

IEEE Standard for Universal
Verification Methodology Language
Reference Manual

Sponsored by the
Design Automation Standards Committee

IEEE
3 Park Avenue
New York, NY 10016-5997
USA

IEEE Computer Society

IEEE Std 1800.2™-2017

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2™-2017

IEEE Standard for Universal
Verification Methodology Language
Reference Manual

Sponsor

Design Automation Standards Committee

of the

IEEE Computer Society

Approved 14 February 2017

IEEE-SA Standards Board

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2017 by The Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 26 May 2017. Printed in the United States of America.

IEEE and POSIX are registered trademarks in the U.S. Patent & Trademark Office, owned by The Institute of
Electrical and Electronics Engineers, Incorporated.

Verilog is a registered trademark of Cadence Design Systems, Inc.

Print: ISBN 978-1-5044-4001-1 STDPD22567
PDF: ISBN 978-1-5044-4000-4 STDGT22567

IEEE prohibits discrimination, harassment, and bullying.
For more information, visit http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html.
No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission
of the publisher.

2
Copyright © 2017 IEEE. All rights reserved.

Grateful acknowledgment is made for permission to use the following source material:

Accellera Systems Initiative—The Universal Verification Methodology (UVM)
pre-IEEE Class Reference.

Abstract: The Universal Verification Methodology (UVM) that can improve interoperability, reduce
the cost of using intellectual property (IP) for new projects or electronic design automation (EDA)
tools, and make it easier to reuse verification components is provided. Overall, using this standard
will lower verification costs and improve design quality throughout the industry. The primary
audiences for this standard are the implementors of the UVM base class library, the implementors
of tools supporting the UVM base class library, and the users of the UVM base class library.

Keywords: agent, blocking, callback, class, component, consumer, driver, event, export, factory,
function, generator, IEEE 1800.2™, member, method, monitor, non-blocking, phase, port, register,
resource, sequence, sequencer, transaction level modeling, verification methodology

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html

Important Notices and Disclaimers Concerning IEEE Standards Documents

IEEE documents are made available for use subject to important notices and legal disclaimers. These notices
and disclaimers, or a reference to this page, appear in all standards and may be found under the heading
“Important Notices and Disclaimers Concerning IEEE Standards Documents.” They can also be obtained on
request from IEEE or viewed at http://standards.ieee.org/IPR/disclaimers.html.

Notice and Disclaimer of Liability Concerning the Use of IEEE Standards
Documents

IEEE Standards documents (standards, recommended practices, and guides), both full-use and trial-use, are
developed within IEEE Societies and the Standards Coordinating Committees of the IEEE Standards
Association (“IEEE-SA”) Standards Board. IEEE (“the Institute”) develops its standards through a
consensus development process, approved by the American National Standards Institute (“ANSI”), which
brings together volunteers representing varied viewpoints and interests to achieve the final product. IEEE
Standards are documents developed through scientific, academic, and industry-based technical working
groups. Volunteers in IEEE working groups are not necessarily members of the Institute and participate
without compensation from IEEE. While IEEE administers the process and establishes rules to promote
fairness in the consensus development process, IEEE does not independently evaluate, test, or verify the
accuracy of any of the information or the soundness of any judgments contained in its standards.

IEEE Standards do not guarantee or ensure safety, security, health, or environmental protection, or ensure
against interference with or from other devices or networks. Implementers and users of IEEE Standards
documents are responsible for determining and complying with all appropriate safety, security,
environmental, health, and interference protection practices and all applicable laws and regulations.

IEEE does not warrant or represent the accuracy or content of the material contained in its standards, and
expressly disclaims all warranties (express, implied and statutory) not included in this or any other
document relating to the standard, including, but not limited to, the warranties of: merchantability; fitness
for a particular purpose; non-infringement; and quality, accuracy, effectiveness, currency, or completeness of
material. In addition, IEEE disclaims any and all conditions relating to: results; and workmanlike effort.
IEEE standards documents are supplied “AS IS” and “WITH ALL FAULTS.”

Use of an IEEE standard is wholly voluntary. The existence of an IEEE standard does not imply that there
are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to
the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time a standard is approved and
issued is subject to change brought about through developments in the state of the art and comments
received from users of the standard.

In publishing and making its standards available, IEEE is not suggesting or rendering professional or other
services for, or on behalf of, any person or entity nor is IEEE undertaking to perform any duty owed by any
other person or entity to another. Any person utilizing any IEEE Standards document, should rely upon his
or her own independent judgment in the exercise of reasonable care in any given circumstances or, as
appropriate, seek the advice of a competent professional in determining the appropriateness of a given IEEE
standard.

IN NO EVENT SHALL IEEE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO:
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE PUBLICATION, USE OF, OR RELIANCE UPON
ANY STANDARD, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND
REGARDLESS OF WHETHER SUCH DAMAGE WAS FORESEEABLE.
3
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

http://standards.ieee.org/IPR/disclaimers.html
http://standards.ieee.org/IPR/disclaimers.html

Translations

The IEEE consensus development process involves the review of documents in English only. In the event
that an IEEE standard is translated, only the English version published by IEEE should be considered the
approved IEEE standard.

Official statements

A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board
Operations Manual shall not be considered or inferred to be the official position of IEEE or any of its
committees and shall not be considered to be, or be relied upon as, a formal position of IEEE. At lectures,
symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall
make it clear that his or her views should be considered the personal views of that individual rather than the
formal position of IEEE.

Comments on standards

Comments for revision of IEEE Standards documents are welcome from any interested party, regardless of
membership affiliation with IEEE. However, IEEE does not provide consulting information or advice
pertaining to IEEE Standards documents. Suggestions for changes in documents should be in the form of a
proposed change of text, together with appropriate supporting comments. Since IEEE standards represent a
consensus of concerned interests, it is important that any responses to comments and questions also receive
the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and
Standards Coordinating Committees are not able to provide an instant response to comments or questions
except in those cases where the matter has previously been addressed. For the same reason, IEEE does not
respond to interpretation requests. Any person who would like to participate in revisions to an IEEE
standard is welcome to join the relevant IEEE working group.

Comments on standards should be submitted to the following address:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
Piscataway, NJ 08854 USA

Laws and regulations

Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance with the
provisions of any IEEE Standards document does not imply compliance to any applicable regulatory
requirements. Implementers of the standard are responsible for observing or referring to the applicable
regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not
in compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

IEEE draft and approved standards are copyrighted by IEEE under U.S. and international copyright laws.
They are made available by IEEE and are adopted for a wide variety of both public and private uses. These
include both use, by reference, in laws and regulations, and use in private self-regulation, standardization,
and the promotion of engineering practices and methods. By making these documents available for use and
adoption by public authorities and private users, IEEE does not waive any rights in copyright to the
documents.
4
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

Photocopies

Subject to payment of the appropriate fee, IEEE will grant users a limited, non-exclusive license to
photocopy portions of any individual standard for company or organizational internal use or individual, non-
commercial use only. To arrange for payment of licensing fees, please contact Copyright Clearance Center,
Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to
photocopy portions of any individual standard for educational classroom use can also be obtained through
the Copyright Clearance Center.

Updating of IEEE Standards documents

Users of IEEE Standards documents should be aware that these documents may be superseded at any time
by the issuance of new editions or may be amended from time to time through the issuance of amendments,
corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the
document together with any amendments, corrigenda, or errata then in effect.

Every IEEE standard is subjected to review at least every ten years. When a document is more than ten years
old and has not undergone a revision process, it is reasonable to conclude that its contents, although still of
some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that
they have the latest edition of any IEEE standard.

In order to determine whether a given document is the current edition and whether it has been amended
through the issuance of amendments, corrigenda, or errata, visit the IEEE-SA Website at http://
ieeexplore.ieee.org/ or contact IEEE at the address listed previously. For more information about the IEEE-
SA or IEEE’s standards development process, visit the IEEE-SA Website at http://standards.ieee.org.

Errata

Errata, if any, for all IEEE standards can be accessed on the IEEE-SA Website at the following URL: http://
standards.ieee.org/findstds/errata/index.html. Users are encouraged to check this URL for errata
periodically.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken by the IEEE with respect to the
existence or validity of any patent rights in connection therewith. If a patent holder or patent applicant has
filed a statement of assurance via an Accepted Letter of Assurance, then the statement is listed on the IEEE-
SA Website at http://standards.ieee.org/about/sasb/patcom/patents.html. Letters of Assurance may indicate
whether the Submitter is willing or unwilling to grant licenses under patent rights without compensation or
under reasonable rates, with reasonable terms and conditions that are demonstrably free of any unfair
discrimination to applicants desiring to obtain such licenses.

Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE is not
responsible for identifying Essential Patent Claims for which a license may be required, for conducting
inquiries into the legal validity or scope of Patents Claims, or determining whether any licensing terms or
conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing
agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that
determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their
own responsibility. Further information may be obtained from the IEEE Standards Association.
5
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

http://standards.ieee.org
http://standards.ieee.org
http://standards.ieee.org/findstds/errata/index.html
http://standards.ieee.org/findstds/errata/index.html
http://standards.ieee.org/findstds/errata/index.html
http://standards.ieee.org/about/sasb/patcom/patents.html

Participants

The Universal Verfication Metholodogy (UVM) Working Group is entity based. At the time this standard
was completed, the Universal Verfication Metholodogy (UVM) Working Group had the following
membership:

Tom Alsop, Chair
Hillel Miller, Vice Chair

Christeen Gray, Secretary
Joe Daniels, Technical Editor

The following members of the entity balloting committee voted on this standard. Balloters may have voted
for approval, disapproval, or abstention.

When the IEEE-SA Standards Board approved this standard on 14 February 2017, it had the following
membership:

Jean-Philippe Faure, Chair
Vacant position, Vice Chair
John D. Kulick, Past Chair

Konstantinos Karachalios, Secretary

*Member Emeritus

Jamsheed Agahi
Mala Bandyopahdyay
Martin Barnasconi
Dennis Brophy
Joel Feldman
Tom Fitzpatrick

Courtney Fricano
Mark Glasser
Christeen Gray
Shuang Han
Shobhit Kapoor

Adiel Khan
Justin Refice
Uwe Simm
Mark Strickland
Srivatsa Vasudevan
Karl Whiting

Accellera Systems Initiative, Inc.
Advanced Micro Devices (AMD)
Analog Devices Inc.
Cadence Design Systems, Inc.
Cisco Systems, Inc.

IBM
Intel Corporation
Mentor Graphics
NVIDIA Corporation
NXP Semiconductors
Semifore, Inc.

Southwest Jiaotong
University

Synopsys, Inc.
Verific Design

Automation, Inc.

Chuck Adams
Masayuki Ariyoshi
Ted Burse
Stephen Dukes
Doug Edwards
J. Travis Griffith
Gary Hoffman

Michael Janezic
Thomas Koshy
Joseph L. Koepfinger*
Kevin Lu
Daleep Mohla
Damir Novosel
Ronald C. Petersen
Annette D. Reilly

Robby Robson
Dorothy Stanley
Adrian Stephens
Mehmet Ulema
Phil Wennblom
Howard Wolfman
Yu Yuan
Co

Authorized licensed use limited to: Wu Shan
6
pyright © 2017 IEEE. All rights reserved.

. Downloaded on March 15,2018 at 13:59:08 UTC
 f
rom IEEE Xplore. Restrictions apply.

Introduction

Verification has evolved into a complex project that often spans internal and external teams, but the
discontinuity associated with multiple, incompatible methodologies among those teams can limit
productivity. The Universal Verification Methodology (UVM) Language Reference Manual (LRM)
addresses verification complexity and interoperability within companies and throughout the electronics
industry for both novice and advanced teams while also providing consistency. While UVM is revolutionary,
being the first verification methodology to be standardized, it is also evolutionary, as it is built on the Open
Verification Methodology (OVM), which combined the Advanced Verification Methodology (AVM) with
the Universal Reuse Methodology (URM) and concepts from the e Reuse Methodology (eRM).
Furthermore, UVM also infuses concepts and code from the Verification Methodology Manual (VMM),
plus the collective experience and knowledge of the over 300 members of the Accellera UVM Working
Group to help standardize verification methodology. Finally, the transaction level modeling (TLM) facilities
in UVM are based on what was developed by Open SystemC Initiative (OSCI) for SystemC, though they are
not an exact replication or re-implementation of the SystemC TLM library.

This introduction is not part of IEEE Std 1800.2-2017, IEEE Standard for Universal Verification Methodology
Language Reference Manual.
7
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

8
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

Contents

1. Overview.. 13

1.1 Scope.. 13

1.2 Purpose... 13

1.3 Conventions used... 13

2. Normative references ... 16

3. Definitions, acronyms, and abbreviations.. 16

3.1 Definitions ... 16

3.2 Acronyms and abbreviations ... 17

4. UVM class reference ... 18

5. Base classes.. 20

5.1 Overview.. 20

5.2 uvm_void ... 20

5.3 uvm_object... 20

5.4 uvm_transaction... 31

5.5 uvm_port_base #(IF).. 36

5.6 uvm_time ... 40

6. Reporting classes ... 43

6.1 Overview.. 43

6.2 uvm_report_message ... 43

6.3 uvm_report_object ... 46

6.4 uvm_report_handler... 52

6.5 Report server.. 55

6.6 uvm_report_catcher ... 59

7. Recording classes... 65

7.1 uvm_tr_database .. 65

7.2 uvm_tr_stream ... 67

7.3 UVM links ... 71

8. Factory classes ... 76

8.1 Overview.. 76

8.2 Factory component and object wrappers ... 76

8.3 UVM factory.. 82
9
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

9. Phasing... 89

9.1 Overview.. 89

9.2 Implementation .. 89

9.3 Phasing definition classes .. 89

9.4 uvm_domain .. 98

9.5 uvm_bottomup_phase .. 99

9.6 uvm_task_phase... 100

9.7 uvm_topdown_phase ... 101

9.8 Predefined phases .. 102

10. Synchronization classes ... 107

10.1 Event classes .. 107

10.2 uvm_event_callback .. 110

10.3 uvm_barrier.. 111

10.4 Pool classes .. 113

10.5 Objection mechanism .. 114

10.6 uvm_heartbeat.. 119

10.7 Callbacks classes.. 121

11. Container classes.. 126

11.1 Overview.. 126

11.2 uvm_pool #(KEY,T).. 126

11.3 uvm_queue #(T)... 128

12. UVM TLM interfaces .. 131

12.1 Overview.. 131

12.2 UVM TLM 1.. 131

12.3 UVM TLM 2.. 148

13. Predefined component classes ... 168

13.1 uvm_component... 168

13.2 uvm_test... 181

13.3 uvm_env... 182

13.4 uvm_agent.. 182

13.5 uvm_monitor.. 183

13.6 uvm_scoreboard... 183

13.7 uvm_driver #(REQ,RSP) ... 184

13.8 uvm_push_driver #(REQ,RSP) ... 184

13.9 uvm_subscriber .. 185
10
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

14. Sequences classes .. 187

14.1 uvm_sequence_item... 187

14.2 uvm_sequence_base... 191

14.3 uvm_sequence #(REQ,RSP) .. 200

14.4 uvm_sequence_library ... 201

15. Sequencer classes... 206

15.1 Overview.. 206

15.2 Sequencer interface.. 206

15.3 uvm_sequencer_base ... 211

15.4 Common sequencer API .. 217

15.5 uvm_sequencer #(REQ,RSP)... 218

15.6 uvm_push_sequencer #(REQ,RSP) ... 219

16. Policy classes ... 220

16.1 uvm_policy .. 220

16.2 uvm_printer.. 222

16.3 uvm_comparer ... 237

16.4 uvm_recorder ... 243

16.5 uvm_packer.. 251

16.6 uvm_copier .. 257

17. Register layer ... 260

17.1 Overview.. 260

17.2 Global declarations .. 260

18. Register model ... 264

18.1 uvm_reg_block .. 264

18.2 uvm_reg_map .. 276

18.3 uvm_reg_file .. 284

18.4 uvm_reg ... 286

18.5 uvm_reg_field .. 303

18.6 uvm_mem .. 314

18.7 uvm_reg_indirect_data .. 328

18.8 uvm_reg_fifo ... 329

18.9 uvm_vreg ... 332

18.10 uvm_vreg_field .. 342

18.11 uvm_reg_cbs .. 347

18.12 uvm_mem_mam .. 352
11
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

19. Register layer interaction with RTL design ... 361

19.1 Generic register operation descriptors ... 361

19.2 Classes for adapting between register and bus operations... 365

19.3 uvm_reg_predictor... 367

19.4 Register sequence classes .. 369

19.5 uvm_reg_backdoor .. 376

19.6 UVM HDL back-door access support routines.. 379

Annex A (informative) Bibliography .. 381

Annex B (normative) Macros and defines ... 382

Annex C (normative) Configuration and resource classes .. 407

Annex D (normative) Convenience classes, interface, and methods... 422

Annex E (normative) Test sequences .. 431

Annex F (normative) Package scope functionality.. 443

Annex G (normative) Command line arguments... 466
12
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
IEEE Standard for Universal
Verification Methodology Language
Reference Manual

1. Overview

1.1 Scope

This standard establishes the Universal Verification Methodology (UVM), a set of application programming
interfaces (APIs) that defines a base class library (BCL) definition used to develop modular, scalable, and
reusable components for functional verification environments. The APIs and BCL are based on the IEEE
standard for SystemVerilog, IEEE Std 1800™.1

1.2 Purpose

Verification components and environments are currently created in different forms, making interoperability
among verification tools and/or geographically dispersed design environments both time consuming to
develop and error prone. The results of the UVM standardization effort will improve interoperability and
reduce the cost of repurchasing and rewriting intellectual property (IP) for each new project or electronic
design automation (EDA) tool, as well as make it easier to reuse verification components. Overall, the UVM
standardization effort will lower verification costs and improve design quality throughout the industry.

1.3 Conventions used

The conventions used throughout the document are as follows:

— UVM is case-sensitive.

— Any syntax examples shown in this standard are informative. They are intended to illustrate the
usage of UVM constructs in a simple context and do not define the full syntax.

1.3.1 Visual cues (meta-syntax)

Bold shows required keywords and/or special characters, e.g., uvm_component.

Italics shows variables or definitions, e.g., name or Globals.

Courier shows SystemVerilog examples, external command names, directories and files, etc.,
e.g., an implementation needs to call super.do_copy.

1Information on references can be found in Clause 2.
13
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
The asterisk (*) symbol, when combined with a prefix and/or postfix denoting a part of the
construct, represents a series of construct names with exactly this prefix and/or postfix, e.g., class
uvm_*_port.

1.3.2 Return values

a) Equivalent terms:

1) “TRUE,” “True,” and “true” are equivalent to each other and used interchangeably throughout
this document.

2) “FALSE,” “False,” and “false” are equivalent to each other and used interchangeably
throughout this document.

b) A bit value of 1 is treated as TRUE and 0 is treated as FALSE.

c) Conversely, TRUE refers to 1 and FALSE refers to 0 for return values.

d) Datatypes returned:

1) For a bit or integer, 1 (or 1'b1) or 0 (1'b0) is acceptable.

2) For an enumerated type, TRUE or FALSE is acceptable.

e) For functions that return TRUE/FALSE, if only one returned value is defined (e.g., for TRUE), then
the opposite return value shall be inferred (for all other possibilities).

1.3.3 Inheritance

Class declarations shown in this document may be of the form class A extends B. These declarations do not
imply class A and class B are adjacent in the inheritance tree; implementations are free to have other classes
between A and B in the inheritance tree, e.g.,

class X extends B;
 // body of class X
 endclass
class A extends X;
 // body of class A
 endclass

would comply.

The API and the semantics of the API from a base class shall be present in any derived classes, unless that
API is overridden by an explicitly documented API within the derived class.

1.3.4 Operation order on equivalent data objects

The functionality described in this document typically operates on a set of data objects. An implementation
and/or the underlying run-time engine may choose any operation order or sorting order for “equivalent data”
objects within the specified semantics.

As a result of this policy, results returned and/or sequential behavior and/or produced output may differ
between implementations and/or different underlying engines.

It is up to the user to establish an operation order if necessary.

1.3.5 uvm_pkg

All properties of UVM, including classes, global methods, and variables, are exported via the uvm_pkg
package. They may be accessed via import or via the Scope Resolution operator (::).
14
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
UVM does not require any specific time unit precision for uvm_pkg.

All UVM methods that operate on values of type time, such as uvm_printer::print_time (see 16.2.3.11),
are subject to the time scaling defined in IEEE Std 1800™.

1.3.6 Random stability

Any APIs that result in user code being executed are not guaranteed to be random stable. All other APIs are
guaranteed to be random stable, unless otherwise specified.
15
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
2. Normative references

The following referenced documents are indispensable for the application of this standard (i.e., they must be
understood and used, so each referenced document is cited in text and its relationship to this document is
explained). For dated references, only the edition cited applies. For undated references, the latest edition of
the referenced document (including any amendments or corrigenda) applies.

IEEE Std 1800™, IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and
Verification Language.2, 3

3. Definitions, acronyms, and abbreviations

For the purposes of this document, the following terms and definitions apply. The IEEE Standards
Dictionary Online should be consulted for terms not defined in this clause. 4

3.1 Definitions

agent: An abstract container used to emulate and verify device under test (DUT) devices; agents encapsulate
a driver, sequencer, and monitor.

blocking: An interface where tasks block execution until they complete. See also: non-blocking.

component: A piece of verification intellectual property (VIP) that provides functionality and interfaces.

consumer: A verification component that receives transactions from another component.

driver: A component responsible for executing or otherwise processing transactions, usually interacting
with the device under test (DUT) to do so.

environment: The container object that defines the testbench topology.

export: A transaction level modeling (TLM) interface that provides an implementation of methods used for
communication. Used in Universal Verification Methodology (UVM) to connect to a port.

factory method: A classic software design pattern used to create generic code by deferring, until run time,
the exact specification of the object to be created.

hook: A method that enables users to customize certain behaviors of a component.

generator: A verification component that provides transactions to another component. Also referred to as a
producer.

monitor: A passive entity that samples device under test (DUT) signals, but does not drive them.

non-blocking: A call that returns immediately. See also: blocking.

policy: A collection of settings used to apply an operation to a class.

2IEEE publications are available from the Institute of Electrical and Electronics Engineers (http://standards.ieee.org/).
3The IEEE standards or products referred to in Clause 2 are trademarks owned by the Institute of Electrical and Electronics Engineers,
Incorporated.
4IEEE Standards Dictionary Online is available at: http://ieeexplore.ieee.org/.
16
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
port: A transaction level modeling (TLM) interface that defines the set of methods used for communication.
Used in Universal Verification Methodology (UVM) to connect to an export.

proxy: A class functioning as an interface to another component or class.

request: A transaction that provides information to initiate the processing of a particular operation.

response: A transaction that provides information about the completion or status of a particular operation.

scoreboard: The mechanism used to dynamically predict the response of the design and check the observed
response against the predicted response. Usually, refers to the entire dynamic response-checking structure.

sequence: A Universal Verification Methodology (UVM) object that procedurally defines a set of
transactions to be executed and/or controls the execution of other sequences.

sequencer: An advanced stimulus generator that executes sequences that define the transactions provided
to the driver for execution.

singleton: A design pattern where the creation of the class only has one instance of that class.

test: Specific customization of an environment to exercise required functionality of the device under test
(DUT).

testbench: The structural definition of a set of verification components used to verify a device under test
(DUT). Also referred to as a verification environment.

transaction: A class instance that encapsulates information used to communicate between two or more
components.

user: Someone that uses the Universal Verification Methodology (UVM) base class library (BCL).

NOTE—In this standard, user uses the classes, functions, methods, or macros defined herein.5

3.2 Acronyms and abbreviations

API application programming interface

BCL base class library

DPI direct programming interface

DUT device under test

EDA electronic design automation

FIFO first-in, first-out

HDL hardware description language

IP intellectual property

RTL register transfer level

TLM transaction level modeling

UVM Universal Verification Methodology

VIP verification intellectual property

5Notes in text, tables, and figures are given for information only and do not contain requirements needed to implement the standard.
17
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
4. UVM class reference

The UVM base class library provides the building blocks needed to quickly develop well constructed and
reusable verification components and test environments in SystemVerilog. All UVM API should maintain
random stability.

The UVM classes and utilities are divided into the following categories pertaining to their role or function.
The subsequent clauses of this standard give a more detailed overview of each category—and the classes
that comprise them.

Base—The basic building blocks for all environments are components, which do the actual work,
transactions, which convey information between components, and ports, which provide the interfaces used
to convey transactions. The UVM’s core base classes provide these building blocks. See Clause 5.

Reporting—The reporting classes provide a facility for issuing reports (messages) with consistent
formatting and configurable side effects, such as logging to a file or exiting simulation. Reports can also
filter out messages based on their verbosity, unique ID, or severity. See Clause 6.

Recording—The recording classes provide a facility to record transactions into a database using a consistent
API. Users can configure what gets sent to the back-end database, without knowing exactly how the
connection to that database is established. See Clause 7.

Factory—As the name implies, the UVM factory is used to manufacture (create) UVM objects and
components. A factory can be configured to produce an object of a given type on a global or instance basis.
Factories allow dynamically configurable component hierarchies and object substitutions without having to
modify their code or break encapsulation. See Clause 8.

Phasing—This category defines the phasing capability provided by UVM. See Clause 9.

Synchronization—These event and barrier synchronization classes can be used for process synchronization.
See Clause 10.

Containers—These classes are type parameterized data structures that provide queue and pool services. The
class-based queue and pool types allow for efficient sharing of the data structures compared with their
SystemVerilog built-in counterparts. See Clause 11.

UVM TLM—The UVM TLM library defines several abstract, transaction-level interfaces and the ports and
exports that facilitate their use. Each UVM TLM interface consists of one or more methods used to transport
data, typically whole transactions (objects) at a time. Component designs that use UVM TLM ports and
exports to communicate are inherently more reusable, interoperable, and modular. See Clause 12.

Components—Components form the foundation of UVM. They encapsulate the behavior of drivers,
scoreboards, and other objects in a testbench. The UVM base class library provides a set of predefined
component types, all derived directly or indirectly from uvm_component. See Clause 13.

Sequences—Sequences encapsulate user-defined procedures that generate multiple
uvm_sequence_item-based transactions (see 14.1). Such sequences can be reused, extended, randomized,
and combined sequentially and hierarchically in interesting ways to produce realistic stimulus to a DUT. See
Clause 14.

Sequencers—The sequencer serves as an arbiter for controlling transaction flow from multiple stimulus
generators. More specifically, the sequencer controls the flow of uvm_sequence_item-based transactions
(see 14.1) generated by one or more uvm_sequence #(REQ,RSP)-based sequences (see 14.3). See
Clause 15.
18
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Policies—Each of UVM’s policy classes performs a specific task for uvm_object-based objects: printing,
comparing, recording, packing, and unpacking (see 5.3). They are implemented separately from
uvm_object to allow for different ways to print, compare, etc., without modifying the object class being
utilized; e.g., a user can simply apply a different printer or compare policy to change how an object is
printed or compared. See Clause 16.

Register layer—The Register abstraction classes, when properly extended, abstract the read/write operations
to registers and memories in a design-under-verification. See Clause 17.

Macros—UVM provides several macros to help increase user productivity. See Annex B.

Configuration and resources—These classes provide a configuration database, which is used to store and
retrieve both configuration time and run-time properties. See Annex C.

Package scope—This category defines a small list of types, variables, functions, and tasks defined in the
uvm_pkg scope. These items are accessible from any scope that imports the uvm_pkg. See Annex F.

Command line processor—This a general interface to the command line arguments that were provided for
the given simulation. See Annex G.
19
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
5. Base classes

5.1 Overview

The UVM base class library defines a set of base classes and utilities that facilitate the design of modular,
scalable, and reusable verification environments. The basic building blocks for all environments are
components and the transactions they use to communicate.

a) uvm_object—All components and transactions derive from uvm_object (see 5.3), which defines an
interface of core class-based operations: create, copy, compare, print, sprint, record, etc. It also
defines interfaces for instance identification (name, type name, unique id, etc.) and random seeding.
All derivatives of uvm_object are factory enabled, unless otherwise specified.

b) uvm_component—The uvm_component class (see 13.1) is the base class for all UVM
components. Components are quasi-static objects that exist throughout simulation. This allows them
to establish structural hierarchy much like modules and program blocks. Components participate in
a phased test flow during the course of simulation. Each phase—build, connect, run, etc.—is defined
by a callback that is executed in precise order. Finally, the uvm_component also defines any
configuration, reporting, transaction recording, and factory interfaces.

c) uvm_transaction—The uvm_transaction (see 5.4) is the root base class for UVM transactions,
which, unlike uvm_components (see 13.1), are transient in nature. It extends uvm_object (see 5.3)
to include a timing and recording interface. Simple transactions can derive directly from
uvm_transaction, while sequence-enabled transactions derive from uvm_sequence_item (see
14.1).

5.2 uvm_void

The uvm_void class is the abstract base class for all UVM classes. It is an abstract class with no data
members or functions. It allows for creation of generic containers of objects, similar to a void pointer in the
C programming language. User classes derived directly from uvm_void inherit none of the UVM
functionality, but such classes may be placed in uvm_void-typed containers along with other UVM objects.

Class declaration

virtual class uvm_void

5.3 uvm_object

The uvm_object class is the abstract base class for all UVM data and hierarchical classes. Its primary role is
to define a set of methods for such common operations as create (see 5.3.5.1), copy (see 5.3.8.1), compare
(see 5.3.9.1), print (see 5.3.6.1), and record (see 5.3.7.1). Classes deriving from uvm_object need to
implement the pure virtual methods such as create (see 5.3.5.1) and get_type_name (see 5.3.4.7).

5.3.1 Class declaration

virtual class uvm_object extends uvm_void

5.3.2 Common methods

new
function new (

string name = ""
)

20
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Creates a new uvm_object with the given instance name. If name is not supplied, the object is unnamed.

5.3.3 Seeding

5.3.3.1 get_uvm_seeding

static function bit get_uvm_seeding()

Helper method for retrieving the UVM seeding enable value via uvm_coreservice_t::get_uvm_seeding
(see F.4.3).

5.3.3.2 set_uvm_seeding

static function void set_uvm_seeding (bit enable)

Helper method for setting the UVM seeding enable value via uvm_coreservice_t::set_uvm_seeding (see
F.4.4).

5.3.3.3 reseed

function void reseed()

This method sets the seed of the object ensuring all objects have unique seeding values.

If the get_uvm_seeding method (see 5.3.3.1) returns 0, then reseed does not perform any function.

5.3.4 Identification

5.3.4.1 set_name

virtual function void set_name (
string name

)

Specifies the instance name of this object, overwriting any previously given name from new (see 5.3.2) or
set_name.

5.3.4.2 get_name

virtual function string get_name()

Returns the name of the object, as provided by the name argument in the new constructor (see 5.3.2) or
set_name method (see 5.3.4.1).

5.3.4.3 get_full_name

virtual function string get_full_name()

Returns the full hierarchical name of this object. The return value is the same as get_name (see 5.3.4.2), as
uvm_objects do not inherently possess hierarchy.

Objects possessing hierarchy, such as uvm_components (see 13.1), override the default implementation.
Other objects might be associated with component hierarchy, but are not themselves components. For
example, uvm_sequence #(REQ,RSP) (see 14.3) classes are typically associated with a uvm_sequencer
21
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
#(REQ,RSP) (see 15.5). In this case, it is useful to override get_full_name to return the sequencer’s full
name concatenated with the sequence’s name. This provides the sequence a full context, which is useful
when debugging.

5.3.4.4 get_inst_id

virtual function int get_inst_id()

Returns a distinct integer for each distinct UVM object. At the time an object is created, an object identifier
is assigned to it, implicitly or explicitly, depending on which API creates the object. The ID of an object is
guaranteed to be unique to that object for the object’s lifetime. An implementation may reuse the ID of a
previously garbage collected object.

5.3.4.5 get_type

static function uvm_object_wrapper get_type()

Returns the type-proxy (wrapper) for this object. The uvm_factory’s type-based override and creation
methods (see 8.3.1) take arguments of uvm_object_wrapper (see 8.3.2).

This method provides a common API for extensions of uvm_object to use when providing factory support.
If an extension of uvm_object supports factory creation, that extension should implement a static get_type
method that returns the appropriate uvm_object_wrapper (see 8.3.2).

This method is provided automatically when using the `uvm_object_utils, `uvm_object_param_utils,
`uvm_component_utils, and `uvm_component_param_utils macros (and their *_begin and *_end
variants). See B.2.1.2 and B.2.1.3.

5.3.4.6 get_object_type

virtual function uvm_object_wrapper get_object_type()

Returns the type-proxy (wrapper) for this object. The uvm_factory’s type-based override and creation
methods (see 8.3.1) take arguments of uvm_object_wrapper (see 8.3.2). This method, if implemented, can
be used as convenient means of supplying those arguments. This method is the same as the static get_type
method (see 5.3.4.5), but it uses an already allocated object to determine the type-proxy to access (instead of
using the static object).

The default implementation of this method does a factory lookup of the proxy using the return value from
get_type_name (see 5.3.4.7). If the type returned by get_type_name is not registered with the factory, then
a null handle is returned.

5.3.4.7 get_type_name

virtual function string get_type_name()

This function returns the type name of the object, which is typically the type identifier enclosed in quotes. It
is used for various debugging functions in the UVM base class library and it is used by the factory for
creating objects.

This function shall be defined in every derived class.
22
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
5.3.5 Creation

5.3.5.1 create

virtual function uvm_object create (
string name = ""

)

The create method allocates a new object of the same type as this object and returns it via a base
uvm_object handle. Every class deriving from uvm_object, directly or indirectly, shall implement the
create method.

The default implementation of the create method returns null. Every class deriving from uvm_object shall
implement the create method to return the newly allocated object of the same type as the derived class.

5.3.5.2 clone

virtual function uvm_object clone()

The clone method creates and returns an exact copy of this object.

5.3.6 Printing

The printing methods, print (see 5.3.6.1) and sprint (see 5.3.6.2), initiate a new print operation on this
object. To ensure correct printing operation, and to ensure a consistent output format, the user shall use a
uvm_printer policy class (see 16.2). That is, instead of using $display or string concatenations directly,
the do_execute_op (see 5.3.13.1) and do_print (see 5.3.6.3) implementations shall use the policy’s APIs to
print fields. See 16.2 for more information on printer output formatting.

5.3.6.1 print

function void print (
uvm_printer printer = null

)

Prints this object to the target specified by the policy.

The printer argument provides the policy class to be used for this operation. If no printer is provided (or the
value provided is null), the method shall use the default printer policy, as returned by get_default_printer
(see F.4.1.4.13).

The following steps occur in order:

a) If the policy’s active object depth (see 16.1.3.4) is 0, then flush (see 16.2.4.2) is called on the printer
policy.

b) print_object (see 16.2.3.1) is called on the printer policy, the name sent to print_object is
determined using get_root_enabled (see 16.2.5.8).

c) The value returned by the printer policy’s emit method (see 16.2.4.1) shall be directed to the
printer’s current File (see 16.2.5.11).

5.3.6.2 sprint

function string sprint (
uvm_printer printer = null

)

23
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
The sprint method works just like the print method (see 5.3.6.1), except the output of the printer policy’s
emit method (see 16.2.4.1) is returned in a string rather than displayed.

5.3.6.3 do_print

virtual function void do_print (
uvm_printer printer

)

The do_print method is a user-definable hook that allows users customization over what is printed beyond
the information provided by the field macros (see B.2.2) or do_execute_op method (see 5.3.13.1).

5.3.6.4 convert2string

virtual function string convert2string()

This virtual function has a default implementation that returns an empty string (""), but may be extended in
derived classes to provide object information in the form of a string. The format of the string is user-defined.

5.3.7 Recording

To ensure correct recording operation, the user shall use a uvm_recorder policy class (see 16.4). That is,
instead of using implementation-specific API directly, the do_execute_op (see 5.3.13.1) and do_record
(see 5.3.7.2) implementations shall use the policy’s APIs to record fields. See Clause 7 for more information
on the recording classes.

5.3.7.1 record

function void record (
uvm_recorder recorder = null

)

The record method initiates a new record operation on this object.

The recorder argument provides the policy class to be used for this operation. If no recorder is provided (or
the value provided is null), the call is silently ignored. Otherwise, the object shall pass itself to the
record_object method (see 16.4.6.4) of the recorder.

5.3.7.2 do_record

virtual function void do_record (
uvm_recorder recorder

)

The do_record method is a user-definable hook that allows users customization over what is recorded
beyond the information provided by the field macros (see B.2.2) or do_execute_op method (see 5.3.13.1).

5.3.8 Copying

5.3.8.1 copy

function void copy (
uvm_object rhs,
uvm_copier copier = null

)

24
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
The copy method copies the field values from rhs into this object.

The copier argument provides the policy class to be used for this operation. If no copier is provided (or the
value provided is null), the method shall use the default copier policy, as returned by get_default_copier
(see F.4.1.4.19).

The following steps occur in order.

a) If the policy’s active object depth (see 16.1.3.4) is 0, then flush (see 16.2.4.2) is called on the copier
policy.

b) copy_object (see 16.6.4.1) is called on the copier policy, with this object as lhs and rhs as rhs.

5.3.8.2 do_copy

virtual function void do_copy (

uvm_object rhs

)

The do_copy method is the user-definable hook called by the copy method (see 5.3.8.1). A derived class can
override this method to include its fields in a copy operation.

An implementation in a derived class should call super.do_copy and $cast the rhs argument to the
derived type before copying.

5.3.9 Comparing

To ensure correct comparing operation, theuser shall use a uvm_comparer policy class (see 16.3). That is,
instead of using implementation-specific API directly, the do_execute_op (see 5.3.13.1) and do_compare
(see 5.3.9.2) implementations shall use the policy’s APIs to compare fields.

5.3.9.1 compare

function bit compare (

uvm_object rhs,

uvm_comparer comparer = null

)

Compares the current object to rhs.

The comparer argument provides the policy class to be used for this operation. If no comparer is provided
(or the value provided is null), the method shall use the default comparer policy, as returned by
get_default_comparer (see F.4.1.4.16).

The following steps occur in order:

a) If the policy’s active object depth (see 16.1.3.4) is 0, then flush (see 16.2.4.2) is called on the
comparer policy.

b) compare_object (see 16.3.3.4) is called on the comparer policy, with lhs set to this object and name
set to the return value of this object’s get_name method (see 5.3.4.2).

c) The value returned by compare_object (see 16.3.3.4) shall be returned by compare.
25
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
5.3.9.2 do_compare

virtual function bit do_compare (
uvm_object rhs,
uvm_comparer comparer

)

The do_compare method is a user-definable hook that allows users customization over what is recorded
beyond the information provided by the field macros (see B.2.2) or do_execute_op method (see 5.3.13.1). A
derived class can override this method to include its fields in a compare operation. It shall return 1 if the
comparison succeeds, 0 otherwise.

A derived class implementation should call super.do_compare to ensure its base class’ properties, if
any, are included in the comparison. Also, the rhs argument is provided as a generic uvm_object. Thus, the
derived class implementation needs to $cast rhs to the type of this object before comparing.

5.3.10 Packing

5.3.10.1 pack, pack_bytes, pack_ints, and pack_longints

function int pack (
ref bit bitstream[],

input uvm_packer packer = null
)

function int pack_bytes (
ref byte unsigned bytestream[],

input uvm_packer packer = null
)

function int pack_ints (
ref int unsigned intstream[],

input uvm_packer packer = null
)

function int pack_longints (
ref longint unsigned longintstream[],
input uvm_packer packer = null

)

The pack_* methods bitwise-concatenate this object’s properties into an array of bits, bytes, ints, or
longints. The methods are not virtual and shall not be overloaded. To include additional fields in a pack
operation, derived classes can override the do_pack method (see 5.3.10.2).

The optional packer argument specifies the packing policy. If this is not provided, the default as returned by
get_default_packer (see F.4.1.4.15) is used. See 16.5 for more information.

If the policy’s active object depth (see 16.1.3.4) is 0, then flush (see 16.5.2.2) is called on the packer policy
prior to packing any fields. After processing the object’s fields, the packer’s state is copied to the stream
array using the state retrieval method (see 16.5.3.2) of the same stream type.

The return value is the number of bits packed into the packer, as determined via
uvm_packer::get_packed_size (see 16.5.3.3).
26
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
5.3.10.2 do_pack

virtual function void do_pack (
uvm_packer packer

)

The do_pack method is the user-definable hook called by the pack methods (see 5.3.10.1). A derived class
can override this method to include its fields in a pack operation.

The packer argument is the policy object for packing, which is responsible for generating the final array of
packed data from the fields provided. It shall be an error to pass a value of null to the packer argument of
do_pack, an implementation of uvm_object::do_pack shall generate an error message if a null value is
detected.

While the unpacking order needs to match the packing order, the packing order does not need to match
declaration order itself.

5.3.11 Unpacking

5.3.11.1 unpack, unpack_bytes, unpack_ints, and unpack_longints

function int unpack (
ref bit bitstream[],

input uvm_packer packer = null
)

function int unpack_bytes (
ref byte unsigned bytestream[],

input uvm_packer packer = null
)

function int unpack_ints (
ref int unsigned intstream[],

input uvm_packer packer = null
)

function int unpack_longints (
ref longint unsigned longintstream[],
input uvm_packer packer = null

)

The unpack_* methods extract this object’s property values from an array of bits, bytes, ints, or longints.
The object shall unpack fields in the same order in which they were originally packed.

The unpack_* methods are fixed (non-virtual) entry points that are directly callable by the user. To include
additional fields in the unpack operation, derived classes can override the do_unpack method (see
5.3.11.2).

The optional packer argument specifies the unpacking policy. If this is not provided, the default as returned
by get_default_packer (see F.4.1.4.15) is used. See 16.5 for more information.

Prior to unpacking any fields, the object shall set the internal state of the packer using the state assignment
method (see 16.5.3.1) of the same stream type.

The return value is the actual number of bits unpacked from the given array.
27
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
5.3.11.2 do_unpack

virtual function void do_unpack (
uvm_packer packer

)

The do_unpack method is the user-definable hook called by the unpack method (see 5.3.11.1). A derived
class can override this method to include its fields in an unpack operation.

The packer argument is the policy object for unpacking, which is responsible for generating field values
from an array of packed data. See 16.5 for more information.

It shall be an error to pass a value of null to the packer argument of do_unpack, an implementation of
uvm_object::do_unpack shall generate an error message if a null value is detected.

NOTE—As the underlying storage format of the uvm_packer (see 16.5) is unspecified, it is unsafe for users to unpack
fields using different types than the fields with which they were packed or to unpack fields in a different order than the
fields in which they were packed.

5.3.12 Configuration

set_local

virtual function void set_local (
uvm_resource_base rsrc

)

This method provides write access to member properties by using a UVM resource (see C.2). The return
value of get_name (see 5.3.4.2) for rsrc is used to determine the name of the property being accessed. The
object designer can choose which, if any, properties are accessible and override this method.

5.3.13 Field operations

In addition to explicit printing (see 5.3.6), recording (see 5.3.7), copying (see 5.3.8), comparing (see 5.3.9),
packing (see 5.3.10), unpacking (see 5.3.11), and configuration (see 5.3.12) support, uvm_object provides a
field operation mechanism that allows for a centralized definition of all operations that are supported for an
object’s fields.

5.3.13.1 do_execute_op

virtual function void do_execute_op(
uvm_field_op op

)

The do_execute_op method is the user-definable hook called by the policy class. A derived class may
override this method to include its fields in the execution of the operation. The field macros (see B.2.2)
provide a default implementation of the do_execute_op method that is available to the user.

5.3.13.2 uvm_field_op

uvm_field_op is the UVM class for describing all operations supported by the do_execute_op function
(see 5.3.13.1).

5.3.13.2.1 Class declaration

class uvm_field_op extends uvm_object
28
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
5.3.13.2.2 Methods

uvm_field_op has the following methods (see 5.3.13.2.3 to 5.3.13.2.11).

5.3.13.2.3 new

protected function new(

string name=""

)

Creates a new object of type uvm_field_op with the given instance name. If name is not supplied, the object
is unnamed.

5.3.13.2.4 set

virtual function void set(

uvm_field_flag_t op_type,

uvm_policy policy = null,

uvm_object rhs = null

)

Sets the operation op_type, policy, and rhs values.

The set method takes three arguments as follows:

a) op_type—The operation type, as described using uvm_field_flag_t (see F.2.1.2). A uvm_field_op
can only represent a single operation at a time; it shall be an error if the reserved bits (see F.2.1.1) of
the op_type argument match more than one operation type.

b) policy—The policy class to be used for this operation. Operations that do not require a policy object
may set the policy to null. The default value is null.

c) rhs—The right hand side value to be used for this operation. Operations that do not require a right
hand side object may set the rhs to null. The default value is null.

