si4 1 test_si7 1}

Increasing the Maximum Shift Length of Patterns
You can use the -max_shifts option of the update_streaming_patterns command to
specify themaximum shift length, which enables you to increase the size of internal and external
patterns from the optimal value set by TetraMAX ATPG. You can use this option before an

Manipulating Patterns for DFTMAX Ultra 25-4

TetraMAX ATPG User Guide K-2015.06-SP4

ATPG run so the generated patterns use the specified shift length or you can apply it to external
patterns. The -max_shifts option prevents overshifting andmakes the pattern shift lengths
equal across different blocks, which assures correct pattern porting.
You can apply this option in an initial session to increase the shift length of the patterns, then use
these same patterns in another session bywriting and reading them back again. For subsequent
sessions, make sure you set the pattern shift length to the same value set in the previous
session. Otherwise, you will see errors and simulationmismatches.
The following example uses the -max_shifts option before an initial ATPG run:
read_image design.img
update_streaming_patterns –max_shifts 300
run_atpg –auto
write_patterns pat.stil -format stil –serial –replace

The following example applies the -max_shifts option in a second session using external
patterns:
read_image design.img
update_streaming_patterns –max_shifts 320
set_patterns -external pat.stil

Optimizing Padding Patterns
When you use DFTMAX Ultra compression technology, theMUX control bits for each test
pattern are loaded by the previous pattern. During ATPG, patterns are created in groups. For
the first pattern in a group, TetraMAX ATPGprepends a padding pattern that loads the required
MUX control bits. During the later stages of pattern generation, TetraMAX ATPGsearches for
patterns that do not incrementally detect new faults and removes those patterns from the pattern
set. This process also introduces padding patterns.

You can use the -remove_padding_patterns option of the
update_streaming_patterns command to optimize padding patterns by removing all
padding patterns except for the first and last padding pattern.

Figure 1 Optimizing Padding Patterns

Manipulating Patterns for DFTMAX Ultra 25-5

TetraMAX ATPG User Guide K-2015.06-SP4

Performing Padding Pattern Optimization
The following commands optimize padding patterns for an internal pattern set generated by
ATPG:

run_atpg ...
update_streaming_patterns –remove_padding_patterns
write_patterns ...

The following commands optimize padding patterns for an external pattern set:

set_patterns –external stil_file_name
update_streaming_patterns –remove_padding_patterns
write_patterns ...

Removing and Reordering Patterns
Use the -remove and -insert options of the update_streaming_patterns command
to remove and reorder individual patterns and blocks of patterns.

To remove one or more patterns, specify a list using the -remove option of the
update_streaming_patterns command.

The following command removes patterns 3 and 9:

update_streaming_patterns -remove {3 9}

You can specify blocks of patterns by providing the first and last pattern numbers of the block as
a sublist inside the pattern removal list. You canmix individual pattern numbers and pattern
blocks in the list.

The following command removes patterns 5 through 7:

update_streaming_patterns -remove {{5 7}}

The following command removes patterns 3, 5 through 7, and 9:

update_streaming_patterns -remove {3 {5 7} 9}

To remove patterns and reinsert them at a different location in the pattern set, use both the
-insert and -remove options of the update_streaming_patterns command. For
each pattern number or block provided in the removal list, specify the pattern number at which
the removed patterns should be reinserted in the insertion list. For removed patterns that you do
not want reinserted, specify an insertion pattern value of X. Note that all removal pattern
numbers are pre-manipulation values.

The following command removes pattern 3, and reinserts patterns 4 through 6 at pattern 0:

update_streaming_patterns -remove {3 {4 6}} -insert {X 0}

You can issuemultiple the update_streaming_patterns command using the -remove
and -insert options. Each command resequences the patterns and pattern numbers after

Manipulating Patterns for DFTMAX Ultra 25-6

TetraMAX ATPG User Guide K-2015.06-SP4

performing the specified patternmanipulations. Subsequent update_streaming_
patterns commandsmust refer to the resequenced pattern numbers.

You can reorder chain test patterns, stuck-at patterns, and transition fault patterns. However,
you cannot perform reordering operations that mix these pattern types. If youmix pattern types,
an error is reported, as shown in the following example:

Error: Pattern 2 and 13 are not of same type. Reordering is
possible between patterns of same type only
Transition patterns are 6 to 99
Chain test patterns are 1 to 5

High Resolution Pattern Flow for DFTMAX Ultra
Chain Diagnostics
You can use the standard TetraMAX chain diagnostics flow for DFTMAX Ultra chain failures. If a
failing part hasmultiple chain defects, an additional flow is available to create high resolution
patterns that canmore accurately identify failing scan cells when there aremultiple failing scan
chains. There are four basic steps to this flow:

1. Use chain diagnostics to identify defective scan chains
2. Create high resolution patterns for the defective scan chains

3. Retest the failing part with the high resolution patterns

4. Rerun diagnostics using the high resolution patterns

Identifying Defective Chains
Your first step is to perform an initial diagnostics run to identify a set of defective chains based on
the chain test failures reported in the failure log file. To do this, specify the -streaming_
report_chains_only option of the run_diagnosis command, as shown in the following
example:

run_diagnosis failure_log_file.log -streaming_report_chains_only
chain_fail_report.txt

Generating High Resolution Patterns
After you have identified the defective chains, generate a set of high resolution patterns that
identify the failing flip-flops in the defective chains.

To do this, apply the add_chains_masks command to the entire production pattern set
(including the chain test patterns and other logic patterns). You then use these patterns to

High Resolution Pattern Flow for DFTMAX Ultra Chain Diagnostics 25-7

TetraMAX ATPG User Guide K-2015.06-SP4

generate a new set of failure log files that are used to identify the defective flip-flops. The
following example shows this process:

set_patterns –external full_pattern_set.stil
add_chain_masks –filename chain_fail_file.txt -diagnosis –external
write_patterns high_resolution_set.stil –format stil -external

Rerunning Diagnostics Using the High Resolution Patterns
Using the newly generated high resolution patterns, you need to retest the failing part and collect
the new fail data. You can then rerun diagnostics using the failure log file generated from the
high resolution patterns. You don't need to use any specific options in the run_diagnosis
command for DFTMAX Ultra compression designs, as shown in the following example:

run_diagnosis high_res_pat_failure_log_file.log -verbose

Flow Example
read_image image_file.dat

Step 1
Run diagnostics to identify defective chains
run_diagnosis high_res_pat_failure_log_file.log -streaming_report_
chains_only chain_fail_list
set_patterns –delete

Step 2
Read full pattern test file
set_patterns -external full_pattern_set.stil

Use add_chain_masks command to generate high resolution
patterns
add_chain_masks -external -filename chain_fail_list -diagnosis

Write the patterns
write_patterns high_resolution_set.stil –format stil -external

Step 3
Retest the failing part with the high resolution patterns and
collect the fail data

Step 4
set_patterns -external high_resolution_set.stil

Main diagnosis run using log file generated using high
resolution patterns
run_diagnosis high_res_pat_failure_log_file.log -verbose

High Resolution Pattern Flow for DFTMAX Ultra Chain Diagnostics 25-8

TetraMAX ATPG User Guide K-2015.06-SP4

See Also
Generating Patterns for DFTMAX Ultra Designs
Optimizing Padding Patterns
VCS Simulation for DFTMAX Ultra Designs

Test Validation and VCS Simulation for
DFTMAX Ultra Designs
You can perform test pattern validation for a DFTMAX Ultra design usingMAX Testbench and
then run a VCS simulation to validate the test protocol and test patterns.

For more information, see the "UsingMAX Testbench" in the Test Pattern Validation User
Guide.

The validation process for a DFTMAX Ultra design uses a serial STIL file or a parallel STIL file.

Limitations for Using DFTMAX Ultra
The following ATPG requirements and limitations apply to DFTMAX Ultra compression:

l Path delay fault testing is supported only for fast-sequential ATPG.
l The write_patterns command normally writes out a unified STIL file by default, which
uses a single STIL file for both serial and parallel simulation. You can perform serial or
parallel simulation using the unified STIL flow. However, to use this flow for DFTMAX Ultra
designs, youmust explicitly specify the -unified_stil_flow option to write out the
STIL pattern files.

l Parallel test validation using NShift is not supported. However, NShift can still be validated
using serial test patterns. NShift is a feature that simulates the last “N” shifts of the scan
operation so that nonscan flip-flops in the design are initialized to known values.

l The run_justification command is not supported.
l The following options of the set_drc command are not supported:

l -forked_pipes | -noforked_pipes
l -lockup_after_compressor | -nolockup_after_compressor

l -pipeline_in_compressor | -nopipeline_in_compressor

Test Validation and VCS Simulation for DFTMAX Ultra Designs 25-9

26
Troubleshooting
The following sections describe troubleshooting tips and techniques:

l Reporting Port Names
l Reviewing aModule Representation
l Rerunning Design Rule Checking
l Troubleshooting Netlists
l Troubleshooting STIL Procedures
l Analyzing the Cause of Low Test Coverage
l Completing an Aborted Bus Analysis

26-1

TetraMAX ATPG User Guide K-2015.06-SP4

Reporting Port Names
To verify the names of top-level ports, you can obtain a list of the inputs, outputs, or bidirectional
ports for the top level of the design using these commands:
DRC-T> report_primitives -pis
DRC-T> report_primitives -pos
DRC-T> report_primitives -pios
DRC-T> report_primitives -ports

To obtain the names of ports for any specificmodule, use the following command:
DRC-T> report_modules module_name -verbose

Example 1 shows a verbose report produced by the report_modules command. The names
of the pins are listed in the Inputs andOutputs sections.

Example 1 Verbose Module Report

TEST-T> report_modules INC4 -verbose pins
module name tot(i/ o/ io) inst refs(def'd) used
---------------- ---------------- ---- ----------- ----
INC4 11(5/ 6/ 0) 10 1 (Y) 1
 Inputs : A0 () A1 () A2 () A3 () CI ()
 Outputs : S0 () S1 () S2 () S3 () CO () PR ()
 PROP1 : and conn=(O:PROP I:A0 I:A1 I:A2 I:A3)
 HADD0S : xor conn=(O:S0 I:A0 I:CI)
 HADD1S : xor conn=(O:S1 I:A1 I:C0)
 HADD2S : xor conn=(O:S2 I:A2 I:C1)
 HADD3S : xor conn=(O:S3 I:A3 I:C2)
 HADD0C : and conn=(O:C0 I:A0 I:CI)
 HADD1C : and conn=(O:C1 I:A1 I:C0)
 HADD2C : and conn=(O:C2 I:A2 I:C1)
 CARRYOUT : and conn=(O:CO I:PROP I:CI)
 buf9 : buf conn=(O:PR I:PROP)
--

Reviewing a Module Representation
To review the internal representation of amodule definition, you will need to specify the
report_modules commandwith the name of themodule and the -verbose option.
Alternatively, you can use the run_build_model command and specify the name of the
module as the top-level design.
Youmight want to review the internal representation of a librarymodule in TetraMAX ATPG if
errors or warnings are generated by the read_netlist command. For example, suppose that
you use the read_netlist command to read in themodule csdff, whose truth table

Reporting Port Names 26-2

TetraMAX ATPG User Guide K-2015.06-SP4

definition is shown in Example 1, and the command generates the warningmessages shown in
Example 2.

Example 1 Truth Table Logic Model

primitive csdff (Q, SDI, SCLK, D, CLK, NOTIFY);
 output Q; reg Q;
 input SDI, SCLK, D, CLK, NOTIFY;
 table
 // SDI SCLK D CLK NR : Q- : Q+
 // --- --- --- ---- --- : --- : ---
 ? 0 0 (01) ? : ? : 0 ; // clock D=0
 ? 0 1 (01) ? : ? : 1 ; // clock D=1
 0 (01) ? 0 ? : ? : 0 ; // scan clock SDI=0
 1 (01) ? 0 ? : ? : 1 ; // scan clock SDI=1

 ? 0 * 0 ? : ? : - ; // hold
 * 0 ? 0 ? : ? : - ;
 ? 0 ? 0 ? : ? : - ;
 ? 0 ? (?0) ? : ? : - ;
 ? (?0) ? 0 ? : ? : - ;
 ? 0 ? ? * : ? : x ; // force to X
 endtable
endprimitive

Example 2 Read Netlist Showing Warnings

BUILD-T> read_netlist csdff.v
Begin reading netlist (csdff.v)...
Warning: Rule N15 (incomplete UDP) failed 64 times.
Warning: Rule N20 (underspecified UDP) failed 2 times.
End parsing Verilog file test.v with 0 errors;
End reading netlist: #modules=1, top=csdff, #lines=25,
CPU_time=0.01 sec

To review themodel:

1.
Execute the run_build command:
BUILD-T> run_build_model csdff

2. Click the SHOW button in the graphical schematic viewer (GSV) toolbar, and from the
pop-upmenu, choose ALL.

A schematic similar to Figure 1 appears, allowing you to examine the ATPGmodel.

Reviewing a Module Representation 26-3

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1 Module Showing Correct Interpretation

Do not be cone timerned if the schematic shows extra buffers. During themodel building
process, TetraMAX ATPG inserts these buffers wherever there is a direct path to a sequential
device from a top-level port. These buffers are not present in instantiations of themodule in the
design.

Rerunning Design Rule Checking
The file specified in the run_drc command is read each time the design rule checking (DRC)
process is initiated. You can quickly test any changes that youmake to this file by issuing another
run_drc command, as follows:
DRC-T> run_drc specfile.spf
pause here for edits to DRC file
TEST-T> drc -force
DRC-T> run_drc

Troubleshooting Netlists
The following tips are for troubleshooting problems TetraMAX ATPGmight encounter while
reading netlists:

l For severe syntax problems, start troubleshooting near the line number indicated by the
TetraMAX error message.

l Focus on category N rules; these cover problemswith netlists.
l To see the number of failures in category N, execute the report_rules n -fail
command.

l To see all violations in a specific category such asN9, execute the report_violations
n9 command.

l To see violations in the entire category N, execute the report_violations n

Rerunning Design Rule Checking 26-4

TetraMAX ATPG User Guide K-2015.06-SP4

command.
l Netlist parsing stopswhen TetraMAX ATPGencounters 10 errors. To increase this limit,
execute the set_netlist -max_errors command.

l When readingmultiple netlist files using wildcards in the read_netlist command, to
determine which file had a problem, reread the files with the -verbose option and omit
the -noabort option.

l Extract the problematicmodule definition, save it in a file, and attempt to read in only that
file.

l Consider the effect of case sensitivity on your netlist, and explicitly set the case sensitivity
by using the -sensitive or -insensitive option with the read_netlist
command.

l Consider the effect of the hierarchical delimiter. If necessary, change the default by using
the -hierarchy_delimiter option of the set_build command. Then reread your
netlists.

Troubleshooting STIL Procedures
Problems in the procedures defined in the STIL procedure file can be either syntax errors or
DRC violations. Syntax errors usually result in a category V (vector rule) violationmessage, and
TetraMAX ATPG reports the line number near the violation.
The following sections describe how to troubleshoot STIL procedures:

l Opening the STL Procedure File
l STIL load_unload Procedure
l STIL Shift Procedure
l STIL test_setupMacro
l Correcting DRC Violations byChanging the Design

Opening the STL Procedure File
To fix the problem, open the STL procedure file with an editor, make any necessary changes,
and use the run_drc command again to verify that the problemwas corrected. For detailed
descriptions and examples of the STIL procedures, see “STIL Procedure Files.”
A general tip for troubleshooting any of the STL procedure file procedures is to click the
ANALYZE button in the GSV toolbar and select the applicable rule violation from the Analyze
dialog box. TetraMAX ATPGdraws the gates involved in the violation and automatically selects
an appropriate pin data format for display in the schematic. To specify a particular pin data
format, click the SETUP button and select the Pin Data Type in the Setup dialog box. For more
information on pin data types, see “Displaying Pin Data”.

Troubleshooting STIL Procedures 26-5

TetraMAX ATPG User Guide K-2015.06-SP4

STIL load_unload Procedure
When you analyze DRC violations TetraMAX ATPGencountered during the load_unload
procedure, the GSV automatically sets the pin data type to Load. With the Load pin data type,
strings of characters such as 10X11{ }11 are displayed near the pins. Each character
corresponds to a simulated event time from the vectors defined in the load_unload
procedure. The curly braces indicate where the Shift procedure is inserted asmany times as
necessary. Thus, the last value before the left curly brace is the logic value achieved just before
starting the Shift procedure. The values following the right curly brace are the simulated
logic values between the last Shift procedure and the end of the load_unload
procedure.
The following guidelines ae for using the load_unload procedure:

l Set all clocks to their off states before the Shift procedure.
l Enable the scan chain path by asserting a control port (for example, scan_enable).
l Place any bidirectional ports that operate as scan chain inputs into input mode.
l Place any bidirectional or three-state ports that operate as scan chain outputs into output
mode, and explicitly force the ports to Z.

l Set all constrained ports to values that enable shifting of scan chains.
l Place all bidirectional ports into a non-loating input mode if this is possible for the design.

STIL Shift Procedure
When you analyze DRC violations encountered during the Shift procedure, the GSV
automatically sets the displayed pin data type to Shift. In the Shift pin data type, logic values such
as 010 are displayed. Each character represents a simulated event time in the Shift
procedure defined in the STL procedure file.
The following guidelines are for the test cycles you define in the Shift procedure:

l Use the predefined symbolic names _si and _so to indicate where scan inputs are
changed and scan outputs aremeasured.

l If you want to save patterns inWaveformGeneration Language (WGL) format, describe
the Shift procedure using a single cycle.

l Remember that state assignments in STIL are persistent for amulticycle Shift
procedure. Therefore, when you place a CLOCK=P to cause a pulse, that setting
continues to cause a pulse until CLOCK is turned off (CLOCK=0 for a return-to-zero port,
or CLOCK=1 for a return-to-one port).

Example 1 shows a Shift procedure that contains an error. The first cycle of the shift applies
MCLK=P, which is still in effect for the second cycle. As the Shift procedure is repeated, both
MCLK and SCLKbecome set to P, which unintentionally causes a pulse on each clock on each
cycle of the Shift procedure.

Example 1 Multicycle Shift Procedure With a Clocking Error

"load_unload" {
 V { MCLK = 0; SCLK = 0; SCAN_EN = 1; }
 Shift {

Troubleshooting STIL Procedures 26-6

TetraMAX ATPG User Guide K-2015.06-SP4

 V { _si=##; _so=##; MCLK=P; }
 V { SCLK=P;} // PROBLEM: MCLK is still on!
 }
 }

Example 1 shows the same Shift procedure with correct clocking. As the Shift
procedure is interactively applied, MCLK and SCLK are applied in separate cycles. An
additional SCLK=0 has been added after the Shift procedure, before exiting the load_
unload, to ensure that SCLK is off.

Example 1 Multicycle Shift Procedure With Correct Clocking

 "load_unload" {
 V {
 MCLK = 0; SCLK = 0; SCAN_EN = 1;
 }
 Shift {
 V { _si=##; _so=##; MCLK=P; SCLK=0;}
 V { MCLK=0; SCLK=P;}
 }
 V { SCLK=0;}
 }

Example 2 shows the same Shift procedure converted to a single cycle. The procedure
assumes that timing definitions elsewhere in the test procedure file for MCLK and SCLK are
adjusted so that both clocks can be applied in a non-overlapping fashion. Thus, the two clock
events can be combined into the same test cycle.

Example 2 Multicycle Shift Converted to a Single Cycle

"load_unload" {
 W "TIMING";
 V { MCLK = 0; SCLK = 0;; SCAN_EN = 1; }
 Shift {
 V { _si=##; _so=##; MCLK=P; SCLK=P;}
 }
 V { MCLK=0; SCLK=0;}
 }

STIL test_setup Macro
When you analyze DRC violations encountered during the test_setupmacro, the graphical
schematic viewer automatically sets the displayed pin data type to Test Setup. In the Test Setup
pin data type, logic values in the form XX1 are displayed. Each character represents a
simulated event time in the test_setup macro defined in the STL procedure file.
The following rules are for the test cycles you define in the test_setup macro:

l Force bidirectional ports to a Z state to avoid contention.
l Initialize any constrained primary inputs to their constrained values by the end of the
procedure.

Troubleshooting STIL Procedures 26-7

TetraMAX ATPG User Guide K-2015.06-SP4

l Pulse asynchronous set/reset ports or clocking in a synchronous set/reset only if you want
to initialize specific nonscan circuitry.

l Place clocks and asynchronous sets and resets at their off states by the end of the
procedure. Note that it is not necessary to stop Reference clocks (including what DFT
Compiler refers to as ATE clocks). All other clocks still must be stopped.

Correcting DRC Violations by Changing the Design
If you cannot correct a DRC violation by adjusting one of the STL procedure file procedures,
defining a primary input constraint, or changing a clock definition, the violation is probably
caused by incorrect implementation of ATPGdesign practices, and a design changemight be
necessary. Note that a design can be testable with functional patterns and still be untestable by
ATPGmethods.
If you have scan chains with blockages and you cannot determine the right combination of
primary input constraints, clocks, and STL procedure file procedures, the problemmight involve
an uncontrolled clock path or asynchronous reset. Try dropping the scan chain from the list of
known scan chains. This will increase the number of nonscan cells and decrease the achievable
test coverage, but it might let you generate ATPGpatternswithout a design change.
If you still cannot correct the violation, youmust make a design change. Examine the design
along with the design guidelines presented in the “WorkingWith Design Netlists and Libraries"
section to determine how to change your design to correct the violation.

Analyzing the Cause of Low Test Coverage
When test coverage is lower that expected, you should review the AN (ATPGuntestable), ND
(not detected), and PT (possibly detected) faults, and refer to the following sections:

l Where Are the Faults Located?
l Why are the Faults Untestable or Difficult to Test?
l Using Justification

Where Are the Faults Located?
To find out where the faults are located, choose Faults > Report Faults to access the Report
Faults window, which displays a report in a separate window. Alternatively, you can use the
report_faults commandwith the -class and -level options.
The following command generates a report of modules that have 256 or more AN faults:
TEST-T> report_faults -class an -level 4 256

Example 1 shows the report generated by this command. The first column shows the number of
AN faults for each block. The second column shows the test coverage achieved in each block.
The third column shows the block names, organized hierarchically from the top level downward.

Example 1 Fault Report of AN Faults Using the Level Option

TEST-T> report_faults -class AN -level 4 256
#faults testcov instance name (type)

Analyzing the Cause of Low Test Coverage 26-8

TetraMAX ATPG User Guide K-2015.06-SP4

------- ------- -----------------------
 22197 91.70% /spec_asic (top_module)

2630 83.00% /spec_asic/born (born)
2435 28.00% /spec_asic/born/fpga2 (fpga2)

 788 5.35% /spec_asic/born/fpga2/avge1 (avge)
1647 3.28% /spec_asic/born/fpga2/avge2 (yavge)
5226 0.00% /spec_asic/dac (dac)
5214 0.00% /spec_asic/dac/dual_port (dual_port)

 11098 66.46% /spec_asic/video (video)
 11098 66.24% /spec_asic/video/decipher (vdp_cyphr)
 11027 60.00% /spec_asic/video/decipher/dpreg (dpreg)

 426 96.97% /spec_asic/gex (gex)
 260 93.89% /spec_asic/gex/fifo (gex_fifo)
 799 94.56% /spec_asic/vint (vint)
 798 54.29% /spec_asic/vint/vclk_mux (vclk_mux)

1514 94.80% /spec_asic/crtc_1 (crtc)
 476 96.79% /spec_asic/crtc/crtc_sub (crtc_sub)
 465 94.20% /spec_asic/crtc/crtc_sub/attr (attr)

1004 77.68% /spec_asic/crtc/crap (crap)

The report shows that the twomajor contributors to the high number of AN faults are the
following hierarchical blocks:

l /spec_asic/dac/dual_port (with 5,214 AN faults and 0.00 percent test coverage)
l /spec_asic/video/decipher/dpreg (with 11,027 faults and 60.00 percent test
coverage)

You can also review other classes of faults and combinations of classes of faults by using
different option settings in the report_faults command.

Why Are the Faults Untestable or Difficult to Test?
To find out why the faults cannot be tested, you can use the analyze_faults command or
the run_justification command.
The following example uses the analyze_faults command to generate a fault analysis
summary for AN faults:
TEST-T> analyze_faults -class an

Example 2 shows the resulting fault analysis summary, which lists the common causes of AN
faults. In this example, the threemajor causes are constraints that interfered with testing (7,625
faults), blockages as a secondary condition of constraints (5,046 faults), and faults downstream
from points tied to X (1,500 faults). Aswith the report_faults command, you can specify
other classes of faults or multiple classes.

Example 2 Fault Analysis Summary of AN Faults

TEST-T> analyze_faults -class an
Fault analysis summary: #analyzed=13398, #unexplained=257.
7625 faults are untestable due to constrain values.
5046 faults are untestable due to constrain value blockage.
11 faults are connected to CLKPO.

Analyzing the Cause of Low Test Coverage 26-9

TetraMAX ATPG User Guide K-2015.06-SP4

11 faults are connected to DSLAVE.
210 faults are connected to TIEX.
233 faults are connected to TLA.
129 faults are connected to CLOCK.
50 faults are connected to TS_ENABLE.
26 faults are connected from CLOCK.
128 faults are connected from TLA.
1500 faults are connected from TIEX.
114 faults are connected from CAPTURE_CHANGE.

To see specific faults associated with each classification cause (for example, to see a specific
fault connected from TIEX), use the -verbose option with the analyze_faults command.
The following command generates an AN fault analysis report that gives details of the first three
faults in each cause category:
TEST-T> analyze_faults -class an -verbose -max 3

You can redirect this report to a file by using the output redirection option:
TEST-T> analyze_faults -class an -verb > an_faults_detail.txt

You can examine each fault in detail by using the analyze_faults command and naming the
specific fault. For example, the following command generates a report on a stuck-at-0 fault on
themodule /gcc/hclk/U864/B:
TEST-T> analyze_faults /gcc/hclk/U864/B -stuck 0

Example 3 shows the result of this command. The report lists the fault location, the assigned
fault classification, one or more reasons for the fault classification, and additional information
about the source or control point involved.

Example 3 Fault Analysis Report of a Specific Fault
--
Fault analysis performed for /gcc/hclk/U864/B stuck at 0 \

(input 2 of MUX gate 58328).
Current fault classification = AN \

(atpg_untestable-not_detected).
--
Connection data: to=DSLAVE
Fault is blocked from detection due to constrained values.
 Blockage point is gate /gcc/hclk/writedata_reg0 (91579).

For additional examples, see “Example: Analyzing an AN Fault”.

Using Justification
The run_justification command provides another troubleshooting tool. Use it to
determine whether one or more internal points in the design can be set to specific values. This
analysis can be performedwith or without the effects of user-defined or ATPGconstraints.
If there is a specific fault that shows up in an NC (not controlled) class, you can use the run_
justification command to determine which of the following conditions applies to the fault:

l The fault location can be identified as controllable if TetraMAX ATPG is givenmore CPU
time or a higher abort limit and allowed to continue.

l The fault location is uncontrollable.

Analyzing the Cause of Low Test Coverage 26-10

TetraMAX ATPG User Guide K-2015.06-SP4

In Example 4, the run_justification command is used to confirm that an internal point can
be set to both a high and low value.

Example 4 Using run_justification

TEST-T> run_justification -set /spec_asic/gex/hclk/U864/B 0
Successful justification: pattern values available in pattern 0.
Warning: 1 patterns rejected due to 127 bus contentions (ID=37039,

pat1=0). (M181)

TEST-T> run_justification -set /spec_asic/gex/hclk/U864/B 1
Successful justification: pattern values available in pattern 0.
Warning: 1 patterns rejected due to 127 bus contentions (ID=37039,

pat1=0). (M181)

For additional examples of the run_justification command, see “Checking Controllability
andObservability”.

Completing an Aborted Bus Analysis
During the DRC analysis, TetraMAX ATPG identifies themultidriver nets in the design and
attempts to determine whether a pattern can be created to do the following:

l Turn onmultiple drivers to cause contention.
l Turn on a single driver to produce a noncontention state.
l Turn all drivers off and have the net float.

TetraMAX ATPGautomatically avoids patterns that cause contention. However, it is important
to determine whether each net needs to be constantlymonitored. Themore nets that must be
monitored, themore CPU effort is required to create a pattern that tests for specific faults while
avoiding contention and floating conditions.
When TetraMAX ATPGsuccessfully completes a bus analysis, it knowswhich netsmust be
monitored. However, if a bus analysis is aborted, nets for which analysis was not completed are
assumed to be potentially problematic and therefore need to bemonitored. Usually, increasing
the ATPGabort limit and performing an analyze_buses command completes the analysis,
allowing faster test pattern generation.
For an example of interactively performing a bus analysis, see “Analyzing Buses”.

Completing an Aborted Bus Analysis 26-11

A
Test Concepts
When you performmanufacturing testing, you ensure high-quality integrated circuits by
screening out deviceswith manufacturing defects. You can thoroughly test your integrated
circuit when you adopt structured design-for-test (DFT) techniques. The DFT techniques
currently supported by TetraMAX ATPGconsist of internal scan (both full scan and partial scan)
and boundary scan. This appendix covers the background you need to understand these
techniques.
The following sections of this appendix describe test cone timepts:

l WhyPerformManufacturing Testing?
l Understanding Fault Models
l What Is Internal Scan?
l What Is Boundary Scan?

A-1

TetraMAX ATPG User Guide K-2015.06-SP4

Why Perform Manufacturing Testing?
Functional testing verifies that your circuit performs as it was intended to perform. For example,
assume you have designed an adder circuit. Functional testing verifies that this circuit performs
the addition function and computes the correct results over the range of values tested. However,
exhaustive testing of all possible input combinations grows exponentially as the number of inputs
increases. Tomaintain a reasonable test time, youmust focus functional test patterns on the
general function and corner cases.
Manufacturing testing verifies that your circuit does not havemanufacturing defects by focusing
on circuit structure rather than functional behavior. Manufacturing defects include the following
problems:

l Power or ground shorts
l Open interconnect on the die caused by dust particles
l Short-circuited source or drain on the transistor caused bymetal spike-through

Manufacturing defectsmight remain undetected by functional testing yet cause undesirable
behavior during circuit operation. To provide the highest-quality products, development teams
must prevent deviceswith manufacturing defects from reaching the customers. Manufacturing
testing enables development teams to screen devices for manufacturing defects.
A development team usually performs both functional andmanufacturing testing of devices.

Understanding Fault Models
Amanufacturing defect has a logical effect on the circuit behavior. An open connection can
appear to float either high or low, depending on the technology. A signal shorted to power
appears to be permanently high. A signal shorted to ground appears to be permanently low.
Many of thesemanufacturing defects can be represented using the industry-standard stuck-at
fault model. Other faults can bemodeled using the IDDQ, or quiescent current fault model.
The following sections describe fault models:

l Stuck-At Fault Models
l Detecting Stuck-At Faults
l Using Fault Models to Determine Coverage
l IDDQFault Model
l Fault Simulation
l Automatic Test Pattern Generation
l Translation for theManufacturing Test Environment

Why Perform Manufacturing Testing? A-2

TetraMAX ATPG User Guide K-2015.06-SP4

Stuck-At Fault Models
The stuck-at-0 model represents a signal that is permanently low regardless of the other signals
that normally control the node. The stuck-at-1 model represents a signal that is permanently high
regardless of the other signals that normally control the node.
For example, Figure 1 shows a two-input AND gate that has a stuck-at-0 fault on the output pin.
Regardless of the logic level of the two inputs, the output is always 0.

Figure 1 Stuck-at-0 Fault on Output Pin of 2-input AND Gate

Detecting Stuck-At Faults
The node of a stuck-at fault must be controllable and observable for the fault to be detected.
A node is controllable if you can drive it to a specified logic value by setting the primary inputs to
specific values. A primary input is an input that can be directly controlled in the test environment.
A node is observable if you can predict the response on it and propagate the fault effect to the
primary outputs where you canmeasure the response. A primary output is an output that can be
directly observed in the test environment.
To detect a stuck-at fault on a target node, youmust perform the following steps:

l Control the target node to the opposite of the stuck-at value by applying data at the primary
inputs.

l Make the node’s fault effect observable by controlling the value at all other nodes affecting
the output response, so the targeted node is the active (controlling) node.

The set of logic 0s and 1s applied to the primary inputs of a design is called the input stimulus.
The set of resulting values at the primary outputs, assuming a fault-free design, is called the
expected response. The set of actual valuesmeasured at the primary outputs is called the output
response.
If the output response does not match the expected response for a given input stimulus, the input
stimulus has detected the fault. To detect a stuck-at-0 fault, you need to apply an input stimulus
that forces that node to 1. For example, to detect a stuck-at-0 fault at the output the two-input
AND gate shown in Figure 1, you need to apply a logic 1 at both inputs. The expected response
for this input stimulus is logic 1, but the output response is logic 0. This input stimulus detects the
stuck-at-0 fault.
Thismethod of determining the input stimulus to detect a fault uses the single stuck-at fault
model. The single stuck-at fault model assumes that only one node is faulty and that all other
nodes in the circuit are good. This type of model greatly reduces the complexity of fault modeling
and is technology independent.

Understanding Fault Models A-3

TetraMAX ATPG User Guide K-2015.06-SP4

In amore complex situation, youmight need to control all other nodes to ensure observability of
a particular target node. Figure 2 shows a circuit with a detectable stuck-at-0 fault at the output
of cell G2.

Figure 2 Simple Circuit With Detectable Stuck-At Fault

To detect the fault, you need to control the output of cell G2 to logic 1 (the opposite of the faulty
value) by applying a logic 0 value at primary input C. To ensure that the fault effect is observable
at primary output Z, you need to control the other nodes in the circuit so that the response value
at primary output Z depends only on the output of cell G2.
For this example, you can accomplish the following goals:

l Apply a logic 1 at primary input D so that the output of cell G3 depends only on the output of
cell G2. The output of cell G2 is the controlling input of cell G3.

l Apply logic 0s at primary inputs A and B so that the output of cell G4 depends only on the
output of cell G2.

Given the input stimuli of A = 0, B = 0, C = 0, and D = 1, a fault-free circuit produces a logic 1 at
output port Z. If the output of cell G2 is stuck-at-0, the value at output port Z is a logic 0 instead.
Thus, this input stimulus detects a stuck-at-0 fault on the output of cell G2.
This set of input stimuli and expected response values is called a test vector. Following the
process previously described, you can generate test vectors to detect stuck-at-1 and stuck-at-0
faults for each node in the design.

Using Fault Models to Determine Test Coverage
One definition of a design’s testability is the extent to which that design can be tested for the
presence of manufacturing defects, as represented by the single stuck-at fault model. Using this
definition, themetric used tomeasure testability is test coverage. For a precise explanation of
how test coverage is calculated in TetraMAX ATPG, see “Test Coverage”.
For larger designs, it is not feasible to analyze the test coverage results for existing functional
test vectors or to manually generate test vectors to achieve high test coverage results. Fault

Understanding Fault Models A-4

TetraMAX ATPG User Guide K-2015.06-SP4

simulation tools determine the test coverage of a set of test vectors. ATPG tools generate
manufacturing test vectors. Both of these automated tools requiremodels for all logic elements
in your design to calculate the expected response correctly. Your semiconductor vendor
provides thesemodels.

IDDQ Fault Model
For CMOS circuits, an alternative testingmethod is available, called IDDQ testing. IDDQ testing
is based on the principle that a CMOS circuit does not draw a significant amount of current when
the device is in the quiescent (quiet, steady) state. The presence of even a single circuit fault,
such as a short from an internal node to ground or to the power supply, can be detected by the
resulting excessive current drain at the power supply pin. IDDQ testing can detect faults that are
not observable by stuck-at fault testing.
For the IDDQ testing, the ATPGprocess uses an IDDQ fault model rather than a stuck-at fault
model. The generated test patterns only need to control internal nodes to 0 and 1 and comply
with quiescence requirements. The patterns do not need to propagate the effects of faults to the
device outputs. The ATPG tool attempts tomaximize the toggling of internal states andminimize
the number of patterns needed to control each node to both 0 and 1 for IDDQ testing.
TetraMAX ATPGhas an optional IDDQpattern generation/verification capability called
IddQTest. It uses the following criteria for IDDQpattern generation:

l No current should flow through resistors.
l Theremust not be contention on any bus or node.
l No nodes can be allowed to float. A floating node could cause someCMOS transistors to
turn on and draw current.

l RAMmodulesmust be disabled so that they do not draw any current.
For more information on IddQTest, see the Test Pattern Validation User Guide.

Fault Simulation
Fault simulation determines the test coverage of a set of test vectors. It performs several logic
simulations concurrently: one simulation represents the fault-free circuit (a goodmachine
simulation) and several simulations represent the circuits containing single stuck-at faults
(afaultymachine simulation). Fault simulation detects a fault each time the output response of
the faultymachine is a non-X value and is different from the output response of the good
machine for a given vector.
Fault simulation determines all faults detected by a test vector. By fault simulating the test vector
that is generated to detect the stuck-at-0 fault on the output of G2 in Figure 2, it is apparent that
this vector also detects the following single stuck-at faults:

l Stuck-at-1 on all pins of G1 (and ports A and B)
l Stuck-at-1 on the input of G2 (and port C)
l Stuck-at-0 on the inputs of G3 (and port D)
l Stuck-at-1 on the output of G3
l Stuck-at-1 on the inputs of G4
l Stuck-at-0 on the output of G4 (and port Z)

Understanding Fault Models A-5

TetraMAX ATPG User Guide K-2015.06-SP4

You can generatemanufacturing test vectors bymanually generating test vectors and then fault-
simulating them to determine the test coverage. For large or complex designs, however, this
process is time consuming and often does not result in high test coverage.

Automatic Test Pattern Generation
ATPGgenerates test patterns and provides test coverage statistics for the generated pattern
set. The difference between test vectors and test patterns is defined in “What Is Internal Scan?”.
For now, consider the term “test vector” to be the same as “test pattern.”
ATPG for combinational circuits is well understood; it is usually possible to generate test vectors
that provide high test coverage for combinational designs.
Combinational ATPG tools can use both random and deterministic techniques to generate test
patterns for stuck-at faults. By default, TetraMAX ATPGonly uses deterministic pattern
generation; using random pattern generation is optional.
During random pattern generation, the tool assigns input stimuli in a pseudo-randommanner,
then fault-simulates the generated vector to determine which faults are detected. As the number
of faults detected by successive random patterns decreases, ATPGcan change to a
deterministic technique.
During deterministic pattern generation, the tool uses a pattern generation process based on
path-sensitivity cone timepts to generate a test vector that detects a specific fault in the design.
After generating a vector, the tool fault-simulates the vector to determine the complete set of
faults detected by the vector. Test pattern generation continues until all faults either have been
detected or have been identified as undetectable by the process.
Because of the effects of memory and timing, ATPG ismuchmore difficult for sequential circuits
than for combinational circuits. It is often not possible to generate high test coverage test vectors
for complex sequential designs, even when you use sequential ATPG. Sequential ATPG tools
use deterministic pattern generation algorithms based on extended applications of the path-
sensitivity cone timepts.
Structured DFT techniques (for example, internal scan) simplify the test pattern generation task
for complex sequential designs, resulting in higher test coverage and reduced testing costs. For
more information about internal scan techniques, see “What Is Internal Scan?”.

Translation for the Manufacturing Test Environment
To test for manufacturing defects in your chips, you need to translate the generated test patterns
into a format acceptable to the automated test equipment (ATE). On the ATE, the logic 0s and
1s in the input stimuli are translated into low and high voltages to be applied to the primary inputs
of the device under test. The logic 0s and 1s in the output response are compared with the
voltagesmeasured at the primary outputs. For combinational ATPG, one test vector
corresponds to one ATE cycle.
Youmight usemore than one set of test vectors for manufacturing testing. The term “test
program” means the collection of all test vector sets used to test a design.

Understanding Fault Models A-6

TetraMAX ATPG User Guide K-2015.06-SP4

What Is Internal Scan?
Internal scan design is themost commonDFT technique and has the greatest potential for high
test coverage. The principle of this technique is to modify the existing sequential elements in the
design to support serial shift capability, in addition to their normal functions; and to connect these
elements into serial chains tomake, in effect, long shift registers.
Each scan chain element can operate like a primary input or primary output during ATPG
testing, greatly enhancing the controllability and observability of the internal nodes of the device.
This technique simplifies the pattern generation problem by effectively dividing complex
sequential designs into fully isolated combinational blocks (full-scan design) or semi isolated
combinational blocks (partial-scan design).
The following sections describe internal scan:

l Example
l Applying Test Patterns
l Scan Design Requirements
l Full-Scan Design
l Partial-Scan ATPGDesign

Example
Figure 1 shows an example of themultiplexed flip-flop scan style, where a D flip-flop has been
modified to support internal scan by the addition of amultiplexer. Inputs to themultiplexer are the
data input of the flip-flop (d) and the scan-input signal (scan_in). The active input of the
multiplexer is controlled by the scan-enable signal (scan_enable). Input pins are added to the
cell for the scan_in and scan_enable signals. One of the data outputs of the flip-flop (q or qn) is
used as the scan-output signal (scan_out). The scan_out signal is connected to the scan_in
signal of another scan cell to form a serial scan (shift) capability.

Figure 1 D Flip-Flop With Scan Capability

Themodified sequential cells are chained together to form one or more large shift registers.
These shift registers are called scan chains or scan paths. The sequential cells connected in a

What Is Internal Scan? A-7

TetraMAX ATPG User Guide K-2015.06-SP4

scan chain are scan controllable and scan observable. A sequential cell is scan controllable
when you can set it to a known state by serially shifting in specific logic values. ATPG tools treat
scan controllable cells as pseudo-primary inputs to the design. A sequential cell is scan
observable when you can observe its state by serially shifting out data. ATPG tools treat scan-
observable cells as pseudo-primary outputs of the design.
Most semiconductor vendor libraries include pairs of equivalent nonscan and scan cells that
support a given scan style. One special test cell is a scan flip-flop that combines a D flip-flop and
amultiplexer. You can also implement the scan function of this special test cell with discrete
cells, such as the separate flip-flop andmultiplexer shown in Figure 1.
Adding scan circuitry to a design usually has the following effects:

l Design size and power increases slightly because scan cells are usually larger than the
nonscan cells they replace, and the nets used for the scan signals occupy additional area.

l Design performance (speed) decreasesmarginally because of changes in the electrical
characteristics of the scan cells that replace the nonscan cells.

l Global test signals that drivemany sequential elementsmight require buffering to prevent
electrical design rule violations.

The effects of adding scan circuitry vary depending on the scan style and the semiconductor
vendor library you use. For some scan styles, such as level-sensitive scan design (LSSD),
introducing scan circuitry produces a negligible local change in performance.
The Synopsys scan DFT synthesis capabilities fully optimize for the user’s design rules and
constraints (timing, area, and power) in the context of scan. These scan synthesis capabilities
are available in DFT Compiler, the Synopsys test-enabled synthesis configuration. For
information about how DFT Compiler minimizes the impact of inserting scan logic in your design,
see theDFT Compiler Scan User Guide.
For scan designs, an ATPG tool generates input stimuli for the primary inputs and pseudo-
primary inputs and expected responses for the primary outputs and pseudo-primary outputs.
The set of input stimuli and output responses is called a test pattern or scan pattern. This set
includes the data at the primary inputs, primary outputs, pseudo-primary inputs, and pseudo-
primary outputs.
A test pattern representsmany test vectors because the pseudo-primary-input datamust be
serialized to be applied at the input of the scan chain, and the pseudo-primary-output datamust
be serialized to bemeasured at the output of the scan chain.

Applying Test Patterns
Test patterns are applied to a scan-based design through the scan chains. The process is the
same for a full-scan or partial-scan design.
Scan cells operate in one of twomodes: parallel mode or shift mode. In themultiplexed flip-flop
scan style shown in Figure 1, themode is controlled by the scan_enable pin. When the scan_
enable signal is inactive, the scan cells operate in parallel mode; the input to each scan element
comes from the combinational logic block. When the scan_enable signal is asserted, the scan
cells operate in shift mode; the input comes from the output of the previous cell in the scan chain
(or from the scan input port, if it is the first chain element). Other scan styles work similarly.
The target tester applies a scan pattern in the following sequence:

What Is Internal Scan? A-8

TetraMAX ATPG User Guide K-2015.06-SP4

1. Select shift mode by setting the scan-enable port. This test signal is connected to all scan
cells.

2. Shift in the input stimuli for the scan cells (pseudo-primary inputs) at the scan input ports.
3. Select parallel mode by disabling the scan-enable port.
4. Apply the input stimuli to the primary inputs.
5. Check the output response at the primary outputs after the circuit has settled and

compare it with the expected fault-free response. This process is called parallel measure.
6. Pulse one or more clocks to capture the steady-state output response of the nonscan logic

blocks into the scan cells. This process is called parallel capture.
7. Select shift mode by asserting the scan-enable port.
8. Shift out the output response of the scan cells (pseudo-primary outputs) at the scan output

ports and compare the scan cell contents with the expected fault-free response.

Scan Design Requirements
You achieve the best test coverage results when all nodes in your design are controllable and
observable. Adding scan logic to your design enhances its controllability and observability. The
rules governing the controllability and observability of scan cells are called test design rules.

Controllability of Sequential Cells
For sequential cells, design rules require that all state elements can be controlled, by scan or
other means, to required state values from the boundary of the design. These requirements are
primarily involved with the shift operations in scan test.
In an ideal full-scan design, the scan chain contains all state elements, the circuit is fully
controllable, and any circuit state can be achieved.
Using a partial-scanmethodology, not all state elements need to be in the scan chain. As long as
the nonscan state elements can be brought to any required state predictably through sequential
operation, the circuit remains sufficiently controllable.

Observability of Sequential Cells
For sequential cells, test design rules require predictable capture of the next state of the circuit
and visibility at the boundary of the design. In the context of scan design, you can ensure that
sequential cells are observable if you successfully clock the scan cells in the circuit, and then shift
their state to the scan outputs.
The following operations define circuit observability:

1. Observe the primary outputs of the circuit after scan-in.
Normally, this does not involve DFT and does not present problems.

2. Reliably capture the next state of the circuit.
If the functional operation is impaired, unpredictable, or unknown, the next state is
unknown. This unknown statemakes at least part of the circuit unobservable.

3. Extract the next state through a scan-out operation.

What Is Internal Scan? A-9

TetraMAX ATPG User Guide K-2015.06-SP4

This process is similar to scan-in. The additional requirement is that the shift registers
pass data reliably to the output ports.

Full-Scan Design
With a full-scan design technique, all sequential cells in the design aremodified to perform a
serial shift function. Sequential elements that are not scanned are treated as black box cells
(cells with unknown function).
Full scan divides a sequential design into combinational blocks as shown in Figure 2. Ovals
represent combinational logic; rectangles represent sequential logic. The full-scan diagram
shows the scan path through the design.

Figure 2 Scan Path Through a Full-Scan Design

Through pseudo-primary inputs, the scan path enables direct control of inputs to all
combinational blocks. The scan path enables direct observability of outputs from all
combinational blocks through pseudo-primary outputs. You can use the efficient combinational
capabilities of TetraMAX ATPG to achieve high test coverage results on a full-scan design.

Partial-Scan ATPG Design
With a partial-scan design technique, the scan chains contain some, but not all, of the sequential
cells in the design. A partial-scan technique offers a tradeoff between themaximumachievable
test coverage and the effect on design size and performance.
The default ATPGmode of TetraMAX ATPG, called Basic-Scan ATPG, performs combinational
ATPG. To get good test coverage in partial-scan designs, you need to use Fast-Sequential or
Full-Sequential ATPG. The sequential ATPGprocesses perform propagation of faults through
nonscan elements. For more information, see “ATPGModes”.
Partial scan divides a complex sequential design into simpler sequential blocks as shown in
Figure 3. Ovals represent combinational logic; rectangles represent sequential logic. The partial-

What Is Internal Scan? A-10

TetraMAX ATPG User Guide K-2015.06-SP4

scan diagram shows the scan path through the design after sequential ATPGhas been
performed.

Figure 3 Scan Path Through a Partial-Scan Design

Typically, a partial-scan design does not allow test coverage to be as high as for a similar full-
scan design. The level of test coverage for a partial-scan design depends on the location and
number of scan registers in that design, and the ATPGeffort level selected for the Fast-
Sequential or Full-Sequential ATPGprocess.

What Is Boundary Scan?
Boundary scan is a DFT technique that simplifies printed circuit board testing using a standard
chip-board test interface. The industry standard for this test interface is the IEEE Standard Test
Access Port and Boundary Scan Architecture (IEEE Std 1149.1).
The boundary-scan technique is often referred to as JTAG. JTAG is the acronym for Joint Test
Action Group, the group that initiated the standardization of this test interface.
Boundary scan enables board-level testing by providing direct access to the input and output
pads of the integrated circuits on a printed circuit board. Boundary scanmodifies the I/O circuitry
of individual ICs and adds control logic so the input and output pads of every boundary scan IC
can be joined to form a board-level serial scan chain.
The boundary-scan technique uses the serial scan chain to access the I/O ports of chips on a
board. Because the scan chain comprises the input and output pads of a chip’s design, the chip’s
primary inputs and outputs are accessible on the board for applying and sampling data.
Boundary scan supports the following board-level test functions:

l Testing of the interconnect wiring on a printed circuit board for shorts, opens, and bridging
faults

l Testing of clusters of non-boundary-scan logic
l Identification of missing, misoriented, or wrongly selected components

What Is Boundary Scan? A-11

TetraMAX ATPG User Guide K-2015.06-SP4

l Identification of fixture problems
l Limited testing of individual chips on a board
Note:

Although boundary scan addresses several board-test issues, it does not
address chip-level testability. To provide testability at both the chip and board
level, combine chip-test techniques (such as internal scan) with boundary
scan.

Figure 1 shows a simple printed circuit board with several boundary scan ICs and illustrates
some of the failures that boundary scan can detect.

Figure 1 Board Testing With IEEE Std 1149.1 Boundary Scan

What Is Boundary Scan? A-12

B
ATPG Design Guidelines
This appendix presents some design guidelines to facilitate successful ATPGand suggests
sources of extra ports for test I/O. The design topics are discussed first in textual form. Next,
selected design guidelines are illustrated with schematics. Finally, concise checklists for the
design guidelines and port suggestions provide you with a quick reference as you implement
your design.
This appendix contains the following sections:

l ATPGDesignGuidelines
l Checklists for Quick Reference

B-1

TetraMAX ATPG User Guide K-2015.06-SP4

ATPG Design Guidelines
This section provides guidelines for ATPG testing and offers suggestions for identifying ports to
use for test I/O. The provided guidelines are not exhaustive, but if implemented, they can prevent
many problems that commonly occur during ATPG testing.
Guidelines are provided for the following design entities:

l Internally Generated Pulsed Signals
l ClockControl
l Pulsed Signals to Sequential Devices
l Multidriver Nets
l Bidirectional Port Controls
l Clocking Scan Chains: Clock Sources, Trees, and Edges
l Protection of RAMsDuring Scan Shifting
l RAMandROMControllability During ATPG
l Pulsed Signal to RAMs and ROMs
l BusKeepers

Internally Generated Pulsed Signals
While TetraMAX ATPG is in ATPG test mode, ensure that clocks and asynchronous set or reset
signals come from primary inputs. Your design should not include internally generated clocks or
asynchronous set or reset signals.
Do not use clock dividers in ATPG test mode. If your design contains clock dividers, bypass them
in ATPG test mode. A scan chainmust shift one bit for one scan clock. Use the TEST signal to
control the source of the internal clocks, so that in ATPG test mode you can bypass the clock
divider and source the internal clocks from the primary CLK output.
Do not use gated clocks such as the one shown in Figure 1 in ATPG test mode. If your design
contains clock gating, constrain the control side of the gating element while in ATPG test mode.
Figure 2 and Figure 3 show two solutions. In Figure 2, the TEST input blocks the path fromCLK
to register B. However, B cannot be used in a scan chain.

ATPG Design Guidelines B-2

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1 Gated Clock: A Problem

Figure 2 Gated Clock: Solution 1

In Figure 3, the TEST input controls aMUX that changes the clock source for register B.
Optionally adding gatesC1 and C2 provides observability for the output of gate A; otherwise,
gate A is unobservable and all faults into A are ATPGuntestable.

Figure 3 Gated Clock: Solution 2

ATPG Design Guidelines B-3

TetraMAX ATPG User Guide K-2015.06-SP4

Do not use phase-locked loops (PLLs) as clock sources in ATPG test mode. If your design
contains PLLs, bypass the clockswhile in ATPG test mode.
Do not use pulse generators in ATPG test mode, such as the one shown in Figure 4. If your
design contains pulse generators, bypass them using aMUX with the select line constrained to a
constant value or shunted with AND or OR logic so that the pulse generators do not pulse while
in ATPG test mode, as shown in Solution 1 and Solution 2 in Figure 5.
In Solution 1, the TEST input disables the pulse generator. However, using this solution, any
sequential elements that use N2 as a clock source no longer have a clock source. In Solution 2,
the TEST input multiplexes out the original pulse and replaces it with access from a top-level
input port.

Figure 4 Pulse Generators: A Problem

Figure 5 Pulse Generators: Two Solutions

Do not use a power-on reset circuit in ATPG test mode. A power-on reset circuit is essentially an
uncontrolled internal clock source that operateswhen the power is initially applied to the circuit.
See Figure 6.

ATPG Design Guidelines B-4

TetraMAX ATPG User Guide K-2015.06-SP4

To prevent a power-on reset circuit from operating during test, you can perform either of the
following steps:
Use the test mode control signal to multiplex the power-on reset signal so that it comes from an
existing reset input or some other primary input during test. See Figure 7.
Use the test mode control signal to block the power-on reset source so that it has no effect
during test. See Figure 8.
The first of these twomethods is usually better because it is less likely to cause a reduction in test
coverage.

Figure 6 Power-On Reset Circuit Configuration to Avoid

Figure 7 Power-On Reset Circuit Test Method 1

Figure 8 Power-On Reset Circuit Test Method 2

ATPG Design Guidelines B-5

TetraMAX ATPG User Guide K-2015.06-SP4

Clock Control
While TetraMAX ATPG is in ATPG test mode, provide complete control of clock paths to scan
chain flip-flops. The clock/set/reset paths to scan chain elementsmust be fully controlled.
If a clock passes through aMUX, constrain the select line of theMUX to a constant value while in
ATPG test mode.
If a clock passes through a combinational gate, constrain the other inputs of the gate to a
constant value while in ATPG test mode. See Figure 9 and Figure 10.
Pass clock signals directly through JTAG I/O cells without passing through aMUX, unless the
MUX control can be constrained. This typically involves using a special JTAG input cell. Figure
11 shows a JTAG input cell with aMUX through which the signal passes; it is difficult to hold the
MUX control constant. Figure 12 shows amodified JTAG input cell that has noMUX in the path.
Avoid using bidirectional clocks or asynchronous set or reset ports while in ATPG test mode. If
your design supports bidirectional clocks or asynchronous set or reset ports, force them to
operate as unidirectional ports while in ATPG test mode. See Figure 13 and Figure 14.

Figure 9 Problem: Clock Paths Through Combinational Gates

ATPG Design Guidelines B-6

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 10 Solution: Clock Paths Through Combinational Gates

Figure 11 Problem: Clock/Set/Reset Inputs and JTAG I/O Cells

ATPG Design Guidelines B-7

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 12 Solution: Clock/Set/Reset Inputs and JTAG I/O Cells

Figure 13 Problem: Bidirectional Clock/Set/Reset

Figure 14 Solution: Bidirectional Clock/Set/Reset

ATPG Design Guidelines B-8

TetraMAX ATPG User Guide K-2015.06-SP4

Pulsed Signals to Sequential Devices
While TetraMAX ATPG is in ATPG test mode, do not allow an open path from a pulsed input
signal (clock, asynchronous set/reset) to the data input of a sequential device.

l Do not allow a path from a pulsed input to both the data input and clock of the same flip-flop
while TetraMAX ATPG is in ATPG test mode. As shown in Figure 15, the value of the data
captured cannot be determined in the absence of timing analysis. If your design contains
such a path, then while in ATPG test mode, shunt the path to either the data or clock pin
with AND or OR logic, or with aMUX, as shown by Solution 1 and Solution 2 in Figure 16.
In Solution 1, a controllable top-level input is used to replace the path of the clock/set/reset
into the combinational cloud. In Solution 2, the TEST input blocks the path of the
clock/set/reset into the combinational cloud so that it does not pass the clock pulse while in
ATPG test mode.

l Do not allow a path from a pulsed input to both the data input and the asynchronous set or
reset input of the same flip-flop while TetraMAX ATPG is in ATPG test mode. If your
design contains such a path, while in ATPG test mode, shunt the path to either the data pin
or the set/reset pin with AND logic, OR logic, or aMUX.