An error shall be generated if set is called twice without a flush call (see 5.3.13.2.11) between.

5.3.13.2.5 get_op_name

virtual function string get_op_name()

Returns the name associated with the operation, based on the assigned operation type (see Table 1).

get_op_name shall generate an error message if set (see 5.3.13.2.4) has never been called on this
uvm_field_op or if flush (see 5.3.13.2.11) has been called more recently than set on this uvm_field_op.

The return value for types that are not listed in Table 1 is undefined.
29
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
5.3.13.2.6 get_op_type

virtual function uvm_field_flag_t get_op_type()

Returns the type of operation.

get_op_type shall generate an error message if set (see 5.3.13.2.4) has never been called on this
uvm_field_op or if flush (see 5.3.13.2.11) has been called more recently than set on this uvm_field_op.

5.3.13.2.7 get_policy

virtual function uvm_policy get_policy()

Returns the policy object to be used when executing the operation.

get_policy shall generate an error message if set (see 5.3.13.2.4) has never been called on this
uvm_field_op or if flush (see 5.3.13.2.11) has been called more recently than set on this uvm_field_op.

5.3.13.2.8 get_rhs

virtual function uvm_object get_rhs()

Returns the right-hand side object to be used when executing the operation.

get_rhs shall generate an error message if set (see 5.3.13.2.4) has never been called on this uvm_field_op or
if flush (see 5.3.13.2.11) has been called more recently than set on this uvm_field_op.

5.3.13.2.9 user_hook_enabled

function bit user_hook_enabled()

Returns the current value of the user hook enabled bit. The value defaults to 1 and can only be set to 0 via a
call to disable_user_hook (see 5.3.13.2.10).

Table 1—Type names returned

Type of operation Name returned

UVM_PRINT print

UVM_RECORD record

UVM_PACK pack

UVM_UNPACK unpack

UVM_COPY copy

UVM_COMPARE compare

UVM_SET set
30
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
The user hook enabled bit indicates whether the policy class should call the do_* method associated with its
operation after calling the do_execute_op method (see 5.3.13.1). For example, a uvm_printer (see 16.2)
will not call do_print (see 5.3.6.3) if user_hook_enabled returns 0 after the printer has called
do_execute_op.

5.3.13.2.10 disable_user_hook

function void disable_user_hook()

Disables the call to the user hook by setting the return value of user_hook_enabled (see 5.3.13.2.9) to 0.

5.3.13.2.11 flush

virtual function void flush()

Resets the uvm_field_op, allowing it to be reused. Future calls to uvm_field_op::get_* (see 5.3.13.2.5 to
5.3.13.2.8) shall generate errors unless set (see 5.3.13.2.4) is called again.

5.3.14 Active policy

The active policy methods are used to track which policy object (see 16.1) is presently operating on an
object.

5.3.14.1 push_active_policy

virtual function void push_active_policy(

uvm_policy policy

)

Pushes policy on to the internal policy stack for this object, making it the current active policy, as retrieved
by get_active_policy (see 5.3.14.3). An implementation shall generate an error message if policy is null, and
the request will be ignored.

5.3.14.2 pop_active_policy

virtual function uvm_policy pop_active_policy()

Pops the current active policy off of the internal policy stack for this object. If the internal policy stack for
this object is empty when pop_active_policy is called, then null is returned.

5.3.14.3 get_active_policy

virtual function uvm_policy get_active_policy()

Returns the head of the internal policy stack for this object. If the internal policy stack for this object is
empty, null is returned.

5.4 uvm_transaction

The uvm_transaction class is the root base class for UVM transactions. Inheriting all the methods of
uvm_object (see 5.3), uvm_transaction adds a timing and recording interface.
31
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
5.4.1 Class declaration

virtual class uvm_transaction extends uvm_object

5.4.2 Methods

5.4.2.1 new

function new (
string name = ""
uvm_component initiator = null

)

Initializes a new transaction object. The name is the instance name of the transaction. If not supplied, then
the object is unnamed. The initiator is described in set_initiator (see 5.4.2.15).

5.4.2.2 accept_tr

function void accept_tr (
time accept_time = 0

)

Calling accept_tr indicates the transaction item has been received by a consumer component.

“Accept” refers to the consumer receiving an item, whereas “begin” (see 5.4.2.4) refers to the consumer
acting on an item. Those may or may not be coincident.

This function shall perform the following actions:

— The transaction’s internal accept time is set to the current simulation time, or to accept_time if
provided and non-zero. The accept_time may be any time, past or future. The default value of
accept_time shall be 0.

— accept_tr(0) is treated as if it is accept_tr($time).

— The event at key accept in the transaction’s event pool (see 5.4.2.14) is triggered. Any processes
waiting on the this event resume in the next delta cycle.

— The do_accept_tr method (see 5.4.2.3) is called to allow for any post-accept action in derived
classes.

5.4.2.3 do_accept_tr

virtual protected function void do_accept_tr()

This user-definable callback is called by accept_tr (see 5.4.2.2) just before the accept event is triggered.
Implementations should call super.do_accept_tr to ensure correct operation.

5.4.2.4 begin_tr

function int begin_tr (
time begin_time = 0

)

This function indicates the transaction has been started and is not the child of another transaction. Generally,
a consumer component begins execution of a transactions it receives.
32
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
See 5.4.2.2 for more information on how the begin-time may differ from when the transaction item was
received.

This function shall perform the following actions:

— The transaction’s begin time (see 5.4.2.17) is set to the current simulation time, or to begin_time if
provided and non-zero. The begin_time may be any time, past or future, but shall not be less than the
accept time. The default value of begin_time shall be 0.

— begin_tr(0) means the current time and is valid as well.

— If recording is enabled (see 5.4.2.12), a new database transaction is started with the same begin_time
via a call to uvm_tr_stream::open_recorder (see 7.2.5.1). The record method inherited from
uvm_object (see 5.3) is then called, which records the current property values to this new
transaction.

— The do_begin_tr method (see 5.4.2.6) is called to allow for any post-begin action in derived classes.

— The event at key begin in the transaction’s event pool (see 5.4.2.14) is triggered. Any processes
waiting on this event resume in the next delta cycle.

The return value is a transaction handle that is valid (non-zero) only if recording is enabled. The meaning of
the handle is implementation specific.

5.4.2.5 begin_child_tr

function int begin_child_tr (
time begin_time = 0,
int parent_handle = 0

)

This function indicates the transaction has been started as a child of a parent transaction given by
parent_handle. Generally, a consumer component calls this method via uvm_component::begin_child_tr
(see 13.1.6.4) to indicate the actual start of execution of this transaction.

The parent handle is obtained by a previous call to begin_tr (see 5.4.2.4) or begin_child_tr. If the
parent_handle is invalid (=0), then this function behaves the same as begin_tr (see 5.4.2.4).

This function shall perform the following actions:

— The transaction’s begin time (see 5.4.2.17) is set to the current simulation time, or to begin_time if
provided and non-zero. The begin_time may be any time, past or future, but shall not be less than the
accept time.

— If recording is enabled (see 5.4.2.12), a new database transaction is started with the same begin_time
via a call to uvm_tr_stream::open_recorder (see 7.2.5.1). The record method inherited from
uvm_object (see 5.3) is then called, which records the current property values to this new
transaction. Finally, the newly started transaction is linked to the parent transaction given by
parent_handle, using a uvm_parent_child_link (see 7.3.2). The default value of parent_handle
shall be 0.

— The do_begin_tr method (see 5.4.2.6) is called to allow for any post-begin action in derived classes.

— The event at key begin in the transaction’s event pool (see 5.4.2.14) is triggered. Any processes
waiting on this event resume in the next delta cycle.

The return value is a transaction handle that is valid (non-zero) only if recording is enabled. The meaning of
the handle is implementation specific. This transaction handle can be used with
33
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
uvm_recorder::get_recorder_from_handle (see 16.4.5.2) to retrieve the uvm_recorder that was opened
for this transaction.

5.4.2.6 do_begin_tr

virtual protected function void do_begin_tr()

This user-definable callback is called by begin_tr (see 5.4.2.4) and begin_child_tr (see 5.4.2.5) just before
the event at key begin in the transaction’s event pool (see 5.4.2.14) is triggered. Implementations should
call super.do_begin_tr to ensure correct operation.

5.4.2.7 end_tr

function void end_tr (
time end_time = 0,
bit free_handle = 1

)

This function indicates the transaction execution has ended. Generally, a consumer component ends
execution of the transactions it receives.

begin_tr (see 5.4.2.4) or begin_child_tr (see 5.4.2.5) shall have been previously called for this call to be
successful.

This function shall perform the following actions:

— The transaction’s internal end time is set to the current simulation time, or to end_time if provided
and non-zero. The end_time may be any non-negative time. The default value of end_time shall be 0.

— If recording is enabled and a database transaction is currently active, the record method inherited
from uvm_object (see 5.3) is called, which records the final property values. The uvm_recorder
associated with this transaction is closed via a call to uvm_recorder::close (see 16.4.4.2). If
free_handle = 1, the recorder is released and can no longer be linked (if supported by an
implementation). The default value of free_handle shall be 1.

— The do_end_tr method is called to allow for any post-end action in derived classes.

— The event at key end in the transaction’s event pool (see 5.4.2.14) is triggered. Any processes
waiting on this event resume in the next delta cycle.

5.4.2.8 do_end_tr

virtual protected function void do_end_tr()

This user-definable callback is called by end_tr (see 5.4.2.7) just before the event at key end in the
transaction’s event pool (see 5.4.2.14) is triggered. Implementations should call super.do_end_tr to
ensure correct operation.

5.4.2.9 get_tr_handle

function int get_tr_handle()

Returns the handle associated with the transaction, as specified by a previous call to begin_child_tr (see
5.4.2.5) or begin_tr (see 5.4.2.4) with transaction recording enabled. If begin_child_tr or begin_tr have
not been called, or if is_active (see 5.4.2.13) returns 0, then get_tr_handle returns 0.
34
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
5.4.2.10 enable_recording

function void enable_recording (
uvm_tr_stream stream

)

Turns on recording to the stream specified. Only one stream is tracked within the transaction, so further calls
to enable_recording overwrite the internally stored value.

If transaction recording is on (the default), then a call to record (see 5.3.7.1) is made when the transaction is
ended.

An error shall be generated if enable_recording is called after accept_tr (see 5.4.2.2), begin_tr (see
5.4.2.4), or begin_child_tr (see 5.4.2.5) but before end_tr (see 5.4.2.7).

5.4.2.11 disable_recording

function void disable_recording()

Turns off recording that has been enabled by a call to enable_recording (see 5.4.2.10). This is effectively
identical to passing null to enable_recording.

An error shall be generated if disable_recording is called after accept_tr (see 5.4.2.2), begin_tr (see
5.4.2.4), or begin_child_tr (see 5.4.2.5) but before end_tr (see 5.4.2.7).

5.4.2.12 is_recording_enabled

function bit is_recording_enabled()

Returns 1 if recording is currently on, 0 otherwise.

5.4.2.13 is_active

function bit is_active()

Returns 1 if the transaction has been started, but has not been ended. Returns 0 if the transaction has not
been started or has ended.

5.4.2.14 get_event_pool

function uvm_event_pool get_event_pool()

Returns the event pool associated with the transaction (see 10.4.1).

5.4.2.15 set_initiator

function void set_initiator (
uvm_component initiator

)

Specifies initiator as the initiator of the transaction. The meaning of initiator is up to the user, e.g., the
initiator can be the component that produces the transaction. An implementation shall include the initiator
when printing (see 5.3.6) or recording (see 5.3.7).
35
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
5.4.2.16 get_initiator

function uvm_component get_initiator()

Returns the component that produced or started the transaction, as specified by a previous call to
set_initiator (see 5.4.2.15).

5.4.2.17 get_accept_time, get_begin_time, and get_end_time

function time get_accept_time()

function time get_begin_time()

function time get_end_time()

Returns the time at which this transaction was accepted, begun, or ended, as by a previous call to accept_tr
(see 5.4.2.2), begin_tr (see 5.4.2.4), begin_child_tr (see 5.4.2.5), or end_tr (see 5.4.2.7).

5.4.2.18 set_transaction_id

function void set_transaction_id(
int id

)

Specifies this transaction’s numeric identifier to id. If not specified via this method, the transaction ID
defaults to -1.

5.4.2.19 get_transaction_id

function int get_transaction_id()

Returns this transaction’s numeric identifier, which is -1 if not specified explicitly by set_transaction_id
(see 5.4.2.18). -1 is not allowed as an id.

5.5 uvm_port_base #(IF)

Transaction-level communication between components is handled via its ports, exports, imps, and sockets,
all of which derive from this class.

The uvm_port_base extends IF, which is the type of the interface implemented by derived port, export,
implementation, or socket. IF is also a type parameter to uvm_port_base.

IF—The interface type implemented by the subtype to this base port.

uvm_port_base possesses the properties of components in that they have a hierarchical instance path and
parent.

5.5.1 Class declaration

virtual class uvm_port_base #(
type IF = uvm_void

) extends IF

The default value of IF shall be uvm_void.
36
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
5.5.2 Methods

5.5.2.1 new

function new (
string name,
uvm_component parent,
uvm_port_type_e port_type,
int min_size = 0,
int max_size = 1

)

name and parent are the uvm_component (see 13.1) constructor arguments.

port_type can be one of UVM_PORT, UVM_EXPORT, or UVM_IMPLEMENTATION (see F.2.3).

min_size and max_size specify the minimum and maximum number of implementation (imp) ports to be
connected to this port base by the end of elaboration. Setting max_size to -1 specifies no maximum, i.e., an
unlimited number of connections are allowed. The default value of min_size shall be 0. The default value of
max_size shall be 1.

5.5.2.2 get_name

function string get_name()

Returns the leaf name of this port.

5.5.2.3 get_full_name

virtual function string get_full_name()

Returns the full hierarchical name of this port.

5.5.2.4 get_parent

virtual function uvm_component get_parent())

Returns the handle to this port’s parent, or null if it has no parent.

5.5.2.5 get_type_name

virtual function string get_type_name()

Returns the type name to this port. Derived port classes can implement this method to return the concrete
type. Otherwise, only a generic “uvm_port”, “uvm_export”, or “uvm_implementation” is
returned.

5.5.2.6 min_size

function int min_size()

Returns the minimum number of implementation ports to be connected to this port prior to
resolve_bindings being called (see 5.5.2.15).
37
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
5.5.2.7 max_size

function int max_size()

Returns the maximum number of implementation ports to be connected to this port prior to
resolve_bindings being called (see 5.5.2.15).

5.5.2.8 is_unbounded

function bit is_unbounded()

Returns 1 if this port has no maximum on the number of implementation ports this port can connect. A port
is unbounded when the max_size argument (see 5.5.2.1) in the constructor is specified as -1.

5.5.2.9 get_connected_to

pure virtual function void get_connected_to(
ref uvm_port_base#(IF) list [string]

)

For a port or export type, this function intends to fill a list with all of the ports, exports and implementations
that this port is connected to.

5.5.2.10 get_provided_to

pure virtual function void get_provided_to(
ref uvm_port_base#(IF) list [string]

)

For an implementation or export type, this function intends to fill a list with all of the ports, exports, and
implementations to which this port has provided its implementation.

5.5.2.11 is_port, is_export, and is_imp

function bit is_port()

function bit is_export()

function bit is_imp()

Returns 1 if this port is of the type given by the method name, 0 otherwise.

5.5.2.12 size

function int size()

Returns the number of implementation ports connected to this port. The value is not valid before the
end_of_elaboration phase, as port connections have not yet been resolved.

5.5.2.13 set_default_index

function void set_default_index (
int index

)

38
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Specifies the default implementation port to use when calling an interface method. This method should only
be called on UVM_EXPORT types. The value shall not be specified before the end_of_elaboration
phase. Use size (see 5.5.2.12) to retrieve the valid range for index. If set_default_index is not called, the
default shall be 0.

5.5.2.14 connect

virtual function void connect (
uvm_port_base #(IF) provider

)

Connects this port to the given provider port. The ports shall be compatible in the following ways:

a) The types of their IF parameters shall be identical.

b) The provider’s interface type (blocking, non-blocking, analysis, etc.) shall be compatible, e.g., an
uvm_blocking_put_port #(T) is compatible with an uvm_put_export #(T) and
uvm_blocking_put_imp #(T) because the export and imp provide the interface required
by the uvm_blocking_put_port.

c) Ports of type UVM_EXPORT (see F.2.3) shall only connect to other exports or imps.

d) Ports of type UVM_IMPLEMENTATION (see F.2.3) shall not be connected, as they are bound to
the component that implements the interface at the time of construction.

In addition to type-compatibility checks, the relationship between this port and the provider port is also
checked if the port’s check_connection_relationships configuration has been specified. By default, the
parent/child relationship of any port being connected to this port is not checked.

This functionality can be disabled using the configuration and resources classes (see Annex C). The port
shall check for a field named check_connection_relationships of the resource type
uvm_resource#(uvm_bitstream_t) with a scope matching the port’s full name (see 5.5.2.3). A
value of 0 disables the check, any other value enables the check.

Relationships, when enabled, are checked are as follows:

— If this port is an UVM_PORT type (see F.2.3), the provider shall be a parent port, or a sibling export
or implementation port.

— If this port is an UVM_EXPORT type (see F.2.3), the provider shall be a child export or
implementation port.

If any relationship check is violated, a warning shall be issued.

5.5.2.15 resolve_bindings

virtual function void resolve_bindings()

This method is automatically called just before entering the end_of_elaboration phase. It recurses
through each port’s fanout to determine all the imp destinations. It then checks against the required min and
max connections. After resolution, size (see 5.5.2.12) returns a valid value and get_if (see 5.5.2.16) can be
used to access a particular imp.

5.5.2.16 get_if

function uvm_port_base #(
IF

) get_if(int index=0)
39
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Returns an implementation (imp) port at the given index from the array of imps to which this port is
connected. Use size (see 5.5.2.12) to retrieve the valid range for index. This method should only be called at
the end_of_elaboration phase or after, as port connections are not resolved before then. The default
value of index shall be 0.

5.6 uvm_time

Canonical time type that can be used in different time scales.

This time type is used to represent time values in a canonical form that can bridge different time scales and
time precisions.

5.6.1 Class declaration

class uvm_time

5.6.2 Common methods

5.6.2.1 new

function new(
string name = "uvm_time",
real res = 0

)

Initializes a new canonical time object.

The canonical time value of the object is initialized to 0. If a resolution is not specified, the default
resolution, as specified by set_time_resolution (see 5.6.2.2), is used.

5.6.2.2 set_default_time_resolution

static function void set_default_time_resolution(
real res

)

res specifies the default canonical time resolution; this shall be a power of 10.

By default, the default resolution is 1.0e-12 (ps).

5.6.2.3 get_name

function string get_name()

Returns the name of this instance.

5.6.2.4 reset

function void reset()

Resets the canonical time value to 0.
40
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
5.6.2.5 get_realtime

function real get_realtime(

time scaled,

real secs = 1.0e-9

)

Returns the current canonical time value, scaled for the caller’s time scale.

scaled shall be a time literal value that corresponds to the number of seconds specified in secs (1ns by
default); it has to be a time literal value that is greater or equal to the current time scale.

5.6.2.6 incr

function void incr(

real t,

time scaled,

real secs = 1.0e-9

)

Increments the current canonical time value by the specified number of scaled time units.

t is a time value expressed in the scale and precision of the caller. scaled shall be a time literal value that
corresponds to the number of seconds specified in secs (1ns by default); it has to be a time literal value that
is greater or equal to the current time scale.

5.6.2.7 decr

function void decr(

real t,

time scaled,

real secs = 1.0e-9

)

Decrements the current canonical time value by the specified number of scaled time units.

t is a time value expressed in the scale and precision of the caller. scaled shall be a time literal value that
corresponds to the number of seconds specified in secs (1ns by default); it has to be a time literal value that
is greater or equal to the current time scale.

5.6.2.8 get_abstime

function real get_abstime(

real secs

)

Returns the current canonical time value, in the number of specified time units, regardless of the current time
scale of the caller.

secs is the number of seconds in the desired time unit, e.g., 1e-9 for nanoseconds.
41
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
5.6.2.9 set_abstime

function real set_abstime(
real t,
real secs

)

Specifies the current canonical time value, in the number of specified time units, regardless of the current
time scale of the caller.

secs is the number of seconds in the desired time unit, e.g., 1e-9 for nanoseconds.
42
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
6. Reporting classes

6.1 Overview

The reporting classes provide a facility for issuing reports with consistent formatting. Users can configure
what actions to take and what files to send output to based on report severity, ID, or both severity and ID.
Users can also filter messages based on their verbosity settings.

The primary interface to the UVM reporting facility is the uvm_report_object (see 6.3) from which all
uvm_components extend (see 13.1). The uvm_report_object delegates most tasks to its internal
uvm_report_handler (see 6.4). If the report handler determines the report is not filtered based on the
configured verbosity setting, it sends the report to the central uvm_report_server (see 6.5.1) for formatting
and processing.

6.2 uvm_report_message

The uvm_report_message is the basic UVM object message class. It provides the fields that are common to
all messages. The report message object can be initialized with the common fields (see 6.2.2) and passes
through the whole reporting system (i.e., report object, report handler, report server, report catcher) as an
object. The additional elements can be added/deleted to/from the message object anywhere in the reporting
system, and can be printed or recorded along with the common fields.

6.2.1 Class declaration

class uvm_report_message extends uvm_object

6.2.2 Common methods

6.2.2.1 new

function new(
string name = "uvm_report_message"

)

Creates a new uvm_report_message object.

6.2.2.2 new_report_message

static function uvm_report_message new_report_message(
string name = "uvm_report_message"

)

Creates a new uvm_report_message object. This function is the same as new (see 6.2.2.1), however this
method will preserve the random stability of the calling thread. While it is legal to call this method from a
non-thread context, the random stability of the non-thread context is not guaranteed.

6.2.2.3 do_print

virtual function void do_print(
uvm_printer printer

)

43
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
The uvm_report_message implements uvm_object::do_print (see 5.3.6.3) such that the
uvm_report_message::print method provides a UVM printer formatted output of the message.

6.2.3 Infrastructure references

6.2.3.1 get_report_object and set_report_object

virtual function uvm_report_object get_report_object()

virtual function void set_report_object(
uvm_report_object ro

)

Returns or specifies the uvm_report_object (see 6.3) that originated the message.

6.2.3.2 get_report_handler and set_report_handler

virtual function uvm_report_handler get_report_handler()

virtual function void set_report_handler(
uvm_report_handler rh

)

Returns or specifies the uvm_report_handler (see 6.4) that is responsible for checking whether the
message is enabled, may be upgraded/downgraded, etc.

6.2.3.3 get_report_server and set_report_server

virtual function uvm_report_server get_report_server()

virtual function void set_report_server(
uvm_report_server rs

)

Returns or specifies the uvm_report_server (see 6.5.1) that is responsible for servicing the message’s
actions.

6.2.4 Message fields

6.2.4.1 get_severity and set_severity

virtual function uvm_severity get_severity()

virtual function void set_severity(
uvm_severity sev

)

Returns or specifies the severity (UVM_INFO, UVM_WARNING, UVM_ERROR, or UVM_FATAL) of the
message.

6.2.4.2 get_id and set_id

virtual function string get_id()

virtual function void set_id(
string id

)

44
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Returns or specifies the id of the message. The value of this field is completely under user discretion. See
6.4.

6.2.4.3 get_message and set_message

virtual function string get_message()

virtual function void set_message(
string msg

)

Returns or specifies a user message content string.

6.2.4.4 get_verbosity and set_verbosity

virtual function int get_verbosity()

virtual function void set_verbosity(
int ver

)

Returns or specifies the message verbosity threshold value. This value is compared against settings in the
uvm_report_handler (see 6.4) to determine whether this message is executed.

6.2.4.5 get_filename and set_filename

virtual function string get_filename()

virtual function void set_filename(
string fname

)

Returns or specifies the file from which the message originates.

6.2.4.6 get_line and set_line

virtual function int get_line()

virtual function void set_line(
int ln

)

Returns or specifies the line in the file from which the message originates.

6.2.4.7 get_context and set_context

virtual function string get_context()

virtual function void set_context(
string cn

)

Returns or specifies the optional user-supplied string that is meant to convey the context of the message.
45
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
6.2.4.8 get_action and set_action

virtual function uvm_action get_action()

virtual function void set_action(

uvm_action act

)

Returns or specifies the action(s) the uvm_report_server (see 6.5.1) performs for this message.

6.2.4.9 get_file and set_file

virtual function UVM_FILE get_file()

virtual function void set_file(

UVM_FILE fl

)

Returns or specifies the file to which the message is written when the message’s action is UVM_LOG.

6.2.4.10 set_report_message

virtual function void set_report_message(

uvm_severity severity,

string id,

string message,

int verbosity,

string filename,

int line,

string context_name

)

Specifies all the common fields of the report message in one function call.

6.3 uvm_report_object

The uvm_report_object provides an interface to the UVM reporting facility. Through this interface,
various messages can be issued that occur during simulation. Users can configure what actions are taken and
what file(s) are output for individual messages from a particular report object or for all messages from all
report objects in the environment. Defaults are applied where there is no explicit configuration.

Most methods in uvm_report_object are delegated to an internal instance of a uvm_report_handler (see
6.4), which stores the reporting configuration and determines whether an issued message should be
displayed based on that configuration. Then, to display a message, the report handler delegates the actual
formatting and production of messages to a central uvm_report_server (see 6.5.1).

A report consists of the message fields described in 6.2.4. It may optionally include the filename and line
number from which the message came. If a report has a verbosity level greater than the configured
maximum verbosity level (see 6.3.4.1) of its report object, it is ignored. If a report passes the verbosity filter,
in effect, the report’s action is determined. If the action includes output to a file, the configured file
descriptor(s) are determined.
46
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
a) Actions—These can be set for severity, id, and the (severity,id) pair. See 6.3.5.2.

b) Default actions—The following list highlights the default actions assigned to each severity. These
can be overridden by any of the set_*_action methods.

1) UVM_INFO—UVM_DISPLAY

2) UVM_WARNING—UVM_DISPLAY

3) UVM_ERROR—UVM_DISPLAY | UVM_COUNT

4) UVM_FATAL—UVM_DISPLAY | UVM_EXIT

c) File descriptors—These can be specified as (in increasing priority) default, severity level, id, or
(severity, id) pair. File descriptors are of UVM_FILE type (see F.2.8). It is the user’s responsibility
to open and close them.

d) Default file handle—The default file handle is 0, which means reports are not sent to a file even if an
UVM_LOG attribute is specified in the action associated with the report. This can be overridden by
any of the set_*_file methods.

6.3.1 Class declaration

class uvm_report_object extends uvm_object

6.3.2 Common methods

new

function new(
string name = ""

)

Creates a new report object with the given name.

6.3.3 Reporting

6.3.3.1 uvm_get_report_object

function uvm_report_object uvm_get_report_object()

Returns this uvm_report_object. See also F.3.2.1.

6.3.3.2 uvm_report_enabled

function int uvm_report_enabled(
int verbosity,
uvm_severity severity = UVM_INFO,
string id = ""

)

Returns 1 if the configured verbosity for this severity/id is greater than or equal to verbosity, else returns 0.
The default value of severity shall be UVM_INFO.

See also 6.3.4.1 and F.3.2.2.

6.3.3.3 uvm_report, uvm_report_info, uvm_report_warning, uvm_report_error, and
uvm_report_fatal

virtual function void uvm_report(
uvm_severity severity,
47
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
string id,
string message,
int verbosity = (severity ==

uvm_severity'(UVM_ERROR)) ?
UVM_NONE : (severity ==
uvm_severity'(UVM_FATAL)) ?
UVM_NONE : UVM_MEDIUM,

string filename = "",
int line = 0,
string context_name = "",
bit report_enabled_checked = 0

)

virtual function void uvm_report_info(
string id,
string message,
int verbosity = UVM_MEDIUM,
string filename = "",
int line = 0,
string context_name = "",
bit report_enabled_checked = 0

)

virtual function void uvm_report_warning(
string id,
string message,
int verbosity = UVM_MEDIUM,
string filename = "",
int line = 0,
string context_name = "",
bit report_enabled_checked = 0

)

virtual function void uvm_report_error(
string id,
string message,
int verbosity = UVM_NONE,
string filename = "",
int line = 0,
string context_name = "",
bit report_enabled_checked = 0

)

virtual function void uvm_report_fatal(
string id,
string message,
int verbosity = UVM_NONE,
string filename = "",
int line = 0,
string context_name = "",
bit report_enabled_checked = 0

)

These are the primary reporting methods in UVM. Using these instead of $display and other ad hoc
approaches ensures consistent output and central control over where output is directed and any actions that
result. All reporting methods have the following arguments, although each has a different default verbosity:
48
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
a) id—A string containing the id for the report or report group that can be used for identification and
therefore targeted filtering. An individual report’s actions and output file(s) can be configured using
this id string.

b) message—The message body as a single string.

c) verbosity—A string containing the message body, indicating its relative importance. If this number
is less than or equal to the maximum verbosity level (see 6.3.4.3), then the report is issued, subject to
the configured action and file descriptor specifications. Verbosity is ignored for warnings, errors,
and fatals. However, if a warning, error, or fatal is demoted to an info message using the
uvm_report_catcher (see 6.6), then the verbosity is taken into account.

d) filename/line (optional)—A string containing filename and an integer for line number defining the
location from which the report was issued. If specified, the location is displayed in the output. The
default value of filename shall be an empty string ("") and the default value of line shall be 0.

e) context_name (optional)—The string context from where the message is originating. This can be the
%m of a module, a specific method, etc. The default value of context_name shall be an empty string
("").

f) report_enabled_checked (optional)—This bit indicates if the currently provided message has been
checked as to whether the message should be processed. If it has not been checked, it will be
checked as part of the uvm_report function. The default value shall be 0.

6.3.3.4 uvm_process_report_message

virtual function void uvm_process_report_message(
uvm_report_message report_message

)

This method takes a preformed uvm_report_message (see 6.2), populates it with the report object, and
passes it to the report handler for processing; see 6.4.7.

6.3.4 Verbosity configuration

6.3.4.1 get_report_verbosity_level

function int get_report_verbosity_level(
uvm_severity severity = UVM_INFO,
string id = ""

)

Returns the verbosity level in effect for this object. This function calls the underlying report handler
get_verbosity_level (see 6.4.3.1).

6.3.4.2 get_report_max_verbosity_level

function int get_report_max_verbosity_level()

Returns the maximum verbosity level in effect for this report object.

6.3.4.3 set_report_verbosity_level

function void set_report_verbosity_level (
int verbosity_level

)

49
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Specifies the maximum verbosity level for reports for this component. This function calls the underlying
report handler set_verbosity_level (see 6.4.3.2).

6.3.4.4 set_report_id_verbosity and set_report_severity_id_verbosity

function void set_report_id_verbosity (
string id,
int verbosity

)

function void set_report_severity_id_verbosity (
uvm_severity severity,
string id,
int verbosity

)

These methods associate the specified verbosity threshold with reports of the given severity, id, or severity-
id pair. These functions call the underlying report handler set_id_verbosity or set_severity_id_verbosity,
respectively (see 6.4.3.3).

6.3.5 Action configuration

6.3.5.1 get_report_action

function int get_report_action(
uvm_severity severity,
string id

)

Returns the action associated with reports having the given severity and id. This function calls the
underlying report handler get_action (see 6.4.4.1).

6.3.5.2 set_report_severity_action, set_report_id_action, and set_report_severity_id_action

function void set_report_severity_action (
uvm_severity severity,
uvm_action action

)

function void set_report_id_action (
string id,
uvm_action action

)

function void set_report_severity_id_action (
uvm_severity severity,
string id,
uvm_action action

)

These methods associate the specified action or actions with reports of the given severity, id, or severity-id
pair. These functions call the underlying report handler set_severity_action, set_id_action, or
set_severity_id_action, respectively (see 6.4.4.2).
50
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
6.3.6 File configuration

6.3.6.1 get_report_file_handle

function int get_report_file_handle(
uvm_severity severity,
string id

)

Returns the file descriptor associated with reports having the given severity and id. This function calls the
underlying report handler get_file_handle (see 6.4.5.1).

6.3.6.2 set_report_default_file, set_report_id_file, set_report_severity_file, and
set_report_severity_id_file

function void set_report_default_file (
UVM_FILE file

)

function void set_report_id_file (
string id,
UVM_FILE file

)

function void set_report_severity_file (
uvm_severity severity,
UVM_FILE file

)

function void set_report_severity_id_file (
uvm_severity severity,
string id,
UVM_FILE file

)

These methods configure the report handler to direct some or all of its output to the given file descriptor (see
F.2.8). These functions call the underlying report handler set_default_file, set_id_file, set_severity_file, or
set_severity_id_file, respectively (see 6.4.5.2).

6.3.7 Override configuration

set_report_severity_override and set_report_severity_id_override

function void set_report_severity_override(
uvm_severity cur_severity,
uvm_severity new_severity

)

function void set_report_severity_id_override(
uvm_severity cur_severity,
string id,
uvm_severity new_severity

)

These methods provide the ability to upgrade or downgrade a message in terms of severity given the severity
and id. These functions call the underlying report handler set_severity_override or
set_severity_id_override, respectively (see 6.4.6).
51
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
6.3.8 Report handler configuration

6.3.8.1 get_report_handler

function uvm_report_handler get_report_handler()

Returns the underlying report handler to which most reporting tasks are delegated.

6.3.8.2 set_report_handler

function void set_report_handler(
uvm_report_handler handler

)

Specifies the report handler, overwriting the previous value. This allows more than one component to share
the same report handler.

6.3.8.3 reset_report_handler

function void reset_report_handler()

Resets the underlying report handler to its default settings (see 6.4.2.1). This clears any changes made with
the override configuration methods (see 6.3.7).

6.4 uvm_report_handler

The uvm_report_handler is the class to which most methods in uvm_report_object (see 6.3) delegate.
uvm_report_handler stores the maximum verbosity, actions, and files that affect the way reports are
handled.

6.4.1 Class declaration

class uvm_report_handler extends uvm_object

6.4.2 Common methods

6.4.2.1 new

function new(
string name = "uvm_report_handler"

)

Creates and initializes a new uvm_report_handler object.

6.4.2.2 do_print

virtual function void do_print (
uvm_printer printer

)

uvm_report_handler implements uvm_object::do_print (see 5.3.6.3) such that the
uvm_report_handler::print method provides UVM printer formatted output of the current configuration.
52
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
6.4.3 Verbosity configuration

6.4.3.1 get_verbosity_level

function int get_verbosity_level (
uvm_severity severity = UVM_INFO,
string id = ""

)

Returns the verbosity level stored in this handler for the given id or severity-id pair.A verbosity associated
with a particular severity-id pair takes precedence over a verbosity associated with id, which takes
precedence over the maximum verbosity.The default value of severity shall be UVM_INFO.

6.4.3.2 set_verbosity_level

function void set_verbosity_level (
int verbosity_level

)

Specifies the maximum verbosity level for this handler. Any report whose verbosity exceeds this maximum
is ignored.

6.4.3.3 set_severity_id_verbosity and set_id_verbosity

function void set_severity_id_verbosity (
uvm_severity severity,
string id,
int verbosity

)

function void set_id_verbosity (
string id,
int verbosity

)

These methods associate the specified verbosity level with the given id or severity-id pair. A verbosity
associated with a particular severity-id pair takes precedence over a verbosity associated with id, which
takes precedence over the maximum verbosity.

verbosity can be any integer, but is most commonly a predefined uvm_verbosity value (see F.2.2.4).

6.4.4 Action configuration

6.4.4.1 get_action

function uvm_action get_action (
uvm_severity severity,
string id

)

Returns the action (uvm_action, see F.2.2.3) stored in this handler for the given severity, id, or severity-id
pair. An action associated with a particular severity-id pair takes precedence over an action associated with
id, which takes precedence over an action associated with severity.
53
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
6.4.4.2 set_severity_id_action, set_id_action, and set_severity_action

function void set_severity_id_action (
uvm_severity severity,
string id,
uvm_action action

)

function void set_id_action (
string id,
uvm_action action

)

function void set_severity_action (
uvm_severity severity,
uvm_action action

)

These methods associate the specified action with the given severity, id, or severity-id pair. An action
associated with a particular severity-id pair takes precedence over an action associated with id, which takes
precedence over an action associated with severity. action can take the value UVM_NO_ACTION or it can be
a bitwise OR of any combination of the other uvm_action_types enum values, see F.2.2.2.

6.4.5 File configuration

6.4.5.1 get_file_handle

function UVM_FILE get_file_handle (
uvm_severity severity,
string id

)

Returns the file descriptor (UVM_FILE, see F.2.8) stored in the handler associated with the given severity,
id, or severity-id pair. A file associated with a particular severity-id pair takes precedence over a file
associated with id, which takes precedence over a file associated with a severity, which takes precedence
over the default file descriptor.

6.4.5.2 set_severity_id_file, set_id_file, set_severity_file, and set_default_file

function void set_severity_id_file (
uvm_severity severity,
string id,
UVM_FILE file

)

function void set_id_file (
string id,
UVM_FILE file

)

function void set_severity_file (
uvm_severity severity,
UVM_FILE file

)

function void set_default_file (
UVM_FILE file

)

54
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
These methods configure this handler to direct some or all of its output to the given file descriptor, where file
is a multi-channel descriptor (mcd) or a file id compatible with $fdisplay.

A file descriptor can be associated with reports of the given severity, id, or severity-id pair. A file associated
with a particular severity-id pair takes precedence over a file associated with id, which takes precedence over
a file associated with a severity, which takes precedence over the default file descriptor.

When a report is issued and its associated action has the UVM_LOG bit specified, the report is then sent to its
associated file descriptor. The user is responsible for opening and closing these files.

6.4.6 Override configuration

set_severity_override and set_severity_id_override

function void set_severity_override (
uvm_severity cur_severity,
uvm_severity new_severity

)

function void set_severity_id_override (
uvm_severity cur_severity,
string id,
uvm_severity new_severity

)

These methods provide the ability to upgrade or downgrade a message in terms of severity (new_severity)
given the cur_severity and id. An upgrade or downgrade for a specific id takes precedence over an upgrade
or downgrade associated with cur_severity.

6.4.7 Message processing

process_report_message

virtual function void process_report_message(
uvm_report_message report_message

)

This is the common handler method used by the core reporting methods (e.g., uvm_report_error) in
uvm_report_object (see 6.3.3.3).

6.5 Report server

This subclause covers the classes that define the UVM report server facility.

6.5.1 uvm_report_server

virtual class uvm_report_server extends uvm_object

Implementations of uvm_report_server process all of the reports generated by an uvm_report_handler
(see 6.4).

The uvm_report_server is an abstract class that declares many of its methods as pure virtual. UVM
uses the uvm_default_report_server class (see 6.5.2) as its default report server implementation.

uvm_report_server has the following Methods.
55
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
6.5.1.1 get_max_quit_count

pure virtual function int get_max_quit_count()

Intended to return the currently configured max quit count.

6.5.1.2 set_max_quit_count

pure virtual function void set_max_quit_count(
int count,
bit overridable = 1

)

Intended to set the currently configured max quit count.

count is the maximum number of UVM_QUIT actions the uvm_report_server can tolerate before invoking
client.die. When overridable = 0 is passed, the count cannot be changed again. The default
value of overridable shall be 1.

6.5.1.3 get_quit_count

pure virtual function int get_quit_count()

Intended to return the current number of UVM_QUIT actions already passed through this server.

6.5.1.4 set_quit_count

pure virtual function void set_quit_count(
int quit_count

)

Intended to specify the current number of UVM_QUIT actions already passed through this
uvm_report_server.

6.5.1.5 get_severity_count

pure virtual function int get_severity_count(
uvm_severity severity

)

Intended to return the count of already passed messages with severity severity.

6.5.1.6 set_severity_count

pure virtual function void set_severity_count(
uvm_severity severity,
int count

)

Intended to specify the count of already passed messages with severity severity to count.

6.5.1.7 get_id_count

pure virtual function int get_id_count(
string id

)

56
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Intended to return the count of already passed messages with id.

6.5.1.8 get_id_set

pure virtual function void get_id_set(
output string q[$]

)

Intended to return the set of id’s already used by this uvm_report_server. q shall be a queue.

6.5.1.9 get_severity_set

pure virtual function void get_severity_set(
output uvm_severity q[$]

)

Intended to return the set of severities already used by this uvm_report_server. q shall be a queue.

6.5.1.10 get_message_database

pure virtual function uvm_tr_database get_message_database()

Intended to return the uvm_tr_database (see 7.1) used for recording messages.

6.5.1.11 set_message_database

pure virtual function void set_message_database(
uvm_tr_database database

)

Intended to specify the uvm_tr_database (see 7.1) used for recording messages.

6.5.1.12 do_copy

virtual function void do_copy (
uvm_object rhs

)

Copies all message statistic severity,id counts to the destination uvm_report_server. The copy is
cumulative: items from the source are transferred, existing entries are not deleted, and existing entries/
counts are overridden when they exist in the source set. rhs shall be a uvm_report_server or derived from
one.

6.5.1.13 process_report_message

pure virtual function void process_report_message(
uvm_report_message report_message

)

This method is the main entry point for the uvm_report_server, processing the provided
uvm_report_message (see 6.2). The report server shall take the following steps, in order:

a) All report catchers (see 6.6) that are currently registered and active are processed. If any call to
catch (see 6.6.5) returns CAUGHT, process_report_message ends immediately.
57
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
b) After processing all report catchers, if the message contains an action of UVM_NO_ACTION,
process_report_message ends immediately.

c) If the message actions include one or both of UVM_LOG or UVM_DISPLAY,
compose_report_message (see 6.5.1.14) is called.

d) Finally, execute_report_message (see 6.5.1.15) is called.

6.5.1.14 compose_report_message

pure virtual function string compose_report_message(
uvm_report_message report_message,
string report_object_name = ""

)

Intended to construct the actual string sent to the file or command line from the severity, component name,
report id, and the message itself. report_object_name can be specified to override the use of the
report_handler full name in the message. Users can overload this method to customize report
formatting.

6.5.1.15 execute_report_message

pure virtual function void execute_report_message(
uvm_report_message report_message,
string composed_message

)

Processes the provided report_message per the actions contained within. composed_message gets logged or
displayed if the report_message calls for that action. Users can overload this method to customize action
processing.

6.5.1.16 report_summarize

pure virtual function void report_summarize(
UVM_FILE file = UVM_STDOUT

)

Intended to output statistical information on the reports issued by this central report server. This information
is sent to the file descriptor file. The default value of file shall be UVM_STDOUT.

6.5.1.17 get_server

static function uvm_report_server get_server()

Returns the global report server used for reporting.

This method is provided as a wrapper function to conveniently retrieve the report server via the
uvm_coreservice_t::get_report_server method (see F.4.1.4.4).

6.5.1.18 set_server

static function void set_server(
uvm_report_server server

)

Specifies the global report server to use for reporting.
58
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
This method is provided as a wrapper function to conveniently specify the report server via the
uvm_coreservice_t::set_report_server method (see F.4.1.4.4). In addition to specifying the server, this
also copies the severity/id counts from the current report server to the new one.

6.5.2 uvm_default_report_server

Default implementation of the UVM report server.

Class declaration

class uvm_default_report_server extends uvm_report_server

uvm_default_report_server can be extended (from uvm_report_server); it provides a full implementation
of all uvm_report_server’s methods (see 6.5.1).

6.6 uvm_report_catcher

The uvm_report_catcher is used to catch messages issued by the UVM report server. Catchers are
uvm_callbacks, so all facilities in the uvm_callback (see 10.7.1) and uvm_callbacks#(T,CB) (see 10.7.2)
classes are available for registering catchers and controlling catcher state. The
uvm_callbacks#(uvm_report_object,uvm_report_catcher) class is also aliased to uvm_report_cb (see
D.4.4).

Multiple report catchers can be registered with a report object. The catchers can be registered as default
catchers, which catch all reports on all uvm_report_object reporters (see 6.3), or catchers can be attached to
specific report objects (e.g., components).

User extensions of uvm_report_catcher shall implement the catch method (see 6.6.5.), in which the action
to be taken on catching the report is specified. The catch method can return CAUGHT, in which case further
processing of the report is immediately stopped, or return THROW, in which case the (possibly modified)
report is passed on to other registered catchers.

On catching a report, the catch method can modify the severity, id, action, verbosity, or the report string
itself before the report is finally issued by the report server. The report can be immediately issued from
within the catcher class by calling the issue method (see 6.6.6.6).

The catcher maintains a count of all reports with UVM_FATAL, UVM_ERROR, or UVM_WARNING (see
F.2.2.1) severity and a count of all reports with UVM_FATAL, UVM_ERROR, or UVM_WARNING severity
whose severity was lowered. These statistics are reported in the summary of uvm_report_server (see
6.5.1).