Figure 15 Problem: Sequential Device Pulsed Data Inputs

ATPG Design Guidelines B-9

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 16 Solution: Sequential Device Pulsed Data Inputs

Multidriver Nets
For multidriver nets, ensure that exactly one driver is enabled during the shifting of scan chains in
ATPG test mode. Plan this guideline into your design. For most designswith multidriver nets,
there is danger of internal driver contention because shifting a scan chain has a random effect on
the design state. See Figure 17.
Here are twomethods for satisfying this design guideline:

l Have a primary input port that acts as a global override on internal driver enable signals in
ATPG test mode, disabling all but one driver of the net and forcing that driver to an on
state, as shown in Figure 18. This primary input port should be asserted during the scan
chain load and unload operation. This design guideline is supported byDFT Compiler and
is the default behavior of DFT Compiler.

l Use deterministic decoding on the driver enables. Use a 1-of-n logic to ensure that only
one driver is enabled at all times and that at least one driver is enabled at all times, as
shown in Figure 19. Deterministic decodingmight not be appropriate for some designs.

ATPG Design Guidelines B-10

TetraMAX ATPG User Guide K-2015.06-SP4

For example, for a design with hundreds of potential drivers, a 1-of-n decoder would be too
large or would add toomuch delay to the circuit.

Figure 17 Problem: Multidriver Nets

Figure 18 Multidriver Nets: Global Override Input

ATPG Design Guidelines B-11

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 19 Multidriver Nets: Deterministic Decoding

Bidirectional Port Controls
Force all bidirectional ports to input mode while shifting scan chains in ATPG test mode, using a
top-level port as control. See Figure 20 and Figure 21. In Figure 21, TEST controls the disabling
logic and SCAN_EN ensures that the scan chain outputs are turned on.
The top-level port is often tied to a scan enable control port. However, there are advantages to
performing this function on a different port, if extra ports are available, because keeping the
control of the bidirectional ports separate from the scan enable gives the ATPGprocessmore
flexibility in generating patterns.

Figure 20 Problem: Bidirectional Port Controls

ATPG Design Guidelines B-12

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 21 Solution: Bidirectional Port Controls

If you follow this guideline along with Guideline 3, you can easily ensure that no internal or I/O
contention can occur during scan chain load/unload operations.
This guideline is supported byDFT Compiler (using a single pin) and is the default behavior.

Exception
Force scan chain outputs that use bidirectional or three-state ports into an output mode while
shifting scan chains in ATPG test mode, using a top-level port (usually SCAN_ENABLE), as
shown in Figure 21.
This guideline is the exception to Guideline 5 and is automatically supported byDFT Compiler if
you specify a bidirectional port for use as a scan chain output.

Clocking Scan Chains: Clock Sources, Trees, and Edges
Use a single clock tree to clock all flip-flops in the same scan chain. If the design containsmultiple
clock trees, insert resynchronization latches in the scan data path between scan cell flip-flops
that use different clock sources.
In Figure 22, the two clock sources can cause a race condition. For example, if CK1 leadsCK2
because of jitter or differences in clock tree delays, then R2 clocks before R3. Because R2’s
output is changing while R3 is clocking, a race condition results.

ATPG Design Guidelines B-13

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 22 Problem: Multiple Clock Trees

In Figure 23, there is a resynchronization register or latch (SYNC) between R2 and R3, which is
clocked by the opposite phase of the clock used for R2.
This design guideline is supported byDFT Compiler and is the default behavior of DFT
Compiler.

Figure 23 Solution: Multiple Clock Trees

ATPG Design Guidelines B-14

TetraMAX ATPG User Guide K-2015.06-SP4

Clock Trees
Treat each clock tree as a separate clock source in designs that have a single clock input port but
multiple clock tree distributions.
Sometimes a design has a single clock input port but usesmultiple clock tree distributions to
produce “early” and “standard” clocks, as shown in Figure 24. Under these conditions, treat
each clock tree as a separate clock source. Insert resynchronization latches between scan cells
where the clock source switches from one clock tree to another, as shown in Figure 25.
This design style is supported byDFT Compiler but is not the default method of DFT Compiler.

Figure 24 Problem: Single Clock With Multiple Clock Trees

ATPG Design Guidelines B-15

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 25 Solution: Single Clock With Multiple Clock Trees

Clock Flip-Flops
If possible, clock all flip-flops on the same scan chain on the same clock edge. If this is not
possible, then group together all flip-flops that are clocked on the trailing clock edge and place
them at the front of the scan chain (closest to the scan chain input); and group together all flip-
flops that are clocked on the leading clock edge and place them closest to the scan chain output.
In Figure 26, B1 and B2 are always loaded with the same data as A1 and A4, respectively,
during scan chain loading, because they are clocked on the trailing edges. Thus, parts of the
circuit that require A1 and B1 (or A4 and B2) to have opposite values are untestable.
In Figure 27, the scan chain registers are ordered so that all of the trailing-edge cells are
grouped together at the front of the scan chain. B1 and B2 can be set independently of A1 and
A4.
This design guideline is automatically implemented byDFT Compiler if you allow it to mix clock
edges on a scan chain.

ATPG Design Guidelines B-16

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 26 Problem: Mixed Clock Edges on a Scan Chain

ATPG Design Guidelines B-17

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 27 Solution: Mixed Clock Edges on a Scan Chain

XNOR Clock Inversion and Clock Trees
Do not mix XNOR clock inversion techniques and clock trees.
A common design technique when both edges of the same clock are used for normal operation
of scan chain flip-flops is to use an XNOR in place of an INV to form the opposite clock polarity.
Then, in test mode, the XNOR can be switched from an inverter into a buffer.
This technique is not advisable unless you can analyze the timing during test mode to ensure
that no timing violations can occur during the application of any clocks. While in normal
operation, there are essentially two clock zones of opposite phase. The phasing of the two
clocks is such that reasonable timing is achieved between flip-flops that are on opposite phases
of the clock. When one of the clocks is no longer inverted, two clock tree distributions are driven
by the same-phase signal, resulting in timing-critical configurations in ATPGmode that do not
exist in normal functional mode. See Figure 28.

ATPG Design Guidelines B-18

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 28 Problem: XNOR Clock Inversion and Clock Trees

To prevent this problem, replace the XNOR gate with an inverter, as shown in Figure 29. If you
need the XNOR function, use it locally in the vicinity of the affected gates, rather than on the
input side of a clock tree.

Figure 29 Solution: XNOR Clock Inversion and Clock Trees

Protection of RAMs During Scan Shifting
To protect RAMs from randomwrite cycles, disable the RAMwrite clock or write enable lines
while shifting scan chains in ATPG test mode.
In ATPG test mode, RAMsmust remain undisturbed by randomwrite cycles while the scan
chains are being shifted. You can accomplish this by disabling the write clock or write enable line

ATPG Design Guidelines B-19

TetraMAX ATPG User Guide K-2015.06-SP4

to each data write port during ATPG test mode. Often, the SCAN_ENABLE control is used for
this function, coupled with an AND or OR gate, as appropriate.
However, to also achieve controllability over the write port, use a separate top-level input other
than SCAN_ENABLE. The RAMwrite control is usually used as a pulsed port (RZ/RO), while
the SCAN_ENABLE is a constant value (NRZ/NRO). Trying to achieve both simultaneously
usually presents problems that can be avoided by using separate ports.

RAM and ROM Controllability During ATPG
If you want controllability of RAMs and ROMs for ATPGgeneration, connect their read and write
control pins directly to a top-level input during ATPG test mode. This ismost conveniently
accomplished by using aMUX, which switches control from an internal to a top-level port.
Multiple RAMs can share the same control port for the write port.
Figure 30, if the registers are in scan chains, random patterns that occur while loading and
unloading scan chains are written to the RAMs. Thus, the RAM contents are unknown and
treated as X.
Figure 31, MUX controls activated by TESTmode bring the write control signals up to the top-
level input ports.
For achieving controllability and higher test coverage, direct control of write ports ismore
important than control of read ports.

ATPG Design Guidelines B-20

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 30 Problem: RAM/ROM Control

ATPG Design Guidelines B-21

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 31 Solution: RAM/ROM Control

Pulsed Signal to RAMs and ROMs
Do not allow an open path from a pulsed signal to a data, address, or control input of a RAMor
ROM (except read/write control) while in ATPG test mode.
If a combinational path exists from a defined clock or asynchronous set or reset port to a data,
address, or control pin of a RAMor ROM, the ATPGprocess treats thememory device as filled
with X. The exceptions are the read clock and write clock signals, which are operated in a pulsed
fashion but should not bemixed with a defined clock.
In Figure 32, the address or data inputs are coupled with a clock/set/reset port, so their values
are not constant while capture clocks are occurring elsewhere in the design. The result is that
RAM read and write data cannot be determined; Xs are used instead.
In Figure 33, the TEST input disables pulsed paths during ATPG test mode.

ATPG Design Guidelines B-22

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 32 Problem: RAMs/ROMs and Pulsed Signals

Figure 33 Solution: RAMs/ROMs and Pulsed Signals

Bus Keepers
While in ATPG test mode, do not allow a combinational gate path from any pulsed port to drive
the enable controls of three-state drivers that contribute to amultidriver net, as illustrated in
Figure 34. In Figure 35, the TEST input redirects the control to a top-level port, and the port is
constrained to a value that does not affect the driver enables. Then, on the tester and during
simulation, the port is driven with the same signal as that on the original CLK port.
A common practice is to gate all internal driver enableswith some phase of a clock so that all
drivers are off during the first half of each cycle and one driver is on during the second half. This
practice solves some contention problems that occur during the transition of one driver off to
another driver on, but it renders bus keeper usage impossible in ATPG test mode.

ATPG Design Guidelines B-23

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 34 Problem: Bus Keepers

Figure 35 Solution: Bus Keepers

Non-Z State on a Multidriver Net
When using bus keepers, ensure a non-Z state on amultidriver net by the end of the load_
unload procedure.

ATPG Design Guidelines B-24

TetraMAX ATPG User Guide K-2015.06-SP4

Non-Clocked Events
When using bus keepers, do not allow the non-clocked events that occur before the system
capture clock to disturb themultidriver net.
The system capture cycle should not disturb themultidriver net, at least not until after the
clock/set/reset pulse, unless a change on a primary input enables one of the drivers and drives a
known value on the net.
When you use a bus keeper, you expect it to retain the last value driven on the bus. Therefore,
you do not need to design the driver enable controls so that one driver is always on. However, if
the DRC analysis of the bus keeper finds violations, the beneficial effects possible with a bus
keeper are ignored.
When no driver is enabled on themultidriver net, the bus assumes a Z or X state. When a Z
passes through some other internal gate, it becomes an X; thus, an internal source generates
and propagates amultitude of X states to observe points (for example, output ports and scan
cells), whichmust bemasked off in the ATPGpatterns. There is a significant increase in the
number of pattern bits that the tester must mask off; thus, you can obtain patterns that are legal
and generate high test coverage but are unusable onmany testers because of the excessive
number of comparemasks required.
In Figure 32, the address or data inputs are coupled with a clock/set/reset port, so their values
are not constant while capture clocks are occurring elsewhere in the design. The result is that
RAM read and write data cannot be determined; Xs are used instead.
In Figure 33, the TEST input disables pulsed paths during ATPG test mode.

Figure 32 Problem: RAMs/ROMs and Pulsed Signals

ATPG Design Guidelines B-25

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 33 Solution: RAMs/ROMs and Pulsed Signals

Bus Keepers
While in ATPG test mode, do not allow a combinational gate path from any pulsed port to drive
the enable controls of three-state drivers that contribute to amultidriver net, as illustrated in
Figure 34. In Figure 35, the TEST input redirects the control to a top-level port, and the port is
constrained to a value that does not affect the driver enables. Then, on the tester and during
simulation, the port is driven with the same signal as that on the original CLK port.
A common practice is to gate all internal driver enableswith some phase of a clock so that all
drivers are off during the first half of each cycle and one driver is on during the second half. This
practice solves some contention problems that occur during the transition of one driver off to
another driver on, but it renders bus keeper usage impossible in ATPG test mode.

Figure 34 Problem: Bus Keepers

ATPG Design Guidelines B-26

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 35 Solution: Bus Keepers

Non-Z State on a Multidriver Net
When using bus keepers, ensure a non-Z state on amultidriver net by the end of the load_
unload procedure.

Non-Clocked Events
When using bus keepers, do not allow the non-clocked events that occur before the system
capture clock to disturb themultidriver net.
The system capture cycle should not disturb themultidriver net, at least not until after the
clock/set/reset pulse, unless a change on a primary input enables one of the drivers and drives a
known value on the net.
When you use a bus keeper, you expect it to retain the last value driven on the bus. Therefore,
you do not need to design the driver enable controls so that one driver is always on. However, if
the DRC analysis of the bus keeper finds violations, the beneficial effects possible with a bus
keeper are ignored.
When no driver is enabled on themultidriver net, the bus assumes a Z or X state. When a Z
passes through some other internal gate, it becomes an X; thus, an internal source generates
and propagates amultitude of X states to observe points (for example, output ports and scan
cells), whichmust bemasked off in the ATPGpatterns. There is a significant increase in the
number of pattern bits that the tester must mask off; thus, you can obtain patterns that are legal
and generate high test coverage but are unusable onmany testers because of the excessive
number of comparemasks required.

ATPG Design Guidelines B-27

TetraMAX ATPG User Guide K-2015.06-SP4

Checklists for Quick Reference
This section provides checklists of the design guidelines and port redefinition suggestions. Use
the following checklists as a convenient reminder as you implement your design:

l ATPGDesignGuideline Checklist
l Ports for Test I/OChecklist

ATPG Design Guideline Checklist
Follow these guidelines during ATPG test mode:

1. Ensure that clocks and asynchronous set/reset signals come from a primary input.
1. Do not use clock dividers.
2. Do not use gated clocks.
3. Do not use phase-locked loops (PLLs) as clock sources.
4. Do not use pulse generators.

2. Provide complete control of clock paths to scan chain flip-flops.
1. If a clock passes through aMUX, constrain the select line of theMUX to a constant

value.
2. If a clock passes through a combinational gate, constrain the other inputs of the

gate to a constant value.
3. Pass clock signals directly through JTAG I/O cells without passing through aMUX,

unless theMUX control can be constrained.
4. Avoid using bidirectional clocks and asynchronous set/reset ports.

3. Do not allow an open path from a pulsed input signal (clock or asynchronous set/reset) to
a data-capture input of a sequential device.

1. Do not allow a path from a pulsed input to both the data input and the clock of the
same flip-flop.

2. Do not allow a path from a pulsed input to both the data input and the asynchronous
set or reset input of the same flip-flop.

4. For multidriver nets, ensure that only one driver is enabled during the shifting of scan
chains.

5. Force all bidirectional ports to input mode while shifting scan chains, using a top-level port
as control.

6. Force scan chain outputs that use bidirectional or three-state ports into output mode while
shifting scan chains, using a top-level port (usually SCAN_ENABLE).

7. Use a single clock tree to clock all flip-flops in the same scan chain.
8. Treat each clock tree as a separate clock source in designs that have a single clock input

port but multiple clock tree distributions.
9. Use the same clock edge for all flip-flops in the same scan chain.

Checklists for Quick Reference B-28

TetraMAX ATPG User Guide K-2015.06-SP4

10. Do not mix XNOR clock inversion techniques and clock trees.
11. To protect RAMs from randomwrite cycles, disable RAMwrite clock or write enable lines

while shifting scan chains.
12. Connect RAMandROM read and write control pins directly to a top-level input while in

ATPG test mode.
13. Do not allow an open path from a pulsed signal to a RAM’s or ROM’s data, address, or

control inputs (except read/write control).
14. Do not allow a combinational gate path from any pulsed port to drive the enable controls of

three-state drivers that contribute to themultidriver net.
15. When using bus keepers, ensure a non-Z state onmultidriver nets by the end of the scan

chain load/unload.
16. When using bus keepers, do not allow the nonclocked events that occur before the

system capture clock to disturb themultidriver net.

Ports for Test I/O Checklist
Follow these port usage guidelines:

1. A port that already feeds the input of a flip-flop in a scan chain is the best port to redefine
as a scan chain input.

2. A port that already comes directly from the output of a flip-flop in a scan chain is the best
port to redefine as a scan chain output.

3. A three-state output can be redefined as a bidirectional port and used in input mode while
TEST is asserted.

4. A standard output can be redefined as a bidirectional port and used in input mode while
TEST is asserted.

5. An input port that feeds directly into the input of a flip-flop in a scan chain can be redefined
as a shared port.

6. An output port that comes directly from the output of a flip-flop in a scan chain can be
redefined as a bidirectional port and used in input mode while TEST is asserted.

7. An output port that is a derived clock or pass-through clock can be redefined as a
bidirectional port and used in input mode while TEST is asserted.

8. An input port that has a small amount of fanout before entering a flip-flop is a good choice
to be redefined for use as a test-related input while TEST is asserted.

Checklists for Quick Reference B-29

C
Importing Designs From DFT Compiler
This appendix provides a brief overview of how to take a design fromDFT Compiler to
TetraMAX ATPG to generate ATPGpatterns.
Before you begin, you should be aware of the differences between DFT Compiler and
TetraMAX ATPG in the treatment of your design. These are themain differences:

l Bidirectional port timing
l Ordering of events within an ATE cycle
l Latchmodels
l Support for DFT Compiler commands in TetraMAX ATPG

These differences are explained in detail in the section “Exporting a Design To TetraMAX
ATPG” in theDFT Compiler Scan User Guide (provided with the DFT Compiler tool).
Before you import a design fromDFT Compiler to TetraMAX ATPG, you need to ensure that the
design has valid scan chains and does not have design rule violations. These are the steps to
import the design:

1. Before doing anywork with DFT Compiler (including scan insertion), set the test timing
variables to the values specified by your ASIC vendor.

2. Identify the netlist format that you are exporting to TetraMAX ATPG, using the test_
stil_netlist_format environment variable.

3. To guide netlist formatting, set the environment variables that affect how designs are
written out.

4. If you want to pass capture clock group information to TetraMAX ATPG, set the test_
stil_multiclock_capture_procedures variable to true, and use the check_
test (not check_scan) command in the next step.

5. Check for design rule violations and fix any violations.
6. Write out the netlist.
7. Write out the STL procedure file.

C-1

TetraMAX ATPG User Guide K-2015.06-SP4

After you perform these steps, you can read in the design with TetraMAX ATPG. For more
information on performing these steps, see the section “Exporting a Design To TetraMAX
ATPG” in theDFT Compiler Scan User Guide.

C-2

D
Utilities
The following sections of this appendix describe the utility programs supplementing TetraMAX
ATPG:

l Ltran Translation Utility
l Generating PrimeTimeConstraints
l Converting Timing Violations Into Timing Exceptions
l report_diagnosis Tcl Procedure

D-1

TetraMAX ATPG User Guide K-2015.06-SP4

Ltran Translation Utility
When you use theWrite Patterns dialog box or the write_patterns command to write
patterns in the FTDL, TDL91, TSTL2, or WGL_FLAT format, TetraMAX ATPG invokes a
separate translation process called Ltran. This translation process runs independently in a new
window. You can optionally launch Ltran in the shell mode or use an Ltran configuration file to
control the output format.
The following sections provide basic information on starting Ltran in the shell mode, and
specifying andmodifying Ltran configuration files:

l Ltran in the Shell Mode
l FTDL, TDL91, TSTL2Configuration Files
l Understanding the Configuration File
l Configuration File Syntax

Note: If there is a problemwith your Ltran installation, the following error messagemight
appear:
sh: /stil2wgl.sh: No such file or directory

In this case, you shouldmake sure the following files are in your $installation/$platform/syn/ltran
directory:

l Ltran
l Ltran.sh
l gzip stil2wgl
l stil2wgl.sh
l vread.bin
l vread3.bin
l vread5.bin

If these files are not in this directory, you should go to the SolvNet Download Center, obtain the
download instructions for TetraMAX ATPG, and perform the installation.

Ltran in the Shell Mode
Ltran launches in the shell mode one of two ways:

l If you have not set the DISPLAY environment variable (which is commonwhen you use a
telnet session

l If you have set the LTRAN_SHELL environment variable to 1
When using Ltran in the shell mode, the execution of TetraMAX ATPGstops until Ltran finishes.
This is different than the xterm version that kept TetraMAX ATPG running and allowed parallel
Ltran runs; for example, if you try writing files with the -split option of the write_patterns
command, which causes the intermediate file created and passed to the external translator to
use the STIL pattern format (the default is to useWGL as the intermediate file). Now, each Ltran
runs sequentially.

Ltran Translation Utility D-2

TetraMAX ATPG User Guide K-2015.06-SP4

Since this is a third-party interface, any output from Ltran in GUI or shell modemight appear in
the UNIX transcript in which TetraMAX ATPGwas started, but that output will not be captured in
the TetraMAX log file.
Linux platforms need the path to the xterm executables. These are located in the /usr/X11R6/bin
directory. After you add this to your search path, you can write out TDL91, TSTL2, and FTDL
pattern formats from the TetraMAX Linux shell. This is especially true if you receive a "sh:
xterm: command not found" message.

FTDL, TDL91, and TSTL2 Configuration Files
If you select FTDL, TDL91, or TSTL2 as the format in theWrite Patterns dialog box or in the
write_patterns command, a separate Ltran translation process is executed. This process
begins as an independent operation in the new window. You can perform other taskswhile the
translation process is carried out.
TheWrite Patterns dialog box and write_patterns command optionally let you specify an
Ltran configuration file to be used for controlling the output format. If you do not specify a
configuration file, a default file is used from the following directory:
$SYNOPSYS/auxx/syn/ltran

For a discussion about the use of the SYNOPSYS_TMAX environment variable, see “Specifying
the Location for TetraMAX Installation”.
The configuration files contained in this directory are:

l stil2ftdl : STIL to FTDL
l stil2tdl91 : STIL to TDL91
l stil2tstl2 : STIL to TSTL2
l wgl2ftdl : WGL to FTDL
l wgl2tdl91 : WGL to TDL91
l wgl2tstl2 : WGL to TSTL2

By default, when you use the write_patterns command and specify FTDL, TDL91, and
TSTL2 as the pattern format, the pattern generator first generates patterns in an intermediate
STIL format file. Ltran then translates the STIL patterns to the target format using the conversion
parameters specified in the stil2ftdl, stil2tdl91, or still2tstl2 configuration file.

Note: You can also use the -wgl option to generate an intermediateWGL format file, and Ltran
will use the providedWGL-related configuration files. However, in most cases, writing a STIL
intermediate file ismuch faster than writingWGL file; this can saveminutes of time for large
pattern files.
The default files are adequate for most translations. However, you canmodify a number of fields
in the files to customize the output results. These user-editable fields are part of the simulator
command and are identified with comments in the Ltran configuration files. All of these fields are
optional and can be commented out with curly braces “{ }”. Most of these fields provide a way to
specify header information in the output file, as summarized in the sections that follow.
To use a customized configuration file, copy one of the existing files to your own local directory,
and then edit your copy to adjust the user-editable fields and controls. In theWrite Patterns

Ltran Translation Utility D-3

TetraMAX ATPG User Guide K-2015.06-SP4

dialog box or write_patterns command, specify the name of your modified configuration
file.

Understanding the Configuration File
Each configuration file contains twomandatory command blocks (OVF_BLOCK andTVF_
BLOCK) and one optional command block (PROC_BLOCK).
The commands in themandatory command block OVF_BLOCK describe the format of data in
the original vector file. The commands in themandatory command block TVF_BLOCKprovide
instructions for formatting vectors in the target vector file. The commands in the optional
command block PROC_BLOCKdescribe other processing required to translate the data in the
original vector file into the target vector file.
The configuration file structure can be summarized as shown in Example 1.

Example 1 Translation Configuration File Structure
OVF_BLOCK

BEGIN
OVF_BLOCK_COMMANDS
END

PROC_BLOCK {Optional}
BEGIN
PROC_BLOCK_COMMANDS
END

TVF_BLOCK
BEGIN
TVF_BLOCK_COMMANDS
END

END

The configuration file is not case-sensitive. Pin names retain their case in the translation to the
target vector file. Pin names can be contain any printable ASCII characters (but not spaces),
including any of the following characters:
, ; < > [] { } () = \ & |@

For the full syntax of the OVF_BLOCK, PROC_BLOCK, and TBF_BLOCKcommand blocks, see
“Configuration File Syntax”.

Customizing the FTDL Configuration File
For FTDL output, the write_patterns command uses the wgl2ftdlconfiguration file. You
can customize the configuration file by editing the following parameters:

l -AUTO_GROUP

This optional switch tells the write_patterns command to algorithmically identify
similar signals and group them in the FTDL output file.

l

Revision number
REVISION = "0001", { edit "0001" as required }

l

Designer name
DESIGNER = "Designer", { edit "Designer" as required }

Ltran Translation Utility D-4

TetraMAX ATPG User Guide K-2015.06-SP4

l

Test vector function
TNAME = "FUNC", { edit "FUNC" as required }

l

Test vector name
CNAME = "TEST", { edit "TEST" as required }

l

Date of design file creation
DATE = "99/10/05" ; { edit DATE as required }

Customizing the TDL91 Configuration File
For TDL91 output, the write_patterns command uses the wgl2tdl91 configuration file.
You can customize the configuration file by editing the following parameters:

l

Library
LIBRARY_TYPE = "Library", { edit "Library" as required }

l

Customer
CUSTOMER = "Customer", { edit "Customer" as required }

l

Part number
TI_PART_NUMBER = "PartNum", { edit "PartNum" as required }

l

Pattern set name
PATTERN_SET_NAME = "SetName", { edit "SetName" as required}

l

Pattern set type
PATTERN_SET_TYPE = "SetType", { edit "SetType" as required}

l

Revision number
REVISION = "1.00", { edit REVISION as required }

l

Date of design file creation
DATE = "10/5/2009" ; { edit DATE as required }

You can also do the following:
l Specify the following general Ltran configuration commands:

l -AUTO_GROUP—Enables Ltran to algorithmically identify similar signals and group
them in the TDL_91 pattern output file.

l SD_PORT = "SD"—Enables you to specify a port name to be added to the end of
each scan cell name to form the scan cell shift input pin name. The default port name
is "SD". If you set this to a null string, then no text is added.

l

Reference your custom configuration file when creating patternswith the write_
patterns command. Exclude the scan chain test when writing TDL91 patterns, for
example:
TEST-T> write_patterns <pattern_file_name> -format tdl91 \

-config_file spec_CUSTOM_FILE -exclude chain_test -
replace

l

When translating STIL/WGL files an additional flag can be set in the TABULAR_FORMAT
statement which instructs Ltran to look for Header information at the beginning of the
STIL/WGL file and pass it through to the TDL_91 output file. This flag is -TDL91_INFOand
is used as follows:
TABULAR_FORMAT stil -cycle, -scan, -include_cells, -TDL91_INFO
;

Ltran Translation Utility D-5

TetraMAX ATPG User Guide K-2015.06-SP4

OR
TABULAR_FORMAT wgl -cycle, -scan, -include_cells, -keep_
annotations,
 -TDL91_INFO ;

Note that this only applicable to translations fromSTIL/WGL files generated by TetraMAX
ATPG to TDL_91 format.

Customizing the TSTL2 Configuration File
For TSTL2 output, the write_patterns command uses the wgl2tstl2 configuration file. You
can customize this configuration file by editing the following parameters:

l Title
TITLE = "TITLE", { edit "TITLE" as required }

l Function Test
FUNCTEST = "FC1" { edit "FC1" as required }

l Scale
scale 1000;

Place the scale statement in the PROC_BLOCK section of the stil2tstl2 or wgl2tstl2
configuration file. The scale 1000 statement in the previous example adjusts the scaling
and resolution from the default, in nanoseconds (ns), to picoseconds (ps).