6.6.1 Class declaration

virtual class uvm_report_catcher extends uvm_callback

6.6.2 Common methods

new

function new(

string name = "uvm_report_catcher"

)

59
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Initializes a new report catcher. The name argument is optional, but should generally be provided to aid in
debugging.

6.6.3 Current message state

6.6.3.1 get_client

function uvm_report_object get_client()

Returns the uvm_report_object (see 6.3) that has generated the message currently being processed.

6.6.3.2 get_severity

function uvm_severity get_severity()

Returns the uvm_severity (see F.2.2.1) of the message that is currently being processed. If the severity was
modified by a previously executed catcher object (which re-threw the message), the returned severity is the
modified value.

6.6.3.3 get_context

function string get_context()

Returns the context name of the message that is currently being processed. This is typically the full
hierarchical name of the component that issued the message. However, if user-defined context is specified in
uvm_report_message (see 6.2), the user-defined context is returned.

6.6.3.4 get_verbosity

function int get_verbosity()

Returns the verbosity of the message that is currently being processed. If the verbosity was modified by a
previously executed catcher (which re-threw the message), the returned verbosity is the modified value.

6.6.3.5 get_id

function string get_id()

Returns the string id of the message that is currently being processed. If the id was modified by a previously
executed catcher (which re-threw the message), the returned id is the modified value.

6.6.3.6 get_message

function string get_message()

Returns the string message of the message that is currently being processed. If the message was modified by
a previously executed catcher (which re-threw the message), the returned message is the modified value.

6.6.3.7 get_action

function uvm_action get_action()
60
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Returns the uvm_action (see F.2.2.3) of the message that is currently being processed. If the action was
modified by a previously executed catcher (which re-threw the message), the returned action is the modified
value.

6.6.3.8 get_fname

function string get_fname()

Returns the file name of the message.

6.6.3.9 get_line

function int get_line()

Returns the line number of the message.

6.6.3.10 get_report_message

function uvm_report_message get_report_message()

Returns the report message object (see 6.2) for this report.

6.6.4 Change message state

6.6.4.1 set_severity

protected function void set_severity(
uvm_severity severity

)

Changes the severity of the message to severity. Any other report catchers will see the modified value.

6.6.4.2 set_verbosity

protected function void set_verbosity(
int verbosity

)

Changes the verbosity of the message to verbosity. Any other report catchers will see the modified value.

6.6.4.3 set_id

protected function void set_id(
string id

)

Changes the id of the message to id. Any other report catchers will see the modified value.

6.6.4.4 set_message

protected function void set_message(
string message

)

Changes the text of the message to message. Any other report catchers will see the modified value.
61
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
6.6.4.5 set_action

protected function void set_action(
uvm_action action

)

Changes the action of the message to action. Any other report catchers will see the modified value.

6.6.4.6 set_context

protected function void set_context(
string context_str

)

Changes the context of the message to context_str. Any other report catchers will see the modified value.

6.6.5 Callback interface

catch

typedef enum {UNKNOWN_ACTION, THROW, CAUGHT} action_e
pure virtual function action_e catch()

This is the method that is intended to be called for each registered report catcher. There are no arguments to
this function. The interface methods in 6.6.3 can be used to access information about the current message
being processed.

6.6.6 Reporting

6.6.6.1 uvm_report_fatal

protected function void uvm_report_fatal(
string id,
string message,
int verbosity,
string fname = "",
int line = 0,
string context_name = "",
bit report_enabled_checked = 0

)

Generates a fatal message using the current message’s report object. This message bypasses any message
catching callbacks. The default values of line and report_enabled_checked shall be 0. The default values of
fname and context_name shall be an empty string ("").

6.6.6.2 uvm_report_error

protected function void uvm_report_error(
string id,
string message,
int verbosity,
string fname = "",
int line = 0,
string context_name = "",
bit report_enabled_checked = 0

)

62
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Generates an error message using the current message’s report object. This message bypasses any message
catching callbacks. The default values of line and report_enabled_checked shall be 0. The default values of
fname and context_name shall be an empty string ("").

6.6.6.3 uvm_report_warning

protected function void uvm_report_warning(
string id,
string message,
int verbosity,
string fname = "",
int line = 0,
string context_name = "",
bit report_enabled_checked = 0

)

Issues a warning message using the current message’s report object. This message bypasses any message
catching callbacks. The default values of line and report_enabled_checked shall be 0. The default values of
fname and context_name shall be an empty string ("").

6.6.6.4 uvm_report_info

protected function void uvm_report_info(
string id,
string message,
int verbosity,
string fname = "",
int line = 0,
string context_name = "",
bit report_enabled_checked = 0

)

Issues an info message using the current message’s report object. This message bypasses any message
catching callbacks. The default values of line and report_enabled_checked shall be 0. The default values of
fname and context_name shall be an empty string ("").

6.6.6.5 uvm_report

protected function void uvm_report(
uvm_severity severity,
string id,
string message,
int verbosity,
string fname = "",
int line = 0,
string context_name = "",
bit report_enabled_checked = 0

)

Issues a message using the current message’s report object. This message bypasses any message catching
callbacks. The default values of line and report_enabled_checked shall be 0. The default values of fname
and context_name shall be an empty string ("").

6.6.6.6 issue

protected function void issue()
63
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Immediately issues the message that is currently being processed. This is useful if the message is being
CAUGHT, but should still be emitted.

Issuing a message updates the report_server stats, possibly multiple times if the message is not
CAUGHT.
64
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
7. Recording classes

The recording classes provide a facility to record transactions into a database using a consistent API. Users
can configure what gets sent to the back-end database, without knowing exactly how the connection to that
database is established.

The primary interface to the recording facility is the uvm_tr_database (see 7.1), which represents the
application-specific mechanism that is recording the transactions. Transactions within the database are
grouped logically within streams, which are represented by the uvm_tr_stream class (see 7.2). Finally, each
transaction in the database is represented by a uvm_recorder (see 16.4.1), which additionally serves as the
policy that is provided to the uvm_object::record method (see 5.3.7.1).

7.1 uvm_tr_database

The uvm_tr_database class is pure virtual and needs to be extended with an implementation.

NOTE—The uvm_tr_database class is intended to abstract the underlying database implementation from the user, as
the details of the database are often specific to the database implementation.

7.1.1 Class declaration

virtual class uvm_tr_database extends uvm_object

7.1.2 Common methods

new

function new(
string name = "unnamed-uvm_tr_database"

)

This is a constructor; it has the following parameter:

name—Instance name.

The default value of name shall be "unnamed-uvm_tr_database".

7.1.3 Database API

7.1.3.1 open_db

function bit open_db()

Opens the back-end connection to the database. If the database is already open, this method returns '1'.
Otherwise, it calls do_open_db (see 7.1.6.1) and returns the result. A return value of '0' indicates the
database could not be opened.

7.1.3.2 close_db

function bit close_db()

Closes the back-end connection to the database. Closing a database closes and frees all uvm_tr_streams
within the database. If the database is already closed, i.e., is_open (see 7.1.3.3) returns '0', this method
returns '1'. Otherwise, it calls do_close_db (see 7.1.6.2) and returns the result.
65
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
7.1.3.3 is_open

function bit is_open()

Returns the open/closed status of the database. This method returns '1' if the database has been successfully
opened, but not yet closed. A return value of '0' indicates the database is not currently open.

7.1.4 Stream API

7.1.4.1 open_stream

function uvm_tr_stream open_stream(
string name,
string scope = "",
string type_name = ""

)

Provides a reference to a stream within the database; it has the following parameters:

name—A string name for the stream. This is the name associated with the stream in the database.

scope—An optional scope for the stream.

type_name—An optional name describing the type of records to be created in this stream.

This method returns a reference to a uvm_tr_stream object (see 7.2) if successful, null otherwise.

This method also calls do_open_stream (see 7.1.6.3); if a non-null stream is returned, then
uvm_tr_stream::do_open (see 7.2.7.1) is called.

Streams can only be opened if the database is open [per is_open (see 7.1.3.3)]; otherwise, the request is
ignored and null is returned.

7.1.4.2 get_streams

function unsigned get_streams(
ref uvm_tr_stream q[$]

)

Provides a queue of all streams within the database; it has the following parameters:

q—A reference to a queue of uvm_tr_streams (see 7.2).

The get_streams method returns the size of the queue, such that the user can conditionally process the
elements.

7.1.5 Link API

establish_link

function void establish_link(
uvm_link_base link

)

Establishes a link between two elements in the database.

This method also calls do_establish_link (see 7.1.6.4).
66
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
7.1.6 Implementation agnostic API

7.1.6.1 do_open_db

pure virtual protected function bit do_open_db()

Intended to be the back-end implementation of open_db (see 7.1.3.1). A return value of '1' indicates the
database was successfully opened. A return value of '0' indicates the database could not be opened.

7.1.6.2 do_close_db

pure virtual protected function bit do_close_db()

Intended to be the back-end implementation of close_db (see 7.1.3.2). A return value of '1' indicates the
database was successfully closed; whereas, a return value of '0' indicates the database could not be closed.

7.1.6.3 do_open_stream

pure virtual protected function uvm_tr_stream do_open_stream(
string name,
string scope,
string type_name

)

Intended to be the back-end implementation of open_stream (see 7.1.4.1).

7.1.6.4 do_establish_link

pure virtual protected function void do_establish_link(
uvm_link_base link

)

Intended to be the back-end implementation of establish_link (see 7.1.5).

7.2 uvm_tr_stream

The uvm_tr_stream base class is a representation of a stream of records within a uvm_tr_database (see
7.1).

The uvm_tr_stream class is abstract and needs to be extended with an implementation.

NOTE—The record stream is intended to abstract the underlying database implementation from the user, as the details
of the database are often specific to the database implementation.

7.2.1 Class declaration

virtual class uvm_tr_stream extends uvm_object

7.2.2 Common methods

new

function new(
string name = "unnamed-uvm_tr_stream"

)

67
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
This is a constructor; it has the following parameter:

name—Stream instance name.

7.2.3 Introspection API

7.2.3.1 get_db

function uvm_tr_database get_db()

Returns a reference to the database that contains this stream.

A warning shall be issued if get_db is called prior to the stream being initialized via do_open (see 7.2.7.1).

7.2.3.2 get_scope

function string get_scope()

Returns the scope supplied when opening this stream.

A warning shall be issued if get_scope is called prior to the stream being initialized via do_open (see
7.2.7.1).

7.2.3.3 get_stream_type_name

function string get_stream_type_name()

Returns a string with the type name.

A warning shall be issued if get_stream_type_name is called prior to the stream being initialized via
do_open (see 7.2.7.1).

7.2.4 Stream API

Once a stream has been opened via uvm_tr_database::open_stream (see 7.1.4.1), the user can close the
stream.

The act of freeing a stream is a signal from the user to the database developer that it is safe to release any
internal references to the stream, as the user will not be accessing it again.

A link can be established within the database any time between “Open” and “Free,” however it shall be an
error to establish a link after “Freeing” the stream.

7.2.4.1 close

function void close()

Closes the stream.

Closing a stream closes all open recorders in the stream. This method triggers a do_close call (see 7.2.7.2),
followed by uvm_recorder::close (see 16.4.4.2) on all open recorders within the stream.
68
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
7.2.4.2 free

function void free()

Frees this stream.

Freeing a stream indicates that the database can free any references to the stream (including references to
records within the stream). This method triggers a do_free call (see 7.2.7.3), followed by
uvm_recorder::free (see 16.4.4.3) on all recorders within the stream.

7.2.4.3 is_open

function bit is_open()

Returns true if this uvm_tr_stream was opened on the database, but has not yet been closed; otherwise
returns false.

7.2.4.4 is_closed

function bit is_closed()

Returns true if this uvm_tr_stream was closed on the database, but has not yet been freed; otherwise
returns false.

7.2.5 Transaction recorder API

New recorders can be opened prior to the stream being closed. Once a stream has been closed, requests to
open a new recorder are ignored (open_recorder (see 7.2.5.1) returns null).

7.2.5.1 open_recorder

function uvm_recorder open_recorder(
string name,
time open_time = 0,
string type_name = ""

)

Marks the opening of a new transaction recorder on the stream; it has the following parameters:

name—A name for the new transaction.

open_time—The optional time to record as the opening of this transaction.

type_name—The optional type name for the transaction.

The default value of open_time shall be 0.

If open_time is omitted (or specified as '0'), the stream uses the current time.

This method triggers a do_open_recorder call (see 7.2.7.4). If do_open_recorder returns a non-null value,
the uvm_recorder::do_open method (see 16.4.7.1) is called in the recorder.

Transaction recorders can only be opened if the stream is open on the database [per is_open (see 7.2.4.3)].
Otherwise, the request is ignored and null is returned.
69
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
7.2.5.2 get_recorders

function unsigned get_recorders(
ref uvm_recorder q[$]

)

Provides a queue of all transactions within the stream; it has the following parameter:

q—A reference to the queue of uvm_recorders (see 16.4.1).

The get_recorders method returns the size of the queue, such that the user can conditionally process the
elements.

7.2.6 Handles

7.2.6.1 get_handle

function int get_handle()

Returns a unique ID for this stream.

A value of 0 indicates the recorder has been freed and no longer has a valid ID.

7.2.6.2 get_stream_from_handle

static function uvm_tr_stream get_stream_from_handle(
int id

)

Static accessor, returns a stream reference for a given unique id.

If no stream exists with the given id or the stream with that id has been freed, then null is returned.

7.2.7 Implementation agnostic API

7.2.7.1 do_open

protected virtual function void do_open(
uvm_tr_database db,
string scope,
string stream_type_name

)

Callback triggered via uvm_tr_database::open_stream (see 7.1.4.1); it has the following parameters:

db—Database to which the stream belongs.

scope—The optional scope.

stream_type_name—The optional type name for the stream.

The do_open callback can be used to initialize any internal state within the stream, as well as providing a
location to record any initial information about the stream.
70
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
7.2.7.2 do_close

protected virtual function void do_close(

Callback triggered via close (see 7.2.4.1).

The do_close callback can be used to specify an internal state within the stream, as well as providing a
location to record any closing information.

7.2.7.3 do_free

protected virtual function void do_free(

Callback triggered via free (see 7.2.4.2).

The do_free callback can be used to release the internal state within the stream, as well as providing a
location to record any “freeing” information.

7.2.7.4 do_open_recorder

protected virtual function uvm_recorder do_open_recorder(
string name,
time open_time,
string type_name

)

Marks the beginning of a new record in the stream. This is a back-end implementation of open_recorder
(see 7.2.5.1).

A null return value implies that the recorder could not be opened (for whatever reason). Users should do a
null check on the return value of open_recorder (see 7.2.5.1).

7.3 UVM links

The uvm_link_base class (see 7.3.1), and its extensions, are provided as a mechanism to allow for compile-
time safety when trying to establish links between records within uvm_tr_databases (see 7.1).

7.3.1 uvm_link_base

The uvm_link_base class presents a simple API for defining a link between any two objects.

Using extensions of this class, a uvm_tr_database (see 7.1) can determine the type of links being passed,
without relying on any arbitrary string names.

7.3.1.1 Class declaration

virtual class uvm_link_base extends uvm_object

7.3.1.2 Common methods

new

function new(
string name = "unnamed-uvm_link_base"

)

71
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
This is a constructor; it has the following parameter:

name—Instance name. The default value of name shall be "unnamed-uvm_link_base".

7.3.1.3 Accessors

7.3.1.3.1 get_lhs

function uvm_object get_lhs()

Returns the left-hand side of the link.

Triggers the do_get_lhs callback (see 7.3.1.4.1).

7.3.1.3.2 set_lhs

function void set_lhs(
uvm_object lhs

)

Specifies the left-hand side of the link.

Triggers the do_set_lhs callback (see 7.3.1.4.2).

7.3.1.3.3 get_rhs

function uvm_object get_rhs()

Returns the right-hand side of the link.

Triggers the do_get_rhs callback (see 7.3.1.4.2).

7.3.1.3.4 set_rhs

function void set_rhs(
uvm_object rhs

)

Specifies the right-hand side of the link.

Triggers the do_set_rhs callback (see 7.3.1.4.4).

7.3.1.3.5 set

function void set(
uvm_object lhs,
uvm_object rhs

)

This is a convenience method for setting both sides in one call.

Triggers both the do_set_rhs (see 7.3.1.4.4) and do_set_lhs (see 7.3.1.4.2) callbacks.
72
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
7.3.1.4 Implementation hooks

7.3.1.4.1 do_get_lhs

pure virtual function uvm_object do_get_lhs()

Intended to be the callback for retrieving the left-hand side.

7.3.1.4.2 do_set_lhs

pure virtual function void do_set_lhs(
uvm_object lhs

)

Intended to be the callback for setting the left-hand side.

7.3.1.4.3 do_get_rhs

pure virtual function uvm_object do_get_rhs()

Intended to be the callback for retrieving the right-hand side.

7.3.1.4.4 do_set_rhs

pure virtual function void do_set_rhs(
uvm_object rhs

)

Intended to be the callback for setting the right-hand side.

7.3.2 uvm_parent_child_link

The uvm_parent_child_link class is used to represent a parent/child relationship between two objects.

7.3.2.1 Class declaration

class uvm_parent_child_link extends uvm_link_base

7.3.2.2 Common methods

7.3.2.2.1 new

function new(
string name = "unnamed-uvm_parent_child_link"

)

This is a constructor; it has the following parameter:

name—Instance name. The default value of name shall be
"unnamed-uvm_parent_child_link".

7.3.2.2.2 get_link

static function uvm_parent_child_link get_link(
uvm_object lhs,
73
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
uvm_object rhs,
string name = "pc_link"

)

Constructs a prefilled link; it has the following parameters:

lhs—Left-hand-side reference.

rhs—Right-hand-side reference.

name—Optional name for the link object. The default value of name shall be "pc_link".

This allows for simple one-line link creations, e.g.,

my_db.establish_link(uvm_parent_child_link::get_link(record1, record2))

7.3.3 uvm_cause_effect_link

The uvm_cause_effect_link is used to represent a cause/effect relationship between two objects.

7.3.3.1 Class declaration

class uvm_cause_effect_link extends uvm_link_base

7.3.3.2 Common methods

7.3.3.2.1 new

function new(
string name = "unnamed-uvm_cause_effect_link"

)

This is a constructor; it has the following parameter:

name—Instance name. The default value of name shall be
"unnamed-uvm_cause_effect_link".

7.3.3.2.2 get_link

static function uvm_cause_effect_link get_link(
uvm_object lhs,
uvm_object rhs,
string name = "ce_link"

)

Constructs a prefilled link; it has the following parameters:

lhs—Left-hand-side reference.

rhs—Right-hand-side reference.

name—Optional name for the link object. The default value of name shall be "ce_link".

This allows for simple one-line link creations, e.g.,

my_db.establish_link(uvm_cause_effect_link::get_link(record1, record2))
74
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
7.3.4 uvm_related_link

The uvm_related_link is used to represent a generic “is related” link between two objects.

7.3.4.1 Class declaration

class uvm_related_link extends uvm_link_base

7.3.4.2 Common methods

7.3.4.2.1 new

function new(
string name = "unnamed-uvm_related_link"

)

This is a constructor; it has the following parameter:

name—Instance name. The default value of name shall be "unnamed-uvm_related_link".

7.3.4.2.2 get_link

static function uvm_related_link get_link(
uvm_object lhs,
uvm_object rhs,
string name = "ce_link"

)

Constructs a prefilled link; it has the following parameters:

lhs—Left-hand-side reference.

rhs—Right-hand-side reference.

name—Optional name for the link object. The default value of name shall be "ce_link".

This allows for simple one-line link creations, e.g.,

my_db.establish_link(uvm_cause_effect_link::get_link(record1, record2))
75
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
8. Factory classes

8.1 Overview

As the name implies, the uvm_factory (see 8.3.1) is used to manufacture (create) UVM objects and
components. Only one instance of the factory is present in a given simulation.

User-defined object and component types are registered with the factory via typedef or macro
invocation, see 8.3.1.8. The factory generates and stores lightweight proxies to the user-defined objects and
components.

When the user requests a new object or component from the factory (e.g., using
uvm_factory::create_object_by_type), the factory determines what type of object to create
based on its configuration, then asks that type’s proxy to create an instance of the type, which is returned to
the user.

8.2 Factory component and object wrappers

8.2.1 Introduction

This subclause defines the proxy component and object classes used by the factory. To avoid the overhead
of creating an instance of every component and object that are registered, the factory holds lightweight
wrappers, or proxies. When a request for a new object is made, the factory calls upon the proxy to create the
object it represents.

8.2.2 type_id

All classes derived from uvm_object (see 5.3) within the UVM package (see 1.3.5) shall have a proxy
declared as type_id, unless explicitly stated otherwise.

This type_id declaration takes the form of

typedef proxy_type type_id

where proxy_type is one of the following:

a) uvm_component_registry #(TYPE, "TYPE") (see 8.2.3)—For non-abstract,
non-parameterized derivatives of uvm_component (see 13.1).

b) uvm_abstract_component_registry #(TYPE, "TYPE") (see 8.2.5.1)—For abstract,
non-parameterized derivatives of uvm_component (see 13.1).

c) uvm_component_registry #(TYPE) (see 8.2.3)—For non-abstract, parameterized
derivatives of uvm_component (see 13.1).

d) uvm_abstract_component_registry #(TYPE) (see 8.2.5.1)—For abstract,
parameterized derivatives of uvm_component (see 13.1).

e) uvm_object_registry #(TYPE, "TYPE") (see 8.2.4)—For non-abstract,
non-parameterized derivatives of uvm_object (see 5.3) that do not derive from uvm_component
(see 13.1).

f) uvm_abstract_object_registry #(TYPE, "TYPE") (see 8.2.5.2)—For abstract,
non-parameterized derivatives of uvm_object (see 5.3) that do not derive from uvm_component
(see 13.1).
76
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
g) uvm_object_registry #(TYPE) (see 8.2.4)—For non-abstract, parameterized derivatives of
uvm_object (see 5.3) that do not derive from uvm_component (see 13.1).

h) uvm_abstract_object_registry #(TYPE) (see 8.2.5.2)—For abstract, parameterized
derivatives of uvm_object (see 5.3) that do not derive from uvm_component (see 13.1).

8.2.3 uvm_component_registry #(T,Tname)

The uvm_component_registry serves as a lightweight proxy for a component of type T and type name
Tname, a string. The proxy enables efficient registration with the uvm_factory (see 8.3.1). Without it,
registration would require an instance of the component itself.

8.2.3.1 Class declaration

class uvm_component_registry #(
type T = uvm_component,
string Tname = "<unknown>"

) extends uvm_object_wrapper

The default value of Tname shall be "<unknown>".

8.2.3.2 Methods

8.2.3.2.1 create_component

virtual function uvm_component create_component (
string name,
uvm_component parent

)

Creates a component of type T using the provided name and parent. This is an override of the method in
uvm_object_wrapper (see 8.3.2). It is called by the factory after determining the type of object to create
and the user can then implement it.

NOTE—Users should not call this method directly, they should use create instead (see 8.2.3.2.4).

8.2.3.2.2 get_type_name

virtual function string get_type_name()

Returns the value given by the string parameter, Tname by default.

8.2.3.2.3 get

static function uvm_component_registry #(T,Tname) get()

Returns a singleton instance.

The singleton instance is registered for initialization via uvm_init (see F.3.1.3) during static initialization. If
uvm_init has been called prior to this registration occurring, the instance’s initialize method (see 8.2.3.2.7)
is called automatically during static initialization.

8.2.3.2.4 create

static function T create(
string name,
77
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
uvm_component parent,
string contxt = ""

)

Returns an instance of the component type T, represented by this proxy, subject to any factory overrides
based on the context provided by contxt if it is not an empty string ("") or otherwise provided by the
parent’s full name. The new instance uses the given leaf name and parent.

8.2.3.2.5 set_type_override

static function void set_type_override (
uvm_object_wrapper override_type,
bit replace = 1

)

This is a pass-through; it configures the factory to create an object of the type represented by override_type
whenever a request is made to create an object of the type T, represented by this proxy, provided no instance
override applies. The original type T shall be a super class of the override_type. replace is a pass-through to
the set_type_override_by_type (see 8.3.1.4.2). The default value of replace shall be 1.

8.2.3.2.6 set_inst_override

static function void set_inst_override(
uvm_object_wrapper override_type,
string inst_path,
uvm_component parent = null

)

Configures the factory to create a component of the type represented by override_type whenever a request is
made to create an object of the type T, represented by this proxy, with matching instance paths. The original
type T shall be a super class of the override_type.

If parent is not specified, inst_path is interpreted as an absolute instance path, which enables instance
overrides to be specified outside the component classes. If parent is specified, inst_path is interpreted as
being relative to the parent’s hierarchical instance path, i.e., {parent.get_full_name(),".",
inst_path} is the instance path that is registered with the override. inst_path may contain wildcards for
matching against multiple contexts.

8.2.3.2.7 initialize

virtual function void initialize()

Registers this proxy object with the current factory (see F.4.1.4.2) via uvm_factory::register (see 8.3.1.3).

8.2.4 uvm_object_registry #(T,Tname)

The uvm_object_registry serves as a lightweight proxy for an uvm_object (see 5.3) of type T and type
name Tname, a string. The proxy enables efficient registration with the uvm_factory (see 8.3.1). Without it,
registration would require an instance of the object itself.

8.2.4.1 Class declaration

class uvm_object_registry #(
type T = uvm_object,
string Tname = "<unknown>"

) extends uvm_object_wrapper
78
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
The default value of Tname shall be "<unknown>".

8.2.4.2 Methods

8.2.4.2.1 create_object

virtual function uvm_object create_object (
string name = ""

)

Creates a component of type T and returns it as a handle to uvm_object (see 5.3). This is called by the
factory after determining the type of object to create and the user can then implement it.

NOTE—Users should not call this method directly, they should use create instead (see 8.2.4.2.4).

8.2.4.2.2 get_type_name

virtual function string get_type_name()

Returns the value given by the string parameter Tname by default. This method overrides the method in
uvm_object_wrapper (see 8.3.2).

8.2.4.2.3 get

static function uvm_object_registry #(T,Tname) get()

Returns a singleton instance.

The singleton instance is registered for initialization via uvm_init (see F.3.1.3) during static initialization. If
uvm_init has been called prior to this registration occurring, the instance’s initialize method (see 8.2.3.2.7)
is called automatically during static initialization.

8.2.4.2.4 create

static function T create(
string name = "",
uvm_component parent = null,
string contxt = ""

)

Returns an instance of the object type T, represented by this proxy, subject to any factory overrides based on
the context provided by the parent’s full name. The contxt argument, if supplied, supersedes the parent’s
context. The new instance uses the given leaf name and parent.

8.2.4.2.5 set_type_override

static function void set_type_override (
uvm_object_wrapper override_type,
bit replace = 1

)

Configures the factory to create an object of the type represented by override_type whenever a request is
made to create an object of the type represented by this proxy, provided no instance override applies. The
original type T is typically a super class of the override_type. The default value of replace shall be 1.
79
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
8.2.4.2.6 set_inst_override

static function void set_inst_override(
uvm_object_wrapper override_type,
string inst_path,
uvm_component parent = null

)

Configures the factory to create an object of the type represented by override_type whenever a request is
made to create an object of the type represented by this proxy, with matching instance paths. The original
type T is typically a super class of the override_type.

If parent is not specified, inst_path is interpreted as an absolute instance path, which enables instance
overrides to be specified outside the component classes. If parent is specified, inst_path is interpreted as
being relative to the parent’s hierarchical instance path, i.e., {parent.get_full_name(),”.”,
inst_path} is the instance path that is registered with the override. inst_path may contain wildcards for
matching against multiple contexts.

8.2.4.2.7 initialize

virtual function void initialize()

Registers this proxy object with the current factory (see F.4.1.4.2) via uvm_factory::register (see 8.3.1.3).

8.2.5 Abstract registries

UVM additionally supports registration of abstract objects and components with the factory. Since
registered classes are abstract, they can not be constructed directly via a call to new. As such, the user needs
to provide a factory override for any abstract classes that are registered with the factory. It shall be an error
to attempt to construct an abstract class for which no overrides have been declared.

The abstract registries should only be used with objects and components that have been declared as virtual
types, e.g.,

virtual my_component_base extends uvm_component

For standard components and objects (i.e., those not declared using the keyword virtual), the standard
registries should be used (see 8.2.3 and 8.2.4).

8.2.5.1 uvm_abstract_component_registry

This serves as a lightweight proxy for an abstract component of type T and type name Tname, a string. The
proxy enables efficient registration with uvm_factory (see 8.3.1). Without it, registration would require an
instance of the component itself.

8.2.5.1.1 Class declaration

class uvm_abstract_component_registry #(type T=uvm_component,
string Tname="<unknown>")
extends uvm_object_wrapper

The default value of the parameter Tname shall be "<unknown>".

This class has the following Methods.
80
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
8.2.5.1.2 create_component

virtual function uvm_component create_component(
string name,
uvm_component parent

)

As abstract classes cannot be constructed, this method shall generate an error and return null.

8.2.5.1.3 get_type_name

This is the same as uvm_component_registry::get_type_name (see 8.2.3.2.2).

8.2.5.1.4 get

This is the same as uvm_component_registry::get (see 8.2.3.2.3).

8.2.5.1.5 create

This is the same as uvm_component_registry::create (see 8.2.3.2.4).

8.2.5.1.6 set_type_override

This is the same as uvm_component_registry::set_type_override (see 8.2.3.2.5).

8.2.5.1.7 set_inst_override

This is the same as uvm_component_registry::set_inst_override (see 8.2.3.2.6).

8.2.5.1.8 initialize

This is the same as uvm_component_registry::initialize (see 8.2.3.2.7).

8.2.5.2 uvm_abstract_object_registry

This serves as a lightweight proxy for an abstract object of type T and type name Tname, a string. The proxy
enables efficient registration with uvm_factory (see 8.3.1). Without it, registration would require an
instance of the object itself.

8.2.5.2.1 Class declaration

class uvm_abstract_object_registry #(type T=uvm_object,
string Tname="<unknown>")
extends uvm_object_wrapper

The default value of the parameter Tname shall be "<unknown>".

This class has the following Methods.

8.2.5.2.2 create_object

virtual function uvm_object create_object(
string name,
uvm_object parent

)

81
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
As abstract classes cannot be constructed, this method shall generate an error and return null.

8.2.5.2.3 get_type_name

This is the same as uvm_object_registry::get_type_name (see 8.2.4.2.2).

8.2.5.2.4 get

This is the same as uvm_object_registry::get (see 8.2.4.2.3).

8.2.5.2.5 create

This is the same as uvm_object_registry::create (see 8.2.4.2.4).

8.2.5.2.6 set_type_override

This is the same as uvm_object_registry::set_type_override (see 8.2.4.2.5).

8.2.5.2.7 set_inst_override

This is the same as uvm_object_registry::set_inst_override (see 8.2.4.2.2).

8.2.5.2.8 initialize

This is the same as uvm_object_registry::initialize (see 8.2.4.2.7).

8.3 UVM factory

This subclause covers the classes that define the UVM factory facility.

8.3.1 uvm_factory

As the name implies, uvm_factory is used to manufacture (create) UVM objects and components. Object
and component types are registered with the factory using lightweight proxies to the actual objects and
components being created. The uvm_object_registry #(T,Tname) (see 8.2.4) and
uvm_component_registry #(T,Tname) (see 8.2.3) classes are used to proxy uvm_objects (see 5.3) and
uvm_components (see 13.1), respectively.

The factory provides both name-based and type-based interfaces.

type-based—These interfaces are far less prone to typographical errors in usage. When errors do
occur, they are caught at compile-time.

name-based—These interfaces are dominated by string arguments that can be misspelled and provided in
the wrong order. Errors in name-based requests might only be caught at the time of the call, if at all. That
being said, a name-based factory is required when crossing language boundaries, such as direct
programming interface (DPI) or the command line.

A uvm_factory is an abstract class that declares many of its methods as pure virtual.

See 8.3.1.8 for details on configuring and using the factory.
82
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
8.3.1.1 Class declaration

virtual class uvm_factory

8.3.1.2 Retrieving the factory

8.3.1.2.1 get

static function uvm_factory get()

This is the static accessor for uvm_factory.

The static accessor is provided as a convenience wrapper around retrieving the factory via the
uvm_coreservice_t::get_factory method (see F.4.1.4.2).

8.3.1.2.2 set

static function void set (
uvm_factory f

)

Sets the factory instance to be f. This is a convenience wrapper around setting the factory via the
uvm_coreservice_t::set_factory method (see F.4.1.4.3).

8.3.1.3 Registering types

register

pure virtual function void register (
uvm_object_wrapper obj

)

Intended to register the given proxy object, obj, with the factory. The proxy object is a lightweight substitute
for the component or object it represents. When the factory needs to create an object of a given type, it calls
the proxy’s create_object (see 8.3.2.2.1) or create_component (see 8.3.2.2.1) method to do so.

When doing name-based operations, the factory calls the proxy’s get_type_name method (see 8.2.3.2.2) to
match against the requested_type_name argument in subsequent calls to create_component_by_name and
create_object_by_name (see 8.3.1.5). If the proxy object’s get_type_name method returns the empty
string (""), name-based lookup is effectively disabled.

8.3.1.4 Type and instance overrides

8.3.1.4.1 set_inst_override_by_type and set_inst_override_by_name

pure virtual function void set_inst_override_by_type (
uvm_object_wrapper original_type,
uvm_object_wrapper override_type,
string full_inst_path

)

pure virtual function void set_inst_override_by_name (
string original_type_name,
string override_type_name,
string full_inst_path

)

83
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
These methods are intended to configure the factory to create an object of the override’s type whenever a
request is made to create an object of the original type using a context that matches full_inst_path.

When overriding by type, original_type and override_type are handles to the types’ proxy objects.
Preregistration is not required.

When overriding by name, the original_type_name typically refers to a preregistered type in the factory. It
may, however, be any arbitrary string. Future calls to any of the create_* methods with the same string and
matching instance path produce the type represented by override_type_name, which needs to be
preregistered with the factory.

The full_inst_path is matched against the concatenation of {parent_inst_path, “.”, name}
provided in future create requests. full_inst_path may include wildcards (* and ?) such that a single
instance override can be applied in multiple contexts. A full_inst_path of “*” is effectively a type
override (see 8.3.1.4.2), as it matches all contexts.

When the factory processes instance overrides, the instance queue is processed in order of override
registrations and the first override match prevails. Thus, more specific overrides should be registered first,
followed by more general overrides.

8.3.1.4.2 set_type_override_by_type and set_type_override_by_name

pure virtual function void set_type_override_by_type (
uvm_object_wrapper original_type,
uvm_object_wrapper override_type,
bit replace = 1

)

pure virtual function void set_type_override_by_name (
string original_type_name,
string override_type_name,
bit replace = 1

)

These methods are intended to configure the factory to create an object of the override’s type whenever a
request is made to create an object of the original type, provided no instance override applies. The original
type shall be a super class of the override_type.

When overriding by type, original_type and override_type are handles to the types’ proxy objects.
Preregistration is not required.

When overriding by name, the original_type_name typically refers to a preregistered type in the factory. It
may, however, be any arbitrary string. Future calls to any of the create_* methods with the same string and
matching instance path produce the type represented by override_type_name, which needs to be
preregistered with the factory.

When replace is 1, a previous override on original_type_name is replaced; otherwise, a previous override, if
any, remains intact. The default value of replace shall be 1.

8.3.1.5 Creation

create_object_by_type, create_component_by_type, create_object_by_name,
and create_component_by_name

pure virtual function uvm_object create_object_by_type (
uvm_object_wrapper requested_type,
84
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
string parent_inst_path = "",
string name = ""

)

pure virtual function uvm_component create_component_by_type (
uvm_object_wrapper requested_type,
string name,
uvm_component parent

)

pure virtual function uvm_object create_object_by_name (
string requested_type_name,
string parent_inst_path = "",
string name = ""

)

pure virtual function uvm_component create_component_by_name (
string requested_type_name,
string parent_inst_path = "",
string name,
uvm_component parent

)

These methods are intended to create and return a component or object of the requested type, which may be
specified by type or by name. A requested component shall be derived from the uvm_component base class
(see 13.1), and a requested object shall be derived from the uvm_object base class (see 5.3).

When requesting by type, requested_type is a handle to the type’s proxy object. Preregistration is not
required.

When requesting by name, request_type_name is a string representing the requested type, which shall have
been registered with the factory with that name prior to the request. If the factory does not recognize the
requested_type_name, an error shall be generated and a null handle returned.

If the optional parent_inst_path is provided, the concatenation {parent_inst_path,“.”,name}
forms an instance path (context) that is used to search for an instance override. parent_inst_path is typically
obtained by calling uvm_component::get_full_name (see 13.1.3.2) on the parent.

If no instance override is found, the factory then searches for a type override.

Once the final override is found, an instance of that component or object is returned in place of the requested
type. New components use the given name and parent. New objects use the given name, if provided.

Override searches are recursively applied, with instance overrides taking precedence over type overrides. If
foo overrides bar, and xyz overrides foo, then a request for bar produces xyz. Recursive loops result
in an error, in which case the type returned is the one that formed the loop. Using the previous example, if
bar overrides xyz, then bar is returned after the error is generated.

8.3.1.6 Name aliases

8.3.1.6.1 set_type_alias

pure virtual function void set_type_alias(string alias_type_name,
uvm_object_wrapper original_type)
85
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Intended to allow overrides by type to use the alias_type_name as an additional name to refer to
original_type.

8.3.1.6.2 set_inst_alias

pure virtual function void set_inst_alias(string alias_type_name,
uvm_object_wrapper original_type, string full_inst_path)

Intended to allow overrides by name to use the alias_type_name as an additional name to refer to
original_type in the context referred to by full_inst_path.

8.3.1.7 Introspection

8.3.1.7.1 find_override_by_type and find_override_by_name

pure virtual function uvm_object_wrapper find_override_by_type (

uvm_object_wrapper requested_type,

string full_inst_path

)

pure virtual function uvm_object_wrapper find_override_by_name (

string requested_type_name,

string full_inst_path

)

These methods are intended to return the proxy to the object that would be created given the arguments.
full_inst_path is typically derived from the parent’s instance path and the leaf name of the object to be
created, i.e.,

{ parent.get_full_name(), “.”, name }.

8.3.1.7.2 find_wrapper_by_name

pure virtual function uvm_object_wrapper find_wrapper_by_name (

string type_name

)

Intended to return the uvm_object_wrapper (see 8.3.2) associated with a given type_name.

8.3.1.7.3 is_type_name_registered

 virtual function bit is_type_name_registered (string type_name)

This method checks if the given type_name was registered in the factory as the name for a type and returns
1 in this case.

8.3.1.7.4 is_type_registered

 virtual function bit is_type_registered (uvm_object_wrapper obj)

This method checks if the given uvm_object_wrapper (see 8.3.2) obj was registered in the factory for a
type and returns 1 in this case.
86
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
8.3.1.7.5 print

pure virtual function void print (
int all_types = 1

)

Intended to print the state of the uvm_factory, including registered types, instance overrides, and type
overrides.

When all_types is 0, only type and instance overrides are displayed. When all_types is 1 (the
default), all registered user-defined types are printed as well, provided they have names associated with
them. When all_types is 2, any UVM types (prefixed with uvm_) are included in the list of registered
types.

8.3.1.8 Usage

Using the factory involves the following three basic operations:

a) Registering objects and components types with the factory.

b) Designing components to use the factory to create objects or components.

c) Configuring the factory with type and instance overrides, both within and outside components.

More reference information can be found in B.2.1, 8.2.3, 8.2.4, and 13.1.

8.3.2 uvm_object_wrapper

The uvm_object_wrapper provides an abstract interface for creating object and component proxies.
Instances of these lightweight proxies, representing every uvm_object-based (see 5.3) and
uvm_component-based object (see 13.1) available in the test environment, are registered with the
uvm_factory (see 8.3.1). When the factory is called upon to create an object or component, it finds and
delegates the request to the appropriate proxy.

8.3.2.1 Class declaration

virtual class uvm_object_wrapper

8.3.2.2 Methods

8.3.2.2.1 create_object

virtual function uvm_object create_object (
string name = ""

)

Creates a new object with the optional name. An object proxy (see 8.2.4) implements this method to create
an object of a specific type T.

8.3.2.2.2 create_component

virtual function uvm_component create_component (
string name,
uvm_component parent

)

87
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Creates new component, passing to its constructor the given name and parent. A component proxy (see
8.2.3) implements this method to create an object of a specific type T.

8.3.2.2.3 get_type_name

virtual function string get_type_name()

Derived classes implement this method to return the type name of the object created by create_component
(see 8.3.2.2.2) or create_object (see 8.3.2.2.1).

8.3.3 uvm_default_factory

Default implementation of the UVM factory.

Class declaration

class uvm_default_factory extends uvm_factory

uvm_default_factory can be extended (from uvm_factory); it provides a full implementation of all
uvm_factory’s methods (see 8.3.1).
88
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
9. Phasing

9.1 Overview

UVM implements an automated mechanism for phasing the execution of the various components in a
testbench.

9.2 Implementation

The API described here provides a general purpose testbench phasing solution, consisting of a phaser
machine that traverses a master schedule graph. This machine is built by the integrator from one or more
instances of template schedules provided by UVM or by third-party verification intellectual property (VIP),
and it supports implicit or explicit synchronization, run-time control of threads, and jumps.

Each schedule node refers to a single phase compatible with that VIP’s components and that executes the
required behavior via an IMP (see F.2.5.1).

9.2.1 Class hierarchy

A single class represents the definition, state, and context of a phase. It is instantiated once as a singleton
IMP (see F.2.5.1) and one or more times as nodes in a graph that represent serial and parallel phase
relationships and store the current state as the phaser progresses, and also as the phase implementation that
specifies required component behavior (by extension into the component context if non-default behavior
required.).

9.2.2 Phasing related classes

The following classes are part of phasing:

a) uvm_phase—The base class for defining a phase’s behavior, state, and context. See 9.3.1.

b) uvm_domain—A phasing schedule node representing an independent branch of the schedule. See
9.4.

c) uvm_bottomup_phase—A phase implementation for bottom-up function phases. See 9.5.

d) uvm_topdown_phase—A phase implementation for top-down function phases. See 9.7.

e) uvm_task_phase—A phase implementation for task phases. See 9.6.

9.2.3 Common and run-time phases

— The common phases to all uvm_components (see 13.1) are described in 9.8.

— The run-time phases are described in 9.8.2.

9.3 Phasing definition classes

The following class are used to specify a phase and its implied functionality.

9.3.1 uvm_phase

This base class defines everything about a phase: its behavior, state, and context.

To define behavior, UVM or the user extends it to create singleton objects that capture the definition of what
the phase does and how it does it. These are then cloned to produce multiple nodes that are hooked up in a
89
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
graph structure to provide context—which phases follow which—and to hold the state of the phase
throughout its lifetime.

UVM provides default extensions of this class for the standard run-time phases.

NOTE—Users may likewise extend this class to define the phase proxy for a particular component context as required.

9.3.1.1 Phase definition, context, and state

9.3.1.1.1 Phase definition

To create custom phases, use one of the three predefined extended classes that encapsulate behavior for
different phase types: uvm_task_phase (see 9.6), uvm_bottomup_phase (see 9.5), and
uvm_topdown_phase (see 9.7).

a) Extend one of these classes as appropriate to create a uvm_YOURNAME_phase class (or
YOURPREFIX_NAME_phase class) for each phase; this new class contains the default
implementation of the new phase, is a uvm_component-compatible delegate (see 13.1), and may be
a null implementation.

b) Instantiate a singleton instance of that class for user-code to use when a phase handle is required.

c) If this custom phase depends on methods that are not in uvm_component, but are within an
extended class, then extend the base YOURPREFIX_NAME_phase class with parameterized
component class context as required to create a specialized proxy that calls the user-defined
extended component class methods.

This scheme ensures compile safety for any user-defined extended component classes while providing
homogeneous base types for APIs and underlying data structures.

9.3.1.1.2 Phase context

A schedule is a coherent group of one or mode phase/state nodes linked together by a graph structure,
allowing arbitrary linear/parallel relationships to be specified, and executed by stepping through them in the
graph order. Each schedule node points to a phase, holds the execution state of that phase, and has optional
links to other nodes for synchronization.

The main operations are: construct, add phases, and instantiate hierarchically within another schedule.

Each graph structure is a directed acyclic graph (DAG). Each instance is a node connected to others to form
the graph. Each node in the graph has zero or more successors, and zero or more predecessors. No nodes are
completely isolated from others. Exactly one node has zero predecessors. This is the root node.

Also, since the graph is acyclic, following the forward arrows never lead back to the starting point for any
nodes in the graph; but, eventually this leads to a node with no successors.

9.3.1.1.3 Phase state

A given phase may appear multiple times in the complete phase graph, due to the multiple independent
domain feature and the ability for different VIP to customize their own phase schedules (perhaps reusing
existing phases). Each node instance in the graph maintains its own state of execution.

Phase state is represented by a value of uvm_phase_state (see F.2.5.2). A phase object that is not a schedule
or a node within a schedule has the phase state value UVM_PHASE_UNINITIALIZED. Other phase objects
90
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
may progress through the states in the order shown for uvm_phase_state, with the exception of responding
to a jump (see F.2.5.2).

UVM_PHASE_ENDED transitions to UVM_PHASE_CLEANUP if no jump or UVM_PHASE_JUMPING if
there is a jump (see F.2.5.2). Each transition of phase state triggers a callback (see 9.3.3).

9.3.1.2 Class declaration

class uvm_phase extends uvm_object

9.3.1.3 Methods

9.3.1.3.1 new

function new(
string name = "uvm_phase",
uvm_phase_type phase_type = UVM_PHASE_SCHEDULE,
uvm_phase parent = null

)

Creates a new phase node, with a name and phase_type (one of UVM_PHASE_IMP, UVM_PHASE_NODE,
UVM_PHASE_SCHEDULE, or UVM_PHASE_DOMAIN). The default value of phase_type shall be
UVM_PHASE_SCHEDULE.

9.3.1.3.2 get_phase_type

function uvm_phase_type get_phase_type()

Returns the phase type as defined by uvm_phase_type (see F.2.5.1).

9.3.1.3.3 set_max_ready_to_end_iterations

virtual function void set_max_ready_to_end_iterations(int max)

Sets the maximum number of iterations of ready_to_end. A raise and drop of objection while this phase
is in phase_ready_to_end causes a new iteration of phase_ready_to_end if the new iteration count is less
than this value (see 13.1.4.3.2). The default value is the value returned from
get_max_ready_to_end_iterations (see 9.3.1.3.6).

9.3.1.3.4 get_max_ready_to_end_iterations

virtual function int get_max_ready_to_end_iterations()

Returns the maximum number of iterations of ready_to_end (see 9.3.1.3.3).

9.3.1.3.5 set_default_max_ready_to_end_iterations

static function void set_default_max_ready_to_end_iterations(int max)

Sets the global default maximum number of iterations of phase_ready_to_end (see 9.3.1.3.3). The default
value is 20.

9.3.1.3.6 get_default_max_ready_to_end_iterations

static function int get_max_ready_to_end_iterations()
91
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Returns the default maximum number of iterations of ready_to_end (see 9.3.1.3.5).

9.3.1.4 State

9.3.1.4.1 get_state

function uvm_phase_state get_state()

This is an accessor to return the current state of this phase.

9.3.1.4.2 get_run_count

function int get_run_count()

This is an accessor to return the integer number of times this phase has executed.

9.3.1.4.3 find_by_name

function uvm_phase find_by_name(

string name,

bit stay_in_scope = 1

)

Locates a phase node with the specified name and returns its handle. When stay_in_scope is set to 1, this
only searches within this phase’s schedule and domain. The default value of stay_in_scope shall be 1.

9.3.1.4.4 find

function uvm_phase find(

uvm_phase phase,

bit stay_in_scope = 1

)

Locates the phase node with the specified phase IMP and returns its handle. When stay_in_scope is set to 1,
this only searches within this phase’s schedule and domain. The default value of stay_in_scope shall be 1.

9.3.1.4.5 is

function bit is(

uvm_phase phase

)

Returns 1 if the containing uvm_phase refers to the same phase as the phase argument, 0 otherwise.

9.3.1.4.6 is_before

function bit is_before(

uvm_phase phase

)

Returns 1 if the containing uvm_phase refers to a phase that is earlier than the phase argument, 0 otherwise.
92
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
9.3.1.4.7 is_after

function bit is_after(
uvm_phase phase

)

Returns 1 if the containing uvm_phase refers to a phase that is later than the phase argument, 0 otherwise.

9.3.1.5 Callbacks

9.3.1.5.1 exec_func

virtual function void exec_func(
uvm_component comp,
uvm_phase phase

)

Implements the proxy functionality for a function phase type comp—the component to execute the
functionality upon phase—the phase schedule that originated this phase call.

9.3.1.5.2 exec_task

virtual task exec_task(
uvm_component comp,
uvm_phase phase

)

Implements the proxy functionality for a task phase type comp—the component to execute the functionality
upon phase—the phase schedule that originated this phase call.

9.3.1.6 Schedule

9.3.1.6.1 add

function void add(
uvm_phase phase,
uvm_phase with_phase = null,
uvm_phase after_phase = null,
uvm_phase before_phase = null,
uvm_phase start_with_phase = null,
uvm_phase end_with_phase = null

)

Adds phase to the schedule or domain. add shall be called only from a phase with the type
UVM_PHASE_SCHEDULE or UVM_PHASE_DOMAIN. Optionally, one or more phases may be specified to
specify how the new phase aligns with existing phases. The optional phases shall already exist in the
schedule or domain. If no optional phases are specified, phase is appended to the schedule or domain.

If with_phase is not null, phase is added in parallel with with_phase. If after_phase is not null, phase is
added as a successor to after_phase. If before_phase is not null, phase is added as a predecessor to
before_phase. If start_with_phase is not null, phase is added as a successor to the predecessor(s) of
start_with_phase. If end_with_phase is not null, phase is added as a predecessor to the successor(s) of
end_with_phase. with_phase, after_phase, and start_with_phase specify the predecessor of phase; only one
of these shall be non-null. with_phase, before_phase, and end_with_phase specify the successor of phase;
only one of these shall be non-null.
93
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
9.3.1.6.2 get_parent

function uvm_phase get_parent()

Returns the parent schedule node, if any, for the hierarchical graph traversal.

9.3.1.6.3 get_full_name

virtual function string get_full_name()

Returns the full path from the enclosing domain down to this node. The singleton IMP phases have no
hierarchy.

9.3.1.6.4 get_schedule

function string get_schedule(
bit hier = 0

)

Returns the topmost parent schedule node, if any, for the hierarchical graph traversal. The default value of
hier shall be 0.

9.3.1.6.5 get_schedule_name

function string get_schedule_name(
bit hier = 0

)

Returns the schedule name associated with this phase node. An implementation calls get_schedule (hier)
(see 9.3.1.6.4) and then constructs a hierarchical name including any schedule names above the returned
schedule. The default value of hier shall be 0.

9.3.1.6.6 get_domain

function uvm_domain get_domain()

Returns the enclosing domain or null if there is none.

9.3.1.6.7 get_imp

function uvm_phase get_imp()

Returns the phase implementation for this node. Returns null if this phase type is not a UVM_PHASE_IMP.

9.3.1.6.8 get_domain_name

function string get_domain_name()

Returns the domain name associated with this phase node or "unknown" if no domain found.

9.3.1.6.9 get_adjacent_predecessor_nodes

function void get_adjacent_predecessor_nodes(
ref uvm_phase pred[]

)

94
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Provides an array of nodes that are predecessors to this phase node. A predecessor node is defined as any
phase node that lies prior to this node in the phase graph; an adjacent predecessor node has no nodes
between this node and the predecessor node.

9.3.1.6.10 get_adjacent_successor_nodes

function void get_adjacent_successor_nodes(
ref uvm_phase pred[]

)

Provides an array of nodes that are successors to this phase node. A successor node is defined as any phase
node that lies after to this node in the phase graph, with no nodes between this node and the successor node.

9.3.1.7 Phase done objections

Task-based phase nodes within the phasing graph provide a uvm_objection based interface (see 10.5.1) for
prolonging the execution of the phase. All other phase types do not contain an objection and shall report an
error if the user attempts to use raise_objection (see 9.3.1.7.2), drop_objection (see 9.3.1.7.3), or
get_objection_count (see 9.3.1.7.4).

9.3.1.7.1 get_objection

function uvm_objection get_objection()

Returns the uvm_objection (see 10.5.1) that gates the termination of the phase.

9.3.1.7.2 raise_objection

virtual function void raise_objection (
uvm_object obj,
string description = "",
int count = 1

)

Raises an objection to ending this phase, which provides components with greater control over the phase
flow for processes that are not implicit objectors to the phase. The default value of count shall be 1. For
more details, refer to the uvm_objection version of this function (see 10.5.1.3.3).

9.3.1.7.3 drop_objection

virtual function void drop_objection (
uvm_object obj,
string description = "",
int count = 1

)

Drops an objection to ending this phase. The default value of count shall be 1. For more details, refer to the
uvm_objection version of this function (see 10.5.1.3.4).

9.3.1.7.4 get_objection_count

virtual function int get_objection_count(
uvm_object obj = null

)

95
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
This is a pass through to the get_objection_count on the objection returned by get_objection. See 10.5.1.5.3.

9.3.1.8 Synchronization

The functions sync (see 9.3.1.8.1) and unsync (see 9.3.1.8.2) add relationships between nodes, such that the
node’s start and end are synchronized.

9.3.1.8.1 sync

function void sync(
uvm_domain target,
uvm_phase phase = null,
uvm_phase with_phase = null

)

Synchronizes two domains, fully or partially.

a) target—handle of target domain for synchronizing this one.

b) phase—optional single phase in this domain to synchronize; otherwise, sync all.

c) with_phase—optional different target-domain phase with which to synchronize; otherwise, use
phase in the target domain.

9.3.1.8.2 unsync

function void unsync(
uvm_domain target,
uvm_phase phase = null,
uvm_phase with_phase = null

)

Removes synchronization between two domains, fully or partially.

a) target—handle of target domain from which to remove synchronization.

b) phase—optional single phase in this domain to unsynchronize; otherwise, unsync all.

c) with_phase—optional different target-domain phase with which to unsynchronize; otherwise, use
phase in the target domain.

9.3.1.8.3 wait_for_state

task wait_for_state(
uvm_phase_state state,
uvm_wait_op op = UVM_EQ

)

Waits until this phase compares with the given state and op operands.

To wait for the phase to be at the started state or afterward:

wait_for_state(UVM_PHASE_STARTED, UVM_GTE)

9.3.1.9 Jumping

Phase jumping refers to a change in the normal process of a phase ending and the successor phase(s)
starting. A phase can be made to end prematurely and/or which phase is started next can be changed. To
96
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
jump all active phases within a domain that are predecessors or successors, directly or indirectly, of the jump
target, use uvm_domain::jump (see 9.4.2.4). Phase jumping can also be specified for an individual phase
instance by using the following functions.

9.3.1.9.1 jump

function void jump(
uvm_phase phase

)

Jumps to the specified phase. The phase shall be in the set of predecessors or successors of the current
phase. All active phases that share phase as a common successor or predecessor shall also be affected.

9.3.1.9.2 set_jump_phase

function void set_jump_phase(
uvm_phase phase

)

Specifies which phase to transition to when this phase completes. Note that this function is part of what
jump does (see 9.3.1.9.1); unlike jump, this does not set the flag to terminate the phase prematurely.

9.3.1.9.3 end_prematurely

function void end_prematurely()

Specifies a flag to cause the phase to end prematurely. Note that this function is part of what jump does (see
9.3.1.9.1); unlike jump, this does not set a jump_phase to go to after the phase ends.

9.3.1.9.4 get_jump_target

function uvm_phase get_jump_target()

Returns a handle to the target phase of the current jump or null, if no jump is in progress. It is valid from the
time jump (see 9.3.1.9.1) or set_jump_phase (see 9.3.1.9.2) is called until the jump occurs. There is also a
callback for UVM_PHASE_JUMPING that contains a valid return from this function.

9.3.2 uvm_phase_state_change

This is a phase state transition descriptor, which is used to describe the phase transition that caused a
uvm_phase_cb::state_changed callback to be invoked.

9.3.2.1 Class declaration

class uvm_phase_state_change extends uvm_object

9.3.2.2 Methods

9.3.2.2.1 get_state

virtual function uvm_phase_state get_state()

Returns the state to which the phase just transitioned. This is functionally equivalent to
uvm_phase::get_state (see 9.3.1.4.1).
97
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
9.3.2.2.2 get_prev_state

virtual function uvm_phase_state get_prev_state()

Returns the state from which the phase just transitioned.

9.3.2.2.3 jump_to

function uvm_phase jump_to()

If the current state is UVM_PHASE_ENDED or UVM_PHASE_JUMPING because of a phase jump, this
returns the phase that is the target of jump. Otherwise, it returns null.

9.3.3 uvm_phase_cb

This class defines a callback method that is invoked by the phaser during the execution of a specific node in
the phase graph or for all phase nodes. User-defined callback extensions can be used to integrate data types
that are not natively phase-aware with the UVM phasing.

9.3.3.1 Class declaration

class uvm_phase_cb extends uvm_callback

9.3.3.2 Methods

9.3.3.2.1 new

function new(
string name = "unnamed-uvm_phase_cb"

)

This is a constructor. The default value of name shall be "unnamed-uvm_phase_cb".

9.3.3.2.2 phase_state_change

virtual function void phase_state_change(
uvm_phase phase,
uvm_phase_state_change change

)

Called whenever a phase changes state. The change descriptor describes the transition that was just
completed. The callback method is invoked immediately after the phase state has changed, but before the
phase implementation is executed.

An extension may interact with the phase, such as raising the phase objection to prolong the phase, in a
manner that is consistent with the current phase state.

By default, this callback method does nothing. Unless otherwise specified, modifying the phase transition
descriptor has no effect on the phasing schedule or execution.

9.4 uvm_domain

This is a phasing schedule node representing an independent branch of the schedule. It is a handle used to
assign domains to components or hierarchies in the testbench.
98
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
9.4.1 Class declaration

class uvm_domain extends uvm_phase

9.4.2 Methods

9.4.2.1 new

function new(
string name

)

Creates a new instance (type = UVM_PHASE_DOMAIN) of a phase domain. The new instance is added to
the list of all domains indexed by name. It shall be an error to call new with a name that is already in the list
of all domains.

9.4.2.2 get_domains

static function void get_domains(
output uvm_domain domains[string]

)

Provides a list of all domains for the domains argument. The list of all domains always contains a
domains["common"] entry that contains the UVM common phases (see 9.8) and a domains["uvm"]
entry that contains the UVM run-time phases (see 9.8.2).

9.4.2.3 add_uvm_phases

static function void add_uvm_phases(
uvm_phase schedule

)

Appends the built-in UVM phases to the given schedule.

9.4.2.4 jump

function void jump(
uvm_phase phase

)

Jumps all active phases of this domain to phase if there is a path between the active phases of this domain
and phase.

9.5 uvm_bottomup_phase

This is a virtual base class for function phases that operate bottom-up. The virtual function execute (see
9.5.2.3) is called for each component. A bottom-up phase invokes the delegate function first on components
without any children; once finished, the delegate function is invoked on each of the first sets’ parents, etc. A
bottom-up function phase completes when the execute method has been called and returned on all
applicable components in the hierarchy.

9.5.1 Class declaration

virtual class uvm_bottomup_phase extends uvm_phase
99
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
9.5.2 Methods

9.5.2.1 new

function new(
string name

)

Initializes a new instance (type = UVM_PHASE_IMP) of a bottom-up phase.

9.5.2.2 traverse

virtual function void traverse(
uvm_component comp,
uvm_phase phase,
uvm_phase_state state

)

Traverses the component tree in bottom-up order and, depending on the state, calls
comp.phase_started(phase), execute(comp,phase), or comp.phase_ended(phase).

9.5.2.3 execute

virtual function void execute(
uvm_component comp,
uvm_phase phase

)

Calls uvm_phase::exec_func(comp,phase).

9.6 uvm_task_phase

This is the base class for all task phases. It forks a call to uvm_phase::exec_task (see 9.3.1.5.2) for each
component in the hierarchy.

The completion of these tasks does not imply, nor is it required for, the end of phase. Once the phase
completes, any remaining forked uvm_phase::exec_task threads are forcibly and immediately killed.

By default, the way for a task phase to extend over time is if there is at least one component that raises an
objection, e.g.,

class my_comp extends uvm_component
task main_phase(uvm_phase phase)

phase.raise_objection(this, "Applying stimulus")
...
phase.drop_objection(this, "Applied enough stimulus")

endtask
endclass

There is however one scenario wherein time advances within a task-based phase without any objections to
the phase being raised. If two (or more) phases are synched, or they share a common successor, such as the
uvm_run_phase (see 9.8.1.5) and the uvm_post_shutdown_phase (see 9.8.2.12) sharing the
uvm_extract_phase (see 9.8.1.6) as a successor, then phase advancement is delayed until all predecessors
of the common successor are ready to proceed. Because of this, it is possible for time to advance between the
100
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
uvm_component::phase_started (see 13.1.4.3.1) and uvm_component::phase_ended (see 13.1.4.3.1) of
a task phase without any participants in the phase raising an objection.

A task phase shall not share a successor with a topdown_phase or bottomup_phase, as that setup
could try to make the topdown_phase or bottomup_phase consume time.

9.6.1 Class declaration

virtual class uvm_task_phase extends uvm_phase

9.6.2 Methods

9.6.2.1 new

function new(
string name

)

Initializes a new instance (type = UVM_PHASE_IMP) of a task-based phase.

9.6.2.2 traverse

virtual function void traverse(
uvm_component comp,
uvm_phase phase,
uvm_phase_state state

)

Traverses the component tree and, depending on the state, calls comp.phase_started(phase),
execute(comp,phase), comp.phase_ready_to_end (phase), or comp.phase_ended
(phase).

9.6.2.3 execute

virtual function void execute(
uvm_component comp,
uvm_phase phase

)

Forks uvm_phase::exec_task(comp,phase).

9.7 uvm_topdown_phase

This is a virtual base class for function phases that operate top-down. The virtual function execute (see
9.7.2.3) is called for each component.

A top-down function phase completes when the execute method has been called and returned on all
applicable components in the hierarchy.

9.7.1 Class declaration

virtual class uvm_topdown_phase extends uvm_phase
101
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
9.7.2 Methods

9.7.2.1 new

function new(
string name

)

Initializes a new instance (type = UVM_PHASE_IMP) of a top-down phase.

9.7.2.2 traverse

virtual function void traverse(
uvm_component comp,
uvm_phase phase,
uvm_phase_state state

)

Traverses the component tree in top-down order and, depending on the state, calls
comp.phase_started(phase), execute(comp,phase), or comp.phase_ended(phase).

9.7.2.3 execute

virtual function void execute(
uvm_component comp,
uvm_phase phase

)

Calls uvm_phase::exec_func(comp,phase).

9.8 Predefined phases

UVM defines some phases. The user is free to create more phases.

The names of the UVM predefined phases (which are returned by get_name for a phase instance) match the
class names specified in this subclause with the “uvm_” and “_phase” terms removed. Each UVM
predefined phase implements the following method.

get

static function TYPE get()

which returns the singleton phase handle for each phase. The return value of get is of the same type as the
phase itself, such that uvm_build_phase::get has a return type of uvm_build_phase,
uvm_run_phase has a return type of uvm_run_phase, and so on.

The UVM predefined phases are classified as common phases and run-time phases. The common phases are
the set of function and task phases that all uvm_components (see 13.1) execute together. All
uvm_components are always synchronized with respect to the common phases. The run-time phases
execute in a predefined phase schedule that runs concurrently to the common phase uvm_run_phase (see
9.8.1.5). By default, all uvm_components (see 13.1) using the run-time schedule are synchronized with
respect to the predefined phases in the schedule. It is possible for components to belong to different domains
in which case their schedules can be unsynchronized with a call to unsync (see 9.3.1.8.2).
102
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
9.8.1 Common phases

The common phases are described in the order of their execution. All of the phases before uvm_run_phase
(see 9.8.1.5) shall execute at simulation time 0.

9.8.1.1 uvm_build_phase

class uvm_build_phase extends uvm_topdown_phase

This is a uvm_topdown_phase (see 9.7) whose exec_func calls the uvm_component::build_phase
method (see 13.1.4.1.1). This phase gives components a defined time to create and configure the testbench.

9.8.1.2 uvm_connect_phase

class uvm_connect_phase extends uvm_bottomup_phase

This is a uvm_bottomup_phase (see 9.5) whose exec_func calls the uvm_component::connect_phase
method (see 13.1.4.1.2). This phase gives components a defined time to establish cross-component
connections.

9.8.1.3 uvm_end_of_elaboration_phase

class uvm_end_of_elaboration_phase extends uvm_bottomup_phase

This is a uvm_bottomup_phase (see 9.5) whose exec_func calls the
uvm_component::end_of_elaboration_phase method (see 13.1.4.1.3).

9.8.1.4 uvm_start_of_simulation_phase

class uvm_start_of_simulation_phase extends uvm_bottomup_phase

This is a uvm_bottomup_phase (see 9.5) whose exec_func calls the
uvm_component::start_of_simulation_phase method (see 13.1.4.1.4).

9.8.1.5 uvm_run_phase

class uvm_run_phase extends uvm_task_phase

This is a uvm_task_phase (see 9.6) whose exec_task calls the uvm_component::run_phase virtual
method (see 13.1.4.1.5). This phase runs in parallel to the run-time phases, uvm_pre_reset_phase through
uvm_post_shutdown_phase (see 9.8.2). The uvm_run_phase shall always be running when time is
advancing, so when this phase starts, simulation time is still 0, and the time when this phase ends shall be
the same time that the uvm_final_phase ends (see 9.8.1.9).

The run phase starts a global timeout counter thread. The expiration time of the counter shall be
implementation-specific, unless set via uvm_root::set_timeout (see F.7.2.3) prior to uvm_run_phase
starting. If the counter expires before uvm_run_phase ends, it shall generate a fatal error.

9.8.1.6 uvm_extract_phase

class uvm_extract_phase extends uvm_bottomup_phase

This is a uvm_bottomup_phase (see 9.5) whose exec_func calls the uvm_component::extract_phase
method (see 13.1.4.1.6).
103
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
9.8.1.7 uvm_check_phase

class uvm_check_phase extends uvm_bottomup_phase

This is a uvm_bottomup_phase (see 9.5) whose exec_func calls the uvm_component::check_phase
method (see 13.1.4.1.7).

9.8.1.8 uvm_report_phase

class uvm_report_phase extends uvm_bottomup_phase

This is a uvm_bottomup_phase (see 9.5) whose exec_func calls the uvm_component::report_phase
method (see 13.1.4.1.8).

9.8.1.9 uvm_final_phase

class uvm_final_phase extends uvm_topdown_phase

This is a uvm_topdown_phase (see 9.7) whose exec_func calls the uvm_component::final_phase
method (see 13.1.4.1.9).

9.8.2 UVM run-time phases

The run-time phases shall include the following task phases, shown in their default order of execution. Users
and implementations may add run-time phases before or after any of these specified phases. The run-time
phases shall not start before the end of uvm_start_of_simulation_phase (see 9.8.1.4).
uvm_extract_phase (see 9.8.1.6) shall not start before the run-time phases have ended. These specified
phases shall not overlap within an instance of uvm_domain.

9.8.2.1 uvm_pre_reset_phase

class uvm_pre_reset_phase extends uvm_task_phase

This is a uvm_task_phase (see 9.6) whose exec_task calls the uvm_component::pre_reset_phase
method (see 13.1.4.2.1).

9.8.2.2 uvm_reset_phase

class uvm_reset_phase extends uvm_task_phase

This is a uvm_task_phase (see 9.6) whose exec_task calls the uvm_component::reset_phase method
(see 13.1.4.2.2).

9.8.2.3 uvm_post_reset_phase

class uvm_post_reset_phase extends uvm_task_phase

This is a uvm_task_phase (see 9.6) whose exec_task calls the uvm_component::post_reset_phase
method (see 13.1.4.2.3).

9.8.2.4 uvm_pre_configure_phase

class uvm_pre_configure_phase extends uvm_task_phase
104
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
This is a uvm_task_phase (see 9.6) whose exec_task calls the uvm_component::pre_configure_phase
method (see 13.1.4.2.4).

9.8.2.5 uvm_configure_phase

class uvm_configure_phase extends uvm_task_phase

This is a uvm_task_phase (see 9.6) whose exec_task calls the uvm_component::configure_phase
method (see 13.1.4.2.5).

9.8.2.6 uvm_post_configure_phase

class uvm_post_configure_phase extends uvm_task_phase

This is a uvm_task_phase (see 9.6) whose exec_task calls the
uvm_component::post_configure_phase method (see 13.1.4.2.6).

9.8.2.7 uvm_pre_main_phase

class uvm_pre_main_phase extends uvm_task_phase

This is a uvm_task_phase (see 9.6) whose exec_task calls the uvm_component::pre_main_phase
method (see 13.1.4.2.7).

9.8.2.8 uvm_main_phase

class uvm_main_phase extends uvm_task_phase

This is a uvm_task_phase (see 9.6) whose exec_task calls the uvm_component::main_phase method
(see 13.1.4.2.8).

9.8.2.9 uvm_post_main_phase

class uvm_post_main_phase extends uvm_task_phase

This is a uvm_task_phase (see 9.6) whose exec_task calls the uvm_component::post_main_phase
method (see 13.1.4.2.9).

9.8.2.10 uvm_pre_shutdown_phase

class uvm_pre_shutdown_phase extends uvm_task_phase

This is a uvm_task_phase (see 9.6) whose exec_task calls the
uvm_component::pre_shutdown_phase method (see 13.1.4.2.10).

9.8.2.11 uvm_shutdown_phase

class uvm_shutdown_phase extends uvm_task_phase

This is a uvm_task_phase (see 9.6) whose exec_task calls the uvm_component::shutdown_phase
method (see 13.1.4.2.11).
105
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
9.8.2.12 uvm_post_shutdown_phase

class uvm_post_shutdown_phase extends uvm_task_phase

This is a uvm_task_phase (see 9.6) whose exec_task calls the
uvm_component::post_shutdown_phase method (see 13.1.4.2.12).
106
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
10. Synchronization classes

UVM provides event and barrier synchronization classes for managing concurrent processes, as follows:

a) uvm_event#(T)—UVM’s event class (see 10.1.2) augments the SystemVerilog event data type
with such services as setting callbacks and data delivery.

b) uvm_barrier—A barrier is used to prevent a pre-configured number of processes from continuing
until all have reached a certain point in simulation (see 10.3).

c) uvm_event_pool and uvm_barrier_pool—The event and barrier pool classes are specializations of
uvm_pool #(string, T) (see 11.2) used to store collections of uvm_events (see 10.1) and
uvm_barriers (see 10.3), respectively, indexed by string name. Each pool class contains a static,
“global” pool instance for sharing across all processes (see 10.4).

d) uvm_event_callback—The event callback is used to create callback objects that may be attached to
uvm_events (see 10.2).

10.1 Event classes

This subclause defines the uvm_event_base class (see 10.1.1) and its derivative uvm_event#(T) (see
10.1.2).

10.1.1 uvm_event_base

The uvm_event_base class is an abstract wrapper class around the SystemVerilog event construct. It
provides some additional services such as setting callbacks and maintaining the number of waiters.

10.1.1.1 Class declaration

virtual uvm_event_base extends uvm_object

10.1.1.2 Methods

10.1.1.2.1 new

function new (
string name = ""

)

Creates a new event object.

10.1.1.2.2 wait_on

virtual task wait_on (
bit delta = 0

)

Waits for the event to be activated for the first time.

If the event has already been triggered, this task returns immediately. If a delta value is specified, the
caller is forced to wait a single delta #0 before returning. This prevents the caller from returning before
previously waiting processes have had a chance to resume. The default value of delta shall be 0.

Once an event has been triggered, it will be remain “on” until the event is reset (see 10.1.1.2.8).
107
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
10.1.1.2.3 wait_off

virtual task wait_off (
bit delta = 0

)

If the event has already triggered and is “on,” this task waits for the event to be turned “off” via a call to
reset (see 10.1.1.2.8).

If the event has not already been triggered, this task returns immediately. If delta value is specified, the
caller is forced to wait a single delta #0 before returning. This prevents the caller from returning before
previously waiting processes have had a chance to resume. The default value of delta shall be 0.

10.1.1.2.4 wait_trigger

virtual task wait_trigger()

Waits for the event to be triggered.

If one process calls wait_trigger in the same delta as another process calls uvm_event#(T)::trigger (see
10.1.2.2.4), a race condition occurs. If the call to wait occurs before the trigger, this method returns in this
delta. If the wait occurs after the trigger, this method does not return until the next trigger, which may never
occur and, thus, cause a deadlock. This race can be avoided by using wait_ptrigger (see 10.1.1.2.5).

10.1.1.2.5 wait_ptrigger

virtual task wait_ptrigger()

Waits for a persistent trigger of the event. Unlike wait_trigger (see 10.1.1.2.4), this views the trigger as
persistent within a given time-slice and, thus, avoids certain race conditions. If this method is called after the
trigger, but within the same time-slice, the caller returns immediately.

10.1.1.2.6 get_trigger_time

virtual function time get_trigger_time()

Returns the time that this event was last triggered. If the event has not been triggered or the event has been
reset, the trigger time is 0.

10.1.1.2.7 is_on

virtual function bit is_on()

Indicates whether the event has been triggered since it was last reset.

A return of 1 indicates the event has triggered.

10.1.1.2.8 reset

virtual function void reset (
bit wakeup = 0

)

108
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Resets the event to its off state. If wakeup is set, all processes currently blocked waiting on wait_trigger
(see 10.1.1.2.4) or wait_ptrigger (see 10.1.1.2.5) for the event are activated before the reset. The default
value of wakeup shall be 0.

No callbacks are called during a reset.

10.1.1.2.9 cancel

virtual function void cancel()

Decrements the number of waiters on the event.

This is used if a process that is waiting on an event is disabled or activated by some other means.

10.1.1.2.10 get_num_waiters

virtual function int get_num_waiters()

Returns the number of processes waiting on the event.

10.1.2 uvm_event#(T)

The uvm_event class is an extension of the abstract uvm_event_base class (see 10.1.1).

The optional parameter T allows the user to define a data type that can be passed during an event trigger.

10.1.2.1 Class declaration

class uvm_event#(
type T = uvm_object

) extends uvm_event_base

10.1.2.2 Methods

10.1.2.2.1 new

function new (
string name = ""

)

Creates a new event object.

10.1.2.2.2 wait_trigger_data

virtual task wait_trigger_data (
output T data

)

This method calls uvm_event_base::wait_trigger (see 10.1.1.2.4) followed by get_trigger_data (see
10.1.2.2.5).

10.1.2.2.3 wait_ptrigger_data

virtual task wait_ptrigger_data (
output T data

)

109
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
This method calls uvm_event_base::wait_ptrigger (see 10.1.1.2.5) followed by get_trigger_data (see
10.1.2.2.5).

10.1.2.2.4 trigger

virtual function void trigger (
T data = get_default_data

)

Triggers the event, resuming all waiting processes.

An optional data argument can be supplied with the enable to provide trigger-specific information. If no
data is provided, then get_trigger_data (see 10.1.2.2.5) shall return the default data (see 10.1.2.2.6).

10.1.2.2.5 get_trigger_data

virtual function T get_trigger_data()

Returns the data, if any, provided by the last call to trigger (see 10.1.2.2.4).

10.1.2.2.6 default data

virtual function void set_default_data (T data)
virtual function T get_default_data()

Default trigger data to be used when trigger (see 10.1.2.2.4) is called without passing in data.
get_default_data shall return the most recent data assigned via set_default_data. The value
returned by get_default_data prior to calling set_default_data is the uninitialized value of
type T.

10.2 uvm_event_callback

The uvm_event_callback class is an abstract class that is used to create callback objects that may be
attached to uvm_event#(T)s (see 10.1.2). To do so, simply derive a new class and override pre_trigger (see
10.2.2.2) and/or post_trigger (see 10.2.2.3).

Callbacks are an alternative to using processes that wait on events. When a callback is attached to an event,
that callback object’s callback function is called each time the event is triggered.

10.2.1 Class declaration

virtual class uvm_event_callback#(
type T = uvm_object

) extends uvm_callback

10.2.2 Methods

10.2.2.1 new

function new (
string name = ""

)

Initializes a new callback object.
110
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
10.2.2.2 pre_trigger

virtual function bit pre_trigger (
uvm_event#(T) e,
T data

)

This callback is called just before triggering the associated event. In a derived class, override this method to
implement any pre-trigger functionality.

If the callback returns 1, the event does not trigger and the post-trigger callback is not called. This provides
a way for a callback to prevent the event from triggering.

In this function, e is the uvm_event#(T) (see 10.1.2) that is being triggered and data is the optional data
associated with the event trigger.

10.2.2.3 post_trigger

virtual function void post_trigger (
uvm_event#(T) e,
T data

)

This callback is called after triggering the associated event. In a derived class, override this method to
implement any post-trigger functionality.

In this function, e is the uvm_event#(T) (see 10.1.2) that is being triggered and data is the optional data
associated with the event trigger.

10.3 uvm_barrier

The uvm_barrier class provides a multi-process synchronization mechanism. It enables a set of processes
to block until the desired number of processes reach the synchronization point, at which time all of the
processes are released.

10.3.1 Class declaration

class uvm_barrier extends uvm_object

10.3.2 Methods

10.3.2.1 new

function new (
string name = "",
int threshold = 0

)

Creates a new barrier object. The default value of threshold shall be 0.

10.3.2.2 wait_for

virtual task wait_for()
111
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Blocks until the number of blocked wait_for calls matches the current threshold.

The number of processes to wait for can be specified by using the set_threshold method (see 10.3.2.6).

10.3.2.3 reset

virtual function void reset (
bit wakeup = 1

)

Resets the barrier. This sets the waiter count back to zero (0).

The threshold is unchanged. After reset, the barrier forces any processes to wait for the threshold again.

If the wakeup bit is set to 1, any currently waiting processes shall be activated. The default value of wakeup
shall be 1.

10.3.2.4 set_auto_reset

virtual function void set_auto_reset (
bit value = 1

)

Determines if the barrier should reset itself after the threshold is reached.

The default is on, so when a barrier hits its threshold it resets and new processes block until the threshold is
reached again.

If auto reset is off, then once the threshold is achieved, new processes pass through without being blocked
until the barrier is reset. The default value of value shall be 1.

10.3.2.5 get_threshold

virtual function int get_threshold()

Returns the current threshold setting for the barrier.

10.3.2.6 set_threshold

virtual function void set_threshold (
int threshold

)

Specifies the process threshold.

This determines how many processes are waiting on the barrier before the processes may proceed. Once the
threshold is reached, all waiting processes are activated.

If threshold is set to a value less than the number of currently waiting processes, the barrier is reset and all
waiting processes are activated.

10.3.2.7 get_num_waiters

virtual function int get_num_waiters()
112
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Returns the number of processes currently waiting at the barrier.

10.3.2.8 cancel

virtual function void cancel()

Decrements the waiter count by one. This is used when a process that is waiting on the barrier is killed or
activated by some other means.

10.4 Pool classes

10.4.1 uvm_event_pool

An object used to store collections of uvm_events (see 10.1).

By default, the event pool contains the events: begin, accept, and end. Events can also be added by
derivative objects. An event pool is a specialization of an uvm_pool #(KEY,T) (see 11.2), e.g., a
uvm_pool #(uvm_event).

10.4.1.1 Class declaration

class uvm_event_pool extends uvm_pool #(string,uvm_event#(uvm_object))

10.4.1.2 Common methods

10.4.1.2.1 new

function new (
 string name = ""
)

Creates a new event pool object.

10.4.1.2.2 get_global_pool

static function uvm_event_pool get_global_pool()

Returns the singleton global event pool.

10.4.1.2.3 get_global

static function uvm_event_pool get_global (
string key

)

Returns the item instance specified by key from the global item pool.

10.4.1.2.4 get

virtual function uvm_event get (
string key

)

Returns the item with the given string key.
113
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
If no item exists by that key, a new item is created with that key and returned.

10.4.2 uvm_barrier_pool

An object used to store collections of uvm_barriers (see 10.3).

10.4.2.1 Class declaration

class uvm_barrier_pool extends uvm_pool #(string,uvm_barrier)

10.4.2.2 Common methods

10.4.2.2.1 new

function new (
 string name = ""
)

Initializes a new barrier pool object.

10.4.2.2.2 get_global_pool

static function uvm_barrier_pool get_global_pool()

Returns the singleton global barrier pool.

10.4.2.2.3 get_global

static function uvm_barrier_pool get_global (
string key

)

Returns the item instance specified by key from the global item pool.

10.4.2.2.4 get

virtual function uvm_barrier get (
string key

)

Returns the item with the given string key.

If no item exists by that key, a new item is created with that key and returned.

10.5 Objection mechanism

This subclause defines the objection mechanism.

10.5.1 uvm_objection

Objections provide a facility for coordinating status information between two or more participating
components, objects, or even module-based IP.
114
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
10.5.1.1 Class declaration

class uvm_objection extends uvm_report_object

10.5.1.2 Common methods

new

function new (
string name = ""

)

Creates a new objection instance.

10.5.1.3 Objection control

10.5.1.3.1 get_propagate_mode

function bit get_propagate_mode()

Returns the propagation mode for this objection, as specified by set_propagate_mode (see 10.5.1.3.2). If
set_propagate_mode has not been called since this objection was created, then get_propagate_mode shall
return 1.

10.5.1.3.2 set_propagate_mode

function void set_propagate_mode (
bit prop_mode

)

Specifies the propagation mode for this objection. By default, objections support hierarchical propagation
for components.

When propagation mode is set to ‘0’, all intermediate callbacks between the source and top shall be skipped.
Since the propagation mode changes the behavior of the objection, it can only be safely changed if there are
no objections raised or draining. Any attempts to change the mode while objections are raised or draining
shall result in an error.

10.5.1.3.3 raise_objection

virtual function void raise_objection (
uvm_object obj = null,
string description = "",
int count = 1

)

Raises the number of objections for the source object by count, which defaults to 1. The object is usually the
this handle of the caller. If object is not specified or null, the implicit top-level component, uvm_root (see
F.7), is chosen.

Raising an objection causes the following to occur:

— The source and total objection counts for object are increased by count. description is a string that
marks a specific objection and is used in tracing/debug.

— The objection’s raised virtual method (see 10.5.1.4.1) is called, which calls the
uvm_component::raised method (see 13.1.5.4) for all of the components up the hierarchy.
115
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
10.5.1.3.4 drop_objection

virtual function void drop_objection (
uvm_object obj = null,
string description = "",
int count = 1

)

Drops the number of objections for the source object by count, which defaults to 1. The object is usually the
this handle of the caller. If object is not specified or null, the implicit top-level component, uvm_root (see
F.7), is chosen.

Dropping an objection causes the following to occur:

a) The source and total objection counts for object are decreased by count. description is a string that
marks a specific objection and is used in tracing/debug. It is error to drop the objection count for
object below zero (0).

b) The objection’s dropped virtual method (see 10.5.1.4.2) is called, which calls the
uvm_component::dropped method (see 13.1.5.5) for all of the components up the hierarchy.

c) If the total objection count has not reached zero (0) for object, the drop shall be propagated up the
object hierarchy as with raise_objection (see 10.5.1.3.3). Then, each object in the hierarchy shall
update their source counts, objections that they originated, and total counts, the total number of
objections by them and all their descendants.

If the total objection count reaches zero (0), propagation up the hierarchy is deferred until a configurable
drain time (see 10.5.1.3.7) has passed and the uvm_component::all_dropped callback (see 13.1.5.6) for the
current hierarchy level has returned. The following process occurs for each instance up the hierarchy from
the source caller:

d) A process is forked in a non-blocking fashion, allowing the drop call to return. The forked process
then does the following.

1) If a drain time was specified for the given object, the process waits for that amount of time.

2) The objection’s all_dropped virtual method (see 10.5.1.4.3) is called, which calls the
uvm_component::all_dropped method (see 13.1.5.6) (if object is a component).

3) The process then waits for the all_dropped callback to complete.

4) After the drain time has elapsed and the all_dropped callback has completed, propagation of
the dropped objection to the parent proceeds as described in raise_objection (see 10.5.1.3.3),
except as described in item e.

e) If a new objection for this object or any of its descendants is raised during the drain time or during
execution of the all_dropped callback (see 10.5.1.4.3) at any point, the hierarchical chain previ-
ously described is terminated and the dropped callback does not go up the hierarchy. The raised (see
10.5.1.4.1) objection propagates up the hierarchy, but the number of raised propagated up is reduced
by the number of drops that were pending waiting for the all_dropped/drain time completion. Thus,
if exactly one objection caused the count to go to zero (0), and during the drain exactly one new
objection comes in, no raises or drops are propagated up the hierarchy.

As an optimization, if the object has no set drain time and no registered callbacks, the forked process shall be
skipped and propagation proceeds immediately to the parent as described.

10.5.1.3.5 clear

virtual function void clear(
uvm_object obj = null

)

116
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Immediately clears the objection state. All counts are cleared and any processes waiting on a call to
wait_for [with objt_event UVM_ALL_DROPPED and obj the implicit top-level component (see F.7)] are
released (see 10.5.1.5.2).

The obj is available for an implementation to use for debug purposes only; its value shall have no functional
effect on outcome of this method. The clear action does not result in objections being dropped, and
therefore, does not result in the standard ::dropped callback (see 10.5.1.4.2) being executed.

10.5.1.3.6 get_drain_time

function time get_drain_time (
uvm_object obj = null

)

Returns the current drain time of the given object (default: 0 ns).

10.5.1.3.7 set_drain_time

function void set_drain_time (uvm_object obj=null, time drain)

Specifies the drain time on the given object to drain.

Sets the drain time, which is the amount of time between the last remaining objection being dropped and the
all_dropped callback (see 10.5.1.4.3) being called. If an objection is raised before this drain time expires,
all_dropped is not called for this iteration.

10.5.1.4 Callback hooks

10.5.1.4.1 raised

virtual function void raised (
uvm_object obj,
uvm_object source_obj,
string description,
int count

)

Objection callback that is called when a raise_objection (see 10.5.1.3.3) has reached obj. The default
implementation attempts to cast obj to a component, and, if successful, calls the uvm_component::raised
hook (see 13.1.5.4).

10.5.1.4.2 dropped

virtual function void dropped (
uvm_object obj,
uvm_object source_obj,
string description,
int count

)

Objection callback that is called when a drop_objection (see 10.5.1.3.4) has reached obj. The default
implementation attempts to cast obj to a component, and, if successful, calls the uvm_component::dropped
hook (see 13.1.5.5).
117
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
10.5.1.4.3 all_dropped

virtual task all_dropped (
uvm_object obj,
uvm_object source_obj,
string description,
int count

)

Objection callback that is called when a drop_objection (see 10.5.1.3.4) has reached obj, and the total count
for obj goes to zero (0). This callback is executed after the drain time associated with obj. The default
implementation attempts to cast obj to a component, and, if successful, calls the
uvm_component::all_dropped hook (see 13.1.5.6).

10.5.1.5 Objection status

10.5.1.5.1 get_objectors

function void get_objectors(
ref uvm_object list[$]

)

Returns the current list of objecting objects (that raised an objection, but have not dropped it). list shall be a
queue.

10.5.1.5.2 wait_for

task wait_for(
uvm_objection_event objt_event,
uvm_object obj = null

)

Waits for the raised (see 10.5.1.4.1), dropped (see 10.5.1.4.2), or all_dropped (see 10.5.1.4.3) event to
occur in the given obj. If obj is null, the implicit top-level component (see F.7) is used. The task returns after
all corresponding callbacks for that event have been executed.

10.5.1.5.3 get_objection_count

function int get_objection_count (
uvm_object obj = null

)

Returns the current number of objections raised by the given object.

10.5.1.5.4 get_objection_total

function int get_objection_total (
uvm_object obj = null

)

Returns the current number of objections raised by the given object and all descendants.

10.5.2 uvm_objection_callback

This is the callback type that defines the callback hooks for an objection callback.
118
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
NOTE—Users may use uvm_objection_cbs_t (see D.4.3) to add callbacks to specific objections.

10.5.2.1 Class declaration

class uvm_objection_callback extends uvm_callback

10.5.2.2 Methods

10.5.2.2.1 raised

virtual function void raised (
uvm_objection objection,
uvm_object obj,
uvm_object source_obj,
string description,
int count

)

Objection raised callback function. Called by uvm_objection::raised (see 10.5.1.4.1).

10.5.2.2.2 dropped

virtual function void dropped (
uvm_objection objection,
uvm_object obj,
uvm_object source_obj,
string description,
int count

)

Objection dropped callback function. Called by uvm_objection::dropped (see 10.5.1.4.2).

10.5.2.2.3 all_dropped

virtual task all_dropped (
uvm_objection objection,
uvm_object obj,
uvm_object source_obj,
string description,
int count

)

Objection all_dropped callback function. Called by uvm_objection::all_dropped (see 10.5.1.4.3).

10.6 uvm_heartbeat

Heartbeats provide a way for environments to easily ensure their descendants are alive. A uvm_heartbeat is
associated with a specific objection object. A component that is being tracked by the heartbeat object shall
raise (or drop) the synchronizing objection during the heartbeat window.