For example, take a signal defined as follows:

"rst" { P { '0ps' U; '50006ps' D; '52400ps' U; } }
"rst" { P { '0ps' U; '50001ps' D; '52600ps' U; } }
"rst" { P { '0ps' U; '45000ps' D; '55000ps' U; } }

With the scale value set to 1000, the TSTL2 output is as follows:

TIMESET(2) NP, 50006, 2394 ;
TIMESET(2) NP, 50001, 2599 ;
TIMESET(2) NP, 45000, 10000 ;

Additional Controls
In addition to the simulator adjustments just described, most of the configuration files have two
Ltran controls that you can use to further customize the format of the pattern output files:

l rename_bus_pins

l header nn

If these controls are supported, they appear commented out by default but can be activated by
removing the curly braces “{ }” surrounding them.
This is the syntax of the rename_bus_pins control:
rename_bus_pins busvec;

The rename_bus_pins control flattens bused signal names.With this command, a bus
signal name like bus[5] becomes bus5 . The form of themapped name can be controlled
by changing the busvec string. For example:
rename_bus_pins $bus_$vec_;

Ltran Translation Utility D-6

TetraMAX ATPG User Guide K-2015.06-SP4

This examplemaps bus[5] into bus_5_ .
The header control tells Ltran to place the names of signals in a vertical list as comments
above their column position in the vectors. This control has the following syntax
header nn;

where nn is an integer that specifies how often to repeat the pin header listing, expressed as a
number of lines.

Support for Other Formats
With the integrated Ltran program, TetraMAX ATPGprovides vector interfaces to the FTDL,
TDL91, and TSTL2 ASIC vendor formats. Each interface is implemented as a post-process
(Ltran) spawned from TetraMAX ATPG, usingWGL as the intermediate vector file format.
When invoked, Ltran reads theWGL vector file and performs the required format translation.
If you would like to translate vector files into formats other than those directly supported by
TetraMAX ATPG, you can use a third-party program called vtran, in amanner similar to Ltran, to
translateWGL or STIL output from TetraMAX ATPG into the required format. In order to
perform these translations, you need to do the following:

1. Obtain the vtran program fromSource III, Inc.
2. GenerateWGL or STIL vector files from TetraMAX ATPG.
3. Run vtran as a separate process to perform the translation fromWGL or STIL to the

required format.

Currently, vtran supports translation to the following tester formats:
l SWAV (Credence)
l Teradyne
l PCF (HP 3070)

It also supports translation to the following simulator formats:
l QUEST & QVBF (Quickturn)
l IKOS
l LSIM
l Quicksim (Mentor Graphics)
l QSIM
l SILOS
l SPICE
l VTI
l WIF
l ZYCAD
l TDS (TSSI)
l Verilog testbench
l VHDL testbench
l WGL (scan or flat)

Ltran Translation Utility D-7

TetraMAX ATPG User Guide K-2015.06-SP4

l EPIC (TimeMill, PowerMill)
l WAVES
In addition to these specific output formats, vtran can also be instructed to produce vector data in
tabular format as defined by the user.
For further information on vtran, contact the supplier directly:
Source III, Inc. Web: www.sourceIII.com email: corp@sourceIII.com

Configuration File Syntax
The following sections describe the syntax of the statements in the OVF_BLOCK, PROC_BLOCK,
and TVF_BLOCK command blocks.

OVF_BLOCK Statements
AUX_FILE [=]"filename";

Used to specify an auxiliary file for some canned readers.
BEGIN_LINE [=] n;

Used to define the line number in the OVF file at which VTRAN should begin processing vectors.

BEGIN_STRING [=] "string";

Used to define a unique text string in the OVF file after which VTRAN should begin processing
vectors.
BIDIRECTS [=] pin_list;

Defines the names and order of pins in the OVF file that are bidirectional.
BUSFORMAT radix; or BUSFORMAT pin_list = radix;

Specifies the radix of buses in the OVF file.
CASE_SENSITIVE;

Allows there to bemore than one signal with the same name spelling but differing only in case of
letters in the name.
GROUP n [=] pin_list;

Together with the $gstatesn keyword, it tells VTRAN how the pin states are organized.
INPUTS [=] pin_list;

Defines the names and order of input pins in OVF file.
MAX_UNMATCHED [=] n [verbose]:

Specifies the number of, and information contained in, warnings for lines in the OVF file that
does not a format_string.
ORIG_FILE [=] "filename";

Used to specify the OVF file name to be translated.
OUTPUTS [=] pin_list;

Defines the names and order of output pins in the OVF file.
SCRIPT_FORMAT [=] "format#1" [, . ."format#n"] ;

Format descriptors for User-Programmed reader.
TABULAR _FORMAT [=] "format #1" [, . . "format#n"] ;

Format descriptors for User-Programmed reader.
TERMINATE TIME [=] n; or

Ltran Translation Utility D-8

TetraMAX ATPG User Guide K-2015.06-SP4

TERMINATE LINE [=] m; or
TERMINATE STRING [=] "string";

Defineswhere in the OVF to stop processing, at a certain time, line number or when a string is
reached.
WAVE_FORMAT [=] "format #1" [, . . "format#n"] ;

Format descriptors for User-Programmed reader.
WHITESPACE [=] 'a','b', 'c', . . ,'n';

Defines characters in the OVF file that are to be treated as though they are space (they are
ignored).

PROC_BLOCK Statements
ADD_PIN pinname = state1 [WHEN expr=state2, OTHERWISE
state3];

Tells VTRAN to add a new pin to the TVF file, and allows you to define the state of this pin.
ALIGN_TO_CYCLE [-warnings] cycle pin_list @ time, . . . ,
pin_list
@ time ;

Vectors can bemapped to a set of cycle data, the state of each pin in a given cycle is determined
by its state at a specified strobe time in the OVF file.
ALIGN_TO_STEP [-warnings] step [offset];

Forces aminimum time resolution in the TVF file.
AUTO_ALIGN [-warnings] cycle;

Collapses print-on-change data in the OVF file to cycle data by computing strobe points from
information given in the PINTYPE commands.
BIDIRECT_CONTROL pin_list = dir WHEN expr = state ;

Separates input data from output data on bidirectionals under control of a pin state or logical
combination of pin states.
BIDIRECT_CONTROL pin_list = direction @ time ;

Separates input data from output data on bidirectionals based upon when the state transitions
occur.
BIDIRECT_STATES INPUT state_list, OUTPUT state_list ;

Separates input data from output data on bidirectionals where unique state characters identify
pin direction.
CYCLE [=] n;

Specifies the time step between vectors in the OVF when the format of the vectors does not
include a time stamp.
DISABLE_VECTOR_FILTER;

Disables filtering of redundant vectors.
DONT_CARE 'X';

Defines the character state to which output pins should be set outside of their checkwindows.
EDGE_ALIGN pinlist @ rtime [,ftime] [xtime];

Modifies pin transition times by snapping them to predefined positionswithin each cycle.
EDGE_SHIFT pinlist @ rtime [,ftime] [,xtime];

Modifies pin transition times by shifting them by fixed amounts.
MASK_PINS [mask_character ='X'] [pin_list] @ t1, t2 [-CYCLE]

Ltran Translation Utility D-9

TetraMAX ATPG User Guide K-2015.06-SP4

; or
MASK_PINS [mask_character ='X'] [pin_list] @ CONDITION expr =
state ;

Masks the state of specified pins to themask_character within the time range between t1 and t2,
or when a specified logic condition exists on other pins.
MERGE_BIDIRECTS state_list ; or
MERGE_BIDIRECTS rules = n ;

Merges the input and output state information of a bidirectional pin to a single pin after it has
been split and processed.
PINTYPE pintype pin_list @ start1 end1 [start2, end2] ;

Defines the behavior and timing to be applied to input or output pins during translation.
POIC;

Specifies that vectors in the OVF file should be translated to the TVF only when at least 1 input
pin has changed in the vector.
SCALE [=] nn;

Linearly expands or reduces the time line of the OVF. Happens before any timingmodifications.
STATE_TRANS [=] [dir] 'from1'->'to1', . . ;

Tells VTRAN not to incorporate pin timing and behavior into the vectors themselves.
SEPARATE_TIMING;

Defines amapping from pin states in the OVF file to states in the TVF file.
STATE_TRANS_GROUP pin_list = 'from1'->'to1', . . ;

Supplements the STATE_TRANS command by providing state translations on an individual pin
or group basis.
TIME_OFFSET [=] n ;

When reading the vectors from theOVF file, the time stamp can be offset by an arbitrary
amount.

TVF_BLOCK Statements
ALIAS ovf_name = tvf_name, . . . ; or
ALIAS "ovf_string"="tvf_string";

Provides a way to change the names of pins listed in the OVF file, for listing in the TVF file.
BIDIRECTS [=] pin_list;

Defines the names and order of pins to be listed in the TVF file which are bidirectional.
BUSFORMAT radix; or
BUSFORMAT pin_list = radix;

Specifies the radix of buses in the TVF file.
COMMAND_FILE [=] "filename";

Specifies the name of a separate output command file for the target simulator, in addition to the
vector data file.
DEFINE_HEADER [=] "text string";

Inhibits the automatic generation of headers and replaces it with a custom text string.
HEADER [=] n;

Causes a vertical list of the pin names to appear as comments in the TVF every n vector lines.
INPUTS [=] pin_list ;

Ltran Translation Utility D-10

TetraMAX ATPG User Guide K-2015.06-SP4

Defines the names and order of pins to be listed in the TVF file which are inputs.
INPUTS_ONLY;

Causes only input and the input versions of bidirectional pins to be listed in the TVF.
LOWERCASE;

Forces all pin names in the TVF file to use lowercase letters.
OUTPUTS [=] pin_list ;

Defines the names and order of pins to be listed in the TVF file that are outputs.
OUTPUTS_ONLY;

Causes only output and the output versions of bidirectional pins to be listed in the TVF file.
RENAME_BUS_PINS format;

Provides a way of globallymodifying all bus names in the TVF file.
RESOLUTION [=] n;

Specifies the resolution of time stamps in the output vector file (n = 1.0, 0.1, 0.01 or 0.001).
SCALE [=] nn ;

Linearly scales all times to the TVF file.
SIMULATOR [=] name [param_list];

Defines the target vector file format to be compatible with the simulator named.
STOBE_WIDTH [=] n;

Usedwith several of the simulator interfaces to define the width of an output strobe window.
SYSTEM_CALL ". . .text . . . ";

Upon completion of translating vectors from theOVF file to the TVF file, VTRAN sends this text
string to the system just before termination.
TARGET_FILE [=] "filename";

Specifies the name of the output file.
TITLE [=] "title";

Specifies a special character string to be placed in the header of certain simulator vector files.
UPPERCASE;

Forces all pin names in the TVF to be listed with uppercase letters.

Generating PrimeTime Constraints
You can use the tmax2pt.tcl script to generate PrimeTime constraints for performing static timing
analysis of a design under test. This script extracts relevant data and creates a PrimeTime script
that constrains the design in test mode.
Although this flow simplifies the process of performing static timing analysis with PrimeTime, it is
no substitute for the experienced user to validate timing analysis. See thePrimeTime
Fundamentals User Guide and thePrimeTime Advanced Timing Analysis User Guide for these
details.
The following sections describe how to generate PrimeTimeConstraints:

l Input Requirements
l Starting the Tcl Command Parser Mode

Generating PrimeTime Constraints D-11

TetraMAX ATPG User Guide K-2015.06-SP4

l Setting Up TetraMAX
l Making Adjustments for OCC Controllers
l Performing an Analysis for EachMode
l Implementation

Input Requirements
The TetraMAX input data requirements are:

l Netlists
l Library
l STIL procedure file
l Tcl command script for build, run_drc commands, and so on.
l An image file can only be used if it is written using the command write_image -
netlist_data.

The PrimeTime input data requirements are:
l Netlists
l Technology library (.db files)
l Command scripts to read design, link, and so on
l Timingmodels
l Layout data (for example, SDF)

Starting the Tcl Command Parser Mode
To use this flow, youmust run the tool in Tcl command parser mode, which is the default mode
for TetraMAX ATPGstarting with the C-2009.06 release.
The command filesmust be in Tcl format and not in the native format. You can use the
TetraMAX command translation script, native2tcl.pl to convert nativemode TetraMAX
command scripts into Tcl command scripts. For instructions on how to download this script, see
“Converting TetraMAX Command Files to Tcl”.

Setting Up TetraMAX
The normal flow of configuring the design and TetraMAX ATPG for ATPG is required. However,
ATPGdoes not have to be run. After you run DRC and set the configuration, TetraMAX ATPG
has enough data to support generating the PrimeTime script.
The tmax2pt.tcl script is located in the $SYNOPSYS/auxx/syn/tmax directory. This script must
be sourced from TetraMAX ATPG (see Figure 1); for example:
TEST-T> source $env(SYNOPSYS)/auxx/syn/tmax/tmax2pt.tcl

Generating PrimeTime Constraints D-12

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1 Shift Mode Analysis Example

The write_timing_constraints procedure is part of the tmax2pt.tcl script. Use this
procedure to create a PrimeTime Tcl script. For example:
TEST-T> write_timing_constraints pt_shift.tcl -mode shift
...

The syntax for the write_timing_constraints procedure is as follows:
write_timing_constraints output_pt_script_file

[-debug]
[-man]
[-mode shift | capture | last_shift | update]
[-no_header]
[-only_constrain_scanouts]
[-replace]

Generating PrimeTime Constraints D-13

TetraMAX ATPG User Guide K-2015.06-SP4

[-wft wft_name | default | launch | capture| launch_capture
[-wft wft_name | default | launch | capture | launch_capture]]
[-unit ns | ps]

Argument Description

-debug Writes additional debug data into the output file.
This is useful if you are attempting to modify this
script.

-man Displays a detailed description of the write_timing_
contraints options.

-mode mode_name Specifies themode in which to perform timing analysis.

-no_header Suppresses header information in the output file.
This is useful for comparing the results of different
versions.

-only_constrain_
scanouts

Sets output delay constraints only on scanout ports. By
default, all outputs are constrained. This option is only
compatible with the -mode shift option.

-replace Overwrites the output PrimeTime script file, if it exists.

-wft wft_name Specifies the WaveformTable as defined in the
STIL protocol file from which the timing data is
gathered. If well-known WFT names are defined,
they can be abbreviated as follows: default (_
default_WFT_), launch (_launch_WFT_), capture
(_capture_WFT_), launch_capture (_launch_
capture_WFT_). This option can be specified two
times, if necessary.

-unit unit Specifies ps (picoseconds) if the protocol uses ps.
The default is ns (nanoseconds).

The write_timing_constraints procedure and options accept abbreviations.

The mode_name can be either shift, capture, last_shift, or update. Shift mode uses
the constraints from the load_unload procedure and configures the design to analyze timing
during scan chain shifting. Capturemode (the default) uses constraints from the capture
procedures and configures the design to analyze timing during the capture cycles. Last_shift
mode analyzes the timing of the last shift cycle and the subsequent capture cycle. This is
normally used for analyzing the last shift launch transition pattern timing. Updatemode analyzes
the timing of the last shift cycle, capture cycle, and first shift cycle to determine the timing of the
DFTMAX Ultra cache registers.

Generating PrimeTime Constraints D-14

TetraMAX ATPG User Guide K-2015.06-SP4

The -wft option causes the timing used for the analysis to be specified separately from the
mode specification. The argument to the -wft optionmust be a validWaveformTable in the
SPF.Well-knownWFT names can be abbreviated . You can use the -wft option one time or
twice in a single command. If twoWFTs are specified, two cycles are timed. The first WFT is
used for the first cycle timing and the secondWFT is used for the second cycle. Two-cycle
analysis is done by superimposing two cycles, offset by a period, for each clock The default WFT
name is ._default_WFT_.

You should call the write_timing_constraints procedure for eachmode. A separate
script is created for eachmode, and sourced in PrimeTime during separate sessions.
The following examples show the usage of the -mode and -wft options.

To validate shifting:

-mode shift -wft _slow_WFT_

To validate stuck-at capture cycles:

-mode capture -wft default

To validate system clock launch capture cycles for transition faults:

-mode capture -wft launch -wft capture

To validate the timing between shift and capture for transition faults:

-mode last_shift -wft default -wft _fast_WFT_

Note the following:
l The 'force PI' and 'measure PO' times are relative to virtual clocks in PrimeTime. The 'force
PI' virtual clock rises at 0, and the 'measure PO' clock falls at the earliest POmeasure time.
Input and output delays are specified relative to these clocks.

l For the twoWFTmodes, all the clock ports will have two superimposed clocks
representing the two cycles that need to be analyzed.

l The end-of-cycle measures produce cycle times of double the normal cycles to account for
the expansion of vectors intomultiple vectors.

l You should carefully review the generated PrimeTime script to ensure the static timing
analysis configuration is as expected.

l In PrimeTime, the flow of setting up the design does not change. The design, SDF,
parasitics, and so forth are read. Next, the script generated by write_timing_
constraints in TetraMAX ATPG is sourced in PrimeTime; for example:
pt_shell> source pt_shift.tcl

Making Adjustments for OCC Controllers
If you source the script written by the write_timing_constraints procdure inside the pt_
shell, and an internal clock source (for example, OCC_controller_clock_root) is
included, the followingmessage is echoed:

Generating PrimeTime Constraints D-15

TetraMAX ATPG User Guide K-2015.06-SP4

TMAX2PT WARNING: Internal clock OCC_controller_clock_root timing
is defaulted
Adjust this timing to correct values before checking.

In this case, the script written by the write_timing_constraints procedure does not
include all of the information required to perform the clock gating check in PrimeTime. The clock
gating check is important and should be done for bothmaximumandminimum timing.
The following steps show you how to create a clock gating check script from the script written by
the write_timing_constraints procedure:

1. Locate the create_clock commands for eachOCC clock, and change the source_
object to the PLL source for the OCC.

2. In each corresponding create_generated_clock command, change the -source
argument to match the PLL source.

3. Add the following command to the clock gating check script:
set_clock_gating_check -high OCC_clock_inst

In this case, OCC_clock_inst is the instance name (without the pin name) of the OCC
clock source.Note: This step is required for OCC controllers that usemultiplexors or
combinational gating. However, youmust skip this step for OCC controllers that use
integrated clock-gating latches, since they already have clock gating checks defined for
them in the library.

4. Add the following commands to enable the clock gating check to verify the slow (shift)
clock gating in addition to the fast (capture) clock gating:
remove_case_analysis scan_enable
set_false_path -from scan_enable -to [get_clocks OCC_clock]

In this case, OCC_clock refers to all OCC clocks defined by the create_clock or
create_generated_clock commands.
After youmake these changes, the clock gating check is performedwhen you run the
report_timing command. For more discussion of static timing analysis with OCC
clocks, see SolvNet Article #022490: "Static Timing Analysis Constraints for On-Chip
Clocking Support."

Performing an Analysis for Each Mode
As discussed previously, the flow involves performing a separate timing analysis for eachmode.
This is illustrated in Figure 2. Example usages for various commonmodes are given in the
following paragraphs.

Generating PrimeTime Constraints D-16

https://solvnet.synopsys.com/retrieve/022490.html
https://solvnet.synopsys.com/retrieve/022490.html

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 2 Analysis of ThreeModes Flow Example

To analyze timing for when the scan chain is shifting, the following is suggested:
TEST-T> write_timing_constraints pt_shift.tcl –mode shift
 –wft wft_name

Youmust select theWaveFormTable defined in the STL procedure file to be used during the
shift cycle and specify it by using the -wft option.
For capture cycles for stuck-at faults, the following usage is suggested:

TEST-T> write_timing_constraints pt_capture.tcl \
-mode capture -wft <wft_name>

Youmust select theWaveFormTable defined in the STL procedure file to be used during the
capture cycles and specify it by using the -wft option.
For analysis of transition fault patterns using system clock launch, the following usage is
suggested:
TEST-T> write_timing_constraints pt_trans_sys_clk.tcl \
 -mode capture -wft <launch_wft_name> -wft <capture_wft_name>

Generating PrimeTime Constraints D-17

TetraMAX ATPG User Guide K-2015.06-SP4

Youmust select theWaveFormTables defined in the STL procedure file to be used for the
launch and capture cycles and specify them by using the -wft option. The first WFT is used as
the launchWFT and the secondWFT is used as the captureWFT. Launch-capture can be done
in the sameway as the stuck-at capture analysis above, with theWFT being the launch_capture.

For analysis of transition fault timing for last-shift launch, the following usage is suggested:
TEST-T> write_timing_constraints pt_last_shift.tcl \

-mode last_shift -wft <shift_wft_name> -wft <capture_wft_name>

Youmust select theWaveFormTables defined in the STL procedure file to be used for the shift
and capture cycles and specify them by using -wft option. The first WFT is used in the launch
cycle and the secondWFT is used in the capture cycle. Constraints are specified only as set_
case_analysis if both cycles have the same TetraMAX ATPGconstraints. Exceptions, such
as false_path, are specified only for the capture cycle. You should check that scan-enable
transitioning in the second cyclemeets the setup time for the capture clock in the second cycle.
The samemode can time both the shift to capture transition, and the capture to shift transition.
You can use the -mode update option to analyze timing for the DFTMAX Ultra cache
registers. The suggested usage is as follows:

TEST-T> write_timing_constraints pt_shift.tcl –mode update

With thismode, the constraints file defines a $dftmax_ultra_cache_cells variable. In
PrimeTime, use this variable to check the cache register timing, as shown in the following
example:

pt_shell> report_timing –to $dftmax_ultra_cache_\
 cells -delay min_max
pt_shell> report_timing –from $dftmax_ultra_cache_cells \
 -delay min_max

This analysismode is intended only for analyzing the DFTMAX Ultra cache registers. You
should still perform full-design analysis with constraints generated for the shift and capture
modes.

Implementation
The timing waveforms for clocks and signals reflect what is used on the tester. Input and output
timing are relative to virtual clockswith prefixes "forcePI" and "measurePO" (see Figure 3).
These clocks are impulse clockswith 0 percent duty cycles. The forcePI virtual clocks pulse at
the beginning of the cycle. ThemeasurePOclocks pulse at the earliest measure PO time. The
timing data is taken from the STL procedure file.

Generating PrimeTime Constraints D-18

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 3 WaveformsUsed For Timing

Each PI, PO, and PIO is listed individually, because each can have a separate input or output
delay. Also, each clock is individually listed.
For delay test timing analysis, a single clock net can have clockwaveforms that vary due to
different waveform tables. For example, the waveformmight change between the last shift cycle
and the capture cycle. PrimeTime has some facilities to handle this situation. This involves
superimposing two clock cycles on top of each other, offset by the period of the first cycle. Each
cycle will have its own set of forcePI andmeasurePOvirtual clocks. This is shown in Figure 4.
TheWFTs used are based on the order specified.

Figure 4 Superimposed Cycles For TwoWFTs

>
Note:

The create_generated_clocks command is used to allow clock
reconvergence pessimism reduction to work on the two pulses. PrimeTime version
Z-2006.12 or later should be used. (Earlier versions report spurious paths between
master clocks in addition to the paths between the generated clocks.) The PTE-075
warnings reported by PrimeTime version Z-2006.12 are spurious and can be
ignored.

Note that the analysis with superimposed clocks is specific to the two cycles specified. They do
not cover other cycles, such as setup and propagation cycles around the launch and capture
cycles of a system clock launch pattern.
The write_timing_constraints script attempts to apply aminimal set of timing
exceptions to aid accurate timing analysis. For the last_shift mode, false andmulticycle paths

Generating PrimeTime Constraints D-19

TetraMAX ATPG User Guide K-2015.06-SP4

from the capture cycle are used. Case analysis exceptions are applied for multiple cycle modes
only if both cycles have the same PI constraints during ATPG.
For capture cycles of end-of-cycle measures, the waveforms are expanded into a two-cycle
period to adjust for the expansion of each capture vector into multiple vectors (see Figure 5).
Shift cycles remain single cycle.

Figure 5 End of Cycle Pattern Expansion

Converting Timing Violations Into Timing
Exceptions
Timing exceptions can have a negative impact on ATPGefficiency. You can ensure ATPG
efficiency by using only those timing exceptions that apply directly to the current ATPG
environment, and ignoring others that are irrelevant to tester timing. The following flow describes
how to convert timing violations into timing exceptions:

1. Set up TetraMAX ATPG in the appropriatemode.
2. Follow the steps described in “Generating PrimeTimeConstraints."
3. Use the write_exceptions_from_violations PrimeTime Tcl procedure

described in this section.
4. Read the results into TetraMAX ATPGusing the read_sdc command. (Note:Don't

read the results of step 2 at this time, since they are implicit in the TetraMAX ATPGsetup
and will reduce efficiency if applied again.)

The write_exceptions_from_violations procedure is part of the
$SYNOPSYS/auxx/syn/tmax/pt2tmax.tcl script. To use this Tcl script, source it into
pt_shell, set up the timing environment, and then run it. This script converts all timing
violations into timing exceptions, then applies them to ensure that timing is clean.When the
timing isn’t clean, the newly found timing violations are converted. Each update check
conversion process is considered an iteration. The new exceptions are written in SDC format.
The syntax for the write_exceptions_from_violations procedure is as follows:
write_exceptions_from_violations

[-output filename]
[-specific_start_pin]

Converting Timing Violations Into Timing Exceptions D-20

TetraMAX ATPG User Guide K-2015.06-SP4

[-max_iterations number]
[-delay_type <max | min | min_max>]
[-full_update_timing]
[-pba]
[-man]

Argument Description

-output filename Writes the output to a specific file name. The default is tmax_
exceptions.sdc.

-specific_start_pin Writes separate exceptions for different outputs of a violating
cell. The default is one exception per startpoint cell. This
switch can improve the efficiency of the timing exceptions on
some designs, especially designs in which somememory
paths violate timing but other pathswith the samememories
do not. However, this analysis requiresmultiple iterations,
which can dramatically increase the runtime.

-max_iterations
number

Iterates the specified number of times before placing blanket
exceptions on endpoints to ensure that timing ismet. The
default is 40.

-delay_type <max |
min | min_max>

Specifies which violations to convert to timing exceptions.
The max argument converts setup time violations to
exceptions.
The min argument converts hold time violations to
exceptions.
The min_max argument (the default) converts both setup
and hold time violations to exceptions.

-full_update_timing Forces a full timing update for the second iteration,
and all later iterations, of the update check
conversion process. You should use this option
when violating paths cause excessive runtime
during timing updates.

-pba Runs timing analysis using the "Path" mode of path-
based analysis. In most cases, this option reduces
the number of violating paths. However, this
additional analysis affects the runtime.

-man Prints the syntax message.

Converting Timing Violations Into Timing Exceptions D-21

TetraMAX ATPG User Guide K-2015.06-SP4

report_diagnosis Tcl Procedure
You can use the report_diagnosis.tcl procedure to create a defect-oriented diagnostics report
that includes full physical descriptions of all diagnostics candidates organized by data type. This
procedure workswith TetraMAX ATPGstarting with the G-2012.06-SP3-CS2 release.
The following topics describe how to use the report_diagnosis.tcl procedure and explain its
output report:

l Using report_diagnosis
l TablesReported by report_diagnosis
l Example Report from report_diagnosis

Using report_diagnosis
The following example shows how to source the report_diagnosis.tcl procedure:
source $env(SYNOPSYS)/auxx/syn/tmax/report_diagnosis.tcl

The syntax for the report_diagnosis.tcl procedure is as follows:
report_diagnosis

[-all_tables | -noall_tables]
[-candidates_table | -nocandidates_table]
[-cycle_table | -nocycle_table]
[-failure_log_file_table | -nofailure_log_file_table]
[-failure_mapping_table | -nofailure_mapping_table]
[-help]
[-netlist_table | -nonetlist_table]
[-performance_table | -noperformance_table]
[-physical_table | -nophysical_table]
[-summary_table | -nosummary_table]
[-verbose | -noverbose]

Argument Description

-all_tables |
-noall_tables

Prints all tables in the diagnostics report:
Diagnostics Candidate Table, Defect
Information Table, Results Summary Table,
Failure Log File Table, Netlist Data Table,
Physical Data Table, Cycle to Pattern
Conversion Table, Failure Mapping Summary
Table, Failure Mapping Detailed Table,
Performance Table. The default is the
-noall_tables option.

report_diagnosis Tcl Procedure D-22

TetraMAX ATPG User Guide K-2015.06-SP4

Argument Description

-candidates_table |
-nocandidates_table

Prints the Diagnostics Candidates Table, which
contains defect group, defect type, fault model,
match scoring, and subnet data. This
information is printed by default (the
-candidates_table option is the default).