The uvm_heartbeat object has a list of participating components. The heartbeat can be configured so that
all components (UVM_ALL_ACTIVE), exactly one (UVM_ONE_ACTIVE), or any component
(UVM_ANY_ACTIVE) trigger the objection in order to satisfy the heartbeat condition.
119
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
10.6.1 Class declaration

class uvm_heartbeat extends uvm_object

10.6.2 Methods

10.6.2.1 new

function new(
string name,
uvm_component cntxt,
uvm_objection objection = null

)

Creates a new heartbeat instance associated with cntxt. The context is the hierarchical location where the
heartbeat objections flow through and are monitored. The objection associated with the heartbeat is optional,
if it is left null, but it needs to be specified before the heartbeat monitor will activate.

10.6.2.2 set_mode

function uvm_heartbeat_modes set_mode (
uvm_heartbeat_modes mode = UVM_NO_HB_MODE

)

Specifies or retrieves the heartbeat mode. The current value for the heartbeat mode is returned. If an
argument is specified to change the mode, then the mode is changed to the new value. The default value of
mode shall be UVM_NO_HB_MODE.

10.6.2.3 set_heartbeat

function void set_heartbeat (
uvm_event#(uvm_object) e,

ref uvm_component comps[$]
)

Establishes the heartbeat event and assigns a list of components to watch. The monitoring is started as soon
as this method is called. Once the monitoring has been started with a specific event, providing a new monitor
event results in an error. To change trigger events, first stop (see 10.6.2.7) the monitor and then start (see
10.6.2.6) it with a new event trigger.

If the trigger event e is null and there was no previously set trigger event, the monitoring is not started.
Monitoring can be started by explicitly calling start (see 10.6.2.6). comps shall be a queue.

10.6.2.4 add

function void add (
uvm_component comp

)

Adds a single component to the set of components to be monitored. This does not cause monitoring to be
started. If monitoring is currently active, this component is immediately added to the list of components and
is expected to participate in the currently active event window.
120
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
10.6.2.5 remove

function void remove (
uvm_component comp

)

Removes a single component to the set of components being monitored. Monitoring is not stopped, even if
the last component has been removed (an explicit stop (see 10.6.2.7) is required).

10.6.2.6 start

function void start (
uvm_event#(uvm_object) e = null

)

Starts the heartbeat monitor. If e is null, then whatever event was previously set is used. If no event was
previously set, a warning shall be issued. It is an error if the monitor is currently running and e is specifying
a different trigger event than the current event.

10.6.2.7 stop

function void stop()

Stops the heartbeat monitor. The current state information is reset so that if start (see 10.6.2.6) is called
again the process waits for the first event trigger to start the monitoring.

10.7 Callbacks classes

This subclause defines the classes used for callback registration, management, and user-defined callbacks.

10.7.1 uvm_callback

The uvm_callback class is the base class for user-defined callback classes. Typically, the component
developer defines an application-specific callback class that extends from this class. In it, one or more
virtual methods are defined (callback interfaces) that represent the hooks available for user override.

10.7.1.1 Class declaration

class uvm_callback extends uvm_object

10.7.1.2 Methods

10.7.1.2.1 new

function new(
string name = "uvm_callback"

)

Initializes a new uvm_callback object, giving it an optional name.

10.7.1.2.2 callback_mode

function bit callback_mode(
int on = -1

)

121
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Enables/disables callbacks: on==0 disables, on==1 enables. Any value for on other than 0 or 1 has no
effect on the enable state of the callback. The default value of on shall be 1.

This returns the value of 1 if the callback was enabled before any change or 0 if the callback was disabled.

It also produces log messages if callback tracing is on.

10.7.1.2.3 is_enabled

function bit is_enabled()

Returns 1 if the callback is enabled, 0 otherwise.

10.7.2 uvm_callbacks #(T,CB)

The uvm_callbacks class provides a base class for implementing callbacks, which are typically used to
modify or augment component behavior without changing the component class. To work effectively, the
developer of the component class defines a set of “hook” methods that enable users to customize certain
behaviors of the component in a manner that is controlled by the component developer. The integrity of the
component’s overall behavior is intact, while still allowing certain customizable actions by the user.

To enable compile-time type-safety, the class is parameterized on both the user-defined callback interface
implementation as well as the object type associated with the callback. The object type-callback type pair is
associated using the `uvm_register_cb macro (see B.4.1) to define a valid pairing; valid pairings are
checked when a user attempts to add a callback to an object.

10.7.2.1 Class declaration

class uvm_callbacks #(
type T = uvm_object,
type CB = uvm_callback

) extends uvm_object

10.7.2.2 Common parameters

10.7.2.2.1 T

This type parameter specifies the base object type with which the CB callback objects (see 10.7.2.2.2) are to
be registered. This type shall be a derivative of uvm_object (see 5.3).

10.7.2.2.2 CB

This type parameter specifies the base callback type to be managed by this callback class. The callback type
is typically a interface class, which defines one or more virtual method prototypes that users can override in
subtypes. This type shall be a derivative of uvm_callback (see 10.7.1). When accessing the add/delete
interface (see 10.7.2.3), the CB parameter is optional.

10.7.2.3 Add/delete interface

10.7.2.3.1 add

static function void add(
T obj,
uvm_callback cb,
122
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
uvm_apprepend ordering = UVM_APPEND

)

Registers the given callback object, cb, with the given obj handle. Callbacks without a specified context are
“type-wide,” meaning they are called for all objects, as opposed to called for specific instances. If ordering
is UVM_APPEND (the default), the callback is executed after previously added callbacks; otherwise, the
callback is executed ahead of previously added callbacks. The cb is the callback handle; it shall be non-null
and if the callback has already been added to the object instance then a warning shall be issued.

10.7.2.3.2 add_by_name

static function void add_by_name(

string name,

uvm_callback cb,

uvm_component root,

uvm_apprepend ordering = UVM_APPEND

)

Registers the given callback object, cb, with one or more uvm_components (see 13.1). The components
need to already exist and be type T or a derivative. root specifies the location in the component hierarchy to
start the search for name. The default value of ordering shall be UVM_APPEND. See F.7.3.1 for more details
on searching by name.

10.7.2.3.3 delete

static function void delete(

T obj,

uvm_callback cb

)

Deletes the given callback object, cb, from the queue associated with the given obj handle. The obj handle
can be null, which allows de-registration of callbacks without an object context. The cb is the callback
handle; it shall be non-null and if the callback has already been removed from the object instance then a
warning shall be issued.

10.7.2.3.4 delete_by_name

static function void delete_by_name(

string name,

uvm_callback cb,

uvm_component root

)

Removes the given callback object, cb, associated with one or more uvm_component (see 13.1) callback
queues. root specifies the location in the component hierarchy to start the search for name. See F.7.3.1 for
more details on searching by name.

10.7.2.4 Iterator interface

This set of functions provide an iterator interface for callback queues. A facade class, uvm_callback_iter
(see D.1) is also available; it is the generally preferred way to iterate over callback queues.
123
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
10.7.2.4.1 get_first

static function CB get_first (
ref int itr,
input T obj

)

Returns the first enabled callback of type CB that resides in the queue for obj. If obj is null, the type wide
queue for T is searched. itr is the iterator; it shall be updated with a value that can be supplied to get_next
(see 10.7.2.4.3) to retrieve the next callback object.

If the queue is empty, null is returned.

10.7.2.4.2 get_last

static function CB get_last (
ref int itr,
input T obj

)

Returns the last enabled callback of type CB that resides in the queue for obj. If obj is null, the type wide
queue for T is searched. itr is the iterator; it shall be updated with a value that can be supplied to get_prev
(see 10.7.2.4.4) to retrieve the previous callback object.

If the queue is empty, null is returned.

10.7.2.4.3 get_next

static function CB get_next (
ref int itr,

input T obj
)

Returns the next enabled callback of type CB that resides in the queue for obj, using itr as the starting point.
If obj is null, the type wide queue for T is searched. itr is the iterator; it shall be updated with a value that can
be supplied to get_next (see 10.7.2.4.3) to retrieve the next callback object.

If no more callbacks exist in the queue, null is returned. get_next shall continue to return null in this case
until get_first (see 10.7.2.4.1) has been used to reset the iterator.

10.7.2.4.4 get_prev

static function CB get_prev (
ref int itr,

input T obj
)

Returns the previous enabled callback of type CB that resides in the queue for ob, using itr as the starting
point. If obj is null, the type wide queue for T is searched. itr is the iterator; it shall be updated with a value
that can be supplied to get_prev (see 10.7.2.4.4) to retrieve the previous callback object.

If no more callbacks exist in the queue, null is returned. get_prev shall continue to return null in this case
until get_last (see 10.7.2.4.2) has been used to reset the iterator.
124
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
10.7.2.5 get_all

static function void get_all (
ref CB all_callbacks[$]

)

This function populates the end of the all_callbacks queue with the list of all registered callbacks (whether
they are enabled or disabled).
125
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
11. Container classes

11.1 Overview

The container classes are type parameterized data structures. The uvm_queue #(T) class (see 11.3)
implements a queue data structure similar to the SystemVerilog queue construct. And the uvm_pool
#(KEY,T) class (see 11.2) implements a pool data structure similar to the SystemVerilog associative array.
The class-based data structures allow the objects to be shared by reference; e.g., passing a uvm_pool as an
input to a function copies only the class handle into the function, not the entire associative array.

11.2 uvm_pool #(KEY,T)

Implements a class-based dynamic associative array. Allows sparse arrays to be allocated on demand, and
passed and stored by reference.

11.2.1 Class declaration

class uvm_pool #(
type KEY = int,

T = uvm_void
) extends uvm_object

11.2.2 Methods

11.2.2.1 new

function new (
string name = ""

)

Creates a new pool with the given name.

11.2.2.2 get_global_pool

static function uvm_pool #(KEY,T) get_global_pool()

Returns the singleton global pool for the item type T.

This allows items to be shared among components throughout the verification environment.

11.2.2.3 get_global

static function T get_global (
KEY key

)

Returns the specified item instance from the global item pool.

11.2.2.4 get

virtual function T get (
KEY key

)

126
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Returns the item with the given key.

If no item exists by that key, a new item is allocated with that key, with a value as defined by Table 7-1 of
IEEE Std 1800-2012.6

11.2.2.5 add

virtual function void add (
KEY key,
T item

)

Adds the given (key, item) pair to the pool. If an item already exists at the given key it is overwritten with the
new item.

11.2.2.6 num

virtual function int num()

Returns the number of uniquely keyed items stored in the pool.

11.2.2.7 delete

virtual function void delete (
KEY key

)

Removes the item with the given key from the pool.

11.2.2.8 exists

virtual function int exists (
KEY key

)

Returns 1 if a item with the given key exists in the pool, 0 otherwise.

11.2.2.9 first

virtual function int first (
ref KEY key

)

Returns the key of the first item stored in the pool.

If the pool is empty, then key is unchanged and 0 is returned.

If the pool is not empty, then key is the key of the first item and 1 is returned.

11.2.2.10 last

virtual function int last (
ref KEY key

)

6Information on references can be found in Clause 2.
127
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Returns the key of the last item stored in the pool.

If the pool is empty, then 0 is returned and key is unchanged.

If the pool is not empty, then key is set to the last key in the pool and 1 is returned.

11.2.2.11 next

virtual function int next (
ref KEY key

)

Returns the key of the next item in the pool.

If the input key is the last key in the pool, then key is left unchanged and 0 is returned.

If a next key is found, then key is updated with that key and 1 is returned.

11.2.2.12 prev

virtual function int prev (
ref KEY key

)

Returns the key of the previous item in the pool.

If the input key is the first key in the pool, then key is left unchanged and 0 is returned.

If a previous key is found, then key is updated with that key and 1 is returned.

11.3 uvm_queue #(T)

Implements a class-based dynamic queue. Allows queues to be allocated on demand, and passed and stored
by reference.

11.3.1 Class declaration

class uvm_queue #(
type T = int,

) extends uvm_object

11.3.2 Methods

11.3.2.1 new

function new (
string name = ""

)

Creates a new pool with the given name.

11.3.2.2 get_global_queue

static function uvm_queue #(T) get_global_queue()
128
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Returns the singleton global queue for the item type T.

This allows items to be shared among components throughout the verification environment.

11.3.2.3 get_global

static function T get_global (
int index

)

Returns the specified item instance from the global item queue.

11.3.2.4 get

virtual function T get (
int index

)

Returns the item with the given index.

If index is equal to or greater than the size of the queue (see 11.3.2.5), an implementation shall issue a
warning message and return the value for a non-existent array entries of type T, as defined by Table 7-1 of
IEEE Std 1800-2012.

11.3.2.5 size

virtual function int size()

Returns the number of items stored in the queue.

11.3.2.6 insert

virtual function void insert (
int index,
T item

)

Inserts the item at the given index in the queue. If index is equal to or greater than the current size of the
queue (see 11.3.2.5), the method call shall have no effect on the queue and an implementation shall issue a
warning message.

11.3.2.7 delete

virtual function void delete (
int index = -1

)

Removes the item at the given index from the queue; if index is not provided, the entire contents of the queue
are deleted. The default value of index shall be -1.

11.3.2.8 pop_front

virtual function T pop_front()
129
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Returns the first element in the queue (index=0). If the queue is empty, an implementation shall issue a
warning message and return the value for a non-existent array entries of type T, as defined by Table 7-1 of
IEEE Std 1800-2012.

11.3.2.9 pop_back

virtual function T pop_back()

Returns the last element in the queue (index=size()-1). If the queue is empty, an implementation shall
issue a warning message and return the value for a non-existent array entries of type T, as defined by
Table 7-1 of IEEE Std 1800-2012.

11.3.2.10 push_front

virtual function void push_front(
T item

)

Inserts the given item at the front of the queue.

11.3.2.11 push_back

virtual function void push_back(
T item

)

Inserts the given item at the back of the queue.

11.3.2.12 wait_until_not_empty

virtual task wait_until_not_empty()

If this queue is empty, blocks until not empty. If the queue is not empty, returns immediately.
130
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
12. UVM TLM interfaces

12.1 Overview

UVM provides a collection of classes and interfaces for transaction-level modeling (TLM). These objects
enable transaction-level communication between entities, meaning requests are sent and responses received
by transmitting transaction objects through various interfaces. The UVM TLM facility consists of two parts.
UVM TLM 1 (see 12.2) is concerned with passing messages of arbitrary types through ports and exports.
UVM TLM 2 (see 12.3) is concerned with modeling protocols and is based on sockets and a standardized
transaction object called a generic payload. Sockets are constructed from ports and are connected in a
similar manner (see 12.3.5). Sockets provide both blocking and non-blocking style of communication as
well as forward and backward paths.

12.2 UVM TLM 1

12.2.1 General

Each UVM TLM 1 interface is either blocking, non-blocking, or a combination of the two, as follows:

a) blocking—A blocking interface conveys transactions in blocking fashion; its methods do not return
until the transaction has been successfully sent or retrieved. Because delivery may consume time to
complete, the methods in such an interface are declared as tasks.

b) non-blocking—A non-blocking interface conveys transactions in a non-blocking fashion; the
methods return immediately regardless of success. Its methods are declared as functions. Because
delivery may fail (e.g., the target component is busy and cannot accept the request), the methods
may return with failed status.

c) combination—A combination interface contains both the blocking and non-blocking variants.

UVM TLM 1’s port and export implementations allow connections between ports whose interfaces are not
an exact match. For example, an uvm_blocking_get_port can be connected to any port, export, or
imp port that provides, at a minimum, an implementation of the blocking_get interface, which includes
the uvm_get_* ports, exports, and imps; the uvm_blocking_get_peek_* ports, exports, and imps;
and the uvm_get_peek_* ports, exports, and imps.

UVM provides unidirectional (see 12.2.2) and bidirectional (see 12.2.3) ports, exports, and implementation
ports for connecting components via the UVM TLM 1 interfaces.

1) ports—Instantiated in components that require, or use, the associate interface to initiate transaction
requests.

2) exports—Instantiated by components that forward an implementation of the methods defined in the
associated interface. An implementation is typically provided by an imp port in a child component.

3) imps—Instantiated by components that provide an implementation of or directly implement the
methods defined in the associated interface.

Finally, the analysis interface is used to perform non-blocking broadcasts of transactions to connected
components. It is typically used by components such as monitors to publish transactions observed on a bus
to its subscribers, which are typically scoreboards and response/coverage collectors. See 12.2.10.
131
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
12.2.2 Unidirectional interfaces and ports

The unidirectional UVM TLM 1 interfaces consist of blocking, non-blocking, and combined blocking and
non-blocking variants of the put (see 12.2.2.1), get, and peek (see 12.2.2.2) interfaces, plus a non-blocking
analysis interface (see 12.2.10).

12.2.2.1 put

The put interfaces are used to send, or put, transactions to other components. Successful completion of a put
guarantees its delivery, not its execution.

12.2.2.2 get and peek

The get interfaces are used to retrieve transactions from other components. The peek interfaces are used for
the same purpose, except the retrieved transaction is not consumed; successive calls to peek shall return the
same object. Combined get_peek interfaces also can be used.

12.2.2.3 ports, exports, and imps

A summary of the unidirectional port, export, and imp declarations is as follows:

class uvm_*_export #(type T=int)
extends uvm_port_base #(tlm_if_base #(T,T))

class uvm_*_port #(type T=int)
extends uvm_port_base #(tlm_if_base #(T,T))

class uvm_*_imp #(type T=int)
extends uvm_port_base #(tlm_if_base #(T,T))

where the asterisk (*) can be any of the following:

blocking_put
nonblocking_put
put

blocking_get
nonblocking_get
get

blocking_peek
nonblocking_peek
peek

blocking_get_peek
nonblocking_get_peek
get_peek

analysis

12.2.3 Bidirectional interfaces and ports

The bidirectional interfaces consist of blocking, non-blocking, and combined blocking and non-blocking
variants of the transport (see 12.2.3.1) and master and slave interfaces (see 12.2.3.2).

Bidirectional interfaces involve both a transaction request and response.
132
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
12.2.3.1 transport

The transport interface sends a request transaction and returns a response transaction in a single task call,
thereby enforcing an in-order execution semantic. The request and response transactions can be different
types.

12.2.3.2 master and slave

The primitive, unidirectional put, get, and peek interfaces (see 12.2.2) are combined to form bidirectional
master and slave interfaces. The master puts requests and gets or peeks responses. The slave gets or peeks
requests and puts responses. Because the put and the get come from different function interface methods, the
requests and responses are not coupled as they are with the transport interface (see 12.2.3.1).

12.2.3.3 ports, exports, and imps

A summary of the bidirectional port, export, and imp declarations is as follows:

class uvm_*_port #(type REQ=int, RSP=int)
extends uvm_port_base #(tlm_if_base #(REQ, RSP))

class uvm_*_export #(type REQ=int, RSP=int)
extends uvm_port_base #(tlm_if_base #(REQ, RSP))

class uvm_*_imp #(type REQ=int, RSP=int)
extends uvm_port_base #(tlm_if_base #(REQ, RSP))

where the asterisk (*) can be any of the following:

transport
blocking_transport
nonblocking_transport

blocking_master
nonblocking_master
master

blocking_slave
nonblocking_slave
slave

12.2.4 uvm_tlm_if_base #(T1,T2)

This class declares all of the methods of the UVM TLM API. Various subsets of these methods are
combined to form primitive UVM TLM interfaces, which are then paired in various ways to form more
abstract “combination” UVM TLM interfaces. Components requiring a particular interface use ports to
convey that requirement. Components providing a particular interface use exports to convey its availability.

Communication between components is established by connecting ports to compatible exports, much like
connecting module signal-level output ports to compatible input ports. The difference is UVM TLM ports
and exports bind interfaces (groups of methods), not signals and wires. The methods of the interfaces so
bound pass data as whole transactions (e.g., objects). The set of primitive and combination UVM TLM
interfaces afford many choices for designing components that communicate at the transaction level.

12.2.4.1 Class declaration

virtual class uvm_tlm_if_base #(
type T1 = int,
133
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
type T2 = int
)

12.2.4.2 Methods

12.2.4.2.1 put

virtual task put(
input T1 t

)

Sends a user-defined transaction of type T1.

Components implementing the put method shall block the calling thread if they cannot immediately accept
delivery of the transaction.

12.2.4.2.2 get

virtual task get(
output T1 t

)

Provides a new transaction of type T1.

The calling thread is blocked if the requested transaction cannot be provided immediately. The new
transaction is returned in the provided output argument. An implementation of get needs to regard the
transaction as consumed. Subsequent calls to get shall return a different transaction instance.

12.2.4.2.3 peek

virtual task peek(
output T1 t

)

Obtains a new transaction without consuming it.

If a transaction is available, it is written to the provided output argument. If a transaction is not available, the
calling thread is blocked until one is available. The returned transaction is not consumed. A subsequent peek
or get (see 12.2.4.2.2) shall return the same transaction.

12.2.4.2.4 try_put

virtual function bit try_put(
input T1 t

)

Sends a transaction of type T1, if possible.

If the component is ready to accept the transaction argument, it does so and returns 1; otherwise, it returns 0.

12.2.4.2.5 can_put

virtual function bit can_put()

Returns 1 if the component is ready to accept the transaction; otherwise, it returns 0.
134
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
12.2.4.2.6 try_get

virtual function bit try_get(
output T2 t

)

Provides a new transaction of type T2.

If a transaction is immediately available, it is written to the output argument and 1 is returned. Otherwise,
the output argument is not modified and 0 is returned.

12.2.4.2.7 can_get

virtual function bit can_get()

Returns 1 if a new transaction can be provided immediately upon request; otherwise, it returns 0.

12.2.4.2.8 try_peek

virtual function bit try_peek(
output T2 t

)

Provides a new transaction without consuming it.

If available, a transaction is written to the output argument and 1 is returned. A subsequent peek (see
12.2.4.2.3) or get (see 12.2.4.2.2) shall return the same transaction. If a transaction is not available, the
output argument is unmodified and 0 is returned.

12.2.4.2.9 can_peek

virtual function bit can_peek()

Returns 1 if a new transaction is available; otherwise, it returns 0.

12.2.4.2.10 transport

virtual task transport(
input T1 req,
output T2 rsp

)

Executes the given request and returns the response in the given output argument.

The calling thread may block until the operation is complete.

12.2.4.2.11 nb_transport

virtual function bit nb_transport(
input T1 req,
output T2 rsp

)

Executes the given request and returns the response in the given output argument.
135
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Completion of this operation needs to occur without blocking. If the operation can not be executed
immediately, a 0 shall be returned; otherwise, it returns 1.

12.2.4.2.12 write

virtual function void write(
input T1 t

)

Broadcasts a user-defined transaction of type T1 to any number of listeners.

The operation needs to complete without blocking.

12.2.5 Port classes

The following classes define the UVM TLM 1 port classes.

12.2.5.1 uvm_*_port #(T)

These unidirectional ports are instantiated by components that require, or use, the associated interface to
convey transactions. A port can be connected to any compatible port, export, or imp port. Unless its
min_size is 0, a port shall be connected to at least one implementation of its associated interface.

The asterisk (*) in uvm_*_port is any of the following:

blocking_put
nonblocking_put
put

blocking_get
nonblocking_get
get

blocking_peek
nonblocking_peek
peek

blocking_get_peek
nonblocking_get_peek
get_peek

Type parameter

T—The type of transaction to be communicated by the export. The type T is not restricted to class
handles and may be a value type such as int, enum, struct, or something similar.

Ports are connected to interface implementations directly via uvm_*_imp #(T,IMP) ports (see 12.2.7.1) or
indirectly via hierarchical connections to uvm_*_port #(T) and uvm_*_export #(T) ports (see 12.2.6.1).

uvm_*_port #(T) has the following methods:

new

function new (string name,
uvm_component parent,
int min_size=1,
int max_size=1)
136
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
name and parent are the standard uvm_component constructor arguments (see 13.1). min_size and max_size
specify the minimum and maximum number of interfaces that shall have been connected to this port by the
end of elaboration. The default value of both min_size and max_size shall be 1.

12.2.5.2 uvm_*_port #(REQ,RSP)

These bidirectional ports are instantiated by components that require, or use, the associated interface to
convey transactions. A port can be connected to any compatible port, export, or imp port. Unless its
min_size is 0, a port shall be connected to at least one implementation of its associated interface.

The asterisk (*) in uvm_*_port is any of the following:

blocking_transport
nonblocking_transport
transport

blocking_master
nonblocking_master
master

blocking_slave
nonblocking_slave
slave

Type parameters

REQ—The type of request transaction to be communicated by the export.

RSP—The type of response transaction to be communicated by the export.

Ports are connected to interface implementations directly via uvm_*_imp
#(REQ,RSP,IMP,REQ_IMP,RSP_IMP) ports (see 12.2.7.2) or indirectly via hierarchical connections to
uvm_*_port #(REQ,RSP) and uvm_*_export #(REQ,RSP) ports (see 12.2.6.2).

uvm_*_port #(REQ,RSP) has the following methods:

new

function new (string name,
uvm_component parent,
int min_size=1,
int max_size=1)

name and parent are the standard uvm_component (see 13.1) constructor arguments. min_size and max_size
specify the minimum and maximum number of interfaces that shall have been connected to this port by the
end of elaboration. The default value of both min_size and max_size shall be 1.

12.2.6 Export classes

The following classes define the UVM TLM 1 export classes.

12.2.6.1 uvm_*_export #(T)

This is a unidirectional port that forwards or promotes an interface implementation from a child component
to its parent. An export can be connected to any compatible child export or imp port, and shall ultimately be
connected to at least one implementation of its associated interface.
137
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
The interface type represented by the asterisk (*) is any of the following:

blocking_put
nonblocking_put
put

blocking_get
nonblocking_get
get

blocking_peek
nonblocking_peek
peek

blocking_get_peek
nonblocking_get_peek
get_peek

Type parameter

T—The type of transaction to be communicated by the export.

Exports are connected to interface implementations directly via uvm_*_imp #(T,IMP) ports (see 12.2.7.1)
or indirectly via hierarchical other uvm_*_export #(T) exports.

uvm_*_export #(T) has the following methods:

new

function new (string name,
uvm_component parent,
int min_size=1,
int max_size=1)

name and parent are the standard uvm_component (see 13.1) constructor arguments. min_size and max_size
specify the minimum and maximum number of interfaces that shall have been supplied to this port by the
end of elaboration. The default value of both min_size and max_size shall be 1.

12.2.6.2 uvm_*_export #(REQ,RSP)

This is a bidirectional port that forwards or promotes an interface implementation from a child component to
its parent. An export can be connected to any compatible child export or imp port, and shall ultimately be
connected to at least one implementation of its associated interface.

The interface type represented by the asterisk (*) is any of the following:

blocking_transport
nonblocking_transport
transport

blocking_master
nonblocking_master
master

blocking_slave
nonblocking_slave
slave
138
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Type parameters

REQ—The type of request transaction to be communicated by the export.

RSP—The type of response transaction to be communicated by the export.

Exports are connected to interface implementations directly via uvm_*_imp
#(REQ,RSP,IMP,REQ_IMP,RSP_IMP) ports (see 12.2.7.2) or indirectly via other uvm_*_export
#(REQ,RSP) exports.

uvm_*_export #(REQ,RSP) has the following methods:

new

function new (string name,

uvm_component parent,

int min_size=1,

int max_size=1)

name and parent are the standard uvm_component (see 13.1) constructor arguments. min_size and max_size
specify the minimum and maximum number of interfaces that shall have been supplied to this port by the
end of elaboration. The default value of both min_size and max_size shall be 1.

12.2.7 Implementation (imp) classes

The following classes define the UVM TLM 1 implementation (imp) classes.

12.2.7.1 uvm_*_imp #(T,IMP)

This is a unidirectional imp port that provides access to an implementation of the associated interface to all
connected ports and exports. Each imp port instance shall be connected to the component instance that
implements the associated interface, typically the imp port’s parent. All other connections are prohibited,
e.g., to other ports and exports.

The asterisk (*) in uvm_*_imp is any of the following:

blocking_put

nonblocking_put

put

blocking_get

nonblocking_get

get

blocking_peek

nonblocking_peek

peek

blocking_get_peek

nonblocking_get_peek

get_peek
139
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Type parameters

T—The type of transaction to be communicated by the export.

IMP—The type of the component implementing the interface, i.e., the class to which this imp
delegates.

The interface methods are implemented in a component of type IMP, a handle to which is passed in a
constructor argument. The imp port delegates all interface calls to this component.

uvm_*_imp #(T,IMP) has the following methods:

new

function new (string name, IMP parent)

Creates a new unidirectional imp port with the given name and parent. The parent shall implement the
interface associated with this port. Its type shall be the type specified in the imp’s type-parameter IMP.

12.2.7.2 uvm_*_imp #(REQ, RSP, IMP, REQ_IMP, RSP_IMP)

This is a bidirectional imp port that provides access to an implementation of the associated interface to all
connected ports and exports. Each imp port instance shall be connected to the component instance that
implements the associated interface, typically the imp port’s parent. All other connections are prohibited,
e.g., to other ports and exports.

The interface represented by the asterisk (*) is any of the following:

blocking_transport
nonblocking_transport
transport

blocking_master
nonblocking_master
master

blocking_slave
nonblocking_slave
slave

Type parameters

REQ—Request transaction type.

RSP—Response transaction type.

IMP—Component type that implements the interface methods, typically the parent of this imp port.

REQ_IMP—Component type that implements the request side of the interface. Defaults to IMP. For
master and slave imps only.

RSP_IMP—Component type that implements the response side of the interface. Defaults to IMP.
For master and slave imps only.

The interface methods are implemented in a component of type IMP, a handle to which is passed in a
constructor argument. The imp port delegates all interface calls to this component.

The master and slave imps have two modes of operation.
140
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
— A single component of type IMP implements the entire interface for both requests and responses.

— Two sibling components of type REQ_IMP and RSP_IMP implement the request and response inter-
faces, respectively. In this case, the IMP parent instantiates this imp port and both the REQ_IMP and
RSP_IMP components.

This second mode is needed when a component instantiates more than one imp port, as for the
uvm_tlm_req_rsp_channel #(REQ,RSP) channel (see 12.2.9.1).

uvm_*_imp #(REQ, RSP, IMP, REQ_IMP, RSP_IMP) has the following methods:

new

Creates a new unidirectional imp port with the given name and parent. The parent, whose type is specified
by IMP type parameter, shall implement the interface associated with this port.

12.2.7.2.1 Transport imp constructor

function new (string name, IMP imp)

12.2.7.2.2 Master and slave imp constructor

The optional req_imp and rsp_imp arguments, which are available to master and slave imp ports, allow the
requests and responses to be handled by different subcomponents. If they are specified, they shall point to
the underlying component that implements the request and response methods, respectively.

function new (string name, IMP imp,
REQ_IMP req_imp=imp, RSP_IMP rsp_imp=imp)

12.2.8 FIFO classes

The following classes define the UVM TLM 1-based FIFO (first-in, first-out) classes.

12.2.8.1 uvm_tlm_fifo_base#(T)

This class is the base for uvm_tlm_fifo#(T) (see 12.2.8.2). It defines the UVM TLM 1 exports through
which all transaction-based FIFO operations occur. It also defines default implementations for each interface
method provided by these exports.

The interface methods provided by put_export (see 12.2.8.1.3) and get_peek_export (see 12.2.8.1.4) are
detailed in 12.2.2. See also Clause 12 for a general discussion of UVM TLM 1 interface definition and
usage.

Type parameter

T—The type of transaction to be stored by this FIFO.

12.2.8.1.1 Class declaration

virtual class uvm_tlm_fifo_base#(
type T = int

) extends uvm_component

12.2.8.1.2 Ports

uvm_tlm_fifo_base#(T) has the following ports (see 12.2.8.1.3 to 12.2.8.1.6).
141
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
12.2.8.1.3 put_export

This provides both the blocking and non-blocking put interface methods to any attached port:

task put (input T t)
function bit can_put()
function bit try_put (input T t)

Any put port variant can connect and send transactions to the FIFO via this export, provided the transaction
types match. See 12.2.2 for more information on each of the above interface methods.

12.2.8.1.4 get_peek_export

This provides all the blocking and non-blocking get and peek interface methods:

task get (output T t)
function bit can_get()
function bit try_get (output T t)
task peek (output T t)
function bit can_peek()
function bit try_peek (output T t)

Any get or peek port variant can connect to and retrieve transactions from the FIFO via this export,
provided the transaction types match. See 12.2.4 for more information on each of the above interface
methods.

12.2.8.1.5 put_ap

Transactions passed via put or try_put [via any port connected to the put_export (see 12.2.8.1.3)] are
sent out this port via its write method.

function void write (T t)

All connected analysis exports and imps shall receive put transactions. See 12.2.2 for more information on
the write method.

12.2.8.1.6 get_ap

Transactions passed via get, try_get, peek, or try_peek [via any port connected to the
get_peek_export (see 12.2.8.1.4)] are sent out this port via its write method.

function void write (T t)

All connected analysis exports and imps shall receive get transactions. See 12.2.2 for more information on
the write method.

12.2.8.1.7 Methods

new

function new(
string name,
uvm_component parent = null

)

142
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
name and parent are the standard uvm_component (see 13.1) constructor arguments. The parent should be
null if the uvm_tlm_fifo (see 12.2.8.2) is going to be used in a statically elaborated construct (e.g., a
module).

12.2.8.2 uvm_tlm_fifo#(T)

This class provides storage of transactions between two independently running processes. Transactions are
put into the FIFO via put_export (see 12.2.8.1.3). Transactions are fetched from the FIFO in the order they
arrived via get_peek_export (see 12.2.8.1.4). The put_export and get_peek_export are inherited from the
uvm_tlm_fifo_base #(T) super class (see 12.2.8.1.5), and the interface methods provided by these exports
are noted in 12.2.2.

uvm_tlm_fifo #(T) has the following methods.

12.2.8.2.1 new

function new(
string name,
uvm_component parent = null,
int size = 1

)

name and parent are the standard uvm_component (see 13.1) constructor arguments. The parent should be
null if the uvm_tlm_fifo#(T) is going to be used in a statically elaborated construct (e.g., a module). The
size indicates the maximum size of the FIFO; a value of zero (0) indicates no upper bound. The default value
of size shall be 1.

12.2.8.2.2 size

virtual function int size()

Returns the capacity of the FIFO, i.e., the number of entries the FIFO is capable of holding. A return value
of 0 indicates the FIFO capacity has no limit.

12.2.8.2.3 used

virtual function int used()

Returns the number of entries put into the FIFO.

12.2.8.2.4 is_empty

virtual function bit is_empty()

Returns 1 when there are no entries in the FIFO, 0 otherwise.

12.2.8.2.5 is_full

virtual function bit is_full()

Returns 1 when the number of entries in the FIFO is equal to its size (see 12.2.8.2.2), 0 otherwise.

12.2.8.2.6 flush

virtual function void flush()
143
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Removes all entries from the FIFO, after which used (see 12.2.8.2.3) returns 0 and is_empty (see
12.2.8.2.4) returns 1.

12.2.8.3 uvm_tlm_analysis_fifo#(T)

This class is a uvm_tlm_fifo#(T) (see 12.2.8.2) with an unbounded size and a write interface. It can be used
any place a uvm_analysis_imp (see 12.2.10.2) is used, e.g., as a buffer between a uvm_analysis_port (see
12.2.10.1) in an initiator component and a UVM TLM 1 target component.

12.2.8.3.1 Ports

analysis_export #(T)

This provides the write method to all connected analysis ports and parent exports:

function void write (T t)

Typically, access via ports bound to this export is used for writing to an analysis FIFO. See the write
method noted in 12.2.2 for more information.

12.2.8.3.2 Methods

new

function new(
string name,
uvm_component parent = null

)

name and parent are the standard uvm_component (see 13.1) constructor arguments. name is the local
name of this component. The parent should be left unspecified when this component is instantiated in
statically elaborated constructs and needs to be specified when this component is a child of another UVM
component.

12.2.9 Channel classes

The following classes define the built-in UVM TLM 1 channel classes.

12.2.9.1 uvm_tlm_req_rsp_channel #(REQ,RSP)

This contains a request FIFO of type REQ and a response of type RSP. These FIFOs can be of any size. This
channel is particularly useful for dealing with pipelined protocols where the request and response are not
tightly coupled.

Type parameters

REQ—The type of request transactions conveyed by this channel.

RSP—The type of response transactions conveyed by this channel.

12.2.9.1.1 Class declaration

class uvm_tlm_req_rsp_channel #(
type REQ = int,
type RSP = REQ

) extends uvm_component
144
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
12.2.9.1.2 Ports

uvm_tlm_req_rsp_channel #(REQ,RSP) has the following ports (see 12.2.9.1.3 to 12.2.9.1.10).

12.2.9.1.3 put_request_export

This provides both the blocking and non-blocking put interface methods to the request FIFO:

task put (input T t)
function bit can_put()
function bit try_put (input T t)

Any put port variant can connect and send transactions to the request FIFO via this export, provided the
transaction types match.

12.2.9.1.4 get_peek_response_export

This provides all the blocking and non-blocking get and peek interface methods to the response FIFO:

task get (output T t)
function bit can_get()
function bit try_get (output T t)
task peek (output T t)
function bit can_peek()
function bit try_peek (output T t)

Any get or peek port variant can connect to and retrieve transactions from the response FIFO via this
export, provided the transaction types match.

12.2.9.1.5 get_peek_request_export

This provides all the blocking and non-blocking get and peek interface methods to the request FIFO:

task get (output T t)
function bit can_get()
function bit try_get (output T t)
task peek (output T t)
function bit can_peek()
function bit try_peek (output T t)

Any get or peek port variant can connect to and retrieve transactions from the request FIFO via this
export, provided the transaction types match.

12.2.9.1.6 put_response_export

This provides both the blocking and non-blocking put interface methods to the response FIFO:

task put (input T t)
function bit can_put()
function bit try_put (input T t)

Any put port variant can connect and send transactions to the response FIFO via this export, provided the
transaction types match.
145
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
12.2.9.1.7 request_ap

Transactions passed via put or try_put [via any port connected to the put_request_export (see
12.2.9.1.3)] are sent out this port via its write method.

function void write (T t)

All connected analysis exports and imps shall receive these transactions.

12.2.9.1.8 response_ap

Transactions passed via put or try_put [via any port connected to the put_response_export (see
12.2.9.1.6)] are sent out this port via its write method.

function void write (T t)

All connected analysis exports and imps shall receive these transactions.

12.2.9.1.9 master_export

Exports a single interface that allows a master to put requests and get or peek responses. It is a
combination of put_request_export (see 12.2.9.1.3) and get_peek_response_export (see 12.2.9.1.4).

12.2.9.1.10 slave_export

Exports a single interface that allows a slave to get or peek requests and to put responses. It is a
combination of put_response_export (see 12.2.9.1.6) and get_peek_request_export (see 12.2.9.1.5).

12.2.9.1.11 Methods

new

function new (
string name,
uvm_component parent = null,
int request_fifo_size = 1,
int response_fifo_size = 1

)

name and parent are the standard uvm_component (see 13.1) constructor arguments. The parent shall be
null if this component is defined within a static component such as a module, program block, or interface.
The last two arguments specify the request and response FIFO sizes, which have default values of 1.

12.2.9.2 uvm_tlm_transport_channel #(REQ,RSP)

A uvm_tlm_transport_channel is a uvm_tlm_req_rsp_channel #(REQ,RSP) (see 12.2.9.1) that
implements the transport interface. It is useful when modeling a non-pipelined bus at the transaction level.
Because the requests and responses have a tightly coupled one-to-one relationship, the request and response
FIFO sizes are both set to one (1).

12.2.9.2.1 Class declaration

class uvm_tlm_transport_channel #(
type REQ = int,
type RSP = REQ

) extends uvm_tlm_req_rsp_channel #(REQ, RSP)
146
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
12.2.9.2.2 Ports

transport_export

This provides both the blocking and non-blocking transport interface methods to the response FIFO:

task transport(REQ request, output RSP response)
function bit nb_transport(REQ request, output RSP response)

Any transport port variant can connect to and send requests and retrieve responses via this export,
provided the transaction types match. Upon return, the response argument carries the response to the
request.

12.2.9.2.3 Methods

new

function new (
string name,
uvm_component parent = null,

)

name and parent are the standard uvm_component (see 13.1) constructor arguments. The parent shall be
null if this component is defined within a statically elaborated construct such as a module, program block, or
interface.

12.2.10 Analysis ports

This subclause defines the port, export, and imp classes used for transaction analysis.

12.2.10.1 uvm_analysis_port

Broadcasts a value to all subscribers implementing a uvm_analysis_imp (see 12.2.10.2).

12.2.10.1.1 Class declaration

class uvm_analysis_port # (
type T = int

) extends uvm_port_base # (uvm_tlm_if_base #(T,T))

12.2.10.1.2 Methods

write

function void write (
input T t

)

Sends the specified value to all connected interfaces.

12.2.10.2 uvm_analysis_imp

Receives all transactions broadcasted by a uvm_analysis_port (see 12.2.10.1). This serves as the
termination point of an analysis port/export/imp connection. The component attached to the imp class—
called a subscriber—implements the analysis interface.
147
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
This invokes the write(T) method in the parent component. An implementation of the write(T)
method shall not modify the value passed to it.

Class declaration

class uvm_analysis_imp #(
type T = int,
type IMP = int

) extends uvm_port_base #(uvm_tlm_if_base #(T,T))

12.2.10.3 uvm_analysis_export

Exports a lower-level uvm_analysis_imp (see 12.2.10.2) to its parent.

12.2.10.3.1 Class declaration

class uvm_analysis_export # (
type T = int

) extends uvm_port_base # (uvm_tlm_if_base #(T,T))

12.2.10.3.2 Methods

new

function new (
string name,
uvm_component parent = null

)

Instantiates the export.

12.3 UVM TLM 2

12.3.1 General

UVM TLM 2 defines a generic payload (see 12.3.4), which is the base type for transport interfaces that may
be blocking or non-blocking. The interface is categorized as a port (see 12.3.6), export (see 12.3.7), or
implementation (see 12.3.8). The interface may also be implemented in sockets (see 12.3.5), which provide
both a forward and a backward path.

12.3.2 uvm_tlm_if: transport interfaces

UVM TLM 2 provides the following two transport interfaces (see 12.3.2.2):

a) Blocking (b_transport)—completes the entire transaction within a single method call.

b) Non-blocking (nb_transport)—describes the progress of a transaction using multiple nb_transport
method calls going back-and-forth between initiator and target.

In general, any component might modify a transaction object during its lifetime (subject to the rules of the
protocol). Significant timing points during the lifetime of a transaction (e.g., start-of-response phase) are
indicated by calling nb_transport in either forward or backward direction, the specific timing point being
given by the phase argument. Protocol-specific rules for reading or writing the attributes of a transaction can
be expressed relative to the phase. The phase can be used for flow control, and for that reason might have a
different value at each hop taken by a transaction; the phase is not an attribute of the transaction object.
148
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
A call to nb_transport (see 12.2.4.2.11) always represents a phase transition. However, the return from
nb_transport might or might not do so; the choice being indicated by the value returned from the function
[UVM_TLM_ACCEPTED versus UVM_TLM_UPDATED (see 12.3.3.2)].

Generally, the completion of a transaction over a particular hop is shown by using the value of the phase
argument. As a shortcut, a target might indicate the completion of the transaction by returning a special
value of UVM_TLM_COMPLETED (see 12.3.3.2). However, this is optional.

The transaction object itself does not contain any timing information by design or even events and the status
from the API. Delays can be passed as arguments to b_transport/nb_transport (see 12.3.2.2); this pushes
the actual realization of any delay in the simulator kernel downstream and defers it (for simulation speed).

uvm_tlm_if is the base class type to define the transport methods (see 12.3.2.2).

12.3.2.1 Class declaration

class uvm_tlm_if #(
type T = uvm_tlm_generic_payload,
type P = uvm_tlm_phase_e

)

12.3.2.2 Transport methods

Each of the interface methods (see 12.3.2.2.1 to 12.3.2.2.3) take a handle to the transaction to be transported
and a reference argument for the delay. In addition, the non-blocking interfaces take a reference argument
for the phase.

12.3.2.2.1 nb_transport_fw

virtual function uvm_tlm_sync_e nb_transport_fw(
T t,

ref P p,
input uvm_tlm_time delay

)

This is a forward path call. The first call to this method for a transaction marks the initial timing point. Every
call to this method may mark a timing point in the execution of the transaction. The timing annotation
argument allows the timing points to be offset from the simulation times at which the forward path is used.
The final timing point of a transaction may be marked by a call to nb_transport_bw (see 12.3.4) or a return
from this call or a subsequent call to nb_transport_fw.

See 12.3.2 for more details on the semantics and rules of the non-blocking transport interface.

12.3.2.2.2 nb_transport_bw

virtual function uvm_tlm_sync_e nb_transport_bw(
T t,

ref P p,
input uvm_tlm_time delay

)

This is an implementation of a backward path. This function shall be implemented in the INITIATOR
component class.
149
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Every call to this method may mark a timing point, including the final timing point, in the execution of the
transaction. The timing annotation argument allows the timing point to be offset from the simulation times at
which the backward path is used. The final timing point of a transaction may be marked by a call to
nb_transport_fw (see 12.3.2.2.1) or a return from this call or a subsequent call to nb_transport_bw.

See 12.3.2 for more details on the semantics and rules of the non-blocking transport interface.

12.3.2.2.3 b_transport

virtual task b_transport(
T t,
uvm_tlm_time delay

)

This executes a blocking transaction. Once this method returns, the transaction is presumed to have been
executed. Whether that execution is successful or not shall be indicated by the transaction itself.

The callee may modify or update the transaction object, subject to any constraints imposed by the
transaction class. The initiator may reuse a transaction object from one call to the next and across calls to
b_transport.

The call to b_transport shall mark the first timing point of the transaction. The return from b_transport
shall mark the final timing point of the transaction. The timing annotation argument allows the timing points
to be offset from the simulation times at which the task call and return are executed.

12.3.3 Enumerations

12.3.3.1 uvm_tlm_phase_e

Designates non-blocking transport synchronization state values between an initiator and a target.

UNINITIALIZED_PHASE—Defaults for the constructor.

BEGIN_REQ—Beginning of the request phase.

END_REQ—End of the request phase.

BEGIN_RESP—Beginning of the response phase.

END_RESP—End of the response phase.

12.3.3.2 uvm_tlm_sync_e

These are the predefined phase state values for the non-blocking transport base protocol between an initiator
and a target.

UVM_TLM_ACCEPTED—The transaction has been accepted.

UVM_TLM_UPDATED—The transaction has been modified.

UVM_TLM_COMPLETED—Execution of the transaction is complete.

12.3.4 Generic payload and extensions

The generic payload transaction represents a generic bus read/write access. It is used as the default
transaction in UVM TLM 2 blocking and non-blocking transport interfaces.
150
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
12.3.4.1 Globals

Defines constants and enums.

12.3.4.1.1 uvm_tlm_command_e

This specifies the command attribute type definition.

UVM_TLM_READ_COMMAND—Bus read operation.

UVM_TLM_WRITE_COMMAND—Bus write operation.

UVM_TLM_IGNORE_COMMAND—No bus operation.

12.3.4.1.2 uvm_tlm_response_status_e

This specifies the response status attribute type definition.

UVM_TLM_OK_RESPONSE—Bus operation completed successfully.

UVM_TLM_INCOMPLETE_RESPONSE—Transaction was not delivered to target.

UVM_TLM_GENERIC_ERROR_RESPONSE—Bus operation had an error.

UVM_TLM_ADDRESS_ERROR_RESPONSE—Invalid address specified.

UVM_TLM_COMMAND_ERROR_RESPONSE—Invalid command specified.

UVM_TLM_BURST_ERROR_RESPONSE—Invalid burst specified.

UVM_TLM_BYTE_ENABLE_ERROR_RESPONSE—Invalid byte enabling specified.

12.3.4.2 uvm_tlm_generic_payload

This class provides a transaction definition commonly used in memory-mapped bus-based systems. It is
intended to be a general purpose transaction class that lends itself to many applications. The class is derived
from uvm_sequence_item (see 14.1), which enables it to be generated in sequences and transported to
drivers through sequencers.

12.3.4.2.1 Class declaration

class uvm_tlm_generic_payload extends uvm_sequence_item

12.3.4.2.2 Common methods

uvm_tlm_generic_payload has the following common methods (see 12.3.4.2.3 to 12.3.4.2.11).

12.3.4.2.3 new

function new(
string name = ""

)

Creates a new instance of the generic payload. This also initializes all the members to their default values.

12.3.4.2.4 m_address

rand bit [63:0] m_address
151
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
This is the address for the bus operation. It should be specified or read using the set_address (see
12.3.4.2.19) and get_address (see 12.3.4.2.19) methods. This variable should be used only when
constraining.

For a read or write command, the target shall interpret the current value of the address attribute as the start
address in the system memory map of the contiguous block of data being read or written. The address
associated with any given byte in the data array is dependent upon the address attribute, the array index, the
streaming width attribute, the endianness, and the width of the physical bus.

If the target is unable to execute the transaction with the given address attribute (because the address is out-
of-range, for example) it shall generate a standard error response. The recommended response status is
UVM_TLM_ADDRESS_ERROR_RESPONSE.

12.3.4.2.5 m_command

rand uvm_tlm_command_e m_command

This is the bus operation type. It should be specified using the set_command (see 12.3.4.2.14), set_read
(see 12.3.4.2.16), or set_write (see 12.3.4.2.18) methods and read using the get_command (see
12.3.4.2.13), is_read (see 12.3.4.2.15), or is_write (see 12.3.4.2.17) methods. This variable should be used
only when constraining.

If the target is unable to execute a read or write command, it shall generate a standard error response. The
recommended response status is UVM_TLM_COMMAND_ERROR_RESPONSE.

On the receipt of a generic payload transaction where the command attribute is equal to
UVM_TLM_IGNORE_COMMAND, the target shall not execute a write command or a read command that does
not modify any data. The target may, however, use the value of any attribute in the generic payload,
including any extensions.

The command attribute shall be specified by the initiator and shall not be overwritten by any interconnect.

12.3.4.2.6 m_data

rand byte unsigned m_data[]

This is data read or to be written. It should be specified and read using the set_data (see 12.3.4.2.22) or
get_data (see 12.3.4.2.21) methods. The variable should be used only when constraining.

For a read command or a write command, the target shall copy data to or from the data array, respectively,
honoring the semantics of the remaining attributes of the generic payload.

For a write command or UVM_TLM_IGNORE_COMMAND, the contents of the data array shall be specified
by the initiator, and shall not be overwritten by any interconnect component or target. For a read command,
the contents of the data array shall only be overwritten by the target (honoring the semantics of the byte
enable).

Arbitrary data types may be converted to and from a byte array using the streaming operator and
uvm_object objects (see 5.3) may be further converted using the uvm_object::pack_bytes and
uvm_object::unpack_bytes methods (see 5.3.10.1). Simply use a consistent mechanism to both fill the
payload data array and later extract data from it.
152
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
12.3.4.2.7 m_length

rand int unsigned m_length

This is the number of bytes to be copied to or from the m_data array (see 12.3.4.2.6), inclusive of any bytes
disabled by the m_byte_enable attribute (see 12.3.4.2.9).

The data length attribute shall be specified by the initiator and shall not be overwritten by any interconnect
component or target.

The data length attribute shall not be set to 0. In order to transfer zero bytes, the m_command attribute (see
12.3.4.2.5) should be specified as UVM_TLM_IGNORE_COMMAND.

12.3.4.2.8 m_response_status

rand uvm_tlm_response_status_e m_response_status

This is the status of the bus operation. It should be specified using the set_response_status method (see
12.3.4.2.34) and read using the get_response_status (see 12.3.4.2.33), get_response_string (see
12.3.4.2.37), is_response_ok (see 12.3.4.2.35), or is_response_error (see 12.3.4.2.36) methods. This
variable should be used only when constraining.

The response status attribute shall be specified to UVM_TLM_INCOMPLETE_RESPONSE by the initiator
and may be overwritten by the target. The response status attribute should not be overwritten by any
interconnect component, because the default value UVM_TLM_INCOMPLETE_RESPONSE indicates the
transaction was not delivered to the target.

The target may specify the response status attribute as UVM_TLM_OK_RESPONSE to indicate it was able to
execute the command successfully or specify one of the five error responses to indicate an error. The target
should choose the appropriate error response depending on the cause of the error. If a target detects an error,
but is unable to select a specific error response, it may specify the response status as
UVM_TLM_GENERIC_ERROR_RESPONSE.

The target shall be responsible for specifying the response status attribute at the appropriate point in the
lifetime of the transaction. In the case of the blocking transport interface, this means before returning control
from b_transport (see 12.3.2.2.3). In the case of the non-blocking transport interface and the base protocol,
this means before sending the BEGIN_RESP phase or returning a value of UVM_TLM_COMPLETED.

It is recommended that the initiator always checks the response status attribute on receiving a transition to
the BEGIN_RESP phase or after the completion of the transaction. An initiator may choose to ignore the
response status if it is known in advance the value will be UVM_TLM_OK_RESPONSE—say it is known this
initiator is only connected to targets that always return UVM_TLM_OK_RESPONSE—but, in general, this
will not be the case. In other words, the initiator can only ignore the response status at its own risk.

12.3.4.2.9 m_byte_enable

rand byte unsigned m_byte_enable[]

Indicates valid m_data (see 12.3.4.2.6) array elements. Should be specified and read using the
set_byte_enable (see 12.3.4.2.28) or get_byte_enable (see 12.3.4.2.27) methods The variable should be
used only when constraining.

The elements in the byte enable array shall be interpreted as follows. A value of 8’h00 indicates the
corresponding byte is disabled and a value of 8’hFF indicates the corresponding byte is enabled.
153
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Byte enables may be used to create burst transfers where the address increment between each beat is greater
than the number of significant bytes transferred on each beat or to place words in selected byte lanes of a
bus. At a more abstract level, byte enables may be used to create “lacy bursts” where the data array of the
generic payload has an arbitrary pattern of holes punched in it.

The byte enable mask may be defined by a small pattern applied repeatedly or by a large pattern covering the
whole data array. The byte enable array may be empty, in which case byte enables shall not be used for the
current transaction.

The byte enable array shall be specified by the initiator and shall not be overwritten by any interconnect
component or target.

If the byte enable pointer is not empty, the target shall implement the semantics of the byte enable defined as
follows or generate a standard error response. The recommended response status is
UVM_TLM_BYTE_ENABLE_ERROR_RESPONSE.

In the case of a write command, any interconnect component or target should ignore the values of any
disabled bytes in the m_data array (see 12.3.4.2.6). In the case of a read command, any interconnect
component or target should not modify the values of disabled bytes in the m_data array.

12.3.4.2.10 m_byte_enable_length

rand byte unsigned m_byte_enable_length

This is the number of elements in the m_byte_enable array (see 12.3.4.2.9).

It shall be specified by the initiator, and shall not be overwritten by any interconnect component or target.

12.3.4.2.11 m_streaming_width

rand byte unsigned m_streaming_width

This is the number of bytes transferred on each beat. Should be specified and read using the
set_streaming_width (see 12.3.4.2.26) or get_streaming_width (see 12.3.4.2.25) methods. This variable
should be used only when constraining.

Streaming affects the way a component should interpret the data array. A stream consists of a sequence of
data transfers occurring on successive notional beats, each beat having the same start address as given by the
generic payload address attribute. The streaming width attribute shall determine the width of the stream, i.e.,
the number of bytes transferred on each beat. In other words, streaming affects the local address associated
with each byte in the data array. In all other respects, the organization of the data array is unaffected by
streaming.

The bytes within the data array have a corresponding sequence of local addresses within the component
accessing the generic payload transaction. The lowest address is given by the value of the address attribute.
The highest address is given by the formula address_attribute + streaming_width - 1. The address to or
from which each byte is being copied in the target shall be specified as the value of the address attribute at
the start of each beat.

With respect to the interpretation of the data array, a single transaction with a streaming width shall be
functionally equivalent to a sequence of transactions each having the same address as the original
transaction, each having a data length attribute equal to the streaming width of the original, and each with a
data array that is a different subset of the original data array on each beat. This subset effectively steps down
the original data array maintaining the sequence of bytes.
154
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
A streaming width of 0 indicates a streaming transfer is not required. This is equivalent to a streaming width
value greater than or equal to the size of the m_data array (see 12.3.4.2.6).

Streaming may be used in conjunction with byte enables, where the streaming width would typically be
equal to the byte enable length. It would also make sense to have the streaming width be a multiple of the
byte enable length. Having the byte enable length be a multiple of the streaming width implies different
bytes were enabled on each beat.

If the target is unable to execute the transaction with the given streaming width, it shall generate a standard
error response. The recommended response status is TLM_BURST_ERROR_RESPONSE.

12.3.4.2.12 Accessors

The accessor functions (see 12.3.4.2.13 to 12.3.4.2.37) can specify and retrieve each of the members of the
generic payload. All of the accessor methods are virtual.

12.3.4.2.13 get_command

virtual function uvm_tlm_command_e get_command()

Returns the value of the m_command variable (see 12.3.4.2.5).

12.3.4.2.14 set_command

virtual function void set_command(
uvm_tlm_command_e command

)

Specifies the value of the m_command variable (see 12.3.4.2.5).

12.3.4.2.15 is_read

virtual function bit is_read()

Returns true if the current value of the m_command variable (see 12.3.4.2.5) is
UVM_TLM_READ_COMMAND.

12.3.4.2.16 set_read

virtual function void set_read()

Specifies the current value of the m_command variable (see 12.3.4.2.5) to UVM_TLM_READ_COMMAND.

12.3.4.2.17 is_write

virtual function bit is_write()

Returns true if the current value of the m_command variable (see 12.3.4.2.5)
UVM_TLM_WRITE_COMMAND.

12.3.4.2.18 set_write

virtual function void set_write()
155
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Specifies the current value of the m_command variable (see 12.3.4.2.5) to UVM_TLM_WRITE_COMMAND.

12.3.4.2.19 get_address

virtual function bit [63:0] get_address()

Returns the value of the m_address variable (see 12.3.4.2.4).

12.3.4.2.20 set_address

virtual function void set_address(

bit [63:0] addr

)

Specifies the value of the m_address variable (see 12.3.4.2.4).

12.3.4.2.21 get_data

virtual function void get_data (

output byte unsigned p []

)

Returns the value of the m_data array (see 12.3.4.2.6).

12.3.4.2.22 set_data

virtual function void set_data (

ref byte unsigned p []

)

Specifies the value of the m_data array (see 12.3.4.2.6).

12.3.4.2.23 get_data_length

virtual function int unsigned get_data_length()

Returns the current size of the m_data array (see 12.3.4.2.6).

12.3.4.2.24 set_data_length

virtual function void set_data_length(

int unsigned length

)

Specifies the value of the m_length (see 12.3.4.2.7).

12.3.4.2.25 get_streaming_width

virtual function int unsigned get_streaming_width()

Returns the value of the m_streaming_width array (see 12.3.4.2.11).
156
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
12.3.4.2.26 set_streaming_width

virtual function void set_streaming_width(
int unsigned width

)

Specifies the value of the m_streaming_width array (see 12.3.4.2.11).

12.3.4.2.27 get_byte_enable

virtual function void get_byte_enable(
output byte unsigned p[]

)

Returns the value of the m_byte_enable array (see 12.3.4.2.9).

12.3.4.2.28 set_byte_enable

virtual function void set_byte_enable(
ref byte unsigned p[]

)

Specifies the value of the m_byte_enable array (see 12.3.4.2.9).

12.3.4.2.29 get_byte_enable_length

virtual function int unsigned get_byte_enable_length()

Returns the current size of the m_byte_enable array (see 12.3.4.2.9).

12.3.4.2.30 set_byte_enable_length

virtual function void set_byte_enable_length(
int unsigned length

)

Specifies the size m_byte_enable_length (see 12.3.4.2.10) of the m_byte_enable array (see 12.3.4.2.9),
i.e., m_byte_enable.size.

12.3.4.2.31 set_dmi_allowed

virtual function void set_dmi_allowed(
bit dmi

)

This is a DMI hint. It allows DMI access.

12.3.4.2.32 is_dmi_allowed

virtual function bit is_dmi_allowed()

This is a DMI hint. It queries to see if DMI access is allowed.
157
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
12.3.4.2.33 get_response_status

virtual function uvm_tlm_response_status_e get_response_status()

Returns the current value of the m_response_status variable (see 12.3.4.2.8).

12.3.4.2.34 set_response_status

virtual function void set_response_status(
uvm_tlm_response_status_e status

)

Specifies the current value of the m_response_status variable (see 12.3.4.2.8).

12.3.4.2.35 is_response_ok

virtual function bit is_response_ok()

Returns true if the current value of the m_response_status variable (see 12.3.4.2.8) is
UVM_TLM_OK_RESPONSE.

12.3.4.2.36 is_response_error

virtual function bit is_response_error()

Returns true if the current value of the m_response_status variable (see 12.3.4.2.8) is not
UVM_TLM_OK_RESPONSE.

12.3.4.2.37 get_response_string

virtual function string get_response_string()

Returns the current value of the m_response_status variable (see 12.3.4.2.8) as a string.

12.3.4.2.38 Extension mechanism

uvm_tlm_generic_payload has the following extension mechanisms (see 12.3.4.2.39 to 12.3.4.2.43).

12.3.4.2.39 get_num_extensions

function int get_num_extensions()

Returns the current number of instance specific extensions.

12.3.4.2.40 get_extension

function uvm_tlm_extension_base get_extension(
uvm_tlm_extension_base ext_handle

)

Returns the instance specific extension bound under the specified key. If no extension is bound under that
key, null is returned.
158
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
12.3.4.2.41 set_extension

function uvm_tlm_extension_base set_extension(
uvm_tlm_extension_base ext

)

Adds an instance-specific extension. Only one instance of any given extension type is allowed. If there is an
existing extension instance of the type of ext, ext replaces it and its handle is returned. Otherwise, null is
returned.

12.3.4.2.42 clear_extension

function void clear_extension(
uvm_tlm_extension_base ext_handle

)

Removes the instance-specific extension bound under the specified key.

12.3.4.2.43 clear_extensions

function void clear_extensions()

Removes all instance-specific extensions.

12.3.4.3 uvm_tlm_gp

This typedef provides a short, more convenient name for the uvm_tlm_generic_payload type (see
12.3.4.2).

Class declaration

typedef uvm_tlm_generic_payload uvm_tlm_gp

12.3.4.4 uvm_tlm_extension_base

This is the non-parameterized base class for all generic payload extensions. The pure virtual function
get_type_handle (see 12.3.4.4.4) returns a unique handle that represents the derived type, which is
implemented in derived classes.

This class shall never be extended by user classes; such user classes shall extend from uvm_tlm_extension
(see 12.3.4.5).

12.3.4.4.1 Class declaration

virtual class uvm_tlm_extension_base extends uvm_object

12.3.4.4.2 Methods

uvm_tlm_extension_base has the following methods (see 12.3.4.4.3 to 12.3.4.4.5).

12.3.4.4.3 new

function new(
string name = ""

)

159
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
The new constructor is only given as a pass-through mechanism to call uvm_object::new. This class is
abstract and cannot be constructed itself.

12.3.4.4.4 get_type_handle

pure virtual function uvm_tlm_extension_base get_type_handle()

Intended to be an interface to polymorphically retrieve a handle that uniquely identifies the type of the
subclass.

12.3.4.4.5 get_type_handle_name

pure virtual function string get_type_handle_name()

Intended to be an interface to polymorphically retrieve the name that uniquely identifies the type of the
subclass.

12.3.4.5 uvm_tlm_extension

This is a UVM TLM 2 extension class. This class is parameterized with an arbitrary type that represents the
type of the extension. An instance of the generic payload can contain one extension object of each type; it
cannot contain two instances of the same extension type.

The extension type can be identified using the ID method (see 12.3.4.5.4).

To implement a generic payload extension, simply derive a new class from this class and specify the name
of the derived class as the extension parameter.

12.3.4.5.1 Class declaration

class uvm_tlm_extension #(
type T = int

) extends uvm_tlm_extension_base

12.3.4.5.2 Methods

uvm_tlm_extension has the following methods (see 12.3.4.5.3 to 12.3.4.5.4).

12.3.4.5.3 new

function new(
string name = ""

)

Creates a new extension object.

12.3.4.5.4 ID

static function uvm_tlm_extension #(T) ID()

Returns the unique ID of this UVM TLM 2 extension type. This method is used to identify the type of the
extension to retrieve from a uvm_tlm_generic_payload instance (see 12.3.4.2), using the
uvm_tlm_generic_payload::get_extension method (see 12.3.4.2.40).
160
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
12.3.5 Sockets

Sockets group together all the necessary core interfaces for transportation and binding. A socket is like a
port or export; in fact it is derived from the same base class as port and export, namely uvm_port_base
#(IF) (see 5.5). However, unlike a port or export, a socket provides both a forward and backward path. Thus
asynchronous (pipelined) bidirectional communication can be enabled by connecting sockets together. A
socket contains both a port and an export. Components that initiate transactions are called initiators and
components that receive transactions sent by an initiator are called targets. Initiators have initiator sockets
and targets have target sockets. Initiator sockets can connect to target sockets. Initiator sockets cannot be
connected to other initiator sockets and target sockets cannot be connected to other target sockets.

Sockets come in several flavors: Each socket is either an initiator or a target, a pass-through, or a terminator.
Furthermore, any particular socket implements either the blocking interfaces or the non-blocking interfaces.
Terminator sockets are used on initiators and targets as well as interconnect components. Pass-through
sockets are used to enable connections to cross hierarchical boundaries.

There are eight socket types: the cross of blocking and non-blocking, pass-through and termination, and
target and initiator.

Sockets are specified based on what they are (IS-A) and what they contain (HAS-A). IS-A and HAS-A are
types of object relationships. IS-A refers to the inheritance relationship and HAS-A refers to the ownership
relationship. For example, the statement D is a B means D is derived from base B. Given that, the phrase
object A HAS-A B then means B is a member of A.

12.3.5.1 uvm_tlm_b_target_socket

IS-A forward imp; has no backward path except via the payload contents.

The component instantiating this socket shall implement a b_transport method (see 12.3.2.2.3) with the
following signature:

task b_transport(T t, uvm_tlm_time delay)

12.3.5.1.1 Class declaration

class uvm_tlm_b_target_socket #(
type IMP = int,
type T = uvm_tlm_generic_payload

) extends uvm_tlm_b_target_socket_base #(T)

12.3.5.1.2 Methods

uvm_tlm_b_target_socket has the following methods (see 12.3.5.1.3 to 12.3.5.1.4).

12.3.5.1.3 new

function new (
string name,
uvm_component parent,
IMP imp = null

)

Constructs a new instance of this socket imp, a reference to the class implementing the b_transport method
(see 12.3.2.2.3). If not specified, it is presumed to be the same as parent.
161
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
12.3.5.1.4 connect

function void connect(uvm_tlm_b_target_socket provider)

Connects this socket to the specified uvm_tlm_b_initiator_socket (see 12.3.5.2).

12.3.5.2 uvm_tlm_b_initiator_socket

IS-A forward port; has no backward path except via the payload contents.

12.3.5.2.1 Class declaration

class uvm_tlm_b_initiator_socket #(
type T = uvm_tlm_generic_payload

) extends uvm_tlm_b_initiator_socket_base #(T)

12.3.5.2.2 Methods

uvm_tlm_b_initiator_socket has the following methods (see 12.3.5.2.3 to 12.3.5.2.4).

12.3.5.2.3 new

function new (
string name,
uvm_component parent,

)

Constructs a new instance of this socket.

12.3.5.2.4 connect

function void connect(uvm_tlm_b_initiator_socket provider)

Connects this socket to the specified uvm_tlm_b_target_socket (see 12.3.5.1).

12.3.5.3 uvm_tlm_nb_target_socket

IS-A forward imp; HAS-A backward port.

The component instantiating this socket shall implement a nb_transport_fw method (see 12.3.2.2.1) with
the following signature:

function uvm_tlm_sync_e nb_transport_fw(T t, ref P p, input uvm_tlm_time
delay)

12.3.5.3.1 Class declaration

class uvm_tlm_nb_target_socket #(
type IMP = int,
type T = uvm_tlm_generic_payload,
type P = uvm_tlm_phase_e

) extends uvm_tlm_nb_target_socket_base#(T,P)
162
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
12.3.5.3.2 Methods

uvm_tlm_nb_target_socket has the following methods (see 12.3.5.3.3 to 12.3.5.3.4).

12.3.5.3.3 new

function new (
string name,
uvm_component parent,
IMP imp = null

)

Constructs a new instance of this socket imp, a reference to the class implementing the nb_transport_fw
method (see 12.3.2.2.1). If not specified, it is presumed to be the same as parent.

12.3.5.3.4 connect

function void connect(
uvm_tlm_nb_target_socket provider

)

Connects this socket to the specified uvm_tlm_nb_initiator_socket (see 12.3.5.4).

12.3.5.4 uvm_tlm_nb_initiator_socket

IS-A forward port; HAS-A backward imp.

12.3.5.4.1 Class declaration

class uvm_tlm_nb_initiator_socket #(
type IMP = int,
type T = uvm_tlm_generic_payload,
type P = uvm_tlm_phase_e

) extends uvm_tlm_nb_initiator_socket_base#(T,P)

12.3.5.4.2 Methods

uvm_tlm_nb_initiator_socket has the following methods (see 12.3.5.4.3 to 12.3.5.4.4).

12.3.5.4.3 new

function new (
string name,
uvm_component parent,
IMP imp = null

)

Constructs a new instance of this socket imp is a reference to the class implementing the nb_transport_bw
method (see 12.3.4). If not specified, it is presumed to be the same as parent.

12.3.5.4.4 connect

function void connect(uvm_tlm_nb_initiator_socket provider)

Connects this socket to the specified uvm_tlm_nb_target_socket (see 12.3.5.3).
163
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
12.3.5.5 uvm_tlm_nb_passthrough_initiator_socket

IS-A forward port; HAS-A backward export.

Class declaration

class uvm_tlm_nb_passthrough_initiator_socket #(
type T = uvm_tlm_generic_payload,
type P = uvm_tlm_phase_e

) extends uvm_tlm_nb_passthrough_initiator_socket_base#(T,P)

12.3.5.6 uvm_tlm_nb_passthrough_target_socket

IS-A forward export; HAS-A backward port.

12.3.5.6.1 Class declaration

class uvm_tlm_nb_passthrough_target_socket #(
type T = uvm_tlm_generic_payload,
type P = uvm_tlm_phase_e

) extends uvm_tlm_nb_passthrough_target_socket_base#(T,P)

12.3.5.6.2 Methods

connect

function void connect(
uvm_tlm_nb_initiator_socket provider

)

Connects this socket to the specified uvm_tlm_nb_initiator_socket (see 12.3.5.5).

12.3.5.7 uvm_tlm_b_passthrough_initiator_socket

IS-A forward port.

Class declaration

class uvm_tlm_b_passthrough_initiator_socket #(
type T = uvm_tlm_generic_payload

) extends uvm_tlm_b_passthrough_initiator_socket_base#(T)

12.3.5.8 uvm_tlm_b_passthrough_target_socket

IS-A forward export.

Class declaration

class uvm_tlm_b_passthrough_target_socket #(
type T = uvm_tlm_generic_payload

) extends uvm_tlm_b_passthrough_target_socket_base#(T)

12.3.6 Port classes

This subclause defines the UVM TLM 2 port classes.
164
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
12.3.6.1 uvm_tlm_b_transport_port

This class provides a blocking transport port, which can be bound to one export. There is no backward path
for the blocking transport.

Class declaration

class uvm_tlm_b_transport_port #(
type T = uvm_tlm_generic_payload

) extends uvm_port_base #(uvm_tlm_if #(T))

12.3.6.2 uvm_tlm_nb_transport_fw_port

This class provides a non-blocking backward transport port. Transactions received from the producer, on the
forward path, are sent back to the producer on the backward path using this non-blocking transport port,
which can be bound to one export.

Class declaration

class uvm_tlm_nb_transport_fw_port #(
type T = uvm_tlm_generic_payload,
type P = uvm_tlm_phase_e

) extends uvm_port_base #(uvm_tlm_if #(T,P))

12.3.6.3 uvm_tlm_nb_transport_bw_port

This class provides a non-blocking backward transport port. Transactions received from the producer, on the
forward path, are sent back to the producer on the backward path using this non-blocking transport port,
which can be bound to one export.

Class declaration

class uvm_tlm_nb_transport_bw_port #(
type T = uvm_tlm_generic_payload,
type P = uvm_tlm_phase_e

) extends uvm_port_base #(uvm_tlm_if #(T,P))

12.3.7 Export classes

This subclause defines the export classes for connecting UVM TLM 2 interfaces.

12.3.7.1 uvm_tlm_b_transport_export

This is a blocking transport export class.

Class declaration

class uvm_tlm_b_transport_export #(
type T = uvm_tlm_generic_payload

) extends uvm_port_base #(uvm_tlm_if #(T))

12.3.7.2 uvm_tlm_nb_transport_fw_export

This is a non-blocking forward transport export class.
165
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Class declaration

class uvm_tlm_nb_transport_fw_export #(
type T = uvm_tlm_generic_payload,
type P = uvm_tlm_phase_e

) extends uvm_port_base #(uvm_tlm_if #(T,P))

12.3.7.3 uvm_tlm_nb_transport_bw_export

This is a non-blocking backward transport export class.

Class declaration

class uvm_tlm_nb_transport_bw_export #(
type T = uvm_tlm_generic_payload,
type P = uvm_tlm_phase_e

) extends uvm_port_base #(uvm_tlm_if #(T,P))

12.3.8 Implementation (imp) classes imps

This subclause defines the implementation classes for connecting UVM TLM 2 interfaces.

UVM TLM 2 imps bind a UVM TLM 2 interface with the object that contains the interface implementation.
In addition to the transaction type and the phase type, the imps are parameterized with the type of the object
that provides the implementation. Typically, this is the type of the component where the imp resides. The
constructor of the imp takes as an argument an object of type IMP and installs it as the implementation
object. The imp constructor argument is usually “this”.

The following subclauses show the IMP binding classes.

12.3.8.1 uvm_tlm_b_transport_imp

Used like exports, except an additional class parameter specifies the type of the implementation object.
When the imp is instantiated, the implementation object is bound.

Class declaration

class uvm_tlm_b_transport_imp #(
type T = uvm_tlm_generic_payload,
type IMP = int

) extends uvm_port_base #(uvm_tlm_if #(T))

12.3.8.2 uvm_tlm_nb_transport_fw_imp

Used like exports, except an additional class parameter specifies the type of the implementation object.
When the imp is instantiated, the implementation object is bound.

Class declaration

class uvm_tlm_nb_transport_fw_imp #(
type T = uvm_tlm_generic_payload,
type P = uvm_tlm_phase_e,
type IMP = int

) extends uvm_port_base #(uvm_tlm_if #(T,P))
166
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
12.3.8.3 uvm_tlm_nb_transport_bw_imp

Used like exports, except an additional class parameter specifies the type of the implementation object.
When the imp is instantiated, the implementation object is bound.

Class declaration

class uvm_tlm_nb_transport_bw_imp #(
type T = uvm_tlm_generic_payload,
type P = uvm_tlm_phase_e,
type IMP = int

) extends uvm_port_base #(uvm_tlm_if #(T,P))

12.3.9 uvm_tlm_time

 typedef uvm_time uvm_tlm_time

The uvm_tlm_time type is the argument type used to represent delays in UVM TLM 2, such as in the
b_transport (see 12.3.2.2.3), nb_transport_fw (see 12.3.2.2.1), and nb_transport_bw (see 12.3.2.2.1)
methods.
167
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
13. Predefined component classes

Components form the foundation of UVM. They encapsulate behavior of drivers, scoreboards, and other
objects in a testbench. The UVM base class library provides a set of predefined component types, all derived
directly or indirectly from uvm_component (see 13.1).

13.1 uvm_component

The uvm_component class is the common base class for UVM components. In addition to the features
inherited from uvm_object (see 5.3) and uvm_report_object (see 6.3), uvm_component provides the
following interfaces:

a) Hierarchy—provides methods for searching and traversing the component hierarchy.

b) Phasing—defines a phased test flow that all components follow, with a group of standard phase
methods and an API for custom phases and multiple independent phasing domains to mirror DUT
behavior, e.g., power.

c) Hierarchical reporting—provides a convenience interface to the uvm_report_handler (see 6.4).
All messages, warnings, and errors are processed through this interface.

d) Transaction recording—provides methods for recording the transactions produced or consumed by
the component to a transaction database (application specific).

e) Factory—provides a convenience interface (see D.2.1) to the uvm_factory (see 8.3.1). The factory
is used to create new components and other objects based on type-wide and instance-specific
configuration.

uvm_component is automatically seeded during construction using UVM seeding, if enabled. See 5.3.3.3.

13.1.1 Class declaration

virtual class uvm_component extends uvm_report_object

13.1.2 Common methods

13.1.2.1 new

function new (
string name,
uvm_component parent

)

Initializes a new component with the given leaf instance name and handle to its parent.

The name shall be provided such that the full hierarchical name is unique and the leaf name is composed
only from the characters A through Z, a through z, 0 through 9 or the special characters: _ - [] () { }.

The component is inserted as a child of the parent object, if any. If parent already has a child by the given
name, an error shall be generated.

If parent is null, the component shall become a child of the implicit top-level component (see F.7).

All classes derived from uvm_component shall call super.new(name,parent).
168
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
13.1.2.2 print_enabled

bit print_enabled = 1

This bit determines if this component should automatically be printed as a child of its parent object.

By default, print_enabled shall be 1 and all children are printed. However, this bit allows a parent
component to disable the printing of specific children.

13.1.3 Hierarchy interface

These methods provide user access to information about the component hierarchy, i.e., topology.

13.1.3.1 get_parent

virtual function uvm_component get_parent()

Returns a handle to this component’s parent or null if it has no parent.

13.1.3.2 get_full_name

virtual function string get_full_name()

Returns the full hierarchical name of this object, which is formed by concatenating the full hierarchical
name of the parent, if any, with the leaf name of this object [as given by uvm_object::get_name (see
5.3.4.2)], separated by a period (.).

13.1.3.3 get_children

function void get_children(
ref uvm_component children[$]

)

This function populates the end of the children array with the list of this component’s children. children
shall be a queue.

13.1.3.4 get_child, get_next_child, and get_first_child

function uvm_component get_child (
string name

)

function int get_next_child (
ref string name

)

function int get_first_child (
ref string name

)

These methods are used to iterate through this component’s children, if any.

a) get_child—Returns a reference to the child which has name. If no child exists with the given name,
then null is returned.
169
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
b) get_first_child—Iteration method for the internal array of children components. If the array is
non-empty, get_first_child sets name to the name of the first child in the array and returns 1. If the
array is empty, name is left unchanged and the method returns 0.

c) get_next_child—Iteration method for the internal array of children components. If the array is non-
empty, get_next_child sets name to the name of the next child in the array and returns 1. If there are
no more children in the array, name is left unchanged and the method returns 0.

13.1.3.5 get_num_children

function int get_num_children()

Returns the number of this component’s children.

13.1.3.6 has_child

function int has_child (

string name

)

Returns 1 if this component has a child with the given name, 0 otherwise.

13.1.3.7 lookup

function uvm_component lookup (

string name

)

Looks for a component with the given hierarchical name relative to this component. If the given name is
preceded with a . (dot), the search begins relative to the top level (absolute lookup). The handle of the
matching component is returned, if none, null is returned. The name shall not contain wild cards.

13.1.3.8 get_depth

function int unsigned get_depth()

Returns the component’s depth from the root level. The implicit top-level component (see F.7) has a depth of
0. The test and any other top-level components have a depth of 1, and so on.

13.1.4 Phasing interface

These methods implement an interface that allows all components to step through a standard schedule of
phases (see Clause 9) or a customized schedule, and also an API to allow independent phase domains that
can jump like state machines to reflect behavior, e.g., power domains on the DUT in different portions of the
testbench. The phase tasks and functions are the phase name plus the _phase suffix, e.g., the build phase
function is build_phase.

All phase tasks have the property that forked tasks are killed when the phase ends and they do not influence
the overall phase with the presence or absence of returning.
170
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
13.1.4.1 UVM common phases

13.1.4.1.1 build_phase

virtual function void build_phase(
uvm_phase phase

)

The uvm_build_phase phase implementation method (see 9.8.1.1).

If automatic configuration is enabled (see 13.1.5.2), the component shall call apply_config_settings (see
13.1.5.1) when super.build_phase(phase) is called.

13.1.4.1.2 connect_phase

virtual function void connect_phase(
uvm_phase phase

)

The uvm_connect_phase phase implementation method (see 9.8.1.2).

13.1.4.1.3 end_of_elaboration_phase

virtual function void end_of_elaboration_phase(
uvm_phase phase

)

The uvm_end_of_elaboration_phase phase implementation method (see 9.8.1.3).

The list of connected imps within each port and export is populated and the port’s minimum and maximum
connection limits are enforced.

13.1.4.1.4 start_of_simulation_phase

virtual function void start_of_simulation_phase(
uvm_phase phase

)

The uvm_start_of_simulation_phase phase implementation method (see 9.8.1.4).

13.1.4.1.5 run_phase

virtual task run_phase(
uvm_phase phase

)

The uvm_run_phase phase implementation method (see 9.8.1.5).

Whether this task returns or not does not indicate the end or persistence of this phase. Thus, the phase
automatically ends once all objections are dropped using phase.drop_objection.

13.1.4.1.6 extract_phase

virtual function void extract_phase(
uvm_phase phase

)

The uvm_extract_phase phase implementation method (see 9.8.1.6).
171
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
13.1.4.1.7 check_phase

virtual function void check_phase(
uvm_phase phase

)

The uvm_check_phase phase implementation method (see 9.8.1.7).

13.1.4.1.8 report_phase

virtual function void report_phase(
uvm_phase phase

)

The uvm_report_phase phase implementation method (see 9.8.1.8).

13.1.4.1.9 final_phase

virtual function void final_phase(
uvm_phase phase

)

The uvm_final_phase phase implementation method (see 9.8.1.9).

13.1.4.2 UVM run-time phases

Whether each of these tasks returns or not does not indicate the end or persistence of the particular phase. It
is necessary to raise an objection using phase.raise_objection to cause a phase to persist. Once all
components have dropped their respective objection, via phase.drop_objection, or if no component
raises an objection, the phase is ended.

All processes associated with a task-based phase are killed when the phase ends, see 9.6.

13.1.4.2.1 pre_reset_phase

virtual task pre_reset_phase(
uvm_phase phase

)

The uvm_pre_reset_phase phase implementation method (see 9.8.2.1).

13.1.4.2.2 reset_phase

virtual task reset_phase(
uvm_phase phase

)

The uvm_reset_phase phase implementation method (see 9.8.2.2).

13.1.4.2.3 post_reset_phase

virtual task post_reset_phase(
uvm_phase phase

)

172
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
The uvm_post_reset_phase phase implementation method (see 9.8.2.3).

13.1.4.2.4 pre_configure_phase

virtual task pre_configure_phase(
uvm_phase phase

)

The uvm_pre_configure_phase phase implementation method (see 9.8.2.4).

13.1.4.2.5 configure_phase

virtual task configure_phase(
uvm_phase phase

)

The uvm_configure_phase phase implementation method (see 9.8.2.5).

13.1.4.2.6 post_configure_phase

virtual task post_configure_phase(
uvm_phase phase

)

The uvm_post_configure_phase phase implementation method (see 9.8.2.6).

13.1.4.2.7 pre_main_phase

virtual task pre_main_phase(
uvm_phase phase

)

The uvm_pre_main_phase phase implementation method (see 9.8.2.7).

13.1.4.2.8 main_phase

virtual task main_phase(
uvm_phase phase

)

The uvm_main_phase phase implementation method (see 9.8.2.8).

13.1.4.2.9 post_main_phase

virtual task post_main_phase(
uvm_phase phase

)

The uvm_post_main_phase phase implementation method (see 9.8.2.9).

13.1.4.2.10 pre_shutdown_phase

virtual task pre_shutdown_phase(
uvm_phase phase

)

173
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
The uvm_pre_shutdown_phase phase implementation method (see 9.8.2.10).

13.1.4.2.11 shutdown_phase

virtual task shutdown_phase(
uvm_phase phase

)

The uvm_shutdown_phase phase implementation method (see 9.8.2.11).

13.1.4.2.12 post_shutdown_phase

virtual task post_shutdown_phase(
uvm_phase phase

)

The uvm_post_shutdown_phase phase implementation method (see 9.8.2.12).

13.1.4.3 phase_* methods

Any threads spawned in these callbacks are not affected when the phase ends.

13.1.4.3.1 phase_started

virtual function void phase_started(
uvm_phase phase

)

Invoked at the start of each phase. The phase argument specifies the phase being started.

13.1.4.3.2 phase_ready_to_end

virtual function void phase_ready_to_end(
uvm_phase phase

)

Invoked when all objections to ending the given phase and all sibling phases have been dropped, thus
indicating that phase is ready to begin a clean exit. Sibling phases are phases who share any adjacent
successor nodes (see 9.3.1.6.10).

Components needing to consume delta cycles or advance time to perform a clean exit from the phase may
raise the phase’s objection, e.g., phase.raise_objection(this,"Reason"). It is the
responsibility of this component to drop the objection once it is ready for this phase to end (and processes
killed). If no objection to the given phase or sibling phases are raised, the phase state (see 9.3.1.1.3) shall
proceed to UVM_PHASE_ENDED. If any objection is raised, when all objections to ending the given phase
and siblings are dropped, another iteration of phase_ready_to_end is called. To prevent endless iterations
due to coding error, phase_ended (see 13.1.4.3.3) is called after any iterations returned by
phase.get_max_ready_to_end_iterations (see 9.3.1.3.4) regardless of whether a previous iteration lead to
any objections being raised.

13.1.4.3.3 phase_ended

virtual function void phase_ended(
uvm_phase phase

)

174
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Invoked at the end of each phase. The phase argument specifies the phase ending.

13.1.4.4 *_domain methods

13.1.4.4.1 set_domain

function void set_domain(
uvm_domain domain,
int hier = 1

)

Applies a phase domain to this component and, if hier is non-zero, recursively to all its children. The default
domain (before set_domain is called) is the uvm domain (see 13.1.4.4.2). The default value of hier shall
be 1.

Calls the virtual define_domain method (see 13.1.4.4.3), which derived components can override to
augment or replace the domain definition of its base class.

13.1.4.4.2 get_domain

function uvm_domain get_domain()

Returns a handle to the phase domain specified for this component.

13.1.4.4.3 define_domain

virtual protected function void define_domain(
uvm_domain domain

)

Builds phase schedules into the provided domain handle. The default implementation adds a copy of the uvm
phasing schedule to the given domain, if one does not already exist, and only if the domain is currently
empty.

This method is called by set_domain (see 13.1.4.4.1), which integrators may use to specify this component
belongs in a domain apart from the default ‘uvm’ domain.

Custom component base classes requiring a custom phasing schedule can augment or replace the domain
definition they inherit by overriding their define_domain.

Alternatively, the integrator can attempt to define the schedule by setting up a new domain and setting it
onto the component, and the component can override that schedule by overriding this method.

13.1.4.5 Suspending and resuming a component

These tasks can be used to suspend and resume a component.

13.1.4.5.1 suspend

virtual task suspend()

Suspends this component.
175
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
This method needs to be implemented by the user to suspend the component according to the protocol and
functionality it implements. A suspended component can be subsequently resumed using resume (see
13.1.4.5.2).

13.1.4.5.2 resume

virtual task resume()

Resumes this component.

This method needs to be implemented by the user to resume a component that was previously suspended
using suspend (see 13.1.4.5.1).

13.1.4.6 pre_abort

virtual function void pre_abort()

This callback is executed when the message system is executing a UVM_EXIT action (see F.2.2.2). The
exit action causes an immediate termination of the simulation, but the pre_abort callback hook gives
components an opportunity to provide additional information to the user before the termination happens.

The pre_abort callback hooks are called in a bottom-up fashion.

13.1.5 Configuration interface

Components can be designed to be user-configurable in terms of their topology (the type and number of
children it has), mode of operation, and run-time parameters (knobs). The configuration interface
accommodates this common need, allowing a component’s composition and state to be modified without
having to derive new classes or new class hierarchies for every configuration scenario.

13.1.5.1 apply_config_settings

virtual function void apply_config_settings (
bit verbose = 0

)

Searches for all configuration settings matching this component’s instance path.

For each resource with a scope matching the return of get_full_name (see 13.1.3.2) as follows:

a) do_execute_op (see 5.3.13.1) is passed a uvm_field_op (see 5.3.13.2) with op_type UVM_SET and
rhs set to the resource.

b) If user_hook_enabled (see 5.3.13.2.9) returns 1, the resource shall be passed to set_local (see
5.3.12).

When the verbose bit is set to 1, all settings are printed as they are applied. If the component’s
print_config_matches property is specified (see 13.1.5.3), apply_config_settings is automatically called
with verbose = 1. apply_config_settings can also be overloaded to customize automated configuration.
The default value of verbose shall be 0 or not set.

If automatic configuration is enabled (see 13.1.5.2), this function is called by
uvm_component::build_phase (see 13.1.4.1.1).
176
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
13.1.5.2 use_automatic_config

virtual function bit use_automatic_config()

Returns 1 if the component should call apply_config_settings in the build_phase (see 13.1.4.1.1);
otherwise, returns 0.