-cycle_table |
-nocycle_table

Prints the Cycle to Pattern Conversion Table, which
displays the relationships between the cycle-based
failures and pattern-based failures. The default is the the
-nocycle_table option.

-failure_log_file_table |
-nofailure_log_file_table

Prints the Failure Log File Table, which displays the
number of failures read and used, truncation
information, and pattern type and directive data for split
patterns. This information is printed by default (the
-failure_log_file_table option is the default).

-failure_mapping_table |
-nofailure_mapping_table

Prints the Failure Mapping Table, which contains
the number of failing patterns, the number of
skipped patterns, the number of masked cycles
successfully mapped patterns for scan
compression. The default is the
-nofailure_mapping_table option.

-help Prints the syntax of the report_diagnosis Tcl
procedure.

-netlist_table |
-nonetlist_table

Prints the Netlist Data Table, which contains the
cell type, net name, subnet ID, and fanout data.
The default is the -nonetlist_table option.

-performance_table |
-noperformance_table

Prints the Performance Table, which displays
CPU one time and memory usage data, and the
number of simulated failing and passing
patterns. The default is the
-noperformance_table option.

-physical_table |
-nophysical_table

Prints the Physical Data Table, which displays
the failing pin XY coordinates, and metal layer
names, bounding box geometries of cells, and
fanout information. The default is the
-nophysical_table option.

report_diagnosis Tcl Procedure D-23

TetraMAX ATPG User Guide K-2015.06-SP4

Argument Description

-summary_table |
-nosummary_table

Prints the Results Summary Table, which
displays the total number of defects and faults,
and TetraMAX version information. This
information is printed by default (the
-summary_table option is the default).

-verbose |
-noverbose

Prints the verbose mode for each table. The
default is the -noverbose option.

Tables Reported by report_diagnosis
The physical diagnostics report created by the report_diagnosis.tcl procedure contains a set of
categorized tables, including full physical descriptions of all fault candidates.

Depending on the options you specify, the following tables are included in the report:

l Diagnostics Candidate Table – Candidate ID, defect group, defect type, scoring,
localization.

l Defect Information Table – Defect group ID, list of explained patterns for group, list of
observation points.

l Results Summary Table – Total number of defects, total faults, total logic cones, tool
version.

l Failures Log File Data Table – Number of failures read and used, pattern type, directives,
pattern file.

l Netlist Data Table – Candidate ID, cell type and name, net name, physical subnet ID, net
fanout list, pinpath name.

l Physical Data Table – Candidate ID, bounding box data, physical instance name, pin XY
coordinates, metal layer data.

l Cycle Conversion Table – Pattern-based failures, cycle value, failing shift or capture.
l FailureMapping SummaryData Table – Failing pattern, chain or pin name, gate ID of
failing scan cell, instance name, matching type.

l FailureMapping Detailed Table – Provides details of data provided by the FailureMapping
Summary Table.

l Performance Table – CPU time, number of simulated failing and passing patterns, number
of simulated cells, memory consumption.

The Candidates, Results Summary, and Failures Log File Data tables are printed by default. To
obtain additional information on the candidates, specify the report_diagnosis.tcl procedure with
additional options, as needed. You do not need to rerun the diagnosis to retrieve additional data.

report_diagnosis Tcl Procedure D-24

TetraMAX ATPG User Guide K-2015.06-SP4

Diagnostics Candidate Table
An example of the Diagnostics Candidate Table is as follows:

DIAGNOSTICS CANDIDATE TABLE:
============================
candidate_id : 1
defect_group : 1
defect_type : OPEN
fault_model : sa01
candidate : I_RISC_CORE/I_ALU/U14/ZN
phy_subnet_id : 2
subnet_driver : I_RISC_CORE/I_ALU/U14/ZN
match : 100.000000
TFSF : 58
TFSP : 0
TPSF : 0
PerFailPat : 30
PerPassPat : 36

candidate_id : 2
defect_group : 2
defect_type : OPEN
fault_model : sa01
candidate : I_RISC_CORE/I_DATA_PATH/U102/ZN
phy_subnet_id : 1
subnet_driver : I_RISC_CORE/I_DATA_PATH/U102/
match : 100.000000
TFSF : 28
TFSP : 0
TPSF : 0
PerFailPat : 23
PerPassPat : 43

The descriptions of the fields in the Diagnostics Candidate Table are as follows:
candidate_id

Each defect candidate is assigned a unique ID, starting with "1."
defect_group

Indicates the defect group associated with the candidate. A defect group is
comprised of candidates that produce failures on the same set of overlapping
points. Candidates that produce failures on a non-overlapping set of
observable points are assigned to multiple defect groups.

defect_type
Describes the behavior of the defect on silicon. The possible categories are:
OPEN – A stuck-at fault model on a subnet.
SHORT – Bridge faults.
CELL – A defect inside a cell.

report_diagnosis Tcl Procedure D-25

TetraMAX ATPG User Guide K-2015.06-SP4

UNKNOWN – A complex defect without a precise definition.
HOLD – A fast-to-rise or fast-to-fall chain defect.

equiv
Integer that indicates if the candidate is the equivalent to a representative
candidate. In this case, the integer indicates the candidate_id of the
representative fault.

fault_model
Defines the fault model behavior of the candidate: Sa0, Sa1, Sa01, Str, Stf,
Strf, Bdom, Band, Bor, Ftr (Fast-to-rise), Ftf (Fast-to-fall), Ftrf (Fast-to-rise-
fall).

candidate
The hierarchical pin path name of the candidate. For a bridge candidate, the
first pin path name printed is the victim node and the second is the aggressor.

chain_name
The name of the chain. Printed only for chain diagnostics.

phy_subnet_id
The physical subnet ID of the candidate.

match
The match score as a percentage.

scan_cell_position
The position of the scan cell. Printed only for chain diagnostics.

subnet_driver
The pinpath name of the subnet driver. If the subnet data is not available, this
field is not reported.

TFSF
Tester Fail Simulation Fail (printed only if the –verbose option is specified).

TFSP
Tester Fail Simulation Pass (printed only if the –verbose option is specified).

TPSF
Tester Pass Simulation Fail (printed only if the –verbose option is specified).

PerFailPat
The number of Perfect failing patterns per fault candidate(printed only if the –
verbose option is specified).

PerPassPat
The number of Perfect passing patterns per fault candidate(printed only if the –
verbose option is specified).

Defect Information Table
An example of the Defect Information Table is as follows:

DEFECT INFO TABLE:
==================
defect_group : 1
#explained_patterns : 30

report_diagnosis Tcl Procedure D-26

TetraMAX ATPG User Guide K-2015.06-SP4

explained_patterns : 1 2 5 6 7 8 9 13 14 15 16 25 27 29 31 32 35
37 39 40
43 44 45 46 48 49 50 52 61 64
#observation_points : 3
observation_points : 1699 1698 1697

defect_group : 2
#explained_patterns : 23
explained_patterns : 1 2 7 8 19 20 25 27 29 31 32 36 38 42 44 45
46 49 50
52 53 54 62
#observation_points : 2
observation_points : 1716 1717

The descriptions of the fields in the Defect Information Table are as follows:
defect_group

Each defect group is assigned a unique ID, starting with "1."
#explained_patterns

The number of explained patterns for this defect group.
explained_patterns

A list of explained patterns for this defect group.
#observation_points

The number of the observation points for this defect group.
observation_points

A list of the observation points for this defect group.

Results Summary Table
An example of the Results Summary Table is as follows:

RESULTS SUMMARY TABLE:
======================
total_defects total_faults total_logic_cones version

 2 2 2 I-2013.12

The descriptions of the fields in the Results Summary Table are as follows:
total_defects

Total number of defects found.
total_faults

Total number of faults found.
total_logic_cones

Total number of independent logic cones (printed only for logic diagnosis).
version

The current TetraMAX version used (printed only if the -verbose option is
specified).

report_diagnosis Tcl Procedure D-27

TetraMAX ATPG User Guide K-2015.06-SP4

Failure Log File Table
An example of the Failure Log File Table is as follows:

FAILURE LOG FILE TABLE:
=======================
file_name : 2def.log
#failure_infile : 86
#failing_pat_infile : 38
#failure_used : 86
Check_expected_data : 86
pattern_type : basic_scan=(0,9)
 fast_seq=(-1,-1)
directive : incomplete=1
pattern_file : f_0

The descriptions of the fields in the Failure Log File Table are as follows:
file_name

Name of the failures log file.
#failure_infile

Number of failures included in the file.
#failing_pat_infile

Number of failing patterns included in the file.
#failure_used

Number of failures analyzed during the diagnosis process (this number might
be less than the number of failures in the file due to truncation or the removal
of a pattern during analysis).

Check_expected_data
Number of failures with expected data that are successfully checked

Pattern_type
Indicates the pattern type (printed for split patterns).

Directive
List of all directives included in the file (printed for split patterns).

Pattern_file
Pattern file name for the corresponding failures log file.

Netlist Data Table
An example of the Netlist Data Table is as follows:

NETLIST DATA TABLE:
===================
candidate_id : 1
cell_type : AND2X
cell_name : a/b
net : a/b/n1

report_diagnosis Tcl Procedure D-28

TetraMAX ATPG User Guide K-2015.06-SP4

phy_subnet_id : 2
#net_fanout : 9
net_fanout : a/d/A
 a/e/B
 a/j/C
 a/k/D
 a/l/E
 a/m/F
 a/n/G
 a/o/H
 a/p/I
#subnet_fanout : 3
subnet_fanout :
 : a/j/C
 : cell_type : mux02d0
 : a/m/F
 : cell_type : and02d2
 a/o/H
 : cell_type : xor03d1
pinpath : a/b/Z

The descriptions of the fields in the Physical Data Table are as follows:

candidate_id
Each defect candidate is assigned a unique ID, starting with "1."

cell_type
Library cell name.

cell_name
Cell instance name.

net
Name of the net connected to the failing pin.

phy_subnet_id
Physical subnet ID for an OPEN defect.

#net_fanout
The number of endpoints driven by the net.

net_fanout
A list of all fanout instances (reported only in verbose mode).

#subnet_fanout
The number of endpoints driven by the subnet.

subnet_fanout
A list of subnet fanout instances with the cell type included (reported only in
verbose mode).

pinpath
Pin path name of the candidate.

report_diagnosis Tcl Procedure D-29

TetraMAX ATPG User Guide K-2015.06-SP4

Physical Data Table
An example of the Physical Data File Table is as follows:

PHYSICAL DATA TABLE:
===================
candidate_id : 1
physical_inst : I_RISC_CORE/I_ALU/U14
cell_bbox : (746115 650175) (747345 653865)
cell_area : 4538700
cell_orientation : S
pin_name : ZN
pin_xy : (746895 651365)
pin_metal : METAL
net_metal_list : METAL METAL2 METAL3 METAL4 METAL5 METAL6
subnet_fanout_phy :
 : net_load_info : I_RISC_CORE/I_ALU/Lachd_Result_reg_11__U3/S
 : physical_inst : I_RISC_CORE/I_ALU/Lachd_Result_reg_11__U3
 : cell_bbox : (797775 620655) (801055 624345)
 : cell_area : 12103200
 : cell_orientation : FS
 : pin_xy : (145346 59387)
 : pin_metal : METAL
Etc…
subnet_bbox : (797880 622400) (798080 625880) layer : METAL2
subnet_bbox : (796240 625680) (796440 626290) layer : METAL3
Etc...
Net Segment:
 : net_bbox : (680205 614970) (680415 615270)
 : net_bbox_area : 63000
 : net_length : 300
 : layer : METAL
Etc…
Net Segment:
 : net_bbox : (800335 607590) (800545 607890)
 : net_bbox_area : 63000
 : net_length : 300
 : layer : METAL
net_bbox_area(METAL): 1071000
Net Segment:
 : net_bbox : (680210 614720) (680410 615220)
 : net_bbox_area : 100000
 : net_length : 500
 : layer : METAL2
Etc…
PFA_bbox(total) : (679750 607590) (800585 652170)
PFA_area(total) : 5386824300
via_count : 76
via_info
 : Subnet : 0

report_diagnosis Tcl Procedure D-30

TetraMAX ATPG User Guide K-2015.06-SP4

 : Name : VIA12A
 : LayerB : METAL
 : LayerT : METAL2
 : CenterX : 746730
 : CenterY : 651200
etc…
Total_PFA_area : 5386824300.0
...

The descriptions of the fields in the Physical Data Table are as follows:
candidate_id

Diagnostics candidate ID.
bridge_bbox

Bounding box of the bridging candidate geometries (only for PHDS flow).
physical_inst

Physical instance name.
cell_bbox

Values of the failing cell boundary box.
cell_area

Area of the failing cell in square microns.
cell_orientation

Cell orientation.
pin_name

Failing pin name.
pin_xy

XY coordinates of a point on the failing pin.
pin_metal

Failing pin metal layer name.
net_metal_list

List of the metal names used for the net.
subnet_fanout_phy

Information about the fanout point of a net if the candidate is a subnet. This
data includes: net_load_info, physical_inst, cell_bbox, cell_area, cell_
orientation, pin_xy, pin_metal.

subnet_bbox
Bounding box of the subnet candidate geometries.

Net Segment
Information about a segment of the net. If the net includes several segments,
the Net Segment data is repeated until all segments are described. The info
includes:
net_bbox - Four values of the failing net cell boundary box. This information is
duplicated per layer and per metal segment.

report_diagnosis Tcl Procedure D-31

TetraMAX ATPG User Guide K-2015.06-SP4

net_bbox_area - Area of the failing net in square micron. This information is
duplicated per layer.
net_length - Length of the segment.
layer - Layer name of the segment.

net_bbox_area(layer)
The area of the bounding box for all net segments for a given layer. This info is
reported for each layer when all net segments are finished printing.

PFA_bbox(total)
Four values of the PFA boundary box. This info is repeated for each candidate_
id.

PFA_area(total)
The PFA area for all layers. If the defect is a cell, this is the area of a cell. If a
defect is a net, this is the area of the net. This information is repeated for each
candidate_id.

total_net_length(layer)
The total net length of the metal on this specific layer in microns. This
information is be duplicated for each layer and is reported only for short
defects.

via_count
Number of vias on connections to fan-out/fan-in.

via_info
Provides information for each via. The information includes:
Subnet - the subnet ID of the via. A "-1" is reported if the via does not belong
to a subnet.
Name - Name of the via.
LayerB - Bottom layer name.
LayerT - Top layer name.
CenterX - Value of X at the center of the via.
CenterY - Value of Y at the center of the via.

Total_PFA_area
Total PFA area for all the callouts. This is the total of all PFA_area data for all
individual candidates.

Cycle to Pattern Conversion Table
An example of the Cycle to Pattern Conversion Table is as follows:

CYCLE TO PATTERN CONVERSION TABLE:
==================================
pattern_based_failure cycle fails_in

6 accu[1] 1004 Fail in capture
2 scanout2 45 0 5839 Fail in shift
5 scanout3 35 1 6873 Fail in shift

report_diagnosis Tcl Procedure D-32

TetraMAX ATPG User Guide K-2015.06-SP4

The descriptions of the fields in the Cycle to Pattern Conversion Table are as follows:

pattern-based failure
The pattern-based failure includes the pattern, the pin, the shift cycle, and the
expected data, if available, in the original failures log file.

cycle
The cycle value associated with the pattern-based value.

fails_in
Indicates if the failure is failing during shift or capture.

Failure Mapping Summary Table
An example of the FailureMapping Summary Table is as follows:

FAILURE MAPPING SUMMARY TABLE:
===============================
#failing_pats #skipped_pats #masked_cycles CPU_time(sec)

32 1 3 0.00

The descriptions of the fields in the FailureMapping Summary Table are as follows:

#failing_pats
The number of failing patterns in the failures log file.

#skipped_pats
The number of patterns skipped during the failure mapping process.

#masked_cycles
The number of masked cycles.

CPU_time
The one time value(in seconds) for the failure mapping process.

Failure Mapping Detailed Table
An example of the FailureMapping Summary Table is as follows:

FAILURE MAPPPING DETAILED TABLE:
================================
pattern : 2
chain/pin name : 1
position : 63
gate_id : 350
instance : a/b/c/k
type : unique
pattern : 7
chain/pin name : 4
position : 23
gate_id : 350
instance : a/b/c/k

report_diagnosis Tcl Procedure D-33

TetraMAX ATPG User Guide K-2015.06-SP4

The descriptions of the fields in the FailureMapping Detailed Table are as follows:

pattern
Name of the failing pattern.

chain/pin name
Chain name or pin name if a failure occurs during capture.

position
Position of the failure. The value is "-1" if a failure occurs during capture.

gate_id
The gate ID of the failing scan cell.

instance
The name of the instance corresponding to the gate ID (printed only for a
verbose report).

type
The mapping type: unique, potential or unmapped (printed only for DFTMAX
technology).

Performance Table
An example of the Performance Table is as follows:

PERFORMANCE TABLE:
==================
cpu_time #sim_failing_pat #sim_passing_pat memory(MB)

24 274 96 42.76

The descriptions of the fields in the Performance Table are as follows:

CPU_time
Run time (in seconds) for the diagnosis process after failure mapping.

#sim_failing_pat
The number of simulated failing patterns.

#sim_passing_pat
The number of simulated passing patterns (logic diagnosis only).

#sim_cells
The number of simulated cells (chain diagnosis only).

memory
Memory consumption (in MB) after the diagnosis process is finished.

report_diagnosis Tcl Procedure D-34

TetraMAX ATPG User Guide K-2015.06-SP4

Example Report from report_diagnosis
The following example shows a report produced from the report_diagnosis.tcl procedure.

DIAGNOSTICS CANDIDATE TABLE:
============================
candidate_id : 1
defect_group : 1
defect_type : OPEN
fault_model : sa01
candidate : I_RISC_CORE/I_ALU/U14/ZN
phy_subnet_id : 2
subnet_driver : I_RISC_CORE/I_ALU/U14/ZN
match : 100.000000
TFSF : 58
TFSP : 0
TPSF : 0
PerFailPat : 30
PerPassPat : 36

candidate_id : 2
defect_group : 2
defect_type : OPEN
fault_model : sa01
candidate : I_RISC_CORE/I_DATA_PATH/U102/ZN
phy_subnet_id : 1
subnet_driver: I_RISC_CORE/I_DATA_PATH/U102/ZN
match : 100.000000
TFSF : 28
TFSP : 0
TPSF : 0
PerFailPat : 23
PerPassPat : 43

DEFECT INFO TABLE:
==================
defect_group : 1
#explained_patterns : 30
explained_patterns : 1 2 5 6 7 8 9 13 14 15 16 25 27 29 31 32 35
37 39 40
43 44 45 46 48 49 50 52 61 64
#observation_points : 3
observation_points : 1699 1698 1697
defect_group : 2
#explained_patterns : 23
explained_patterns : 1 2 7 8 19 20 25 27 29 31 32 36 38 42 44 45
46 49 50
52 53 54 62

report_diagnosis Tcl Procedure D-35

TetraMAX ATPG User Guide K-2015.06-SP4

#observation_points : 2
observation_points : 1716 1717

RESULTS SUMMARY TABLE:
======================
 total_defect total_fault total_logic_cones version

 2 2 2 I-2013.12

FAILURE LOG FILE TABLE:
=======================
file_name : 2def.log
#failure_infile : 86
#failing_pat_infile : 38
#failure_used : 86
Check_expected_data : 86

PERFORMANCE TABLE:
==================
 cpu_time #sim_failing_pat #sim_passing_pat memory

 0.060000 38 28 49.707031

NETLIST DATA TABLE:
===================
candidate_id : 1
cell_type : inv0d1
cell_name : I_RISC_CORE/I_ALU/U14
net : I_RISC_CORE/I_ALU/n16
phy_subnet_id : 18
#net_fanout : 16
net_fanout :
 I_RISC_CORE/I_ALU/U31/S
 I_RISC_CORE/I_ALU/Lachd_Result_reg_1__U3/S
 I_RISC_CORE/I_ALU/Lachd_Result_reg_2__U3/S
 I_RISC_CORE/I_ALU/Lachd_Result_reg_3__U3/S
 I_RISC_CORE/I_ALU/Lachd_Result_reg_4__U3/S
 I_RISC_CORE/I_ALU/Lachd_Result_reg_5__U3/S
 I_RISC_CORE/I_ALU/Lachd_Result_reg_6__U3/S
 I_RISC_CORE/I_ALU/Lachd_Result_reg_7__U3/S
 I_RISC_CORE/I_ALU/Lachd_Result_reg_8__U3/S
 I_RISC_CORE/I_ALU/Lachd_Result_reg_9__U3/S
 I_RISC_CORE/I_ALU/Lachd_Result_reg_10__U3/S
 I_RISC_CORE/I_ALU/Lachd_Result_reg_11__U3/S
 I_RISC_CORE/I_ALU/Lachd_Result_reg_12__U3/S
 I_RISC_CORE/I_ALU/Lachd_Result_reg_13__U3/S
 I_RISC_CORE/I_ALU/Lachd_Result_reg_14__U3/S

report_diagnosis Tcl Procedure D-36

TetraMAX ATPG User Guide K-2015.06-SP4

 I_RISC_CORE/I_ALU/Lachd_Result_reg_15__U3/S
#subnet_fanout : 3
subnet_fanout :
 I_RISC_CORE/I_ALU/Lachd_Result_reg_13__U3/S
 I_RISC_CORE/I_ALU/Lachd_Result_reg_12__U3/S
 I_RISC_CORE/I_ALU/Lachd_Result_reg_11__U3/S
pinpath : I_RISC_CORE/I_ALU/U14/ZN
candidate_id : 2
cell_type : nd04d0
cell_name : I_RISC_CORE/I_DATA_PATH/U102
net : I_RISC_CORE/I_DATA_PATH/n49
phy_subnet_id : 4
#net_fanout : 3
net_fanout :
 I_RISC_CORE/I_DATA_PATH/U100/A2
 I_RISC_CORE/I_DATA_PATH/U83/A2
 I_RISC_CORE/I_DATA_PATH/U6/I
#subnet_fanout : 2
subnet_fanout :
 I_RISC_CORE/I_DATA_PATH/U100/A2
 I_RISC_CORE/I_DATA_PATH/U6/I
pinpath : I_RISC_CORE/I_DATA_PATH/U102/ZN

PHYSICAL DATA TABLE:
===================
candidate_id : 1
physical_inst : I_RISC_CORE/I_ALU/U14
cell_bbox : (746115 650175) (747345 653865)
cell_area : 4538700
cell_orientation : S
pin_name : ZN
pin_xy : (746895 651365)
pin_metal : METAL
subnet_bbox : (797880 622400) (798080 625880) layer : METAL2
subnet_bbox : (797880 625620) (798080 625940) layer : METAL2
subnet_bbox : (797835 625680) (798125 625880) layer : METAL3
subnet_bbox : (796240 625680) (798080 625880) layer : METAL3
subnet_bbox : (796240 625680) (796440 626290) layer : METAL3
subnet_bbox : (796195 626090) (796485 626290) layer : METAL3
subnet_bbox : (796240 626030) (796440 626350) layer : METAL2
net_bbox : (746650 651120) (746810 651280) net_bbox_area :
25600
layer : METAL
net_bbox : (746580 651095) (746880 651305) net_bbox_area :
63000
layer : METAL
net_bbox : (685560 611350) (685720 611510) net_bbox_area :
25600
layer : METAL

report_diagnosis Tcl Procedure D-37

TetraMAX ATPG User Guide K-2015.06-SP4

net_bbox : (685535 611280) (685745 611580) net_bbox_area :
63000
layer : METAL
net_bbox : (689250 618730) (689410 618890) net_bbox_area :
25600
layer : METAL
net_bbox : (689225 618660) (689435 618960) net_bbox_area :
63000
layer : METAL
net_bbox : (800360 607660) (800520 607820) net_bbox_area :
25600
layer : METAL
net_bbox : (800335 607590) (800545 607890) net_bbox_area :
63000
layer : METAL
net_bbox : (797900 622420) (798060 622580) net_bbox_area :
25600
layer : METAL
net_bbox : (797875 622350) (798085 622650) net_bbox_area :
63000
...

report_diagnosis Tcl Procedure D-38

E
STIL Language Support
The following sections of this appendix provide a brief overview of the Standard Test Interface
Language (STIL), and identifies how TetraMAX ATPGuses the STIL constructs.

l STIL Overview
l TetraMAX ATPGand STIL
l STIL Conventions in TetraMAX
l IEEE Std. 1450.1 ExtensionsUsed in TetraMAX
l Elements of STIL Not Used by TetraMAX

E-1

TetraMAX ATPG User Guide K-2015.06-SP4

STIL Overview
The STIL language is an emerging standard for simplifying the number of test vector formats
that automated test equipment (ATE) vendors and computer-aided engineering (CAE) tool
vendorsmust support.
As an emerging standard, STIL is evolving with additional standardization efforts. TetraMAX
ATPGmakes use of both the current STIL standard (IEEE Std. 1450-1999 Standard Test
Interface Language (STIL) for Digital Test Vectors), and the IEEE Std. 1450.1 Design
Extensions. Many of the extensionswere developed in support of TetraMAX ATPGusers and
subsequently proposed to the IEEE Std. 1450.1 working group. Both of these efforts are
detailed in the following sections:

l IEEE Std. 1450-1999
l IEEE Std. 1450.1 Design Extensions to STIL

IEEE Std. 1450-1999
The Standard Test Interface Language (STIL) provides an interface between digital test
generation tools and test equipment. The following defines a test description language:

l Facilitates the transfer of digital test vector data fromCAE to ATE environments
l Specifies pattern, format, and timing information sufficient to define the application of
digital test vectors to a DUT

l Supports the volume of test vector data generated from structured tests
STIL is a representation of information needed to define digital test operations in manufacturing
tests. STIL is not intended to define how the tester implements that information.While the
purpose of STIL is to pass test data into the test environment, the overall STIL language is
inherentlymore flexible than any particular tester. Constructsmight be used in a STIL file that
exceed the capability of a particular tester. In some circumstances, a translator for a particular
type of test equipment might be capable of restructuring the data to support that capability on the
tester; in other circumstances, separate toolsmight operate on that data to provide that
restructuring.
The STIL language can be used for defining the test protocol input and the pattern input and
output. STIL test protocol input is used for various design rule checking (and tester rules
checking) and drives the test generation process. ATPG-generated STIL patternsmight be
structured such that intra cycle timing, cyclization of test and raw data are separated into,
respectively, Timing, Procedure,s and Pattern Blocks. This structure simplifies various rules
checking, maintenance, and patternmapping for system-on-chip testing.
To understandmore about STIL, refer to the IEEE Std. 1450.0-1999 Standard Test Interface
Language (STIL) for Digital Test Vectors. For general information about the STIL standard, click
the Executive Overview link on the STIL home page at
http://grouper.ieee.org/groups/1450/index.html.

STIL Overview E-2

TetraMAX ATPG User Guide K-2015.06-SP4

IEEE Std. 1450.1 Design Extensions to STIL
TetraMAX ATPGmakes use of several IEEE Std. 1450.1 Design Extensions to support both
test program definition and internal tool behaviors. Many of the extensionswere developed in
support of TetraMAX ATPGusers and subsequently proposed to the 1450.1 working group.
While these extensions are used by TetraMAX ATPG, they are not generated or present when
stil99-compliant patterns are written, as described in the next section. The presence of 1450.1
extensions allows for amore flexible definition of STIL data. Without these constructs, STIL is
more restrictive in its application, requiring complete regeneration when certain expected
constructs aremodified, which in turn can lead to a usage environment that is less flexible and is
more likely to fail than an environment with the 1450.1 extensions present.
The documentation for these extensions is being developed by the IEEE working group and is
expected to go to ballot during 2002. After ballot, the document is available through the normal
IEEE channels. Until the ballot is complete, copiesmight be obtained by contacting the working
group. See this IEEE web site for information on this development
effort:http://grouper.ieee.org/groups/1450/dot1/index.html

TetraMAX ATPG and STIL
TetraMAX ATPGuses STIL in several different contexts. Design informationmay be provided to
TetraMAX ATPG through the STIL procedure file . TetraMAX ATPGsupports a subset of STIL
syntax for input to describe scan chains, clocks, constrained ports, and pattern/response data as
part of the STL procedure file definitions. Complete test setsmay be written out in STIL format.
Also, Tester RulesChecking is provided through STIL-formatted files.
In constructing a STL procedure file, you can define theminimum information needed by
TetraMAX ATPG. However, any STIL files written as TetraMAX output contain an expanded
form of theminimum information andmay also contain pattern/response data that the ATPG
process produces. TetraMAX ATPG reads and writes in STIL, so one time a STIL file is
generated for a design, TetraMAX ATPGcan read it again at a later time to recover the
clock/constraint/chain data, the pattern/response data, or both.
TetraMAX ATPGcan read some constructs that it does not generate. For example, an external
pattern source can be read into TetraMAX ATPG for fault simulation but it cannot be written out
with the same constructs aswere read in.
The generation of the 1450.1 extensions is controlled by the -stilor -stil99 option to the
write_patterns command.When the -stil99 option is used, then only standard IEEE-
1450 syntax is used without, of course, the benefit of the added functionality enabled by the
extensions. Full flexibility and robust STIL definitions are supported via the -stil option.

TetraMAX ATPG and STIL E-3

TetraMAX ATPG User Guide K-2015.06-SP4

STIL Conventions in TetraMAX
STIL supports a very flexible data representation. TetraMAX has defined conventions in the use
of STIL to represent data in a uniformmanner yet maintain this flexibility. These conventions are
discussed in the following sections:

l Use of STIL Procedures
l Context of Partial Signal Sets in Procedure Definitions
l Use of STIL SignalGroups
l WaveFormCharacter Interpretation

Use of STIL Procedures
When possible, TetraMAX generates calls to STIL procedures from the pattern body. STIL
procedures are used in general by TetraMAX because a STIL procedure is self-contained; that
is, the state of all signals used in a procedure is established andmaintained only during that
procedure execution. On return at the end of a procedure, the state of the signals is restored to
the values theymaintained before the call. This is in contrast to the STILmacro construct, where
the final state of these signalsmust be returned and applied in the patterns before continuing to
process STIL data.
By using STIL procedures, the sequence of pattern operations are insensitive to the procedure
operations. If macroswere used, the next set of pattern activity would be based on information
returned from the last macro operation. Also, the execution/behavior of a STILmacromight be
different depending on the value of the signals present at the start of themacro, whereas the
behavior of the procedure is always the same. The effort both to start a macro with the current
state at the call, and to return the right information to the calling context at the return of macro
adds significant processing overhead of STIL data whenmacros are present.
Also, procedure constructs are defined by the STIL standard to bemaintained through
processing. Macro constructs are defined by the STIL standard to be expanded or “flattened”
during processing, and are defined to not be present after processing.While specific processing
environmentsmight be able tomaintain macro constructs, in general (and to follow the STIL
specification) macroswould be processed-out or “in-lined” by tools reading STIL data, while
procedure constructs would remain in a processed stream.
Finally, because procedures are defined as standalone constructs, it is possible tomanipulate
the contents of a STIL procedure (within certain constraints such as not changing the
functionality of that procedure), to manipulate the procedure without cone timern of affecting the
rest of the pattern operation. While this can be done with somemacros aswell, becausemacro
behavior is not constrained to the execution of that macro, changes inside amacro can affect
data in the rest of the pattern set.

STIL Conventions in TetraMAX E-4

TetraMAX ATPG User Guide K-2015.06-SP4

Context of Partial Signal Sets in Procedure Definitions
Another consideration of TetraMAX’s application of procedures is its ability to define values for
only those signals used in the procedure.While the capture procedures reference all signals in
the design (generally through application of the _pi and _po groups), the load_unload
procedure can leverage a partial signal set context.
The load_unload procedure requires establishing values only on the signals necessary to
support the scan-shift operation on the design. In addition, TetraMAX supports the definition of a
load_unload procedure in the STL procedure file that references signals later in the
procedure (for example, during the shift block) that might not have been assigned a value by the
first Vector of the procedure. These capabilities allow maximum flexibility in interpreting the
load_unload operation during test generation.When STIL test patterns are generated by
TetraMAX, the load_unload procedure is “completed” to contain all signals used in the
procedure, in the first Vector (or Condition) of that procedure, to create a standards-compliant
definition. However, unspecified signals that do not affect the scan-shift operation will not be
present in this procedure.
The STIL standard defines that unused signals in a procedure are assigned DefaultState values
when the procedure is called. This is a valid state for these signals, because they cannot affect
the procedure operation. This is not a requirement of the standard, however (requirements
contain the word “shall”), and TetraMAX leverages the flexibility of an incomplete definition for
generating other test formats, in particular WGL.
TetraMAX uses the flexibility of deferred and unspecified signal assignment in procedure
definitions tomaintain the last assigned state on these signals for WGL generation. This option
of maintaining the last-assigned-state generates aWGL test program that minimizes transitions
on signals at test, particularly transitions that don’t affect the test behavior andmight have other
adverse effects.
In test contexts where STIL is being applied and procedure operations are being “expanded” or
“in-lined” in the final test program, it might be valuable to consider the “default” handling of
unused signals in the procedure to allow generation of a test that behaves similarly to the
TetraMAX-generatedWGL test.

Use of STIL SignalGroups
TetraMAXmakes use of STIL SignalGroups to simplify creation of STIL protocol information.
The STIL procedures file might be a complete set of information for certain sections of the final
STIL file, or it might be an incomplete file completed by TetraMAX when the final test file is
generated.
SignalGroups are used in this context to simplify referencing to sets of signals, without needing
to define these signal collections for a specific design, which simplifies STL procedure file
creation. In order to support this operation, however, TetraMAXmust assume certain naming
conventions. Also, the grouping conventions that TetraMAX supports relate directly to the
operations that are performed by ATPGoperations to generate test sequences.
By using STIL SignalGroups, the output pattern data generated by TetraMAX ismore compact
than the equivalent by-Signal constructs, and the output format ismore general. For example, it

STIL Conventions in TetraMAX E-5

TetraMAX ATPG User Guide K-2015.06-SP4

can be easier to modify a signal namewhen that name occurs only inside the SignalGroups,
than if that signal reference is used throughout the pattern data.
TetraMAX defines two primary groups, “_pi” and “_po”, which contain an overlapping set of
InOut (bidirectional) Signal references.While this can be confusing in some situations, by
maintaining these groups this way, the context of test generation as performed internally in
TetraMAX ismaintained in the output patterns. This supports direct correspondence of the test
set with the internal operations performed by TetraMAX, which in turn reduces confusion
between TetraMAX-based analysis of test behaviors and the actual information present in the
test. However, this information can only bemaintained completely through the use of P14501
extensions.
When only IEEE Std. 1450-1999 constructs are used, some loss of information can be expected
in STIL programs, causing test programs to be written in a way that is dependent on the
presence of constructs used. For example, bidirectional signal behavior, supported by complete
representation of both the input behavior and the output behavior in the _pi and _po groups,
respectively, allows for the potential modification of the capture procedureswithout changing the
pattern data, in the P14501 context. This opportunity ismuchmore limited under IEEE Std. 1450
constructs, as the pattern datamight be written dependent on the capture procedure constructs,
and the capture proceduresmight not be changed without changing the functionality of the
pattern.

WaveFormCharacter Interpretation
TetraMAX supports a fixed context for WaveFormCharacter (WFC) interpretation in STIL data.
A minimum set of requirements are validated against the waveforms associated with these
WFCs to avoid undue constraints and support test behaviors as necessary. See Table 1 for a
description of theWFC interpretations supported by TetraMAX.

WFC Interpretation

0 Drive-low during the waveform.

1 Drive-high during the waveform.

Z Drive-inactive (typically implemented on ATE as a driver-off
operation) during the waveform.

N Drive-unknown during the waveform. This waveform, if used
in the patterns, can be mapped to any of the drive operations
above without affecting the test.

Table 1 SupportedWaveFormCharacter Interpretations

STIL Conventions in TetraMAX E-6

TetraMAX ATPG User Guide K-2015.06-SP4

WFC Interpretation

P Drive an active pulse during the waveform. The pulse may be
either a high-going pulse or a low-going pulse as appropriate
for the type of clock. This waveform is supported only for
signals identified as clocks in the design. In path-delay
contexts, the timing of this pulse must match the second
pulse of the D waveform, if the D waveform is defined.

D Drive two pulses during the waveform. This definition is
supported only for path-delay MUX operation.

E Drive an active pulse during the waveform. This definition is
supported only for path-delay MUX operation, and the timing
of this pulse must match the timing of the first pulse of the D
waveform.

H Measure-high (STIL “CompareHigh”, or
“CompareHighWindow” followed by “CompareUnknown”)
during the waveform. In bidirectional contexts, this
waveform must also define a drive-inactive (STIL Z) state
before performing the measure.

L Measure-low (STIL “CompareLow”, or “CompareLowWindow”
followed by “CompareUnknown”) during the waveform. In
bidirectional contexts, this waveform must also define a
drive-inactive (STIL Z) state before performing the measure.

T Measure-inactive (STIL “CompareOff”, or
“CompareOffWindow” followed by “CompareUnknown”)
during the waveform. In bidirectional contexts, this
waveform must also define a drive-inactive (STIL Z) state
before performing the measure.

X This waveform is used by TetraMAX to indicate a no-measure
operation. From a STIL perspective, the contents of this
waveform may be empty; the absence of activity might imply
ATE operations to inhibit previous output measures. This
waveform assumes the previous drive state continues to be
asserted when used in bidirectional contexts; TetraMAX will
define a drive state before specifying an X that continues to
be applied here. Note this waveform should not contain a P
state to provide the drive state because the P state does not
maintain a drive-inactive value.

Table 1 SupportedWaveFormCharacter Interpretations (Continued)

STIL Conventions in TetraMAX E-7

TetraMAX ATPG User Guide K-2015.06-SP4

IEEE Std. 1450.1 Extensions Used in TetraMAX
The IEEE Std. 1450.1 extensions used by TetraMAX ATPGare identified and described in the
following sections:

l Vector DataMapping Using \m
l Vector DataMapping Using \j
l Signal Constraints Using Fixed and Equivalent
l ScanStructures Block

Vector Data Mapping Using \m
The vector datamapping function allows for a new waveform definition to be selected for a given
waveform character in a vector. This ismost useful in the case of parameter passing to amacro
or procedure; however, it can be used anywhere a waveform character string is formed.
In certain scan test styles (such as the LSI “LNI” protocol), it is necessary tomeasure the output
of the design under test’s (DUT) bidirectional signals in one cycle and then drive the same logical
values on the same bidirectional signals from the tester in the next cycle, while also turning the
internal bidirectional signal drivers off. A test pattern thus has the following format:

1. Load scan chains.
2. Force values on primary inputs (all clocks are off, bidirectional signals are driven by design

under test (DUT).
3. Measure primary outputs and bidirectional signals (all clocks are off).
4. Force values on primary inputs (values are the same as in cycle 2, except the internal bidi

drivers are turned off by asserting a special bidi_control input), force values on
bidirectional signals (same logical values asmeasured in previous cycle).

5. Pulse capture clock.
6. Unload scan chains.

Turning off the internal bidirectional drivers in cycle 4 avoids possible contentions that can result
in cycle 5 due to capturing new data into the state elements. The additional data to be applied on
bidirectional signals in cycle 4 is redundant (can be computed from the data of cycle 3.) This test
style needs to be supported without adding extra data to the STIL patterns and without changing
the waveformcharacters in the patterns. Also, ATPG rules checking can verify the correctness
of the patterns (for example, the internal bidirectional signals are turned off in cycle 4) before
actually generating test data.
Note that ATPG-generated patterns are typically guaranteed to be contention-free on all
bidirectional signals, both pre- and post-capture. Thus, the example protocol might not be
required to avoid bidi contentions. However, ATPG toolsmight support this protocol for
customers that have already designed their test flow with this protocol.
It is important that the bidi_control input turns off ALL internal bidi drivers in cycle 4 above.
Otherwise, a contention-free pattern could be transformed into a pattern with contentions by the

IEEE Std. 1450.1 Extensions Used in TetraMAX E-8

TetraMAX ATPG User Guide K-2015.06-SP4

very protocol that attempts to avoid bidi contentions! For example, consider the following
example, where BIDI1 and BIDI2 are bidirectional signals, and BIDI_CTRL is an input that,
when 0, turns off the internal driver of BIDI1, but not of BIDI2:
ATPG-generated contention-free pattern:

1. Load scan chains.
2. Force values on primary inputs and bidirectional signals (force BIDI_CTRL=1;

BIDI1 = Z; BIDI2 = Z;).
3. Measure primary outputs and bidirectional signals (measure BIDI1=L; BIDI2=H;).
4. Pulse capture clock (this has the effect of switching the internal drivers such as now both

the BIDI1 and BIDI2 internal drivers are driving 0. There is no contention, because the
tester continues to drive Z on both bidirectional signals, as in cycle 2.).

5. Unload scan chains.

The pattern above is changed, after it has been generated, to match the LNI protocol:

1. Load scan chains.
2. Force values on primary inputs and bidirectional signals (force BIDI_CTRL=1;

BIDI1 = Z; BIDI2 = Z;).
3. Measure primary outputs and bidirectional signals (measure BIDI1=L; BIDI2=H;).
4. Force values on primary inputs (force BIDI_CTRL=0; BIDI1=0; BIDI2=1;).
5. Pulse capture clock (this has the effect of switching the internal drivers such as now both

the BIDI1 and BIDI2 internal drivers are driving 0. This causes a contention on BIDI2:
its internal driver, not turned off, drives 0 while the tester drives 1, as in cycle 4).

6. Unload scan chains.

Syntax
Themapping operation is specified in either the Signals or the SignalGroups block as follows:
Signals {

sig_name < In | Out | InOut | Pseudo > {
(WFCMap (from_wfc)* -> to_wfc;)*

}
}
SignalGroups (domain_name) {

groupname = sigref_expr {
(WFCMap (from_wfc)* -> to_wfc;)*

}
}

WFCMap is an optional statement that, when used, indicates that any pattern data assigning
from_wfc to the signal or signalgroup, should be interpreted as having been assigned from
to_wfc instead.
To use themapping of a signal or signalgroup, a new flag is added to the cyclized pattern data:
\m Indicates that the definedmapping should be used.
If the vector mapping \m is used, but noWFCMap has been defined for the waveformcharacter
to bemapped, the samewaveformcharacter is used unchanged.

IEEE Std. 1450.1 Extensions Used in TetraMAX E-9

TetraMAX ATPG User Guide K-2015.06-SP4

Example
In the following example, the vectors are labeled to correspond to the LNI-protocol cycles above.
Cycle 3 uses the arguments passed in for _io first (HL), then cycle 4 uses them again, this time
mapped to (10), which remain in effect for cycle 5 aswell.
Signals {
 a In; ck In; bidi_enable In; b Out; q1 InOut; q2 InOut;
}
Procedures procdomain {

"capture_sysclk" {
 W specWFT; // where all waveformchars are defined
 “cycle 2": V { a=#; ck=0; bidi_enable=1; b=X; _io=ZZ ; }
 "cycle 3": V { b=#; _io=%%; }
 "cycle 4": V { bidi_enable=0; b=X; _io=\m ##; }
 "cycle 5": V { ck=P; }

}
}
Pattern "__pattern__" {

W specWFT;
"cycle 1": Call "load_unload" { ... }
Call "capture_sysclk" { a=0; b=H; _io=HL; }
"cycle 6": Call "load_unload" { ... }

}

Vector Data Mapping Using \j
The “join” function allows you to havemultiple waveform characters against the same signal in
one vector. This enables structuring of STIL pattern output using procedures.

Syntax
Refer to “Vector DataMapping Using \m” for the syntax definition of theWFCMap statement.

General Example
The following is an example usage of the join function.
Signals {
 b InOut { WFCMap 0x -> k; }
}
Pattern p {
 V { b = 0; b = x; }
}

Table 2 shows examples of “two data” conditions on an InOut.

Force Measure

0, 1, Z, N X

Table 2 “TwoData” Conditions

IEEE Std. 1450.1 Extensions Used in TetraMAX E-10

TetraMAX ATPG User Guide K-2015.06-SP4

Force Measure

Z L, H, T

0 L

1 H

0 H

1 H, T

Table 2 “TwoData” Conditions
(Continued)

The rules for handlingmultiple definitions of a signal are
l The normal behavior of aWFC-assignment to a signal is to replace the last-assignedWFC
value.

l This behavior might beOVERRIDDEN on a per-vector bases, through the use of a “join”
escape sequence. The “join” allows bothWFCs to be evaluated, using theWFCMap, to
resolve or specify a single newWFC that is the required effect of these twoWFCs.

For instance, take the case where two SignalGroups have a common element in them (signal
'b'):

_pi = '...+b';
_po = '...+b';

A proceduremight “join” these two groups in a vector:
proc { cs { V { _pi=#; _po= \j #; }}}

Signal 'b' needs to be resolved based on the combinations ofWFCs that might be seen by these
two groups. It might have aWFCMap declaration like
 WFCMap 0x -> 0;
 WFCMap 1x -> 1;
 ... etc. ...

Thismechanism provides for the explicit resolution of “joined” data without creating new
combinations of waveforms on-the-fly.
“Joining” requires theWFCMap to define twoWFCs to equate to a single new resolvedWFC.
TheWFCMap never requiresmore than twoWFCs as Figure 1 presents:

IEEE Std. 1450.1 Extensions Used in TetraMAX E-11

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 1 WFC Example

Usage Example
Consider a design with one input, one output and two bidirectional signals. STIL would declare
them like this:
 Signals { i:In; o:Out; b1:InOut; b2:InOut; }

STIL also defines signal groups:
 Signalgroups {
 "_pi" = 'i + b1 + b2';
 "_po" = 'o + b1 + b2';
 }

STIL patterns are written out using capture procedures. Unlike a “flat” vector-only STIL output,
using capture procedures hasmany advantages:

l Pattern cyclization is encapsulated in the capture procedures; timing in the Timing block
and data in the Pattern block. This allows easy understanding andmaintenance of the
three separately.

l Rules checking (DRC) is done only on the small Procedures block, independent of the
huge Pattern block.

l Patterns are CTL (P1500) ready: only the procedures need to bemodified, not the
Patterns.

Capture procedures are defined like this:
 Procedures {

"capture" {
 V { "_pi"=### ; "_po"=###; }

}
 }

All of the previous examples are fully STIL 1450-1999 compliant.
Now let's consider a STIL pattern that includes the following:
 force_all_pis { i=0; b1=Z; b2=1; }
 measure_all_pos (o=H; b1=H; b2=X; }

The STIL output would translate the previous example into the following:
 Call capture { "_pi"=0Z1; "_po"=HHX; }

IEEE Std. 1450.1 Extensions Used in TetraMAX E-12

TetraMAX ATPG User Guide K-2015.06-SP4

Because of how STIL is interpreted by the consumer of the patterns, the actual arguments are
substituted for the formal arguments # in the body of the procedure, and the signalgroups _pi
and _po are expanded to their signals, resulting in:
 V { i=0; b1=Z; b2=1; o=H; b1=H; b2=X; }

However, STIL also specifies that if multiple waveform characters are assigned to the same
signal in a given vector, all but the last one are ignored. Thus, the previous example vector is
equivalent to:
 V { i=0; o=H; b1=H; b2=X; }

Now, how should the bidirectional assignments be interpreted? The first one, b1=H, means
“measure High on b1”. This is consistent with the intention of the ATPGpattern, although it
leaves the ambiguity of also implying that the tester driver should be tri-stated (b1 driven to Z) to
take ameasure. The STIL consumer application is supposed to take this into account.
The second bidirectional, b2=X, means “measure X (nomeasure) on b2”. Unfortunately, the
drive part (b2 driven to 1) is lost. This is a real problem.
The 1450.1 solution is very simple and general: Provide amapping to explicitly explain what to
do with two waveform character assignment. Thus, the 1450.1 procedure would be written as:
 Procedures {

"capture" {
 V { "_pi"= \j ### ; "_po"= \j ###; }

}
 }

Notice the addition of the “join” modifier \j. The \j refers to theWFCMapmapping table that would
be defined as:

Signalgroups {
 "_pi" = 'i + b1 + b2';
 "_po" = 'o + b1 + b2' {
WFCMap 0X -> 0; WFCMap 1X -> 1; WFCMap ZX -> Z; WFCMap NX -> N;
 }

}

This provides an unambiguous interpretation of the previous example:
 V { i=0; b1=Z; b2=1; o=H; b1=H; b2=X; }

to the required:
 force_all_pis { i=0; b1=Z; b2=1; }
 measure_all_pos (o=H; b1=H; b2=X; }

Signal Constraints Using Fixed and Equivalent
Structured test patterns often have signals constrained to have a certain value or waveform
during a pattern sequence. Thismight be required, for example, for ATPGscan rules checking
(such as a test mode signal always active) or for differential scan or clock inputs. The Fixed STIL
construct defines signals that must have a constant waveform character and the Equivalent
construct defines signals that are linked to other signals. These constructs help reduce pattern
volume, because the value of a constraint signal does not need to be specified explicitly in the
pattern data. Also, ATPG rules checking requires signal constraint information as input.

IEEE Std. 1450.1 Extensions Used in TetraMAX E-13

TetraMAX ATPG User Guide K-2015.06-SP4

ScanStructures Block
Simulation of scan patterns outside the test-pattern generator is often performed to verify timing,
design functionality, or the library used to generate the patterns. The speed of the simulator is
limited by simulating the load/unload (Shift) operation of scan chains. Optimal simulation
performance is achieved with no shifts, bypassing scan chain logic and asserting/verifying the
scan data directly on the scan cells.
The ScanStructures block is extended to include additional information required for efficient
simulation of scan patterns, that is, eliminating the need to simulate load/unload (shift) cycles.
Additional constructs are defined on the ScanCell statement inside the ScanChain block. In
addition, the capability is added to the ScanStructures block to support referencing previous
ScanChain definitions from other ScanStructure blocks.

Elements of STIL Not Used by TetraMAX
The following sections list the STIL output and input constructs that are not used in this version of
TetraMAX ATPG.:

l TetraMAX STIL Output
l TetraMAX STIL Input

Note that this list is provided to you as a guide for tools that are designed to read the STIL output
file generated from TetraMAX ATPG.
The only elements of 1450.1 used by TetraMAX ATPGare identified previously in 1450.1
ExtensionsUsed in TetraMAX; all other elements of 1450.1 are not used by TetraMAX ATPG.
This information is provided specifically from the context of TetraMAX ATPGas a standalone
tool. TetraMAX ATPG-generated STIL output is applied in several contexts and tool flows, for
example as part of the CoreTest environment (CoreTest is in development). These contexts will
use additional STIL constructs and behaviors not used by TetraMAX ATPGalone.

TetraMAX STIL Output
Here is a list of output constructs that TetraMAX ATPGdoes not currently support. To
understandmore about these constructs, refer to the numbered paragraph in IEEE Std. 1450-
1999 as indicated in the list.
Note:

The TetraMAX ATPG internal pattern source will not write or produce STIL with the
constructs described in this section. Future versionsmight make use of these
constructs as necessary.

11. UserKeywords

Elements of STIL Not Used by TetraMAX E-14

TetraMAX ATPG User Guide K-2015.06-SP4

TetraMAX ATPGdoes not generate anyUserKeywords. All keywords used are those
defined in the standard.

12. UserFunctions
TetraMAX ATPGdoes not generate anyUserFunctions. All timing expressions use
expressions that are defined in the standard.

17. PatternBurst > SignalGroups, MacroDefs, Procedures, ScanStructures (named domains)
TetraMAX ATPGdoes not generate any references to named domains fromwithin a
PatternBurst. All references are to the globally defined blocks only. Other contexts of STIL
generationmay provide named domain blocks.

17. PatternBurst > Start, Stop
TetraMAX ATPGdoes not generate any start/stop information within a PatternBurst. All
patterns are expected to execute from the beginning to the end of the pattern.

17. PatternBurst > PatList > pat_name {...} (optional statements per pattern)
TetraMAX ATPGdoes not generate any pattern names in a PatList that contain block
information. The default generation of STIL data will rely on definitions in a global
SignalGroups, MacroDefs, Procedures, and ScanStructure blocks only. Named block
reference statementsmay be specified from other STIL contexts

18. Timing > WaveformTable > Inherit...
TetraMAX ATPGdoes not use the Inherit statement withinWaveformTables. All
waveform tables are completely self-contained.

18. Timing > WaveformTable > SubWaveforms
TetraMAX ATPGdoes not use the SubWaveform blockwithin the Timing definition. All
waveforms are composed of single drive and compare events.

18. Timing > WaveformTable > event_label
TetraMAX ATPGdoes not generate any event labels. All timing information is composed
of timing values that are relative to the beginning of the period.

18. Timing -> WaveformTable > [event_num]
TetraMAX ATPGdoes not usemultiple events in a waveform. All data from a pattern is
made up of single waveform character references.

18. Timing -> WaveformTable > @ label references in timing expressions
TetraMAX ATPGdoes not generate any relative timing. All timing values are specified as
absolute times from the start of the period.

18.2Waveform event definitions > expect events
TetraMAX ATPGdoes not generate any expect events. Only drive and compare events
are used.

19. Spec, Selector
TetraMAX ATPGdoes not generate either Spec or Selector blocks. All timing values are
specified as absolute numbers.

21.1 Cyclized data > \d
TetraMAX ATPGdoes not generate data using the decimal notation, which is selected by
use of the \d escape sequence.

Elements of STIL Not Used by TetraMAX E-15

TetraMAX ATPG User Guide K-2015.06-SP4

21.2Multiple-bit cyclized data
TetraMAX ATPGdoes not generate anymultiple bit vector information. All vectors contain
only one wfc per signal.

21.3 Non-cyclized data
TetraMAX ATPGdoes not generate any non-cyclized data. All vectors aremade up of
WFC data that refers to cyclized waveform data in a Timing block.

22.6 Loop statement
TetraMAX ATPGsupport of Loop operations is very restrictive to certain contexts.
Generally, all pattern vectors are executed in a straight-line sequence.

22.7MatchLoop statement
TetraMAX ATPGdoes not generate anyMatchLoop conditions. All patterns vectors are
executed in a straight-line sequence.

22.8 Goto statement
TetraMAX ATPGdoes not generate anyGoto statements. All patterns vectors are
executed in a straight-line sequence.

22.9 Breakpoint
TetraMAX ATPGdoes not generate any Breakpoint statements. It is assumed that all
vectors will fit into available ATE memory.

22.11 Stop
TetraMAX ATPGdoes not generate any Stop statements within a pattern. All patterns are
expected to execute from the beginning through to the last vector.

23.1 Pattern > TimeUnit
TetraMAX ATPGdoes not generate the TimeUnit statement. This statement is only used
with uncyclized data, which is not generated by TetraMAX ATPG.

TetraMAX STIL Input
Here is a list of constructs that TetraMAX ATPGcan read, but ignores. These will not be written
out. To understandmore about these constructs, refer to the numbered paragraph in IEEE Std.
1450-1999 as indicated in the list.

10. Include Statement
Supported (by the reader, not produced by the writer).

11. UserKeywords Statement
Ignored (by the reader, not produced by the writer).

12. UserFunctions Statement
Ignored (by the reader, not produced by the writer).

17. PatternBurst block syntax
References to named SignalGroups, MacroDefs, Procedures, and ScanStructures
statements are supported (by the reader, not produced by the writer). Start, Stop and
Termination statements are not supported by the reader.

Elements of STIL Not Used by TetraMAX E-16

F
STIL99 Versus STIL
This appendix provides an overview of the differences between the STIL99 and STIL pattern
formats.