By default, use_automatic_config returns 1. If the user wishes to disable the automatic call to
apply_config_settings (see 13.1.5.1), this method needs to be overloaded to return a 0.

When an extended component extends use_automatic_config and returns a 0, wherein the base class
returned 1, the extended component is assuming responsibility for any configuration that would have
occurred within the apply_config_settings call in the base class.

13.1.5.3 Objection interface

These methods provide component level hooks into the uvm_objection mechanism (see 10.5.1).

13.1.5.4 raised

virtual function void raised (
uvm_objection objection,
uvm_object source_obj,
string description,
int count

)

Hook called by the default implementation of uvm_objection::raised (see 10.5.1.4.1).

13.1.5.5 dropped

virtual function void dropped (
uvm_objection objection,
uvm_object source_obj,
string description,
int count

)

Hook called by the default implementation of uvm_objection::dropped (see 10.5.1.4.2).

13.1.5.6 all_dropped

virtual function void all_dropped (
uvm_objection objection,
uvm_object source_obj,
string description,
int count

)

Hook called by the default implementation of uvm_objection::all_dropped (see 10.5.1.4.3).

13.1.6 Recording interface

These methods comprise the component-based transaction recording interface (see also Clause 7). They can
be used to record the transactions that this component “sees,” i.e., produces or consumes.
177
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
13.1.6.1 accept_tr

function void accept_tr (
uvm_transaction tr,
time accept_time = 0

)

This function marks the acceptance of a transaction, tr, by this component. Specifically, it performs the
following actions:

— Calls the tr’s uvm_transaction::accept_tr method (see 5.4.2.2), passing to it the accept_time
argument. The default value of accept_time shall be 0.

— Calls this component’s do_accept_tr method (see 13.1.6.2) to allow for any post-begin action in
derived classes.

— Triggers the component’s accept_tr event if it has added such an event to the event pool. Any
processes waiting on this event shall resume in the next delta cycle.

13.1.6.2 do_accept_tr

virtual protected function void do_accept_tr (
uvm_transaction tr

)

The accept_tr method (see 13.1.6.1) calls this function to accommodate any user-defined post-accept
action.

13.1.6.3 begin_tr

function int begin_tr (
uvm_transaction tr,
string stream_name = "main",
string label = "",
string desc = "",
time begin_time = 0,
int parent_handle = 0

)

This function marks the start of a transaction, tr, by this component. Specifically, it performs the following
actions:

a) Calls tr’s uvm_transaction::begin_tr method (see 5.4.2.4), passing to it the begin_time argument.
begin_time should be greater than or equal to the accept time. When begin_time = 0, the
current simulation time is used. The default value of begin_time shall be 0.

If recording is enabled, a new database transaction is started on the component’s transaction stream
given by the stream argument. No transaction properties are recorded at this time.

b) Calls the component’s do_begin_tr method (see 13.2) to allow for any post-begin action in derived
classes.

c) Triggers the component’s internal begin_tr event if one was added to the pool.

A handle to the transaction is returned. The meaning of this handle, as well as the interpretation of the
arguments stream_name, label, and desc are application specific. The default value of stream_name shall be
"main". The default value of parent_handle shall be 0.
178
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
13.1.6.4 do_begin_tr

virtual protected function void do_begin_tr (
uvm_transaction tr,
string stream_name,
int tr_handle

)

The begin_tr (see 13.1.6.3) and begin_child_tr (see 13.1.6.4) methods call this function to accommodate
any user-defined post-begin action.

13.1.6.5 end_tr

function void end_tr (
uvm_transaction tr,
time end_time = 0,
bit free_handle = 1

)

This function marks the end of a transaction, tr, by this component. Specifically, it performs the following
actions:

a) Calls tr’s uvm_transaction::end_tr method (see 5.4.2.7), passing to it the end_time and
free_handle arguments. end_time shall be greater than the begin time. When end_time = 0, the
current simulation time is used.

b) Calls the component’s do_end_tr method (see 13.2) to accommodate any post-end action in derived
classes.

c) The transaction’s properties are recorded to the database transaction on which it was started and then
the transaction is ended. Only those properties handled by the transaction’s do_record method (and
optional `uvm_*_field macros) are recorded.

d) Triggers the component’s internal end_tr event if such an event has been added.

An implementation shall free (see 16.4.4.3) the recorder associated with the transaction if free_handle is set
to 1. If free_handle is set to 0, the implementation shall close (see 16.4.4.2) the recorder, but not call free.
The default value of free_handle shall be 1.

13.1.6.6 do_end_tr

virtual protected function void do_end_tr (
uvm_transaction tr,
int tr_handle

)

The end_tr (see 13.1.6.5) method calls this function to accommodate any user-defined post-end action.

13.1.6.7 record_error_tr

function int record_error_tr (
string stream_name = "main",
uvm_object info = null,
string label = "error_tr",
string desc = "",
time error_time = 0,
bit keep_active = 0

)

179
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
This function marks an error transaction by a component. Properties of the given uvm_object, info, are
recorded to the transaction database, as implemented in its uvm_object::do_record (see 5.3.7.2) and
uvm_object::do_execute_op (see 5.3.13.1) methods.

An error_time of 0 indicates to use the current simulation time. The keep_active bit determines if the handle
should remain active; if 0, then a zero-length error transaction is recorded. The default value of error_time
shall be 0. The default value of keep_active shall be 0.

A handle to the transaction is returned. The interpretation of this handle, as well as the strings stream_name,
label, and desc, are application specific. The default value of stream_name shall be "main". The default
value of label shall be "error_tr".

13.1.6.8 record_event_tr

function int record_event_tr (
string stream_name = "main",
uvm_object info = null,
string label = "event_tr",
string desc = "",
time event_time = 0,
bit keep_active = 0

)

This function marks an event transaction by a component.

An event_time of 0 indicates to use the current simulation time. The keep_active bit determines if the handle
may be used for other application-specific purposes (0 means no; 1 means yes). The default value of
event_time shall be 0. The default value of keep_active shall be 0.

A handle to the transaction is returned. The interpretation of this handle, as well as the strings stream_name,
label, and desc, are application specific. The default value of stream_name shall be "main". The default
value of label shall be "event_tr".

13.1.6.9 get_tr_stream

virtual function uvm_tr_stream get_tr_stream(
string name,
string stream_type_name = ""

)

Returns a tr stream with this component’s full name as a scope.

name is the name for the stream. stream_type_name is the type name for the stream [the default is an empty
string ("")].

Streams that are retrieved via this method are stored internally, such that later calls to get_tr_stream return
the same stream reference.

The stream can be removed from the internal storage via a call to free_tr_stream (see 13.1.6.10).

13.1.6.10 free_tr_stream

virtual function void free_tr_stream(
uvm_tr_stream stream

)

180
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Frees any internal references caused by a call to this API. This method is an indication by the user that the
implementation should remove any references it has to stream.

The next call to get_tr_stream (see 13.1.6.9) results in a newly created uvm_tr_stream (see 7.2).

13.1.6.11 set_tr_database

virtual function void set_tr_database(uvm_tr_database db)

Specifies the uvm_tr_database object (see 7.1) to use for begin_tr (see 13.1.6.3) and other methods in this
subclause (see 13.2). The default object is uvm_coreservice_t::get_default_tr_database (see F.4.1.4.6).

13.1.6.12 get_tr_database

 virtual function uvm_tr_database get_tr_database()

Returns the uvm_tr_database object set by set_tr_database or the default (see 13.1.6.11).

13.1.7 Other interfaces

uvm_component also provides the following convenience interfaces:

a) Factory—provides a convenience interface (see D.2.1) to the uvm_factory (see 8.3.1).

b) Hierarchical reporting—provides a convenience interface (see D.2.2) to set_report_* methods in
the uvm_report_object base class (see 6.3).

13.2 uvm_test

This class is the virtual base class for any user-defined tests; using it provides the ability to select which test
to execute via the UVM_TESTNAME command line (see G.2.1) or as an argument to the uvm_root::run_test
task (see F.7.2.1).

Deriving from uvm_test allows distinguishing tests from other component types that inherit from
uvm_component (see 13.1) directly. Such tests also automatically inherit features that may be added to
uvm_test in the future.

13.2.1 Class declaration

virtual class uvm_test extends uvm_component

13.2.2 Methods

new

function new (

string name,

uvm_component parent

)

Initializes an instance of this class using the following constructor arguments for uvm_component: name is
the name of the instance, and parent is the handle to the hierarchical parent, if any (see 13.1).
181
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
13.3 uvm_env

This is the base class for hierarchical containers of other components that together comprise a complete
environment. The environment may initially consist of the entire testbench. Later, it can be reused as a
sub-environment in even larger system-level environments.

13.3.1 Class declaration

virtual class uvm_env extends uvm_component

13.3.2 Methods

new

function new (
string name = "env",
uvm_component parent = null

)

Initializes an instance of this class using the following constructor arguments for uvm_component: name is
the name of the instance, and parent is the handle to the hierarchical parent, if any (see 13.1).

13.4 uvm_agent

The uvm_agent virtual class should be used as the base class for the user-defined agents. Deriving from
uvm_agent enables distinguishing agents from other component types also using its inheritance.

13.4.1 Class declaration

virtual class uvm_agent extends uvm_component

13.4.2 Methods

13.4.2.1 new

function new (
string name,
uvm_component parent

)

Initializes an instance of this class using the following constructor arguments for uvm_component: name is
the name of the instance, and parent is the handle to the hierarchical parent, if any (see 13.1).

13.4.2.2 get_is_active

virtual function uvm_active_passive_enum get_is_active()

Returns the is_active status for this agent (see F.2.1.7).

The configuration parameter is_active is used to identify whether this agent should be acting in active or
passive mode. The parameter should be set as a uvm_active_passive_enum, however it additionally
supports uvm_config_int and uvm_config_string to allow for command line overrides.
182
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Example

+uvm_config_int=<path.to.agent>,is_active,0

+uvm_config_string=<path.to.agent>,is_active,UVM_ACTIVE

uvm_config_db#(uvm_active_passive_enum)::(this, "<relative.path.to.agent>",
"is_active", UVM_ACTIVE)

The default implementation shall return UVM_PASSIVE, unless overridden via the configuration database.
An agent developer may override this behavior if a more complex algorithm is needed to determine the
active/passive nature of the agent.

13.5 uvm_monitor

This class should be used as the base class for user-defined monitors.

Deriving from uvm_monitor allows distinguishing monitors from other component types inheriting from
uvm_component (see 13.1). Such monitors automatically inherit features that may be added to
uvm_monitor in the future.

13.5.1 Class declaration

virtual class uvm_monitor extends uvm_component

13.5.2 Methods

new

function new (

string name,

uvm_component parent

)

Initializes an instance of this class using the following constructor arguments for uvm_component: name is
the name of the instance, and parent is the handle to the hierarchical parent, if any (see 13.1).

13.6 uvm_scoreboard

This class should be used as the base class for user-defined scoreboards.

Deriving from uvm_scoreboard allows distinguishing scoreboards from other component types inheriting
from uvm_component (see 13.1). Such scoreboards automatically inherit features that may be added to
uvm_scoreboard in the future.

13.6.1 Class declaration

virtual class uvm_scoreboard extends uvm_component

13.6.2 Methods

Use the new method as detailed in 13.5.2.
183
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
13.7 uvm_driver #(REQ,RSP)

This is the base class for drivers that initiate requests for new transactions via a uvm_seq_item_pull_port
(see 15.2.2.1). The ports are typically connected to the exports of an appropriate sequencer component.

This driver operates in a pull mode. Its ports are typically connected to the corresponding exports in a pull
sequencer as follows:

driver.seq_item_port.connect(sequencer.seq_item_export)

driver.rsp_port.connect(sequencer.rsp_export)

The rsp_port (see 13.7.2.2) only needs connecting if the driver uses it to write responses to the analysis
export in the sequencer.

13.7.1 Class declaration

class uvm_driver #(

type REQ = uvm_sequence_item,

type RSP = REQ

) extends uvm_component

The type of REQ and RSP shall be derived from uvm_sequence_item (see 14.1).

13.7.2 Ports

13.7.2.1 seq_item_port

Derived driver classes should use this port to request items from the sequencer. They may also use it to send
responses back.

13.7.2.2 rsp_port

This port provides an alternate way of sending responses back to the originating sequencer. Which port to
use depends on which export the sequencer provides for connection.

13.7.3 Methods

Use the new method as detailed in 13.5.2.

13.8 uvm_push_driver #(REQ,RSP)

This is the base class for a driver that passively receives transactions, i.e., it does not initiate requests for
transactions. This is also known as push mode. Its ports are typically connected to the corresponding ports in
a push sequencer as follows:

push_sequencer.req_port.connect(push_driver.req_export)

push_driver.rsp_port.connect(push_sequencer.rsp_export)

The rsp_port (see 13.8.2.2) only needs connecting if the driver uses it to write responses to the analysis
export in the sequencer.
184
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
13.8.1 Class declaration

class uvm_push_driver #(
type REQ = uvm_sequence_item,
type RSP = REQ

) extends uvm_component

The type of REQ and RSP shall be derived from uvm_sequence_item (see 14.1).

13.8.2 Ports

13.8.2.1 req_export

This export provides the blocking put interface whose default implementation produces an error. Derived
drivers shall override put with an appropriate implementation (and not call super.put). Ports connected
to this export shall supply the driver with transactions.

13.8.2.2 rsp_port

This analysis port is used to send response transactions back to the originating sequencer.

13.8.3 Methods

Use the new method as detailed in 13.5.2.

13.9 uvm_subscriber

This class provides an analysis export for receiving transactions from a connected analysis export. Making
such a connection “subscribes” this component to any transactions emitted by the connected analysis port.

Subtypes of this class shall define the write method to process the incoming transactions.

13.9.1 Class declaration

virtual class uvm_subscriber #(
type T = int

) extends uvm_component

13.9.2 Ports

analysis_export

uvm_analysis_imp #(T,
uvm_subscriber#(T))
analysis_export

This export provides access to the write method, which derived subscribers shall implement.

13.9.3 Methods

13.9.3.1 new

Use the new method as detailed in 13.5.2.
185
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
13.9.3.2 write

pure virtual function void write(
T t

)

This is a pure virtual method that shall be defined in each subclass. Access to this method by outside
components should be done via the analysis_export (see 13.9.2).
186
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
14. Sequences classes

Sequences encapsulate user-defined procedures that generate multiple uvm_sequence_item-based
transactions (see 14.1). Such sequences can be reused, extended, randomized, and combined sequentially
and hierarchically in interesting ways to produce realistic stimulus to a DUT.

With uvm_sequence objects (see 14.3), users can encapsulate DUT initialization code, bus-based stress
tests, network protocol stacks—anything procedural—then have them all execute in specific or random
order to more quickly reach corner cases and coverage goals.

14.1 uvm_sequence_item

The base class for user-defined sequence items and also the base class for the uvm_sequence class (see
14.3). The uvm_sequence_item class provides the basic functionality for objects, both sequence items and
sequences, to operate in the sequence mechanism.

14.1.1 Class declaration

class uvm_sequence_item extends uvm_transaction

14.1.2 Common fields

14.1.2.1 new

function new (

string name = "uvm_sequence_item"

)

The constructor method for uvm_sequence_item.

14.1.2.2 set_item_context

function void set_item_context(

uvm_sequence_base parent_seq,

uvm_sequencer_base sequencer = null

)

Specifies the sequence and sequencer execution context for a sequence item.

14.1.2.3 get_use_sequence_info and set_use_sequence_info

function bit get_use_sequence_info()

function void set_use_sequence_info(

bit value

)

These methods are used to specify and return the status of the use_sequence_info bit. When
use_sequence_info is set to 1, the sequence information is printed, copied, and recorded. When
use_sequence_info has the default value of 0, the sequence information is not used.
187
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
14.1.2.4 set_id_info

function void set_id_info(
uvm_sequence_item item

)

Copies the internal sequence id, as well as the transaction id (see 5.4.2.19), from the referenced item into the
calling item. This routine should always be used by drivers to initialize responses for future compatibility.

14.1.2.5 get_sequencer

function uvm_sequencer_base get_sequencer()

Returns a reference to the item’s sequencer, as set by set_sequencer (see 14.1.2.6).

14.1.2.6 set_sequencer

virtual function void set_sequencer(
uvm_sequencer_base sequencer

)

Specifies the sequencer for this item to sequencer. This takes effect immediately, so it shall not be called
while the sequence is actively communicating with the sequencer.

14.1.2.7 get_parent_sequence

function uvm_sequence_base get_parent_sequence()

Returns a reference to the parent sequence of any sequence_item on which this method was called.

14.1.2.8 set_parent_sequence

function void set_parent_sequence(
uvm_sequence_base parent

)

Specifies the parent sequence of this item. This is used to identify the source sequence of a item.

14.1.2.9 get_depth

function int get_depth()

Returns the value set by the most recent set_depth call (see 14.1.2.10) or if set_depth has never been called,
1 + the number of recursive calls to get_parent_sequence (see 14.1.2.7) that can be done without returning
null. A root sequence has a depth of 1, its child has a depth of 2, and its grandchild has a depth of 3.

14.1.2.10 set_depth

function void set_depth(
int value

)

The depth of any sequence is calculated automatically. However, this method may be used to specify the
depth of a particular sequence. This method overrides the automatically calculated depth, even if it is
incorrect.
188
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
14.1.2.11 is_item

virtual function bit is_item()

This function may be called on any sequence_item or sequence. It returns 1 for items and 0 for sequences
(which derive from this class).

14.1.2.12 get_root_sequence_name

function string get_root_sequence_name()

Provides the name of the root sequence (the top-most parent sequence).

14.1.2.13 get_root_sequence

function uvm_sequence_base get_root_sequence()

Provides a reference to the root sequence (the top-most parent sequence).

14.1.2.14 get_sequence_path

function string get_sequence_path()

Provides a string of names of each sequence in the full hierarchical path. A dot (.) is used as the separator
between each sequence.

14.1.3 Reporting interface

Sequence items and sequences use the sequencer that they are associated with for reporting messages. If no
sequencer has been specified for the item/sequence using set_sequencer (see 14.1.2.6) [or indirectly via
uvm_sequence_base::start_item (see 14.2.6.2) or uvm_sequence_base::start (see 14.2.3.1)], then the
global reporter is used.

14.1.3.1 uvm_get_report_object

function uvm_report_object uvm_get_report_object()

Returns the sequencer if non-null; otherwise, returns the implicit top-level component (see F.4.1.4.1).

14.1.3.2 uvm_report_enabled

function int uvm_report_enabled(
int verbosity,
uvm_severity severity = UVM_INFO,
string id = ""

)

Returns 1 if the configured verbosity for the object returned from uvm_get_report_object (see 14.1.3.1) for
this severity/id is greater than or equal to verbosity; otherwise, returns 0. The default value of severity shall
be UVM_INFO.

See also 6.3.4.1 and F.3.2.2.
189
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
14.1.3.3 uvm_report, uvm_report_info, uvm_report_warning, uvm_report_error, and
uvm_report_fatal

virtual function void uvm_report(
uvm_severity severity,
string id,
string message,
int verbosity = (severity ==

uvm_severity'(UVM_ERROR)) ?
UVM_NONE : (severity ==

uvm_severity'(UVM_FATAL)) ?
UVM_NONE : UVM_MEDIUM,

string filename = "",
int line = 0,
string context_name = "",
bit report_enabled_checked = 0

)

virtual function void uvm_report_info(
string id,
string message,
int verbosity = UVM_MEDIUM,
string filename = "",
int line = 0,
string context_name = "",
bit report_enabled_checked = 0

)

virtual function void uvm_report_warning(
string id,
string message,
int verbosity = UVM_MEDIUM,
string filename = "",
int line = 0,
string context_name = "",
bit report_enabled_checked = 0

)

virtual function void uvm_report_error(
string id,
string message,
int verbosity = UVM_NONE,
string filename = "",
int line = 0,
string context_name = "",
bit report_enabled_checked = 0

)

virtual function void uvm_report_fatal(
string id,
string message,
int verbosity = UVM_NONE,
string filename = "",
int line = 0,
string context_name = "",
bit report_enabled_checked = 0

)

190
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
These are the primary reporting methods in UVM, implemented in this class. If uvm_report_enabled (see
14.1.3.2) returns a 0, these return with no action. Otherwise, they create a new report message populated
according the argument values and pass that message to uvm_process_report_message (see 14.1.3.4).

14.1.3.4 uvm_process_report_message

virtual function void uvm_process_report_message(
uvm_report_message report_message

)

This method takes a preformed uvm_report_message (see 6.2), populates it with the report object from
get_report_object (see 6.2.3.1), if the uvm_report_message context is an empty string ("") then sets it to
the return from get_sequence_path (see 14.1.2.14), and finally passes it to the designated report handler for
the report object for processing; see 6.4.7.

14.2 uvm_sequence_base

The uvm_sequence_base class provides the interfaces needed to create streams of sequence items and/or
other sequences.

A sequence is executed by calling its start method (see 14.2.3.1), either directly or via invocation of any of
the `uvm_do_* macros (see B.3).

14.2.1 Class declaration

virtual class uvm_sequence_base extends uvm_sequence_item

14.2.2 Common methods

14.2.2.1 new

function new (
string name = "uvm_sequence"

)

The constructor for uvm_sequence_base.

14.2.2.2 get_randomize_enabled

virtual function bit get_randomize_enabled

Returns the current value of the randomize enabled bit, as set by set_randomize_enabled (see 14.2.2.3). If
set_randomize_enabled has not been called, then returns 1.

14.2.2.3 set_randomize_enabled

virtual function void set_randomize_enabled (
bit enable

)

Sets the value of the randomize enabled bit. When set to 1, the sequence shall be randomized automatically
before being executed by the `uvm_do* and `uvm_rand_send* macros (see B.3), or as a default sequence.
When set to 0, the sequence shall not be automatically randomized.
191
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
14.2.2.4 get_sequence_state

function uvm_sequence_state_enum get_sequence_state()

Returns the sequence state as an enumerated value.

14.2.2.5 wait_for_sequence_state

task wait_for_sequence_state(
int unsigned state_mask

)

Waits until the sequence reaches one of the given states. state_mask can be a bitwise OR'ing of any of the
sequence states. If the sequence is already in one of the states, this method returns immediately.

14.2.3 Sequence execution

14.2.3.1 start

virtual task start (
uvm_sequencer_base sequencer,
uvm_sequence_base parent_sequence = null,
int this_priority = -1,
bit call_pre_post = 1

)

Executes this sequence, returning when the sequence has completed.

The sequencer argument specifies the sequencer on which to run this sequence.

If parent_sequence is null, and no parent sequence has been assigned via set_parent_sequence (see
14.1.2.8), then this sequence is a root sequence; otherwise, it is a child of parent_sequence. When
parent_sequence is not null, the parent_sequence’s pre_do (see 14.2.3.4), mid_do (see 14.2.3.5), and
post_do (see 14.2.3.7) methods are called during the execution of this sequence.

By default, the priority of a sequence is the priority of its parent sequence. If it is a root sequence, i.e.,
get_parent_sequence (see 14.1.2.7) returns null, its default priority is 100. To change this, use a non-
negative value of this_priority. Higher numbers indicate a higher priority.

If call_pre_post is set to 1 (the default), the pre_body (see 14.2.3.3) and post_body (see 14.2.3.8) tasks are
called before and after the sequence body (see 14.2.3.6) is called.

14.2.3.2 pre_start

virtual task pre_start()

This task is a user-definable hook that is called before the optional execution of pre_body (see 14.2.3.3).

14.2.3.3 pre_body

virtual task pre_body()

This task is a user-definable hook. The value of call_pre_post as passed into start (see 14.2.3.1) is in
control.
192
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
14.2.3.4 pre_do

virtual task pre_do(
bit is_item

)

This task is a user-definable hook task.

Although pre_do is a task, consuming simulation cycles may result in unexpected behavior on the driver.

14.2.3.5 mid_do

virtual function void mid_do(
uvm_sequence_item this_item

)

This function is a user-definable hook function that is called after the sequence item has been randomized
and just before the item is sent to the driver.

14.2.3.6 body

virtual task body()

This is the user-defined task where the main sequence code resides.

14.2.3.7 post_do

virtual function void post_do(
uvm_sequence_item this_item

)

This function is a user-definable callback function that is called after the driver has indicated that it has
completed the item, using either the item_done (see 15.2.1.2.3) or put (see 15.2.1.2.8) methods.

14.2.3.8 post_body

virtual task post_body()

This task is a user-definable hook. The value of call_pre_post as passed into start (see 14.2.3.1) is in
control.

14.2.3.9 post_start

virtual task post_start()

This task is a user-definable hook that is called after the optional execution of post_body (see 14.2.3.8).

14.2.4 Run-time phasing

14.2.4.1 get_starting_phase

function uvm_phase get_starting_phase()

Returns the ‘starting phase’.
193
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
If non-null, the starting phase specifies the phase in which this sequence was started. The starting phase is
set automatically when this sequence is started as the default sequence on a sequencer.

14.2.4.2 set_starting_phase

function void set_starting_phase(
uvm_phase phase

)

Specifies the ‘starting phase’.

14.2.4.3 get_automatic_phase_objection

function bit get_automatic_phase_objection()

Returns (and locks) the value of the ‘automatically object to starting phase’ bit.

If 1, the sequence automatically raises an objection to the starting phase (if the starting phase is not null)
immediately prior to pre_start (see 14.2.3.2) being called. The objection is dropped after post_start (see
14.2.3.9) has executed or kill (see 14.2.5.11) has been called.

14.2.4.4 set_automatic_phase_objection

function void set_automatic_phase_objection(
bit value

)

Specifies the ‘automatically object to starting phase’ bit.

The most common interaction with the starting phase within a sequence is to simply raise the phase’s
objection prior to executing the sequence and drop the objection after ending the sequence [either naturally
or via a call to kill (see 14.2.5.11)]. To simplify this interaction for the user, UVM provides the ability to
perform this functionality automatically.

NOTE—Do not set the automatic phase objection bit to 1 if a sequence runs with a forever loop inside of the body, as
the objection will never get dropped.

14.2.5 Sequence control

14.2.5.1 get_priority

function int get_priority()

This function returns the current priority of the sequence.

14.2.5.2 set_priority

function void set_priority (
int value

)

The priority of a sequence may be changed at any point in time. value shall be >= 1. When the priority of a
sequence is changed, the new priority is used by the sequencer the next time that it arbitrates between
sequences.
194
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
The default priority value is the value of the sequence’s parent’s priority. The default priority for root
sequences is 100. Higher values result in higher priorities.

14.2.5.3 is_relevant

virtual function bit is_relevant()

The default is_relevant implementation returns 1, indicating that the sequence is always relevant.

Users may choose to override this with their own virtual function to indicate to the sequencer that the
sequence is not currently relevant after a request has been made.

When the sequencer arbitrates, it will call is_relevant on each requesting, unblocked sequence to see if it is
relevant. If a 0 is returned, then the sequence is not used.

If all requesting sequences are not relevant, the sequencer will call wait_for_relevant (see 14.2.5.4) on all
sequences and re-arbitrate upon its return.

Any sequence that implements is_relevant shall also implement wait_for_relevant so the sequencer has a
way to wait for a sequence to become relevant.

14.2.5.4 wait_for_relevant

virtual task wait_for_relevant()

This method is called by the sequencer when all available sequences are not relevant. When
wait_for_relevant returns, the sequencer attempts to re-arbitrate.

An implementation in a derived sequence should ensure is_relevant is 1 (see 14.2.5.3). If a sequence
defines is_relevant, then the sequence shall also supply a wait_for_relevant method.

14.2.5.5 lock

task lock(

uvm_sequencer_base sequencer = null

)

Requests a lock on the specified sequencer. When sequencer is null, the lock is requested on the current
default sequencer (see 14.1.2.5). If sequencer is null and get_sequencer returns null, an implementation
shall generate a fatal message.

A lock request is arbitrated the same as any other request. A lock is granted after all previously arbitrated
requests are completed and no other locks or grabs are blocking this sequence.

The lock call returns once the lock has been granted.

14.2.5.6 grab

task grab(

uvm_sequencer_base sequencer = null

)

195
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Requests a lock on the specified sequencer. If no argument is supplied, the lock is requested on the current
default sequencer (see 14.1.2.5). If sequencer is null and get_sequencer returns null, an implementation
shall generate a fatal message.

A grab request is put in front of the arbitration queue and is arbitrated before any other requests. A grab is
granted when no other grabs or locks are blocking this sequence.

The grab call returns once the grab has been granted.

14.2.5.7 unlock

function void unlock(
uvm_sequencer_base sequencer = null
)

Removes any locks obtained by this sequence on the specified sequencer. When sequencer is null, the
unlock is done on the current default sequencer (see 14.1.2.5). If sequencer is null and get_sequencer
returns null, an implementation shall generate a fatal message.

NOTE—The unlock method removes any locks acquired from both lock (see 14.2.5.5) and grab (see 14.2.5.6).

14.2.5.8 ungrab

function void ungrab(
uvm_sequencer_base sequencer = null

)

Convenience method for calling unlock (see 14.2.5.7).

14.2.5.9 is_blocked

function bit is_blocked()

Returns a bit indicating whether this sequence is currently prevented from running due to another lock or
grab. A 1 is returned if the sequence is currently blocked. A 0 is returned if no lock or grab prevents this
sequence from executing.

14.2.5.10 has_lock

function bit has_lock()

Returns 1 if this sequence has a lock, 0 otherwise.

Note that even if this sequence does not have a lock, a child sequence may have a lock, in which case the
sequence is still blocked from issuing operations on the sequencer.

14.2.5.11 kill

function void kill()

This function kills the sequence and causes all current locks, grabs, or requests in the sequence’s default
sequencer to be removed. The sequence state changes to UVM_STOPPED, and the post_body (see 14.2.3.8)
and post_start (see 14.2.3.9) callback methods are executed.
196
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
14.2.5.12 do_kill

function void do_kill()

This function is a user hook that is called whenever a sequence is terminated by using sequence.kill or
sequencer.stop_sequences (which effectively calls sequence.kill).

14.2.6 Sequence item execution

14.2.6.1 create_item

protected function uvm_sequence_item create_item(
uvm_object_wrapper type_var,
uvm_sequencer_base l_sequencer,
string name

)

This creates and initializes a sequence_item or sequence using the factory. The item or sequence’s sequencer
is set to l_sequencer via uvm_sequence_item::set_sequencer (see 14.1.2.6).

14.2.6.2 start_item

virtual task start_item (
uvm_sequence_item item,
int set_priority = -1,
uvm_sequencer_base sequencer = null

)

This is a convenience method for initiating the execution of a sequence item request on a sequencer with a
specified priority.

a) If item is null, or if item can be cast to uvm_sequence_base (see 14.2) and is_item (see 14.1.2.11)
returns 0, then the implementation shall generate an error message and return immediately.

b) The priority is determined by evaluating the set_priority argument. If the argument is greater than or
equal to 0, then priority is the set_priority value; otherwise, the priority is set to the return value of
get_priority (see 14.2.5.1).

c) The sequencer is determined by evaluating the sequencer argument.

1) If the sequencer argument is not null, then that sequencer value is used.

2) If the sequencer argument is null and the item’s get_sequencer (see 14.1.2.5) return value is
not null, then that return value is used.

3) If the sequencer argument is null, the item’s get_sequencer return value is null, and this
sequence’s get_sequencer return value is not null, then that return value is used.

4) Otherwise, the implementation shall generate an error message and return immediately.

d) The implementation shall perform the following steps in order:

1) The set_item_context method (see 14.1.2.2) on item shall be called, and passed this sequence
as a parent_seq and sequencer as determined in Step c).

2) The wait_for_grant method (see 15.3.2.6) shall be called on the sequencer, with this sequence
as sequence_ptr and the priority as determined in Step b) as item_priority.

3) The pre_do method (see 14.2.3.4) on this sequence is called, with is_item set to 1.

NOTE—While not strictly required, start_item is usually paired with a corresponding finish_item (see 14.2.6.3) call.
197
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
14.2.6.3 finish_item

virtual task finish_item (
uvm_sequence_item item,

)

This is a convenience method for completing the execution of a sequence item.

a) If item is null, or if item can be cast to uvm_sequence_base (see 14.2) and is_item (see 14.1.2.11)
returns 0, then the implementation shall generate an error message and return immediately.

b) If the item’s get_sequencer (see 14.1.2.5) return value is null, then the implementation shall
generate an error message and return immediately.

c) The implementation shall perform the following steps in order:

1) The mid_do method (see 14.2.3.5) on this sequence is called, with item as this_item.

2) The send_request method (see 14.2.6.5) on this sequence is called, with item as request and
rerandomize set to 0.

3) The wait_for_item_done method (see 14.2.6.6) on this sequence is called, with the return
value of item’s get_transaction_id method (see 5.4.2.19) as transaction_id.

4) The post_do method (see 14.2.3.7) on this sequence is called, with item as this_item.

NOTE—finish_item returning indicates the driver has signaled that the item is done, either explicitly via item_done
(see 15.2.1.2.3) or implicitly via a call to get (see 15.2.1.2.6); however, it does not strictly indicate that the driver has
completed all processing of the request.

14.2.6.4 wait_for_grant

virtual task wait_for_grant(
int item_priority = -1,
bit lock_request = 0

)

This task calls sequencer.wait_for_grant (see 15.3.2.6) on the current sequencer (see 14.1.2.5).

When this method returns, the sequencer has granted the sequence, and the sequence shall call send_request
(see 14.2.6.5) without inserting any simulation delay other than delta cycles.

14.2.6.5 send_request

virtual function void send_request(
uvm_sequence_item request,
bit rerandomize = 0

)

This function may only be called after a wait_for_grant call (see 14.2.6.4). send_request calls
sequencer.send_request (see 15.3.2.20) on the current sequencer (see 14.1.2.5).

14.2.6.6 wait_for_item_done

virtual task wait_for_item_done(
int transaction_id = -1

)

A sequence may optionally call wait_for_item_done. This task blocks until the driver indicates that the
item is done, either explicitly via item_done (see 15.2.1.2.3) or implicitly via a call to get (see 15.2.1.2.6).
198
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
If no transaction_id parameter is specified, or if transaction_id is -1, the call returns the next time that the
driver calls item_done or get. When a specific transaction_id is specified, the call returns when the driver
indicates completion of that specific item.

NOTE—If a specific transaction_id has been specified and the driver has already signaled item_done for that
transaction, then the call will hang waiting for that specific transaction_id. Additionally, wait_for_item_done returning
indicates the driver has signaled the item is done; however, it does not strictly indicate the driver has completed all
processing of the request.

14.2.7 Response API

14.2.7.1 use_response_handler

function void use_response_handler(
bit enable

)

When called with enable set to 1, responses are sent to the response handler. Otherwise, responses need to
be retrieved using get_response (see 14.3.3.3).

By default, responses from the driver are retrieved in the sequence by calling get_response.

14.2.7.2 get_use_response_handler

function bit get_use_response_handler()

Returns the state of the use_response_handler bit (see 14.2.7.1).

14.2.7.3 response_handler

virtual function void response_handler(
uvm_sequence_item response

)

When the use_response_handler bit is set to 1 (see 14.2.7.1), this virtual function is called by the sequencer
for each response that arrives for this sequence. No action is taken by this function unless it is extended.

14.2.7.4 get_response_queue_error_report_enabled

function bit get_response_queue_error_report_enabled()

When this bit is 1 (the default value), error reports are generated when the response queue overflows. When
this bit is 0, no such error reports are generated.

14.2.7.5 set_response_queue_error_report_enabled

function void set_response_queue_error_report_enabled(
bit value

)

By default, if the response queue overflows, an error shall be generated. The response queue overflows
when more responses are sent to this from the driver than get_response calls (see 14.3.3.3) are made.
Setting value to 0 disables these errors, while setting it to 1 enables them.
199
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
14.2.7.6 get_response_queue_depth

function int get_response_queue_depth()

Returns the current depth setting for the response queue.

14.2.7.7 set_response_queue_depth

function void set_response_queue_depth(
int value

)

The default maximum depth of the response queue is 8. This method is used to change the maximum depth
of the response queue. An implementation shall generate an error message if the maximum depth is set to a
value that is less than the current number of responses in the queue.

Setting the depth of the response queue to -1 indicates an arbitrarily deep response queue and no checking
is done.

14.2.7.8 clear_response_queue

virtual function void clear_response_queue()

Empties the response queue for this sequence.

14.3 uvm_sequence #(REQ,RSP)

The uvm_sequence class provides the interfaces necessary to create streams of sequence items and/or other
sequences.

14.3.1 Class declaration

virtual class uvm_sequence #(
type REQ = uvm_sequence_item,
type RSP = REQ

) extends uvm_sequence_base

The type of REQ and RSP shall be derived from uvm_sequence_item (see 14.1).

14.3.2 Variables

14.3.2.1 req

REQ req

The sequence contains a field of the request type called req. The user can use this field or create another
field to use. The default do_print prints this field.

14.3.2.2 rsp

RSP rsp

The sequence contains a field of the response type called rsp. The user can use this field, if desired, or create
another field to use. The default do_print prints this field.
200
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
14.3.3 Methods

14.3.3.1 new

function new (
string name = "uvm_sequence"

)

Creates and initializes a new sequence object.

14.3.3.2 get_current_item

function REQ get_current_item()

Returns the request item currently being executed by the sequencer. If the sequencer is not currently
executing an item, this method returns null.

The sequencer is executing an item from the time that get_next_item (see 15.2.1.2.1) or peek (see 12.2.10)
is called until the time that get (see 15.2.1.2.6) or item_done (see 15.2.1.2.3) is called.

14.3.3.3 get_response

virtual task get_response(
output RSP response,
input int transaction_id = -1

)

By default, sequences retrieve responses by calling get_response. If no transaction_id is specified, this task
returns the next response sent to this sequence. If no response is available in the response queue, the method
blocks until a response is received.

If a transaction_id parameter is specified, the task blocks until a response with that transaction_id is
received in the response queue. -1 indicates wait for the next response.

The get_response method needs to be called soon enough to avoid an overflow of the response queue to
prevent responses from being dropped. See also 14.2.7.6.

If a response is dropped in the response queue, an error shall be generated unless the error reporting is
disabled via set_response_queue_error_report_enabled (see 14.2.7.5).

14.4 uvm_sequence_library

The uvm_sequence_library is a sequence that contains a list of registered sequence types. It can be
configured to create and execute these sequences any number of times using one of several modes of
operation (see F.2.4.3), including a user-defined mode.

When started (as any other sequence), the sequence library randomly selects and executes a sequence from
its sequences queue. If in UVM_SEQ_LIB_RAND mode (see F.2.4.3), its select_rand property (see
14.4.4.7) is randomized and used as an index into sequences. When in UVM_SEQ_LIB_RANDC mode
(see F.2.4.3), the select_randc property (see 14.4.4.8) is used. When in UVM_SEQ_LIB_ITEM mode (see
F.2.4.3), only sequence items of the REQ type are generated and executed—no sequences are executed.
Finally, when in UVM_SEQ_LIB_USER mode (see F.2.4.3), the select_sequence method (see 14.4.4.9) is
called to obtain the index for selecting the next sequence to start. Users can override this method in subtypes
to implement custom selection algorithms.
201
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Creating a subtype of a sequence library requires invocation of the `uvm_sequence_library_utils macro
(see B.3.2.2) in its declaration. The macro is needed to populate the sequence library with any sequences that
were statically registered with it or any of its base classes.

14.4.1 Class declaration

class uvm_sequence_library#(
type REQ = uvm_sequence_item,
RSP = REQ

extends uvm_sequence #(REQ,RSP)

The type of REQ and RSP shall be derived from uvm_sequence_item (see 14.1).

14.4.2 Example

class my_seq_lib extends uvm_sequence_library #(my_item)
`uvm_object_utils(my_seq_lib)
`uvm_sequence_library_utils(my_seq_lib)
function new(string name="")

super.new(name)
endfunction
...

endclass

14.4.3 Common methods

new

function new(
string name = ""

)

Creates a new instance of this class.

14.4.4 Sequence selection

14.4.4.1 selection_mode

virtual function uvm_sequence_lib_mode get_selection_mode()

virtual function void set_selection_mode(
uvm_sequence_lib_mode m

)

Specifies the mode used to select sequences for execution. If set_selection_mode has not been called since
the sequence library was constructed, then get_selection_mode shall return UVM_SEQ_LIB_RAND.

14.4.4.2 min_random_count

virtual function int unsigned get_min_random_count()

virtual function void set_min_random_count(
int unsigned count

)

Specifies the minimum number of sequences to execute. If set_min_random_count has not been called
since the sequence library was constructed, then get_min_random_count shall return 10.
202
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
14.4.4.3 max_random_count

virtual function int unsigned get_max_random_count()

virtual function void set_max_random_count(
int unsigned count

)

Specifies the maximum number of sequences to execute. If set_max_random_count has not been called
since the sequence library was constructed, then get_max_random_count shall return 10.

14.4.4.4 get_num_sequences_executed

function int unsigned get_num_sequences_executed()

Returns the number of sequences executed, not including the currently executing sequence, if any.

14.4.4.5 sequences_executed

protected int unsigned sequences_executed

Indicates the number of sequences executed, not including the currently executing sequence, if any.

14.4.4.6 sequence_count

rand int unsigned sequence_count = 10

Specifies the number of sequences to execute when this sequence library is started. This value is constrained
to be inside {[min_random_count:max_random_count]}. If in UVM_SEQ_LIB_ITEM mode
(see F.2.4.3), specifies the number of sequence items to generate.

14.4.4.7 select_rand

rand int unsigned select_rand

This is the index variable that is randomized to select the next sequence to execute when in
UVM_SEQ_LIB_RAND mode (see F.2.4.3). This variable is constrained to be a valid index into the array
of registered sequences.

Extensions may place additional constraints on this variable.

14.4.4.8 select_randc

randc bit [15:0] select_randc

This is the index variable that is randomized to select the next sequence to execute when in
UVM_SEQ_LIB_RANDC mode (see F.2.4.3). This variable is constrained to be a valid index into the
array of registered sequences.

Extensions may place additional constraints on this variable.

14.4.4.9 select_sequence

virtual function int unsigned select_sequence(
int unsigned max

)

203
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Implementation hook that returns the index used to select the next sequence to execute when in
UVM_SEQ_LIB_USER selection mode (see F.2.4.3). Overrides shall return a value between 0 and max,
inclusive.

The default implementation returns 0, incrementing on successive calls, wrapping back to 0 when reaching
max. Extensions may use get_sequence (see 14.4.4.10) to assist in selecting an index.

14.4.4.10 get_sequence

virtual function uvm_object_wrapper get_sequence(
int unsigned idx
)

Returns the sequence registered with the sequence library at idx. An error message shall be generated if idx
exceeds the current number of sequences registered with the sequence library and null shall be returned.

14.4.5 Sequence registration

14.4.5.1 add_typewide_sequence

static function void add typewide sequence(
uvm_object_wrapper seq_type

)

Registers the provided sequence type with this sequence library type. The sequence type is available for
selection by all instances of this class. Sequence types already registered are silently ignored. This method
does not have any effect on sequence libraries that have already been constructed.

14.4.5.2 add_typewide_sequences

static function void add_typewide_sequences(
uvm_object_wrapper seq_types[$]

)

Registers the provided sequence types with this sequence library type. The sequence types are available for
selection by all instances of this class. Sequence types already registered are silently ignored. This method
does not have any effect on sequence libraries that have already been constructed. seq_types shall be a
queue.

14.4.5.3 add_sequence

function void add_sequence(
uvm_object_wrapper seq_type

)

Registers the provided sequence type with this sequence library instance. Sequence types already registered
are silently ignored.

14.4.5.4 add_sequences

virtual function void add_sequences(
uvm_object_wrapper seq_types[$]

)

204
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Registers the provided sequence types with this sequence library instance. Sequence types already registered
are silently ignored. seq_types shall be a queue.

14.4.5.5 remove_sequence

virtual function void remove_sequence(
uvm_object_wrapper seq_type

)

Removes the given sequence type from this sequence library instance. If the type was registered statically,
the sequence queues of all instances of this sequence library are updated accordingly. A warning shallbe
issued if the sequence is not registered.

14.4.5.6 get_sequences

virtual function void get_sequences(
ref uvm_object_wrapper seq_types[$]

)

Appends to the provided seq_types array the list of registered sequences. seq_types shall be a queue.
205
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
15. Sequencer classes

15.1 Overview

The sequencer serves as an arbiter for controlling transaction flow from multiple stimulus generators. More
specifically, the sequencer controls the flow of uvm_sequence_item-based transactions (see 14.1)
generated by one or more uvm_sequence #(REQ,RSP)-based sequences (see 14.3).