STIL 99 STIL

statement

STIL 1.0;

STIL 1.0 { TRC 2006; } (only if
<<>>resource_tags present)

statement

STIL 1.0 { Design 2005; }

STIL 1.0 { TRC 2006; } (only if
<<>>resource_tags present)

Header {

Title " TetraMAX …";

Date "Tue Feb …";

Source "comment";

History {

Ann {* …previous Annotations
in the History section *}

Ann {* ...fault, pattern, drc
reports, clocks and constrained
pins *}

}
}

Header {

Title " TetraMAX …";

Date "Tue Feb …";

Source "comment";
History { Ann {* …previous
Annotations in the History
section *}

Ann {* ...fault, pattern, drc
reports, clocks and constrained
pins *}

}

}

Table 1 STIL 99 Versus STIL

F-1

TetraMAX ATPG User Guide K-2015.06-SP4

STIL 99 STIL

UserKeywords

ScanChainGroups
(conditionally)

ActiveScanChains
(conditionally) ;

Conditionallymeanswith respect to the type
of the design being parsed through
TetraMAX ATPG.
ObserveValue (seq-comp only)

ScanChainPartition (seq-comp
only)

SeqCompressorStructures (seq-
comp only)

SerializerStructures (dftmax
with serializer only)

UserKeywords BistStructures
(conditionally)
ClockStructures (conditionally)
FreeRunning (conditionally)
DontSimulate

ScanChainGroups and
ActiveScanChains are keywords in
1450.1. They are used asUserKeywords
only in -stil99 format. Conditionallymeans
with respect to the type of the design being
parsed through TetraMAX ATPG.
ObserveValue (seq-comp only)

ScanChainPartition (seq-comp
only)

SeqCompressorStructures (seq-
comp only)

SerializerStructures (dftmax
with serializer only)

Ann {* ANNOTATION *}

Used only in the Header History
section

STL procedure file flow has options to
preserve Ann in output STIL for top-section
of the STIL data (not patterns).
Special blocks for Ann {* load_unload
<var> <cnt> *}

and Ann{* end load_unload *},
reseed_partial_overlapfound in
stil99 patterns for sequential compressor.

Ann {* ANNOTATION *}

Used only in the Header History
section

STL procedure file flow has options to
preserve Ann in output STIL for top-section
of the STIL data (not patterns).

Table 1 STIL 99 Versus STIL (Continued)

F-2

TetraMAX ATPG User Guide K-2015.06-SP4

STIL 99 STIL

Variables { (seq-comp only, -
stil only)

Integer "var_name"; (seq-comp
only)

}

(seq-compr only)

Signals {

"sig":

1. Always quoted
2. Does not use [] array notation; used for
Pseudo only in seq-comp
In

Out

InOut

Pseudo

(Used for internal chain scan references on
some BIST environments)

Signals {

"sig":

1. Always quoted
2. Does not use [] array notation; used for
Pseudo only in seq-comp
In

Out

InOut

Pseudo

(Used for internal chain scan references on
some BIST environments)

;

Instead of using semicolon, { } bracket format
used if the following attributes are present:
ScanIn; (no integer number)
ScanOut; (no integer number)

;

Instead of using semicolon, { } bracket format
used if the following attributes are present:
ScanIn; (no integer number)
ScanOut; (no integer number)

WFCMap {

0X->0; 1X->1; ZX->Z; NX->N;PX-
>P; P[0|1]->P;})* // end
WFCMap

]

}

See Appendix E for more details on
WFCMap. Themapping operation is
specified in either the Signals or the
SignalGroups.

Table 1 STIL 99 Versus STIL (Continued)

F-3

TetraMAX ATPG User Guide K-2015.06-SP4

STIL 99 STIL

SignalGroups {

(No signalgroups domain name)

Supports user names and generates specific
groups:
_pi lists all inputs+bidirections, _po lists all
outputs+bidirectionals.

{ } format used if the following attributes are
present:

ScanIn; (no integer number)
ScanOut; (no integer number)

SignalGroups “user_name" {

(No signalgroups domain name)

Supports user names and generates specific
groups:
_pi lists all inputs+bidirections, _po lists all
outputs+bidirectionals.

{ } format used if the following attributes are
present:

ScanIn; (no integer number)
ScanOut; (no integer number)

WFCMap {

0X->0; 1X->1; ZX->Z; NX->N; (_
pi _po, -stil only)PX->P;

}

FreeRunning{

Period time;

LeadingEdge time;

TrailingEdge time;

OffState <D|U>;

}

TetraMAX ATPGwill accept the
followingPredefined SignalGroups:

l _in = input pins
l _out = output pins
l _io = bidirectional pins
l _pi = inputs + bidirectional pins
l _po = outputs + bidirectional pins
l _si = scan chain inputs
l _so = scan chain output

Table 1 STIL 99 Versus STIL (Continued)

F-4

TetraMAX ATPG User Guide K-2015.06-SP4

STIL 99 STIL

PatternExec { (optionally named)

Patternburst "_burst_"; (Fixed
burst name)

}

PatternExec “user_name {
(optionally named)

Patternburst "_burst_"; (Fixed
burst name)

}

Default generation if no input patternexecs is
a single unnamed patternexec. If named
patternexecs are input, youmust identify one
patternexec to be used by TetraMAX ATPG,
and only this patternexec is written out.

Patternburst "_burst_" {

(SignalGroups "user_name" ;)*
(user spec'ed)

(MacroDefs "user_name" ;)*
(user spec'ed)

(Procedures "user_name" ;)*
(user spec'ed)

(ScanStructures "user_name" ;
)* (user spec'ed)

PatList {

user_specified_pattern_name -or-
"_pattern_"; (Fixed pattern
name)

(ParallelPatList (SyncStart |

Independent | LockStep) {

(PAT_NAME_OR_BURST_NAME {

(Extend;)

})* // end ParallelPatList}

// end of PatternBurst

Patternburst "_burst_" {

(SignalGroups "user_name" ;)*
(user spec'ed)

(MacroDefs "user_name" ;)*
(user spec'ed)

(Procedures "user_name" ;)*
(user spec'ed)

(ScanStructures "user_name" ;
)* (user spec'ed)

PatList {

"_pattern_"; (Fixed pattern
name)

user_specified_pattern_name -or-
"_pattern_"; (fixed pattern
name), *and*independent async.
freerunning clock bursts

Extend; (conditionally; async. freerunning
clocks)

}

Table 1 STIL 99 Versus STIL (Continued)

F-5

TetraMAX ATPG User Guide K-2015.06-SP4

STIL 99 STIL

Default generation if no patternbursts are
specified on input will use the name "_burst_
".

Timing { (No name generated)

WaveformTable user_name {

(Default name: _default_WFT_")
fixed names for features: "_launch_WFT_",
etc.
<< resource_tag >> preserved and
passed through. No generation. Supported
in 2008.09-sp2.

Period integer_time_units;

Timing { (No name generated)

WaveformTable user_name {

(Default name: _default_WFT_")
fixed names for features: "_launch_WFT_",
etc.
<< resource_tag >> preserved and
passed through. No generation. Supported
in 2008.09-sp2.

Period integer_time_units;

Note current environment supports integer
units of time only.

Waveforms {

groups_or_signal_names {

<< resource_tag >> preserved and
passed through. No generation. Supported
in 2008.09-sp2.

WFC usage in tmax is fixed to the following:
inputs: 01 Z N

outputs: H L T X

clocks:PD E

(Always single-WFC references, separated)

Waveforms {

groups_or_signal_names {

<< resource_tag >> preserved and
passed through. No generation. Supported
in 2008.09-sp2.

WFC usage in tmax is fixed to the following:
inputs: 01 Z N

outputs: H L T X

clocks: PD E

(Always single-WFC references, separated)

Table 1 STIL 99 Versus STIL (Continued)

F-6

TetraMAX ATPG User Guide K-2015.06-SP4

STIL 99 STIL

ScanStructures { (Unnamed)

ScanChain name {

ScanLength integer ;

ScanCells name_list ;

ScanIn signal_name ;

ScanOut signal_name ;
ScanMasterClock signals ;

ScanSlaveClock signals ;

ScanInversion 0,1 ;

}

ObserveValue {

vectored_pseudo_sig_assignment
}

(userkeyword statement, seq-comp only)

ScanStructures "user_name" {
(user spec'ed) -or-

ScanStructures { (Unnamed)

ScanChain name {

ScanLength integer ;

ScanCells name_list ;

ScanIn signal_name ;

ScanOut signal_name ;
ScanMasterClock signals ;

ScanSlaveClock signals ;

ScanInversion 0,1 ;

}

ObserveValue {

vectored_pseudo_sig_assignment
}

(userkeyword statement, seq-comp only)

ScanChainGroups {

(Used for some BIST designs)

Generates groups of chains AND groups of
groups.

Groups are used in UserKeyword blocks and
ActiveScanChains statements.

}

ScanChainPartition "name" { … }

(userkeyword statement, seq-comp only)
}

ScanChainGroups {

(Used for some BIST designs)

Generates groups of chains AND groups of
groups.

Groups are used in UserKeyword blocks and
ActiveScanChains statements.

}

ScanChainPartition "name" { … }

(userkeyword statement, seq-comp only)
}

Table 1 STIL 99 Versus STIL (Continued)

F-7

TetraMAX ATPG User Guide K-2015.06-SP4

STIL 99 STIL

sigref_expr = vec_data;

//STIL Cyclized Pattern data LIST OFWFCs
— for example "_po" = HHHL

In STIL, only assignment of WFC characters
is allowed, except \r to repeat oneWFC
character. No \h for hex or other options
used in the data.

No Base statement in declarations; all
assignments are byWFC.

\r(integer) WFC—only one from the
list of choices…

sigref_expr = vec_data;

//STIL Cyclized Pattern data LIST OFWFCs
— for example "_po" = HHHL

In STIL, only assignment of WFC characters
is allowed, except \r to repeat oneWFC
character. No \h for hex or other options
used in the data.

No Base statement in declarations; all
assignments are byWFC.

\r(integer) WFC—only one from the
list of choices…

TetraMAX ATPG supports a fixed
context for WaveFormCharacter
(WFC) interpretation in STIL data. A
minimum set of requirements are
validated against the waveforms
associated with these WFCs to avoid
undue constraints and support test
behaviors as necessary. For a listing
of WFC Support, see Table 1 in
Appendix E, "STIL Language Support."

\m

\j Usage change for dot-1 compliance
See Appendix E for details on:
Vector DataMapping Using \m
Vector DataMapping Using \j

sigref_expr = serial_data; sigref_expr = serial_data;

variable_expr := variable_data;
(-stil only, seq-comp only)

Table 1 STIL 99 Versus STIL (Continued)

F-8

TetraMAX ATPG User Guide K-2015.06-SP4

STIL 99 STIL

(LABEL :)

"precondition all signals": on initial C in
Pattern"pattern N": used in patterns.

User labels allowed in procedures and
macros

(LABEL :)

"precondition all signals": on initial C in
Pattern"pattern N": used in patterns.

User labels allowed in procedures and
macros

V(ector) { (cyclized data)

V { cyclized_data_assignments_
only }

V(ector) { (cyclized data)

V { cyclized_data_assignments_
only }

}W(aveformTable) NAME ;

W name ;

}W(aveformTable) NAME ;

W name ;

C { cyclized_data_assignments_
only }

C { cyclized_data_assignments_
only }

Call name ;

Call name {

scan_and_cyclized_arguments }

Call name ;

Call name {

scan_and_cyclized_arguments }

Macro name ;

Macro name { scan_and_cyclized_
arguments }

Macro name ;

Macro name { scan_and_cyclized_
arguments }

Loop integer { … }

Allowed in setup procedures & some BIST
procs; also used in seq-comp -stil99 Pattern
blocks

Loop integer { … }

Allowed in setup procedures & some BIST
procs; also used in seq-comp -stil99 Pattern
blocks

LoopData { … } (-stil only,
seq-comp only)

Loop "var_name" { … } (-stil
only, seq-comp only)

Table 1 STIL 99 Versus STIL (Continued)

F-9

TetraMAX ATPG User Guide K-2015.06-SP4

STIL 99 STIL

Vector statements only with constantWFC
assignments

}

Vector statements only with constantWFC
assignments

}

IDDQ TestPoint; IDDQ TestPoint;

ScanChain CHAINNAME ;

ActiveScanChains group_or_
chain_names ;

Used around Shift blocks; also in seq-comp
load_unload procedures (without Shift)

ScanChain CHAINNAME ;

ActiveScanChains group_or_
chain_names ;

Used around Shift blocks; also in seq-comp
load_unload procedures (without Shift)

F(ixed) { (cyclized-data)*
(non-cyclized-data)* }

F { cyclized_data_assignments }

Used in procedures

E(quivalent) ((\m) sigref_expr
)* ;

E sig \m sig ;

Used in procedures
See Appendix E under "Signal Constraints
Using Fixed and Equivalent"

Table 1 STIL 99 Versus STIL (Continued)

F-10

TetraMAX ATPG User Guide K-2015.06-SP4

STIL 99 STIL

Pattern "_pattern_" {

Standard pattern structure:

"precondition all signals": C {
_po = … _pi = … }

Structure change to this for proper bidi
representation:

W default_WaveformTable_name ;

Macro "test_setup";

"pattern 0": … pattern
sequences follow

}

Pattern user_specified_pattern_name
{ -or-

Pattern "_pattern_" {

(fixed name by default)

Standard pattern structure:

"precondition all signals": C {
_po = … _pi = … }

Assignment change to this for proper bidi
representation:

W default_WaveformTable_name ;

Macro "test_setup";

"pattern 0": … pattern
sequences follow

}

Procedures { (Unnamed Procedures
block)
Procedures "diagnosis" { (In some
BIST contexts)

(PROCEDURE_NAME {

TetraMAX ATPG flow uses fixed name to
identify application.

(pattern-statements)*

support # and% assignment to specific types
of groups: _po, _pi, and in some
circumstances groups of bidi-only and clock-
only signals.

}

}

Procedures "user_name" ; (user
spec'ed) -or-

Procedures { (Unnamed Procedures
block)
Procedures "diagnosis" { (In some
BIST contexts)

(PROCEDURE_NAME {

TetraMAX ATPG flow uses fixed name to
identify application.

(pattern-statements)*

support # and% assignment to specific types
of groups: _po, _pi, and in some
circumstances groups of bidi-only and clock-
only signals.

}

}

Table 1 STIL 99 Versus STIL (Continued)

F-11

TetraMAX ATPG User Guide K-2015.06-SP4

STIL 99 STIL

MacroDefs { (UnnamedMacroDefs
block)

(MACRO_NAME {

TetraMAX ATPG flow uses fixed name to
identify application test_setup, bist_setup
macros do not use parameters

W { }, C { }, V { } statements
}

}

MacroDefs "user_name" ; (user
spec'ed) -or

MacroDefs { (UnnamedMacroDefs
block)

(MACRO_NAME {

TetraMAX ATPG flow uses fixed name to
identify application test_setup, bist_setup
macros do not use parameters

W { }, C { }, V { } statements
}

}

PROCEDURE_OR_MACRO_NAME {

"load_unload" {

(Scan procedure has fixed name)

W { }, C { }, V { } statements

Scan parametersmay be specified before
the Shift.

Shift {

W { }, C { }, V { } statements
Scan parameters applied.
}

W { }, C { }, V { } statements
Scan parametersmay be specified after the
Shift.
}

PROCEDURE_OR_MACRO_NAME {

"load_unload" {

(Scan procedure has fixed name)

W { }, C { }, V { } statements

Scan parametersmay be specified before
the Shift.

Shift {

W { }, C { }, V { } statements
Scan parameters applied.
}

W { }, C { }, V { } statements
Scan parametersmay be specified after the
Shift.
}

Table 1 STIL 99 Versus STIL (Continued)

Parameters Supported in Specific Contexts Only
In TetraMAX ATPG the # sign is primarily used— not the % sign. You should only use the # sign
in very specific situationswithin certain procedure types.With a fixed name, like load_unload,
the # sign is associated with groups associated as scanin and scanoutputs. The # references the
scanins and scanouts. You can paramenterized the _pi group on last_shift_launch. The
parameters are constrained to _so _si _po _pi.
Predefined Signal Groups in STIL

F-12

TetraMAX ATPG User Guide K-2015.06-SP4

Tominimize typing that you can have to perform to define a DRC file by hand,TetraMAX ATPG
has a number of predefined signal groups it recognizes. A SignalGroup is amethod in STIL for
describing a list of pins using a symbolic label. Symbolic labels allow a large number of pins to be
referenced without a large amount of typing.
TetraMAX ATPGwill accept the following predefined SignalGroups that:

l _in = input pins
l _out = output pins
l _io = bidirectional pins
l _pi = inputs + bidirectional pins
l _po = outputs + bidirectional pins
l _si = scan chain inputs
l _so = scan chain outputs

If your STIL DRC description defines a symbolic group with the same name as the predefined
TetraMAX groups, then your definition supersedes the predefined definition.
Note: There is not a predefined signal group called _clks. TetraMAX ATPGdoes not create
an _clks group the user needs to define the signals theywant to be clocks in the flow, and put
those signals into the _clks group. If the user is using the extended capture procedureswith
multiple cycles, then the user needs to create and define this group and reference that signal
group in these procedures.

F-13

G
Defective Chain Masking for DFTMAX
The following sections of this appendix describe the flow for masking defective scan chains in
DFTMAX compression:

l Introduction
l Running the Flow
l Examples
l Limitation

G-1

TetraMAX ATPG User Guide K-2015.06-SP4

Introduction
Prior to the introduction of this feature, the flow for masking defective scan chains in DFTMAX
compression was extremely inefficient. For example, if you found a scan hold violation on a chain
from a chip returned from fabrication, you would want to generate patterns as if the entire
compression chain wasmasked. The old flow for masking the defective chain used the add_
cell_constraints command to place a constraint of “XX” on all the cells in the chain.
However, this flow was problematic when the chain contained padding bits (the additional shift
cycles required for every pattern; this situation occurs when the chain is either shorter than the
longest compressionmode chain or if the chain contains pipeline stages). The existing cells of
the chain can be easilymasked using the add_cell_constraints command. However,
there’s no simple way tomask the padding bits. These additional bits, which also require
masking, had to bemanually identified. In order to resolve the patterns, the constraints were
externally read in via a separate file.
In the solution described in this appendix, the external file is not required. Instead, TetraMAX
ATPG identifies defective scan chains based on cell constraints during DRC. If every scan cell of
a particular scan chain has a cell constraint of X or XX or OX, then the scan chain is treated as a
defective scan chain when you specify both the run_simulation and run_atpg
commands. As a result, paddingmeasures originating from the defective chain ismasked.

Running the Flow
The following sections describe the various processes for masking defective scan chains in
DFTMAX compression:

l Placing Constraints on the Defective Chain
l Generating Patterns
l Regenerating Patterns

Note: Both the run_simulation and run_atpg commands support this flow.

Placing Constraints on the Defective Chain
Before running DRC, you will need to use the add_cell_constraints command to place
the constraints on the defective chain. This solution uses amore relaxed condition for identifying
defective chains during DRC. Before, every cell of the chain had to have cell constraint “XX” in
order for it to completelymask it out. Now, to identify a chain as defective, every cell in a chain
needs to have a cell constraint of “X,” “OX,” or “XX.”
Some examples, in increasing complexity, are as follows.
Example 1:
add_cell_constraints XX c2 –all

Introduction G-2

TetraMAX ATPG User Guide K-2015.06-SP4

Example 2:
add_cell_constraints X c2 0 3
add_cell_constraints OX c2 3 5

Note that in Example 2, there are overlapping constraints in one cell: cell “3.”
Example 3:
add_cell_constraints X c2 0 3
add_cell_constraints OX c2 1 5

Note in Example 3, that there are overlapping constraints in more than one cell: cells “1,” “2,”
and “3.”
During the next step, DRC, TetraMAX ATPGwill identify one or more defective scan chains,
and the followingmessage will appear:
Scan chain c2 has been identified as a defective chain

There are several different flow options available for generating or regenerating patterns. These
flows are described in the following sections.

Generating Patterns
For generating patterns, you can use any of the following four flows:

l

Option 1:
set_patterns external <pat_file>
run_simulation -store
write_patterns <new_pat_file>

l

Option 2 (Note that the simulationmodel needs to be complete):
set_patterns external <pat_file>
run_simulation –resolve | -override
write_patterns <new_pat_file> -external

l

Option 3:
set_patterns external <pat_file>
run_simulation –failure_file <fail_file>
set_patterns external <pat_file> -resolve <fail_file>
write_patterns <new_pat_file> -external

l

Option 4:
set_patterns external <pat_file>
run_atpg –resolve
write_patterns <new_pat_file> -external

Regenerating Patterns
For regenerating patterns, use the following set of commands:
set_patterns –external <old_patterns>
add_faults –all
run_atpg –auto
write_patterns <new_pat_file> -internal

After generating or regenerating the patterns, the following report message will appear:
<number> scan chains have been completely masked.

Running the Flow G-3

TetraMAX ATPG User Guide K-2015.06-SP4

Examples
This section shows several flow examples.

Figure 1 Generating Patterns

Figure 2 Regenerating Patterns

Examples G-4

TetraMAX ATPG User Guide K-2015.06-SP4

Figure 3 Re-Simulation and Updating Pattern Values

Examples G-5

TetraMAX ATPG User Guide K-2015.06-SP4

Limitation
This flow does not include support for Full-Sequential patterns.

Limitation G-6

	About This User Guide
	Audience
	Related Publications
	Release Notes
	Conventions

	Customer Support
	Accessing SolvNet
	Contacting the Synopsys Technical Support Center

	1				TetraMAX Overview
	Key TetraMAX Features
	Benefits and Features: An Overview
	See Also

	ATPG Capabilities
	See Also

	ATPG Modes
	See Also

	Command Modes
	See Also

	Supported Fault Models
	See Also

	Design Flow Using DFT Compiler and TetraMAX
	See Also

	2				Running TetraMAX
	Installation
	Specifying the Location for TetraMAX Installation

	Invoking TetraMAX
	Command-Line Syntax
	Methods for Invoking TetraMAX
	Specifying Environment Variables
	Specifying a Command File

	Running Background Jobs
	Predefined Aliases
	Debugging Dual Process Issues
	See Also

	Command Files
	Batch Files

	Setup Command Files
	Using Variables
	Tcl Mode
	Native Mode

	Controlling TetraMAX Processes
	Starting and Stopping the TetraMAX GUI
	Interrupting a Long Process
	Discarding Pending Output

	Adjusting the Workspace Size
	Saving Preferences
	Setting Preferences
	See Also

	Saving GUI Preferences
	See Also

	Licensing
	Licensing Overview
	Product Licenses
	Checking Out Licenses
	Examples

	Licenses Report
	Standard Format

	License Keys for Features

	3				Command Interface
	TetraMAX GUI Main Window
	See Also

	Command Entry
	Menu Bar
	Command Toolbar and GSV Toolbar
	Command-Line Window
	Command Mode Indicator
	Command-Line Entry Field
	Command Continuation
	Command History
	Stop Button

	Commands From a Command File
	Command Logging

	Transcript Window
	Setting the Keyboard Focus
	Using the Transcript Text
	Selecting Text in the Transcript
	Copying Text From the Transcript
	Finding Commands and Messages in the Transcript
	Saving or Printing the Transcript
	Clearing the Transcript Window

	Online Help
	Text-Only Help
	Browser-Based Help
	Launching Online Help
	Basic Components of Help

	4				ATPG Design Flow
	ATPG Design Flow Overview
	Running the Basic ATPG Design Flow
	See Also

	Using Command Files
	See Also

	Preparing a Netlist
	Options for Preparing to Read a Netlist
	See Also

	Reading a Netlist
	Options for Reading a Netlist
	See Also

	Reading Library Models
	Options for Reading Library Models
	See Also

	Setting Up and Building the ATPG Model
	Controlling the ATPG Model Build Process
	Setting Parameters for Building an ATPG Model
	See Also

	Setting Parameters for Learning
	Learned Behavior Types
	Controlling the ATPG Learning Algorithm

	Building the ATPG Model
	Options for Building the ATPG Model
	See Also

	Performing Test Design Rule Checking (DRC)
	Specifying STIL Procedures
	Specifying DRC Settings
	Options for Specifying DRC Settings
	See Also

	Starting Test DRC
	Reviewing the DRC Results
	See Also

	Understanding Rule Violations
	Viewing DRC Violations in the GSV
	See Also

	Preparing for ATPG
	See Also
	Specifying General ATPG Settings
	Options for Specifying ATPG Settings

	Specifying Fault Lists
	Selecting an Existing Fault List File
	Generating a Fault List Containing All Fault Sites
	Including Specific Faults in a Fault List
	Writing Faults to a File
	Example Fault Lists
	See Also

	Specifying Fault Models
	Selecting a Fault Model

	Specifying the Pattern Source
	Scan and Nonscan Functional Patterns
	STIL Functional Pattern Input
	Verilog Functional Pattern Input
	WGL Functional Pattern Input
	VCDE Functional Pattern Input
	Options for Selecting the Pattern Source

	Specifying the ATPG Mode
	Basic Scan Mode Settings
	Fast-Sequential Mode Settings
	Setting Full-Sequential Mode

	Running ATPG
	Running ATPG in Basic Scan, Fast-Sequential, or Full-Sequential Mode
	Using Automatic Mode to Generate Optimized Patterns
	Setting Automatic Mode

	Quickly Estimating Test Coverage
	Examples

	Specifying a Test Coverage Target Value
	Increasing ATPG Effort Over Multiple Passes
	Multiple Session Test Pattern Generation
	Splitting Patterns
	Extracting a Pattern Sub-Range
	Merging Multiple Pattern Files
	Using Pattern Files Generated Separately

	Compressing Patterns
	Balancing Pattern Compaction and CPU Runtime
	Compression Reports

	Analyzing ATPG Output
	Standard Format
	Expert Format
	Verbose Format with Merge (without -auto_compression)
	Verbose Format with Merge and -auto_compression

	Reviewin

	Writing ATPG Patterns

	5				Using Tcl With TetraMAX
	Converting TetraMAX Command Files to Tcl Mode
	Converting a Collection to a List in Tcl Mode
	Tcl Syntax and TetraMAX Commands
	Specifying Lists in Tcl Mode
	Tcl Mode and Backslashes
	Using Positional Arguments

	Abbreviating Commands and Options in Tcl Mode
	Using Tcl Special Characters
	Using the Result of a Tcl Command
	Using Built-In Tcl Commands
	TetraMAX Extensions and Restrictions in Tcl Mode

	Redirecting Output in Tcl Mode
	Using the redirect Command in Tcl Mode
	Getting the Result of Redirected Tcl Commands
	Using Redirection Operators in Tcl Mode

	Using Command Aliases in Tcl Mode
	Interrupting Tcl Commands
	Using Command Files in Tcl Mode
	Adding Comments
	Controlling Command Processing When Errors Occur
	Using a Setup Command File

	6				Using the Graphical Schematic Viewer
	Getting Started With the GSV
	Using the SHOW Button to Start the GSV
	Starting the GSV From a DRC Violation or Specific Fault
	See Also

	Navigating, Selecting, Hiding, and Finding Data
	Navigating Within the GSV
	Selecting Objects in the GSV Schematic
	Hiding Objects in the GSV Schematic
	Using the Block ID Window

	Expanding the Display From Net Connections
	See Also

	Hiding Buffers and Inverters in the GSV Schematic
	ATPG Model Primitives
	Tied Pins
	Primary Inputs and Outputs
	Basic Gate Primitives
	Additional Visual Characteristics
	RAM and ROM Primitives
	See Also

	Displaying Symbols in Primitive or Design View
	Displaying Instance Path Names
	See Also

	Displaying Pin Data
	Using the Setup Dialog Box to Display Pin Data
	Pin Data Types
	Displaying Clock Cone Data
	Displaying Clock Off Data
	Displaying Constrain Values
	Displaying Load Data
	Displaying Shift Data
	Displaying Test Setup Data
	Displaying Pattern Data
	Displaying Tie Data

	Analyzing a Feedback Path
	Checking Controllability and Observability
	Using the Run Justification Dialog Box
	Using the run_justification Command
	See Also

	Analyzing DRC Violations in the GSV
	Troubleshooting a Scan Chain Blockage
	Troubleshooting a Bidirectional Contention Problem

	Analyzing Buses
	BUS Contention Status
	See Also

	Understanding the Contention Checking Report
	Reducing Aborted Bus and Wire Gates
	Using the Analyze Buses Dialog Box
	Using the set_atpg and analyze_buses Commands

	Causes of Bus Contention

	Analyzing ATPG Problems
	Analyzing an AN Fault
	Analyzing a UB Fault
	Analyzing a NO Fault

	Printing a Schematic to a File

	7				Using the Hierarchy Browser
	Launching the Hierarchy Browser
	See Also

	Basic Components of the Hierarchy Browser
	Using the Hierarchy Pane
	Viewing Data in the Instance Pane
	Copying an Instance Name

	Viewing Data in the Lib Cells/Tree Map Pane

	Performing Fault Coverage Analysis
	Understanding the Types of Coverage Data
	See Also

	Expanding the Design Hierarchy
	Viewing Library Cell Data
	Adjusting the Threshold Slider Bar
	Identifying Fault Causes
	Displaying Instance Information in the GSV

	Exiting the Hierarchy Browser
	See Also

	8				Using the Simulation Waveform Viewer
	Getting Started With the SWV
	Supported Pin Data Types and Definitions
	See Also

	Invoking the SWV
	Using the SWV Interface
	Understanding the SWV Layout
	Refreshing the View

	Manipulating Signals
	Using the Signal List Pane
	Adding Signals
	Deleting Signals
	Inserting Signals

	Identifying Signal Types in the Graphical Pane
	Using the Time Scales
	Using the Marker Header Area
	Adding and Deleting Pointers
	Moving a Marker Pointer
	Measuring Between Two Pointers

	Using the SWV With the GSV
	Using the SWV Without the GSV
	Example Flow
	Example 2
	Example 3

	SWV Inputs and Outputs
	Analyzing Violations

	9				Design Netlists and Libraries
	Netlist Format Requirements
	EDIF Netlist Requirements
	Logic 1/0 Using Global Nets
	Logic 1/0 by Special Library Cell

	Verilog Netlist Requirements
	See Also

	VHDL Netlist Requirements

	Using Wildcards to Read Netlists
	Controlling Case-Sensitivity
	Processes That Occur When Building the ATPG Model
	Flattening Optimization for Hierarchical Designs

	Identifying Missing Modules
	Removing Unused Logic

	Using Black Box and Empty Box Models
	See Also
	Declaring Black Boxes and Empty Boxes
	Behavior of RAM Black Boxes
	Case 1
	Case 2
	Case 3
	Case 4
	Case 5
	Case 6
	Troubleshooting Unexplained Behavior

	Handling Duplicate Module Definitions
	Memory Modeling
	Memory Model Functions
	Basic Memory Modeling Template
	Initializing RAM and ROM Contents
	The Memory Initialization File
	Default Initialization
	Instance-Specific Initialization

	Improving Test Coverage for RAMs
	Creating Custom ATPG Models
	Condensing ATPG Libraries

	10				STIL Procedures
	STIL Procedure File Guidelines
	Creating a New STIL Procedure File
	See Also
	Declaring Primary Input Constraints
	Using the Add PI Constraints Dialog Box
	Using the add_pi_constraints Command

	Declaring Clocks
	Using the Edit Clocks Dialog Box
	Using the add_clocks Command
	Asynchronous Set and Reset Ports

	Declaring Scan Chains and Scan Enables
	Using the DRC Dialog Box
	Declaring Scan Chains at the Command Line

	Writing the SPF Template
	Example SPF Template File

	Defining STIL Procedures
	Defining Scan Chains
	Defining the load_unload Procedure
	See Also

	Controlling Bidirectional Ports
	Defining the Shift Procedure
	Defining the test_setup Procedure
	Using Loop Statements

	Predefined Signal Groups in STIL
	Defining Basic Signal Timing
	Defining Pulsed Ports
	Selecting Strobed or Windowed Measures in STIL
	Supporting Clock ON Patterns in STIL
	Defining the End-of-Cycle Measure
	Defining Capture Procedures in STIL
	Limiting Clock Usage

	Defining Constrained Primary Inputs
	Defining Equivalent Primary Inputs
	Defining PO Masks
	Defining System Capture Procedures
	Creating Generic Capture Procedures
	See Also
	Generating Generic Capture Procedures
	WaveformTables
	Generating QuickSTIL File Flows

	Controlling Multiple Clock Capture
	Multiple Clock Capture for a Single Vector
	Multiple Clock Capture for Multiple Vectors
	Using Multiple Capture Procedures

	Using Allclock Procedures
	Specifying a Typical Allclock Procedure
	Interaction of the Allclock and Multiple Clock Procedures
	Interaction of Allclock Procedures and Named Waveform Tables

	Using load_unload for Last Shift-Launch Transition
	Example Post-Scan Protocol
	Generic Capture Procedures Limitations

	Defining Sequential Capture Procedures
	Using Default Capture Procedures
	Using a Sequential Capture Procedure
	Sequential Capture Procedure Syntax

	Defining Reflective I/O Capture Procedures
	Using the master_observe Procedure
	Using the shadow_observe Procedure
	Using the delay_capture_start Procedure
	Using the delay_capture_end Procedure
	Using the test_end Procedure
	Scan Padding Behavior
	Using the Condition Statement in STIL
	Excluding Vectors From Simulation
	Using the DontSimulate Statement for Loops and Reference Clocks
	Syntax and Example for Excluding Vectors
	See Also

	Defining Internal Clocks for PLL Support
	Specifying an On-Chip Clock Controller Inserted by DFT Compiler

	Specifying Synchronized Multi Frequency Internal Clocks for an OCC Controller
	ClockTiming Block Syntax
	Timing and Clock Pulse Overlapping
	Controlling Latency for the PLLStructures Block
	ClockTiming Block Selection
	ClockTiming Block Example

	Specifying Internal Clocking Procedures
	ClockConstraints and ClockTiming Block Syntax
	Specifying the Clock Instruction Register
	Specifying External Clocks
	Example 1
	Example 2
	See Also

	JTAG/TAP Controller Variations for the load_unload Procedure
	Multiple Scan Groups
	DFTMAX Compression with Serializer

	11				Design Rule Checking
	Understanding the DRC Process
	Contention Analysis
	BUS Contention Ability Checking
	BUS Z State Ability Checking
	Contention Prevention Checking
	Simulation Contention Detection
	ATPG Contention Prevention
	Post-Capture Contention Checking
	Settings for Contention Checking
	Using the Set Contention Dialog Box
	Using the set_contention Command
	See Also

	Scan Chain Tracing
	See Also

	Clock Grouping
	Reducing the Pattern Count Through Clock Grouping
	Clock Grouping Analysis
	Generating a Clock Group Report
	Clock Grouping Limitations

	Declaring Equivalent and Differential Input Ports
	Using the Add PI Equivalences Dialog Box
	Using the add_pi_equivalences Command
	See Also

	Cells With Asynchronous Set/Reset Inputs
	See Also

	Masking Input and Output Ports
	Masking Scan Cell Inputs and Outputs
	Specifying Cell Constraints Locations and Scan Cell Controls
	Using the Add Cell Constraints Dialog Box
	Using the add_cell_constraints Command

	Previewing Potential Scan Cells
	Using the Set Scan Ability Dialog Box
	Using the set_scan_ability Command

	Transparent Latches
	Shadow Register Analysis
	Feedback Paths Analysis
	See Also

	Procedure Simulation
	Changing the Design Rule Severity
	Using the Set Rules Dialog Box
	Using the set_rules Command

	Understanding the DRC Summary Report
	Binary Image Files
	Creating and Reading Image Files
	Creating a Non-Secure Image File
	Creating a Secure Image File

	Save/Restore in TEST Mode

	12				Fault Lists and Faults
	Working with Fault Lists
	See Also
	Using Fault List Files
	Collapsed and Uncollapsed Fault Lists
	Random Fault Sampling
	Fault Dictionary

	Fault Categories and Classes
	Fault Class Hierarchy
	DT (Detected) = DR + DS + DI + D2 + TP
	PT (Possibly Detected) = AP + NP + P0 + P1
	UD (Undetectable) = UU + UO + UT + UB + UR
	AU (ATPG Untestable) = AN
	ND (Not Detected) = NC + NO

	Fault Summary Reports
	Fault Summary Report Examples
	Test Coverage
	Fault Coverage
	ATPG Effectiveness
	See Also

	Using Clock Domain-Based Faults
	Using Signals That Conflict With Reserved Keywords
	Finding Particular Untested Faults Per Clock Domain

	13				Optimizing ATPG
	Using ATPG Constraints
	Usage Example 1
	Usage Example 2

	Using the Random Decision Option
	See Also

	Obtaining Target Test Coverage Using Fewer Patterns
	Maximizing Test Coverage Using Fewer Patterns
	Improving Test Coverage With Test Points
	Test Points Analysis Options
	Running the Test Points Analysis Flow
	Limitation

	Optimizing Basic Scan Patterns
	Limiting the Number of Patterns
	Limiting the Number of Aborted Decisions
	Creating Test Patterns for Diagnosing Scan Chain Failures
	Understanding DFTMAX Unload Modes and Chain Diagnosis Patterns
	Generating Pattern Sets
	See Also

	Creating End-of-Cycle Measures in ATPG Patterns
	Drawbacks of Using End-of-Cycle Measures
	Requirements Needed to Produce End-of-Cycle Measures
	See Also

	Deleting Top-Level Ports From Output Patterns
	Detecting Faults Multiple Times Using N-Detect
	See Also

	WGL Pattern Generation Options
	See Also
	Creating LSI-Compatible WGL Patterns
	See Also

	Creating NEC-Compatible WGL Patterns
	See Also

	WGL Scan Chain Padding
	See Also

	WGL Scan Chain Definitions
	See Also

	Macro Usage in WGL
	See Also

	Grouping Bidirectional Port Data in WGL
	See Also

	Controlling Port Data Order in WGL
	See Also

	Specifying Windowed Measures in WGL
	See Also

	Delayed Input Force Timing and Force Prior in WGL
	See Also

	Balancing Vector and Scan Statements in WGL
	See Also

	Mapping Bidirectional Ports Within Vector Statements in WGL
	See Also

	Mapping Bidirectional Ports Within Scan Statements in WGL
	See Also

	Adjusting Pattern Data for Serial Versus Parallel Interpretation in WGL
	See Also

	Selecting Scan Chain Inversion Reference in WGL
	See Also

	Effect of CELLDEFINE in WGL
	See Also

	Ambiguity of the Master Cell in WGL
	See Also

	Running Multicore ATPG
	See Also
	Comparing Multicore ATPG and Distributed ATPG
	Invoking Multicore ATPG
	Multicore Interrupt Handling
	Understanding the Processes Summary Report
	Multicore Limitations

	Running Logic Simulation
	Comparing Simulated and Expected Values
	Patterns in the Simulation Buffer
	Sequential Simulation Data
	Single-Point Failure Simulation
	GSV Display of a Single-Point Failure

	Data Volume and Test Application Time Reduction Calculations
	Test Data Volume Calculations
	Test Application Time Calculations
	See Also

	14				Fault Simulation
	Fault Simulation Design Flow
	Preparing Functional Test Patterns for Fault Simulation
	Pattern Compliance with ATE
	Checking Patterns for Timing Insensitivity
	Timing Sensitivity

	Preparing Your Design for Fault Simulation
	Preprocessing the Netlist
	Reading the Design and Libraries
	Building the ATPG Design Model
	Declaring Clocks
	Running DRC
	DRC for Nonscan Operation
	DRC for Scan Operation

	Reading Functional Test Patterns
	Using the Set Patterns Dialog Box
	Using the set_patterns Command
	Specifying Strobes for VCDE Pattern Input

	Initializing the Fault List
	Using the Add Faults Dialog Box
	Using the add_faults Command

	Performing Good Machine Simulation
	Using the Run Simulation Dialog Box
	Using the set_simulation and run_simulation Commands

	Performing Fault Simulation
	Using the Run Fault Simulation Dialog Box
	Using the run_fault_sim Command
	Writing the Fault List

	Combining ATPG and Functional Test Patterns
	Creating Independent Functional and ATPG Patterns
	Creating ATPG Patterns After Functional Patterns
	Creating Functional Patterns After ATPG Patterns

	Running Multicore Simulation
	Invoking Multicore Simulation
	Interrupt Handling
	Understanding the Processes Summary Report
	Resimulating ATPG Patterns
	Limitations
	See Also

	Per-Cycle Pattern Masking
	Flow Options
	Masks File
	Running the Flow
	Limitations

	15				On-Chip Clocking Support
	OCC Background
	OCC Definitions, Supported Flows, Supported Patterns
	OCC Limitations
	DFT Compiler to TetraMAX Flow
	OCC Support in TetraMAX
	Design Set Up
	OCC Scan ATPG Flow
	Waveform and Capture Cycle Example
	Using Synchronized Multi Frequency Internal Clocks
	Enabling Internal Clock Synchronization
	Clock Chain Reordering
	Clock Chain Resequencing
	Finding Clock Chain Bit Requirements
	Reporting Clocks
	Reporting Patterns

	Using Internal Clocking Procedures
	Enabling Internal Clocking Procedures
	Performing DRC with Internal Clocking Procedures
	Reporting Clocks
	Performing ATPG with Internal Clocking Procedures
	Grouping Patterns By ClockingProcedure Blocks
	Forcing a Single Group Per Clocking Procedure
	Enabling ATPG to Achieve Better Efficiency

	Writing Patterns Grouped by Clocking Procedure
	Reporting Patterns
	Limitations
	See Also

	OCC-Specific DRC Rules

	16				Path Delay Fault and Hold Time Testing
	Path Delay Fault Theory
	Path Delay Fault Term Definitions
	Models for Manufacturing Tests
	Models for Characterization Tests
	Testing I/O Paths

	Path Delay Testing Flow
	Obtaining Delay or Hold Time Paths
	Importing PrimeTime Path Lists
	Path Definition Syntax
	Translating Timing Exceptions

	Hold Time ATPG Test Flow
	Generating Path Delay Tests
	Flow for Generating Path Delay Tests
	Using set_delay Options
	Reading and Reporting Path Lists
	Analyzing Path Rule Violations
	Viewing Delay Paths
	Path Delay ATPG Options
	Internal Loopback and False/Multicycle Paths
	Creating At-Speed WaveformTables
	Maintaining At-Speed Waveform Table Information
	MUXClock Support for Path Delay Patterns
	Enabling MUXClock Functionality
	Delay Test Vector Format
	Limitations of MUXClock Support for Path Delay Patterns
	ATPG Requirements to Support MUXClock

	Handling Untested Paths
	Understanding False Paths
	Understanding Untestable Paths
	Reporting Untestable Paths
	Analyzing Untestable Faults
	TetraMAX Commands for Path Delay Fault Testing Example

	17				Quiescence Test Pattern Generation
	Why Do IDDQ Testing?
	CMOS Circuit Characteristics
	IDDQ Testing Methodology
	Types of Defects Detected
	Number of IDDQ Strobes

	About IDDQ Pattern Generation
	IDDQ Limitations
	Fault Models
	DRC Rule Violations
	Generating IDDQ Test Patterns
	IDDQ Test Pattern Generation Flow
	Using the iddq_capture Procedure
	Off-Chip IDDQ Monitor Support
	Specifying Additional Signals in the Netlist
	Defining the iddq_capture Procedure to Support Additional Signals

	Using IDDQ Commands
	Using the set_faults Command
	Using the set_iddq Command
	Using the add_atpg_constraints Command

	IDDQ Bridging
	Design Principles for IDDQ Testability
	I/O Pads
	Buses
	RAMs and Analog Blocks
	Free-Running Oscillators
	Circuit Design
	Power and Ground
	Models With Switch/FET Primitives
	Connections
	IDDQ Design-for-Test Rule Summary
	Additional System-on-a-Chip Rules

	18				Transition-Delay Fault ATPG
	Using the Transition-Delay Fault Model
	Transition-Delay Fault ATPG Flow
	Transition-Delay Fault ATPG Timing Modes
	Launch-On Shift Mode Versus System Clock Launch Mode
	Using Launch-On Extra Shift Timing
	See Also

	STIL Protocol for Transition Faults
	See Also

	Creating Transition Fault Waveform Tables
	See Also

	DRC for Transition Faults
	Limitations of Transition-Delay Fault ATPG

	Specifying Transition-Delay Faults
	Selecting the Fault Model
	Adding Faults to the Fault List
	Reading a Fault List File

	Pattern Generation for Transition-Delay Faults
	Using the set_atpg Command
	Using the set_delay Command
	Using the run_atpg Command
	Pattern Compression for Transition Faults
	Using the report_faults Command
	Using the write_faults Command

	Pattern Formatting for Transition-Delay Faults
	MUXClock Support for Transition Patterns

	Specifying Timing Exceptions From an SDC File
	Reading an SDC File
	Interpreting an SDC File
	How TetraMAX Interprets SDC Commands
	Controlling Clock Timing
	Controlling ATPG Interpretation
	Controlling Timing Exceptions Simulation for Stuck-at Faults
	Reporting SDC Results
	Limitation

	Slack-Based Transition Fault Testing
	Basic Usage Flow
	Extracting Slack Data from PrimeTime
	Utilizing Slack Data in the TetraMAX Flow
	How TetraMAX Integrates Slack Data

	Command Support

	Special Elements of Slack-Based Transition Fault Testing
	Allowing Variation From the Minimum-Slack Path
	Defining Faults of Interest
	Reporting Faults

	Limitations
	Engine and Flow Limitations
	ATPG Limitations
	Limitations in Support for Bus Drivers

	19				Running Distributed ATPG
	See Also
	Command Summary
	Identifying a Work Directory
	Adding Machines to the Distributed Processor List
	Removing a Machine From the Distributed Processor List
	Controlling Timeouts
	Reporting Current Slave Machines
	Starting Distributed ATPG

	Distributed Processing Flow
	Verifying Your Environment
	Remote Shell Considerations
	Tuning Your .cshrc File
	Checking the Load Sharing Setup

	Using Distributed Processing: Step By Step
	Building the Design and Running DRC
	Example Script

	Selecting the Fault Model and Creating the Fault List
	Distributed Fault Simulation
	Distributed ATPG
	Example Scripts for Selecting Fault Models

	Setting Up the Distributed Environment
	Setting Up a Distributed Environment With Load Sharing
	Starting Distributed Fault Simulation
	Events After Starting A Distributed Run
	Interpreting Distributed Fault Simulation Results

	Starting Distributed ATPG
	Saving Results
	Distributed Processor Log Files

	Distributed ATPG Limitations

	20				Persistent Fault Model Support
	Persistent Fault Model Overview
	See Also

	Persistent Fault Model Operations
	See Also
	Switching Fault Models
	Working With Internal Pattern Sets
	Manipulating Fault Lists
	Automatically Saving Fault Lists
	Automatically Restoring Fault Lists
	Removing Fault Lists
	Adding Faults

	Reporting Persistent Fault Models

	Direct Fault Crediting
	See Also

	Example Commands Used in Persistent Fault Model Flow

	21				Diagnosing Manufacturing Test Failures
	Diagnostics Flow Overview
	Running the Diagnostics Flow
	Writing and Reading Binary Images

	Reading Pattern Files
	See Also
	Reading Patterns
	See Also

	Reading Multiple Pattern Files
	See Also

	Translating DFTMAX Compressed Patterns Into Normal Scan Patterns
	Example Flow
	Translation Limitations
	See Also

	Failure Data Files
	Pattern-Based Failure Data File
	Pattern-Based Failure Data File for DFTMAX Serialized Adaptive Scan

	Cycle-Based Failure Data File
	Cycle-Based Failure Data File Format
	Cycle-Based Failure Data File for DFTMAX Serialized Adaptive Scan

	Failure Data File Extensions
	Adding Header Information to a Failure Data File
	Creating a Header Section
	Updating the Header Section
	Creating a Header Schema File
	Examples
	Example A: Header Schema File for Split Pattern Set With Two Pattern Files
	Example B: Header Schema File for Split Pattern Set With Three Pattern Files
	Example C: Flow for Handling Custom Columns in the EDCT File

	Failure Data File Limitations
	Running Diagnostics
	Using the Run Diagnosis Dialog Box
	Using the run_diagnosis Command

	Performing Scan Chain Diagnostics
	Running Scan Chain Diagnostics
	Understanding the Scan Chain Diagnosis Report
	Diagnosing Defects Related to Power Issues

	Diagnosing Internal Cell Defects
	Detecting and Classifying Internal Cell Defects
	Examples of Reporting Internal Cell Defects

	Parallel Diagnostics
	See Also
	Specifying Parallel Diagnostics
	Converting Serial Scripts to Parallel Scripts
	Using Split Datalogs to Perform Parallel Diagnostics for Split Patterns
	See Also

	Diagnosis Log Files
	Parallel Diagnostics Limitations

	Understanding the Diagnosis Report
	Standard Format
	DFTMAX Format
	Verbose Format
	Standard Report with Net Data
	Standard Report with Composite Fault Model Data
	PHDS Physical Diagnosis Report
	Scan Chain Diagnosis Format

	22				Using Physical Data for Diagnostics
	Physical Diagnostics Flow Overview
	See Also

	Using TetraMAX to Create a PHDS Database
	Translating a LEF/DEF Database into a PHDS Database
	See Also

	Reading a PHDS Database
	See Also
	Starting and Stopping the DAP Server Process
	Setting Up a Connection to the PHDS Database

	Name Matching Using a PHDS Database
	Name Matching Overview
	Understanding the Name Matching Coverage Report
	Reporting the Name Matching Coverage
	Using Name Matching Results for Diagnostics

	Setting Up and Running Physical Diagnostics
	Running Physical Diagnostics
	See Also

	Static Subnet Extraction Using a PHDS Database
	Writing Physical Data for Yield Explorer
	See Also

	23				Bridging Fault ATPG
	See Also
	Detecting Bridging Faults
	How Bridging Faults are Defined
	Bridge Locations
	Strength-Based Patterns

	Bridging Fault Flows
	Bridging Faults and the Overall TetraMAX Flow
	Bridging Fault Flow in TetraMAX
	Setup
	Input Faults
	Manipulating the Fault List
	Examining the Fault List
	Fault Simulation
	Running ATPG
	Analysis
	Example Script

	Using StarRC to Generate a Bridge Fault List
	TCAD Characterization
	Generating a Resistance and Capacitance (GRD) Model.

	Extracting Capacitance
	Running StarRC in GUI or Batch Mode
	Coupling Capacitance Report

	Running TetraMAX

	Bridging Fault Model Limitations
	Running the Dynamic Bridging Fault ATPG Flow
	Understanding the Dynamic Bridging Fault Model
	Preparing to Run Dynamic Bridging Fault ATPG
	Specifying a List of Input Faults
	Manipulating the Fault List
	Examining the Fault List

	Fault Simulation
	Running ATPG
	Analyzing Fault Detection
	Example Script
	Limitations

	24				Power Aware ATPG
	Input Data Requirements
	Setting a Power Budget
	Preparing Your Design
	Reporting Clock-Gating Cells
	Setting a Strict Power Budget
	Setting Toggle Weights

	Running Power Aware ATPG
	Applying Quiet Chain Test Patterns
	Testing with Asynchronous Primary Inputs
	Power Reporting By Clock Domain
	Setting a Capture Budget for Individual Clocks
	Retention Cell Testing
	Creating the chain_capture Procedure
	Identifying Retention Cells
	Performing Test DRC
	Generating the Patterns
	Running Fault Simulation
	Limitations

	Power Aware ATPG Limitations

	25				Using TetraMAX and DFTMAX Ultra Compression
	Generating Patterns for DFTMAX Ultra Designs
	Pattern Types Required by DFTMAX Ultra
	Script Example for Generating Patterns for DFTMAX Ultra

	Manipulating Patterns for DFTMAX Ultra
	Controlling the Peak and Average Power During Shifting
	Increasing the Maximum Shift Length of Patterns
	Optimizing Padding Patterns
	Performing Padding Pattern Optimization

	Removing and Reordering Patterns

	High Resolution Pattern Flow for DFTMAX Ultra Chain Diagnostics
	Identifying Defective Chains
	Generating High Resolution Patterns
	Rerunning Diagnostics Using the High Resolution Patterns
	Flow Example
	See Also

	Test Validation and VCS Simulation for DFTMAX Ultra Designs
	Limitations for Using DFTMAX Ultra

	26				Troubleshooting
	Reporting Port Names
	Reviewing a Module Representation
	Rerunning Design Rule Checking
	Troubleshooting Netlists
	Troubleshooting STIL Procedures
	Opening the STL Procedure File
	STIL load_unload Procedure
	STIL Shift Procedure
	STIL test_setup Macro
	Correcting DRC Violations by Changing the Design

	Analyzing the Cause of Low Test Coverage
	Where Are the Faults Located?
	Why Are the Faults Untestable or Difficult to Test?
	Using Justification

	Completing an Aborted Bus Analysis

	A Test Concepts
	Why Perform Manufacturing Testing?
	Understanding Fault Models
	Stuck-At Fault Models
	Detecting Stuck-At Faults
	Using Fault Models to Determine Test Coverage
	IDDQ Fault Model
	Fault Simulation
	Automatic Test Pattern Generation
	Translation for the Manufacturing Test Environment

	What Is Internal Scan?
	Example
	Applying Test Patterns
	Scan Design Requirements
	Controllability of Sequential Cells
	Observability of Sequential Cells

	Full-Scan Design
	Partial-Scan ATPG Design

	What Is Boundary Scan?

	B ATPG Design Guidelines
	ATPG Design Guidelines
	Internally Generated Pulsed Signals
	Clock Control
	Pulsed Signals to Sequential Devices
	Multidriver Nets
	Bidirectional Port Controls
	Exception

	Clocking Scan Chains: Clock Sources, Trees, and Edges
	Clock Trees
	Clock Flip-Flops
	XNOR Clock Inversion and Clock Trees

	Protection of RAMs During Scan Shifting
	RAM and ROM Controllability During ATPG
	Pulsed Signal to RAMs and ROMs
	Bus Keepers
	Non-Z State on a Multidriver Net
	Non-Clocked Events

	Bus Keepers
	Non-Z State on a Multidriver Net
	Non-Clocked Events

	Checklists for Quick Reference
	ATPG Design Guideline Checklist
	Ports for Test I/O Checklist

	C Importing Designs From DFT Compiler
	D Utilities
	Ltran Translation Utility
	Ltran in the Shell Mode
	FTDL, TDL91, and TSTL2 Configuration Files
	Understanding the Configuration File
	Customizing the FTDL Configuration File
	Customizing the TDL91 Configuration File
	Customizing the TSTL2 Configuration File
	Additional Controls
	Support for Other Formats

	Configuration File Syntax
	OVF_BLOCK Statements
	PROC_BLOCK Statements
	TVF_BLOCK Statements

	Generating PrimeTime Constraints
	Input Requirements
	Starting the Tcl Command Parser Mode
	Setting Up TetraMAX
	Making Adjustments for OCC Controllers
	Performing an Analysis for Each Mode
	Implementation

	Converting Timing Violations Into Timing Exceptions
	report_diagnosis Tcl Procedure
	Using report_diagnosis
	Tables Reported by report_diagnosis
	Diagnostics Candidate Table
	Defect Information Table
	Results Summary Table
	Failure Log File Table
	Netlist Data Table
	Physical Data Table
	Cycle to Pattern Conversion Table
	Failure Mapping Summary Table
	Failure Mapping Detailed Table
	Performance Table

	Example Report from report_diagnosis

	E STIL Language Support
	STIL Overview
	IEEE Std. 1450-1999
	IEEE Std. 1450.1 Design Extensions to STIL

	TetraMAX ATPG and STIL
	STIL Conventions in TetraMAX
	Use of STIL Procedures
	Context of Partial Signal Sets in Procedure Definitions
	Use of STIL SignalGroups
	WaveFormCharacter Interpretation

	IEEE Std. 1450.1 Extensions Used in TetraMAX
	Vector Data Mapping Using \m
	Syntax
	Example

	Vector Data Mapping Using \j
	Syntax
	General Example
	Usage Example

	Signal Constraints Using Fixed and Equivalent
	ScanStructures Block

	Elements of STIL Not Used by TetraMAX
	TetraMAX STIL Output
	TetraMAX STIL Input

	F STIL99 Versus STIL
	G Defective Chain Masking for DFTMAX
	Introduction
	Running the Flow
	Placing Constraints on the Defective Chain
	Generating Patterns
	Regenerating Patterns

	Examples
	Limitation