15.1.1 Sequencer variants

There are two sequencer variants available as follows:

a) uvm_sequencer #(REQ,RSP)—Requests for new sequence items are initiated by the driver (see
15.5). Upon such requests, the sequencer selects a sequence from a list of available sequences to
produce and delivers the next item to execute. This sequencer is typically connected to a user-
extension of uvm_driver #(REQ,RSP) (see 13.7).

b) uvm_push_sequencer #(REQ,RSP)—Sequence items (from the currently running sequences) are
pushed by the sequencer to the driver, which blocks item flow when it is not ready to accept new
transactions (see 15.6). This sequencer is typically connected to a user-extension of
uvm_push_driver #(REQ,RSP) (see 13.8).

Sequencer-driver communication follows a pull or push semantic, depending on which sequencer type is
used. However, sequence-sequencer communication is always initiated by the user-defined sequence, i.e., it
follows a push semantic.

See Clause 14 for an overview on sequences and sequence items.

15.1.2 Sequence item ports

The uvm_sequencer #(REQ,RSP) (see 15.5) and uvm_driver #(REQ,RSP) (see 13.7) pair uses a
sequence item pull port (see 12.2.10) to achieve the special execution semantic needed by the sequencer-
driver pair.

15.2 Sequencer interface

15.2.1 uvm_sqr_if_base #(T1,T2)

This class defines an interface for sequence drivers [uvm_driver #(REQ,RSP) (see 13.7)] to communicate
with sequencers. The driver connects to the interface be via a port, and the sequencer implements it and
provides it via an export.

This class provides timestamp properties, notification events, and transaction recording support. Its subtype,
uvm_sequence_item (see 14.1), shall be used as the base class for all user-defined transaction types.

Note that get_next_item/item_done when called on a uvm_seq_item_pull_port (see 15.2.2.1)
automatically triggers the event with the key begin or end in the event pool (see 5.4.2.14) via calls to
begin_tr (see 13.1.6.3) and end_tr (see 13.1.6.5). While convenient, it is generally the responsibility of
drivers to mark a transaction’s progress during execution. To allow the driver or layering sequence to
control sequence item timestamps, events, and recording, uvm_sqr_if_base#(T1,T2)::
disable_auto_item_recording (see 15.2.1.2.10) needs to be called prior to the driver initiating its first
request for an item.
206
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Users can also use the transaction’s event pool, uvm_transaction::get_event_pool (see 5.4.2.14), to define
custom events for the driver to trigger and the sequences for waiting. Any in-between events, such as
marking the beginning of the address and data phases of transaction execution, can be implemented via the
event’s pool.

In pipelined protocols, the driver can release a sequence [return from finish_item (see 14.2.6.3) or its
`uvm_do macro (see B.3)] before the item has been completed. If the driver uses the begin_tr/end_tr API
in uvm_component (see 13.1), the sequence can wait on the event at key end in the item’s event pool (see
5.4.2.14) to block until the item was fully executed.

15.2.1.1 Class declaration

virtual class uvm_sqr_if_base #(
type T1 = uvm_sequence_item,

T2 = T1
)

The type of T1 and T2 shall be derived from uvm_sequence_item (see 14.1).

15.2.1.2 Methods

15.2.1.2.1 get_next_item

virtual task get_next_item(
output T1 t

)

Retrieves the next available item from a sequence. The call shall block until an item is available. The
following steps occur on this call:

a) Arbitrate among requesting, unlocked, and relevant sequences: choose the highest priority sequence
based on the current sequencer arbitration mode. If no sequence is available, wait for a requesting
unlocked relevant sequence, then re-arbitrate.

b) The chosen sequence returns from uvm_sequence_base::wait_for_grant (see 14.2.6.4).

c) The chosen sequence uvm_sequence_base::pre_do is called (see 14.2.3.4).

d) The chosen sequence item is randomized.

e) The chosen sequence uvm_sequence_base::post_do is called (see 14.2.3.7).

f) Return with a reference to the item.

Once get_next_item is called, item_done (see 15.2.1.2.3) needs to be called to indicate the completion of
the request to the sequencer.

15.2.1.2.2 try_next_item

virtual task try_next_item(
output T1 t

)

Retrieves the next available item from a sequence if one is available. Otherwise, the function returns
immediately with request set to null. The following steps occur on this call:

a) Arbitrate among requesting, unlocked, and relevant sequences: choose the highest priority sequence
based on the current sequencer arbitration mode. If no sequence is available, return null.
207
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
b) The chosen sequence returns from uvm_sequence_base::wait_for_grant (see 14.2.6.4).

c) The chosen sequence uvm_sequence_base::pre_do is called (see 14.2.3.4).

d) The chosen sequence item is randomized.

e) The chosen sequence uvm_sequence_base::post_do is called (see 14.2.3.7).

f) Return with a reference to the item.

If try_next_item returns with a non-null request, item_done (see 15.2.1.2.3) needs to be called to indicate
the completion of the request to the sequencer; this removes the request item from the sequencer FIFO.

15.2.1.2.3 item_done

virtual function void item_done(

input T2 t = null

)

Indicates the request is completed to the sequencer. Any uvm_sequence_base::wait_for_item_done calls
(see 14.2.6.6) made by a sequence for this item shall return.

If a response item is provided, it will be sent back to the requesting sequence. The response item shall have
its sequence ID and transaction ID specified correctly, using the uvm_sequence_item::set_id_info method
(see 14.1.2.4):

rsp.set_id_info(req)

Before item_done is called, any calls to peek (see 15.2.1.2.7) retrieve the current item that was obtained by
get_next_item (see 15.2.1.2.1). After item_done is called, peek (see 15.2.1.2.7) causes the sequencer to
arbitrate for a new item.

15.2.1.2.4 wait_for_sequences

virtual task wait_for_sequences()

Waits for a sequence to have a new item available. User-derived sequencers may override its
wait_for_sequences implementation to perform some other application-specific implementation.

15.2.1.2.5 has_do_available

virtual function bit has_do_available()

Indicates whether a sequence item is available for immediate processing. Implementations shall return 1 if
an item is available, 0 otherwise.

15.2.1.2.6 get

virtual task get(

output T1 t

)

Retrieves the next available item from a sequence. The call blocks until an item is available. The following
steps occur on this call.
208
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
a) Arbitrate among requesting, unlocked, and relevant sequences: choose the highest priority sequence
based on the current sequencer arbitration mode. If no sequence is available, wait for a requesting
unlocked relevant sequence, then re-arbitrate.

b) The chosen sequence returns from uvm_sequence_base::wait_for_grant (see 14.2.6.4).

c) The chosen sequence uvm_sequence_base::pre_do is called (see 14.2.3.4).

d) The chosen sequence item is randomized.

e) The chosen sequence uvm_sequence_base::post_do is called (see 14.2.3.7).

f) Indicate item_done (see 15.2.1.2.3) to the sequencer.

g) Return with a reference to the item.

When get is called, item_done (see 15.2.1.2.3) may not be called. A new item can be obtained by calling get
again, or a response shall be sent using either put (see 15.2.1.2.8) or uvm_driver::rsp_port.write (see
13.7.2.2).

15.2.1.2.7 peek

virtual task peek(

output T1 t

)

Returns the current request item (see 15.3.3) if one is available. If no item is currently available, the
following steps are performed in order:

a) Arbitrate among requesting, unlocked, and relevant sequences: choose the highest priority sequence
based on the current sequencer arbitration mode. If no sequence is available, wait for a requesting
unlocked relevant sequence, then re-arbitrate.

b) The chosen sequence returns from uvm_sequence_base::wait_for_grant (see 14.2.6.4).

c) The chosen sequence uvm_sequence_base::pre_do is called (see 14.2.3.4).

d) The chosen sequence item is randomized.

e) The chosen sequence uvm_sequence_base::post_do is called (see 14.2.3.7).

Once a request item has been retrieved, subsequent calls to peek return the same item until get (see
15.2.1.2.6) or item_done (see 15.2.1.2.3) is called.

15.2.1.2.8 put

virtual task put(

output T2 t

)

Sends a response back to the sequence that issued the request. Before the response is put, it shall have its
sequence ID and transaction ID specified to match the request. This can be done using the
uvm_sequence_item::set_id_info call (see 14.1.2.4):

rsp.set_id_info(req)

While this is a task, it does not consume time (including delta cycles). The response is put into the sequence
response queue or sent to the sequence response handler.
209
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
15.2.1.2.9 put_response

virtual function void put_response(
output T2 t

)

Sends a response back to the sequence that issued the request. If the sequence has reached the
UVM_STOPPED or UVM_FINISHED state (see F.2.4.2), then the implementation shall drop the response
and issue a warning message. Before the response is put, it shall have its sequence ID and transaction ID
specified to match the request. This can be done using the uvm_sequence_item::set_id_info call (see
14.1.2.4), e.g.,

rsp.set_id_info(req)

15.2.1.2.10 disable_auto_item_recording

virtual function void disable_auto_item_recording()

By default, item recording is performed automatically when get_next_item (see 15.2.1.2.1) and item_done
(see 15.2.1.2.3) are called in the uvm_sequencer#(REQ,RSP) (see 15.5) or when the
uvm_push_sequencer#(REQ,RSP) (see 15.6) puts an item on the req_port (see 15.6.217.5.2). However,
this behavior might not be desired.

This automatic recording can be disabled by calling this function. Once disabled, automatic recording
cannot be re-enabled. Automatic item recording can be globally turned off at compile time by defining
UVM_DISABLE_RECORDING.

15.2.1.2.11 is_auto_item_recording_enabled

virtual function bit is_auto_item_recording_enabled()

Returns TRUE if automatic item recording is enabled for this port instance.

15.2.2 Sequence item pull ports

This defines the port, export, and imp port classes for communicating sequence items between
uvm_sequencer #(REQ,RSP) (see 15.5) and uvm_driver #(REQ,RSP) (see 13.7).

15.2.2.1 uvm_seq_item_pull_port #(REQ,RSP)

UVM provides a port, export, and imp connector for use in sequencer-driver communication. All have
standard port connector constructors.

Class declaration

class uvm_seq_item_pull_port #(
type REQ = int,
type RSP = REQ

) extends uvm_port_base #(uvm_sqr_if_base #(REQ, RSP))

The type of REQ and RSP shall be derived from uvm_sequence_item (see 14.1).

15.2.2.2 uvm_seq_item_pull_export #(REQ,RSP)

This export type is used in sequencer-driver communication. It has the standard constructor for exports.
210
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Class declaration

class uvm_seq_item_pull_export #(
type REQ = int,
type RSP = REQ

) extends uvm_port_base #(uvm_sqr_if_base #(REQ, RSP))

The type of REQ and RSP shall be derived from uvm_sequence_item (see 14.1).

15.2.2.3 uvm_seq_item_pull_imp #(REQ,RSP,IMP)

This imp type is used in sequencer-driver communication. It has the standard constructor for imp-type ports.

Class declaration

class uvm_seq_item_pull_imp #(
type REQ = int,
type RSP = REQ,
type IMP = int

) extends uvm_port_base #(uvm_sqr_if_base #(REQ, RSP))

The type of REQ and RSP shall be derived from uvm_sequence_item (see 14.1).

15.3 uvm_sequencer_base

Controls the flow of sequences, which generate the stimulus (sequence item transactions) that is passed on to
drivers for execution.

15.3.1 Class declaration

virtual class uvm_sequencer_base extends uvm_component

15.3.2 Methods

15.3.2.1 new

function new (
string name,
uvm_component parent

)

Creates and initializes an instance of this class using the following constructor arguments for
uvm_component: name is the name of the instance, and parent is the handle to the hierarchical parent, if
any (see 13.1).

15.3.2.2 is_child

function bit is_child (
uvm_sequence_base parent,
uvm_sequence_base child

)

Returns 1 if the child sequence is a child of the parent sequence, 0 otherwise.
211
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
15.3.2.3 user_priority_arbitration

virtual function int user_priority_arbitration(
int avail_sequences[$]

)

When the sequencer arbitration mode is specified as UVM_SEQ_ARB_USER (using the set_arbitration
method) (see 15.3.2.19), the sequencer calls this function each time it needs to arbitrate among sequences.
avail_sequences shall be a queue.

Derived sequencers may override this method to perform a custom arbitration policy. The override shall
return one of the entries from the avail_sequences queue, which contains the index of each sequence
available for arbitration. The associated sequence for each index can be obtained via
get_arbitration_sequence (see 15.3.2.4).

15.3.2.4 get_arbitration_sequence

virtual function uvm_sequence_base get_arbitration_sequence(
int index

)

Returns the sequence available for the arbitration corresponding to index.

15.3.2.5 execute_item

virtual task execute_item(
uvm_sequence_item item

)

Executes the given transaction item directly on this sequencer.

15.3.2.6 wait_for_grant

virtual task wait_for_grant(
uvm_sequence_base sequence_ptr,
int item_priority = -1,
bit lock_request = 0

)

This task issues a request for the specified sequence_ptr sequence. If item_priority is not specified or is -1,
the current sequence priority is used by the arbiter. This is the default condition and item_priority shall be -1.
If a lock_request is made (lock_request==1), the sequencer issues a lock immediately before granting
the sequence. [The lock may be granted without the sequence being granted if is_relevant (see 14.2.5.3)
for the sequence is not asserted]. The default value of lock_request shall be 0.

When this method returns, the sequencer has granted the sequence, and the sequence shall call send_request
(see 15.3.2.20) without inserting any simulation delay other than delta cycles. The driver will be waiting for
the next item to be sent via the send_request call.

15.3.2.7 wait_for_item_done

virtual task wait_for_item_done(
uvm_sequence_base sequence_ptr,
int transaction_id

)

212
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
A sequence may optionally call wait_for_item_done. This task blocks until the driver indicates that the
item is done, either explicitly via item_done (see 15.2.1.2.3) or implicitly via a call to get (see 15.2.1.2.6) on
a transaction issued by the specified sequence_ptr sequence. If no transaction_id parameter is specified, or
the transaction_id is -1, the call returns the next time that the driver calls item_done or get on a transaction
issued by the specified sequence_ptr sequence. When a specific transaction_id is used, the call only returns
when the driver indicates it has completed that specific item.

NOTE—wait_for_item_done returning indicates the driver has signaled the item is done; however, it does not strictly
indicate the driver has completed all processing of the request

15.3.2.8 is_blocked

function bit is_blocked(
uvm_sequence_base sequence_ptr

)

Returns 1 if the sequence referred to by sequence_ptr is currently locked out of the sequencer. It returns 0 if
the sequence is currently allowed to issue operations.

15.3.2.9 has_lock

function bit has_lock(
uvm_sequence_base sequence_ptr

)

Returns 1 if the sequence referred to in by sequence_ptr currently has a lock on this sequencer, 0 otherwise.

Note that even if this sequence has a lock, a child sequence may also have a lock, in which case the sequence
is still blocked from issuing operations on the sequencer.

15.3.2.10 lock

virtual task lock(
uvm_sequence_base sequence_ptr

)

Requests a lock for the sequence specified by sequence_ptr.

A lock request is arbitrated the same as any other request. A lock is granted after all previously granted
requests are completed and no other locks or grabs are blocking this sequence.

The lock call returns once the lock has been granted.

15.3.2.11 grab

virtual task grab (
uvm_sequence_base sequence_ptr

)

Requests a lock for the sequence specified by sequence_ptr.

A grab request is put in the front of the arbitration queue. It is arbitrated before any other requests. A grab is
granted when no other grabs or locks are blocking this sequence.

The grab call returns once the grab has been granted.
213
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
15.3.2.12 unlock

virtual task unlock(
uvm_sequence_base sequence_ptr

)

Removes any locks and grabs obtained by the specified sequence_ptr.

15.3.2.13 ungrab

virtual task ungrab(
uvm_sequence_base sequence_ptr

)

Calls unlock (see 15.3.2.12). Provided to give user code the symmetry of calling grab (see 15.3.2.11) and
ungrab.

15.3.2.14 stop_sequences

virtual function void stop_sequences()

Tells the sequencer to kill all sequences and child sequences currently operating on the sequencer, and
remove all requests, locks, and responses that are currently queued. This essentially resets the sequencer to
an idle state.

15.3.2.15 is_grabbed

virtual function bit is_grabbed()

Returns 1 if any sequence currently has a lock or grab on this sequencer, 0 otherwise.

15.3.2.16 current_grabber

virtual function uvm_sequence_base current_grabber()

Returns a reference to the sequence that currently has a lock or grab on the sequence. If multiple hierarchical
sequences have a lock, this returns the child that is currently allowed to perform operations on the sequencer.

15.3.2.17 has_do_available

virtual function bit has_do_available()

Returns 1 if any sequence running on this sequencer is ready to supply a transaction, 0 otherwise. A
sequence is ready if it is not blocked [via grab (see 15.3.2.11) or lock (see 15.3.2.10)] and is_relevant
(see 14.2.5.3) returns 1.

15.3.2.18 get_arbitration

function UVM_SEQ_ARB_TYPE get_arbitration()

Returns the current arbitration mode for this sequencer. See 15.3.2.19 for a list of possible modes.

If the arbitration mode has not been set via a call to set_arbitration (see 15.3.2.19), then
UVM_SEQ_ARB_FIFO shall be returned.
214
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
15.3.2.19 set_arbitration

function void set_arbitration(
UVM_SEQ_ARB_TYPE val

)

Specifies the arbitration mode for the sequencer. val is one of

UVM_SEQ_ARB_FIFO—Requests are granted in FIFO order (the default).

UVM_SEQ_ARB_WEIGHTED—Requests are granted randomly by weight.

UVM_SEQ_ARB_RANDOM—Requests are granted randomly.

UVM_SEQ_ARB_STRICT_FIFO—Requests at highest priority granted in FIFO order.

UVM_SEQ_ARB_STRICT_RANDOM—Requests at highest priority granted randomly.

UVM_SEQ_ARB_USER—Arbitration is delegated to the user-defined function,
user_priority_arbitration.

15.3.2.20 send_request

virtual function void send_request(
uvm_sequence_base sequence_ptr,
uvm_sequence_item t,
bit rerandomize = 0

)

Derived classes shall implement this function to send a request item to the sequencer, which then forwards it
to the driver. If the rerandomize bit is set to 1, the item shall be randomized before being sent to the driver.
The default value of rerandomize shall be 0, which is not set.

This function may only be called after a wait_for_grant call (see 15.3.2.6).

15.3.2.21 set_max_zero_time_wait_relevant_count

virtual function void set_max_zero_time_wait_relevant_count(
int new_val

)

Can be called at any time to change the maximum number of times wait_for_relevant can be called
by the sequencer in zero time before an error is declared. The default maximum is 10.

15.3.3 Requests

15.3.3.1 get_num_reqs_sent

function int get_num_reqs_sent()

Returns the number of requests that have been sent by this sequencer.

15.3.3.2 Last request buffer

15.3.3.2.1 set_num_last_reqs

function void set_num_last_reqs(
int unsigned max

)

215
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Specifies the size of the last requests buffer. The maximum buffer size is 1024. If max is greater than 1024,
a warning shall be issued and the buffer is set to 1024. The default value is 1.

15.3.3.2.2 get_num_last_reqs

function int unsigned get_num_last_reqs()

Returns the size of the last requests buffer, as specified in set_num_last_reqs (see 15.3.3.2.1).

15.3.4 Responses

15.3.4.1 get_num_rsps_received

function int get_num_rsps_received()

Returns the number of responses received thus far by this sequencer.

15.3.4.2 Last response buffer

15.3.4.2.1 get_num_last_rsps

function int unsigned get_num_last_rsps()

Returns the maximum size of the last responses buffer, as specified in set_num_last_rsps (see 15.3.4.2.2).

15.3.4.2.2 set_num_last_rsps

function void set_num_last_rsps(
int unsigned max

)

Specifies the size of the last response buffer. The maximum buffer size is 1024. If max is greater than
1024, a warning shall be issued and the buffer is set to 1024. The default value is 1.

15.3.5 Default sequence

A default sequence can be associated with a specified sequencer and uvm_phase (see 9.3.1).

A default sequence is specified via a uvm_resource (see Annex C for ways to set a resource or G.2.9 for the
uvm_set_default_sequence command line option that sets the resource). The resource specifying a default
sequence shall have a scope consisting of the concatenation {"path.to.sequencer", ".",
"phase_name"} (where path.to.sequencer stands for the sequencer’s full name and
phase_name stands for the name of the targeted phase), the name "default_sequence", and the type
uvm_object_wrapper (see 8.3.2) or uvm_sequence_base (see 14.2).

The default sequence for a sequencer/phase pair shall be selected as follows:

a) When the phase starts, lookup_name (see C.2.4.4.1) is called with the appropriate scope and name
as described in the preceding paragraphs.

b) The result of lookup_name shall be filtered to remove any resources that are not of type
uvm_object_wrapper (see 8.3.2) or uvm_sequence_base (see 14.2). The relative ordering of the
remaining resources in the queue shall be maintained.

c) get_highest_precedence (see C.2.4.4.2) shall be called on the queue.
216
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
If the return value of get_highest_precedence is null, then no default sequence exists for the given
sequencer/phase pair.

If get_highest_precedence (see C.2.4.4.2) returns a valid resource, however that resource contains a null
value, then the default sequence for the given sequencer/phase pair has been explicitly disabled. How
resources with non-null values are handled is dependent on the type of resource returned.

For resources of uvm_object_wrapper type (see 8.3.2), the object wrapper within the resource shall be
passed to the create_object_by_type method (see 8.3.1.5) of the current factory (see F.4.1.4.2). The
parent_inst_path shall be the full name of the sequencer and the name shall be the value returned by the
wrapper’s get_type_name method (see 8.3.2.2.3). If the object returned by create_object_by_type cannot
be cast to a uvm_sequence_base (see 14.2), then an error message shall be generated and no default
sequence shall be started for the given sequencer/phase pair. If the object can be cast into a
uvm_sequence_base, then that sequence is the default sequence for this sequencer/phase pair.

For resources of uvm_sequence_base type, the sequence within the resource is the default sequence for this
sequencer/phase pair.

The default sequence shall have its sequencer (see 14.1.2.6) and starting phase (see 14.2.4.2) set and be
randomized [unless get_randomize_enabledreturns 0 (see 14.2.2.2)], prior to being automatically started
on the sequencer. If the default sequence is still running when the run-time phase ends, then it shall be killed.

15.4 Common sequencer API

This subclause describes the API implemented in both uvm_sequencer#(REQ,RSP) (see 15.5) and
uvm_push_sequencer#(REQ,RSP) (see 15.6).

15.4.1 Method

get_current_item

function REQ get_current_item()

Returns the request_item currently being executed by the sequencer. If the sequencer is not currently
executing an item, this method returns null.

The sequencer is executing an item from the time that get_next_item (see 15.2.1.2.1) or peek (see 12.2.10)
is called until the time that get (see 15.2.1.2.6) or item_done (see 15.2.1.2.3) is called.

Note that a driver that only calls get does not show a current item, since the item is completed at the same
time as it is requested.

15.4.2 Request

last_req

function REQ last_req(

int unsigned n = 0

)

Returns the last request item by default, when n is 0. If n is not 0, it returns the nth-before-last request item.
If n is greater than the last request buffer size, the function returns null.
217
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
15.4.3 Responses

15.4.3.1 rsp_export

Drivers or monitors can connect to this port to send responses to the sequencer. Alternatively, a driver can
send responses via its seq_item_port, e.g.,

seq_item_port.item_done(response)
seq_item_port.put(response)
rsp_port.write(response) <--- via this export

The rsp_port in the driver and/or monitor (see 13.7.2.2) needs to be connected to the rsp_export in this
sequencer in order to send responses through the response analysis port.

15.4.3.2 last_rsp

function RSP last_rsp(
int unsigned n = 0

)

Returns the last response item by default, when n is 0. If n is not 0, it returns the nth-before-last response
item. If n is greater than the last response buffer size, the function returns null.

15.5 uvm_sequencer #(REQ,RSP)

Requests for new sequence items are initiated by the driver. Upon such requests, the sequencer selects a
sequence from a list of available sequences to produce and delivers the next item to execute. This sequencer
is typically connected to a user-extension of uvm_driver #(REQ,RSP) (see 13.7).

15.5.1 Class declaration

class uvm_sequencer #(
type REQ = uvm_sequence_item,
type RSP = REQ

) extends uvm_sequencer_base

The type of REQ and RSP shall be derived from uvm_sequence_item (see 14.1).

15.5.2 Methods

15.5.2.1 Common sequencer API

uvm_sequencer #(REQ,RSP) implements all the API detailed in 15.4.

15.5.2.2 new

function new (
string name,
uvm_component parent

)

Creates and initializes an instance of this class using the following constructor arguments for
uvm_component: name is the name of the instance, and parent is the handle to the hierarchical parent, if
any (see 13.1).
218
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
15.5.2.3 seq_item_export

uvm_seq_item_pull_imp #(
REQ,
RSP,
uvm_sequencer#(REQ, RSP)

) seq_item_export

This export provides access to this sequencer’s implementation of the sequencer/driver interface (see
15.2.1).

The type of REQ and RSP shall be derived from uvm_sequence_item (see 14.1).

15.6 uvm_push_sequencer #(REQ,RSP)

Sequence items (from the currently running sequences) are pushed by the sequencer to the driver. The driver
blocks item flow when it is not ready to accept new transactions. This sequencer is typically connected to a
user-extension of uvm_push_driver #(REQ,RSP) (see 13.8).

15.6.1 Class declaration

class uvm_push_sequencer #(
type REQ = uvm_sequence_item,
type RSP = REQ

) extends uvm_sequencer_base

The type of REQ and RSP shall be derived from uvm_sequence_item (see 14.1).

15.6.2 Ports

req_port

This is a uvm_blocking_put_port #(REQ) (see 12.2.2.3). The push sequencer requires access to a
blocking put interface. A continuous stream of sequence items are sent out this port, based on the list of
available sequences loaded into this sequencer.

15.6.3 Methods

15.6.3.1 Common sequence API

uvm_push_sequencer #(REQ,RSP) implements all the API detailed in 15.4.

15.6.3.2 new

function new (
string name,
uvm_component parent

)

Creates and initializes an instance of this class using the following constructor arguments for
uvm_component: name is the name of the instance, and parent is the handle to the hierarchical parent, if
any (see 13.1).
219
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
16. Policy classes

Each of UVM’s policy classes perform a specific task for uvm_object-based objects (see 5.3): printing,
comparing, recording, packing, and unpacking. They are implemented separately from uvm_object so that
users can plug in different ways to print, compare, etc., without modifying the object class being utilized; the
user can simply apply a different printer or compare “policy” to change how an object is printed or
compared.

Each policy class includes several user-configurable parameters that control the operation. Users may also
customize operations by deriving new policy subtypes from these base types. For example, UVM provides
four different uvm_printer-based (see 16.2) policy classes, each of which print objects in a different format.

a) uvm_printer (see 16.2)—performs deep printing of uvm_object-based objects. UVM provides
several subtypes to uvm_printer that print objects in a specific format: uvm_table_printer (see
16.2.10), uvm_tree_printer (see 16.2.11), and uvm_line_printer (see 16.2.12). Each such printer
has many configuration options that govern what and how object members are printed.

b) uvm_comparer (see 16.3)—performs deep comparison of uvm_object-based objects. Users may
configure what is compared and how miscompares are reported.

c) uvm_recorder (see 16.4.1)—performs the task of recording uvm_object-based objects to a
transaction database. An implementation is application-specific.

d) uvm_packer (see 16.5)—used to pack and unpack uvm_object-based properties into arrays of type
bit, byte, or int.

e) uvm_copier (see 16.6)—performs the task of copying fields of uvm_object-based objects.

16.1 uvm_policy

The abstract uvm_policy class provides a common base from which all UVM policy classes derive.

16.1.1 Class declaration

virtual class uvm_policy extends uvm_object

16.1.2 Methods

16.1.2.1 new

function new (string name="")

Creates a policy with the specified instance name. If name is not provided, then the policy instance is
unnamed.

16.1.2.2 flush

virtual function void flush()

The flush method resets the internal state of the policy, such that it can be reused.

16.1.2.3 Extensions

The policy extensions mechanism allows the user to pass additional information along with the policy class
when executing a policy-based procedure. Objects may use these extensions to alter their interactions with
the policy. For example: An object may use extensions to selectively filter some of its fields from being
220
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
processed. Policy extensions are not cleared via a call to the policy flush method (see 16.1.2.2), and need to
be removed manually by using clear_extension (see 16.1.2.3.4) or clear_extensions (see 16.1.2.3.5).

16.1.2.3.1 extension_exists

virtual function bit extension_exists(
uvm_object_wrapper ext_type

)

Returns 1 if an extension exists within the policy with type matching ext_type; otherwise, returns 0.

16.1.2.3.2 set_extension

virtual function uvm_object set_extension(
uvm_object extension

)

Sets the given extension inside of the policy, indexed using return value from extension’s get_object_type
method (see 5.3.4.6). Only a single instance of an extension is stored per type. If there is an existing
extension instance matching extension’s type, extension replaces the instance and the replaced instance
handle is returned; otherwise, null is returned.

16.1.2.3.3 get_extension

virtual function uvm_object get_extension(
uvm_object_wrapper ext_type

)

Returns the extension value stored within the policy with type matching ext_type. Returns null if no
extension exists matching that type.

16.1.2.3.4 clear_extension

virtual function void clear_extension(
uvm_object_wrapper ext_type

)

Removes the extension value stored within the policy matching type ext_type. If no extension exists
matching type ext_type, the request is silently ignored.

16.1.2.3.5 clear_extensions

virtual function void clear_extensions()

Removes all extensions currently stored within the policy.

16.1.3 Active object

The active object methods are used to determine which object is actively being operated on by a policy.
When a policy operates on an object, such as via print_object (see 16.2.3.1), compare_object (see
16.3.3.4), record_object (see 16.4.6.4), pack_object (see 16.5.4.2), unpack_object (16.5.4.4) or
copy_object (see 16.6.4.1), it pushes the object onto the active object stack (see 16.1.3.1). When the policy
completes the operation on the object, it pops the object off of the active object stack (see 16.1.3.2).
221
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
16.1.3.1 push_active_object

virtual function void push_active_object(
uvm_object obj

)

Pushes obj on to the internal object stack for this policy, making it the current active object, as retrieved by
get_active_object (see 16.1.3.3). An implementation shall generate an error message if obj is null and the
request will be ignored.

Additionally, the policy shall push itself onto the active policy stack for obj using push_active_policy (see
5.3.14.1) when push_active_object is called.

16.1.3.2 pop_active_object

virtual function uvm_object pop_active_object()

Pops the current active object off of the internal object stack for this policy and returns the popped off value.
If the internal object stack for this object is empty when pop_active_object is called, then null is returned
and no error message is generated.

Additionally, the policy shall pop itself off of the active policy stack on obj using pop_active_policy (see
5.3.14.2) when pop_active_object is called.

16.1.3.3 get_active_object

virtual function uvm_object get_active_object()

Returns the head of the internal object stack for this policy. If the internal object stack for this policy is
empty, null is returned.

16.1.3.4 get_active_object_depth

virtual function int unsigned get_active_object_depth()

Returns the current depth of the internal object stack for this policy.

16.1.4 recursion_state_e

An enum type that indicates whether a policy has operated on a given object or objects; it has the following
values:

NEVER—The policy has never operated on the object(s).

STARTED —The policy has started operating on the object(s), but has not yet completed the
operation.

FINISHED—The policy has completed operating on the object(s).

16.2 uvm_printer

The uvm_printer class provides an interface for printing uvm_objects (see 5.3) in various formats.
Subtypes of uvm_printer implement different print formats or policies.

A user-defined printer format can be created or one of the following built-in printers can be used.
222
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
a) uvm_printer—provides base printer functionality; needs to be overridden.

b) uvm_table_printer—prints the object in a tabular form (see 16.2.10).

c) uvm_tree_printer—prints the object in a tree form (see 16.2.11).

d) uvm_line_printer—prints the information on a single line (see 16.2.12).

16.2.1 Class declaration

virtual class uvm_printer extends uvm_policy

16.2.2 Methods

16.2.2.1 new

function new (string name="")

Creates a new uvm_printer with the specified instance name. If name is not provided, the printer is
unnamed.

16.2.2.2 set_default

static function void set_default (uvm_printer printer)

Helper method for setting the default printer policy instance via uvm_coreservice_t::set_default_printer
(see F.4.1.4.12).

16.2.2.3 get_default

static function uvm_printer get_default()

Helper method for retrieving the default printer policy instance via
uvm_coreservice_t::get_default_printer (see F.4.1.4.13).

16.2.3 Methods for printer usage

16.2.3.1 print_object

virtual function void print_object (
string name,
uvm_object value,
byte scope_separator = "."

)

Prints an object.

name is the name to use when printing the object. Note that this may be different than the value
returned by the object’s get_name method (see 5.3.4.2).

value is the value of the object. null can be passed as a value.

scope_separator is used to find the leaf name since many printers only print the leaf name of a field.
The default value of scope_separator shall be ".".

Whether a non-null value is recursed depends on the settings for printer configuration (see 16.2.5). For
objects that are being recursed, the following steps occur in order:
223
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
a) The object is pushed onto the active object stack via push_active_object (see 16.1.3.1).

b) The saved recursion state (see 16.1.4) for value and the current recursion policy (see 16.2.5.9) is set
to uvm_policy::STARTED.

c) The do_execute_op method (see 5.3.13.1) on the object is passed a uvm_field_op (see 5.3.13.2)
with op_type UVM_PRINT and policy set to this printer.

d) If user_hook_enabled (see 5.3.13.2.9) returns 1, the printer passes itself the do_print method (see
5.3.6.3) on the object; otherwise, the method returns without calling do_print.

e) The saved recursion state (see 16.1.4) for value and the current recursion policy (see 16.2.5.9) is set
to uvm_policy::FINISHED.

f) The object is popped off of the active object stack via pop_active_object (see 16.1.3.2).

16.2.3.2 object_printed

virtual function uvm_policy::recursion_state_e object_printed(
uvm_object value,
uvm_recursion_policy_enum recursion

)

Returns the current recursion state (see 16.1.4) for value and recursion within the printer as defined by
print_object (see 16.2.3.1). For objects that have never been passed to print_object, the return value shall
be uvm_policy::NEVER.

16.2.3.3 print_generic

virtual function void print_generic (
string name,
string type_name,
int size,
string value,
byte scope_separator = "."

)

Prints a field having the given name, type_name, size, value, and scope_separator.

name is the name of the field.

type_name is the variable type for the value being printed.

size is the size of the field.

value is the value of the field.

scope_separator is used to find the leaf name since many printers only print the leaf name of a field.
Typical values for the separator are a dot (.) or an open bracket ([). The default value of
scope_separator shall be ".".

16.2.3.4 print_generic_element

function void print_generic_element(
string name,
string type_name,
string size,
string value

)

An element is added as a child of the top element (see 16.2.7.2) with the given parameters.
224
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
This is a convenience mechanism, functionally identical to calling:

printer.push_element(name, type_name, size, value)
printer.pop_element()

16.2.3.5 print_array_header

virtual function void print_array_header(
string name,
int size,
string arraytype = "array",
byte scope_separator = "."

)

Prints the header of an array. This function is called before each individual element is printed.
print_array_footer (see 16.2.3.7) is called to mark the completion of array printing. arraytype indicates
what type of array is being printed. While it defaults to "array", the user can set it to indicate queues or
associative arrays.

The intent of scope_separator is to mark where the leaf name starts if the printer is configured to print only
the leaf name of the identifier. The default value of scope_separator shall be ".".

16.2.3.6 print_array_range

virtual function void print_array_range (
int min,
int max

)

Prints a range using ellipses for values. This is used in honoring the partial printing of large arrays for
uvm_printer::set_begin_elements and uvm_printer:: set_end_elements (see 16.2.6). min and max align
to array indices. min should be the index of the first skipped value and max should be the index of the last
skipped value.

This function should be called after printing the beginning of the array (as determined by
uvm_printer::get_begin_elements) and before printing the end of the array (as determined by
uvm_printer::get_end_elements).

16.2.3.7 print_array_footer

virtual function void print_array_footer (
int size = 0

)

Prints the footer of an array. This function marks the end of an array print. Generally, there is no output
associated with the array footer, but this method lets the printer know that the array printing is complete. The
default value of size shall be 0.

16.2.3.8 print_field

virtual function void print_field (
string name,
uvm_bitstream_t value,
int size,
uvm_radix_enum radix = UVM_NORADIX,
225
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
byte scope_separator = ".",
string type_name = ""

)

Prints an integral field.

name is the name of the field.

value is the value of the field.

size is the number of bits of the field [maximum is defined by `UVM_MAX_STREAMBITS (see
B.6.2)].

radix is the radix to use for printing. The printer knob for radix is used if no radix is specified. The
default value for radix shall be UVM_NORADIX (see F.2.1.5).

scope_separator is used to find the leaf name since many printers only print the leaf name of a field.
Typical values for the separator are a dot (.) or an open bracket ([). The default value of
scope_separator shall be ".".

type_name is the variable type for the value being printed; its default value is an empty string ("").

16.2.3.9 print_field_int

virtual function void print_field_int (
string name,
uvm_integral_t value,
int size,
uvm_radix_enum radix = UVM_NORADIX,
byte scope_separator = ".",
string type_name = ""

)

Prints an integral field (up to 64 bits).

name is the name of the field.

value is the value of the field.

size is the number of bits of the field.

radix is the radix to use for printing. The printer knob for radix is used if no radix is specified. The
default value for radix shall be UVM_NORADIX (see F.2.1.5).

scope_separator is used to find the leaf name since many printers only print the leaf name of a field.
Typical values for the separator are a dot (.) or an open bracket ([). The default value of
scope_separator shall be ".".

type_name is the variable type for the value being printed; its default value is an empty string ("").

16.2.3.10 print_string

virtual function void print_string (
string name,
string value,
byte scope_separator = "."

)

Prints a string field.

name is the name of the field.

value is the value of the field.
226
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
scope_separator is used to find the leaf name since many printers only print the leaf name of a field.
Typical values for the separator are a dot (.) or an open bracket ([). The default value of
scope_separator shall be ".".

16.2.3.11 print_time

virtual function void print_time (
string name,
time value,
byte scope_separator = "."

)

Prints a time value.

name is the name of the field.

value is the value to print.

scope_separator is used to find the leaf name since many printers only print the leaf name of a field.
Typical values for the separator are a dot (.) or an open bracket ([). The default value of
scope_separator shall be ".".

16.2.3.12 print_real

virtual function void print_real (
string name,
real value,
byte scope_separator = "."

)

Prints a real field.

name is the name of the field.

value is the value of the field.

scope_separator is used to find the leaf name since many printers only print the leaf name of a field.
Typical values for the separator are a dot (.) or an open bracket ([). The default value of
scope_separator shall be ".".

16.2.4 Methods for printer subtyping

16.2.4.1 emit

virtual function string emit()

Emits a string representing the contents of an object in a format defined by an extension of this object.

16.2.4.2 flush

virtual function void flush()

The flush method resets the internal state of the printer. This includes clearing the internal element stack
(see 16.2.7), and setting both the bottom element (see 16.2.7.1) and the top element (see 16.2.7.2) to null.

An implementation of the printer is allowed to reuse elements after a flush. Any outstanding handles to
elements accessed prior to the flush via get_bottom_element (see 16.2.7.1) or get_top_element (see
16.2.7.2) shall be considered unstable after the flush.
227
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
16.2.5 Methods for printer configuration

The following methods define the printer settings available to all printer subtypes for use with the print_*
methods (see 16.2.3) and emit (see 16.2.4.1).

16.2.5.1 Name enabled

virtual function void set_name_enabled (bit enabled)
virtual function bit get_name_enabled()

Controls whether field names shall be printed during emit (see 16.2.4.1). A value of 1 indicates field names
shall be printed; a value of 0 indicates field names shall be omitted.

If set_name_enabled has not been called since the printer was constructed or since the last call to flush (see
16.2.4.2), then get_name_enabled shall return 1.

16.2.5.2 Type name enabled

virtual function void set_type_name_enabled (bit enabled)
virtual function bit get_type_name_enabled()

Controls whether field type names shall be printed during emit (see 16.2.4.1). A value of 1 indicates field
type names shall be printed; a value of 0 indicates field type names shall be omitted.

If set_type_name_enabled has not been called since the printer was constructed or since the last call to
flush (see 16.2.4.2), then get_type_name_enabled shall return 1.

16.2.5.3 Size enabled

virtual function void set_size_enabled (bit enabled)
virtual function bit get_size_enabled()

Controls whether field sizes shall be printed during emit (see 16.2.4.1). A value of 1 indicates field sizes
shall be printed; a value of 0 indicates field sizes shall be omitted.

If set_size_enabled has not been called since the printer was constructed or since the last call to flush (see
16.2.4.2), then get_size_enabled shall return 1.

16.2.5.4 ID enabled

virtual function void set_id_enabled (bit enabled)
virtual function bit get_id_enabled()

Controls whether a unique reference ID shall be printed for object fields during print_object (see 16.2.3.1).
A value of 1 indicates a unique reference ID shall be printed; a value of 0 indicates the unique reference ID
shall be omitted.

If set_id_enabled has not been called since the printer was constructed or since the last call to flush (see
16.2.4.2), then get_id_enabled shall return 1.

16.2.5.5 Radix enabled

virtual function void set_radix_enabled (bit enabled)
virtual function bit get_radix_enabled()
228
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Controls whether a radix string (see 16.2.5.6) shall be prepended to integral value fields print_field (see
16.2.3.8) or print_field_int (see 16.2.3.9). A value of 1 indicates the radix string shall be prepended; a
value of 0 indicates the radix string shall be omitted.

If set_radix_enabled has not been called since the printer was constructed or since the last call to flush (see
16.2.4.2), then get_radix_enabled shall return 1.

16.2.5.6 Radix strings

virtual function void set_radix_string (uvm_radix_enum radix, string prefix)
virtual function string get_radix_string (uvm_radix_enum radix)

Controls the prefix strings used by print_field (see 16.2.3.8) or print_field_int (see 16.2.3.9) when
get_radix_enabled (see 16.2.5.5) returns 1.

If set_radix_string has not been called since the printer was constructed or since the last call to flush (see
16.2.4.2), then the radix for get_radix_string shall have a return value as shown in Table 2.

The return value for any radix value not shown in Table 2 is undefined.

16.2.5.7 Default radix

virtual function void set_default_radix (uvm_radix_enum radix)
virtual function uvm_radix_enum get_default_radix()

Controls the default radix used by print_field (see 16.2.3.8) or print_field_int (see 16.2.3.9) when
get_radix_enabled (see 16.2.5.5) returns 1 and radix equals UVM_NORADIX.

If set_default_radix has not been called since the printer was constructed or since the last call to flush (see
16.2.4.2), then get_default_radix shall return UVM_HEX.

16.2.5.8 Root enabled

virtual function void set_root_enabled (bit enabled)
virtual function bit get_root_enabled()

Controls whether uvm_object::get_full_name (see 5.3.4.3) or uvm_object::get_name (see 5.3.4.2) is used
as the field name for the initial object being printed. A value of 1 indicates uvm_object::get_full_name
shall be used; a value of 0 indicates uvm_object::get_name shall be used.

Table 2—radix return values

radix Return value

UVM_DEC 'd

UVM_BIN 'b

UVM_OCT 'o

UVM_UNSIGNED 'd

UVM_HEX 'h
229
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
If set_root_enabled has not been called since the printer was constructed or since the last call to flush (see
16.2.4.2), then get_root_enabled shall return 1.

16.2.5.9 Recursion policy

virtual function void set_recursion_policy (uvm_recursion_policy_enum policy)
virtual function uvm_recursion_policy_enum get_recursion_policy()

Controls the recursion policy to use for object values supplied to print_object (see 16.2.3.1).

UVM_DEEP—Prints all fields of the target, doing a “deep” print (any object fields are printed using
a DEEP recursion).

UVM_SHALLOW—Prints all fields of the target using a “shallow” print (any object fields are printed
as REFERENCES).

UVM_REFERENCE—Prints the target as a reference.

A value of UVM_DEFAULT_POLICY shall be treated as UVM_DEEP.

If set_recursion_policy has not been called since the printer was constructed or since the last call to flush
(see 16.2.4.2), then get_recursion_policy shall return UVM_DEFAULT_POLICY.

16.2.5.10 Maximum depth

virtual function void set_max_depth (int depth)
virtual function int get_max_depth()

Controls the maximum recursion depth for objects printed via print_object (see 16.2.3.1). A maximum
depth less than 0 indicates all objects shall be recursed using the current recursion policy (see 16.2.5.9);
otherwise, for objects whose scope depth (see 16.1.3.4) exceeds the current maximum recursion depth, the
printer shall print the object as if the recursion policy was UVM_REFERENCE.

If set_max_depth has not been called since the printer was constructed or since the last call to flush (see
16.2.4.2), then get_max_depth shall return -1.

16.2.5.11 File

virtual function void set_file (UVM_FILE fl)
virtual function UVM_FILE get_file()

Controls fl [the current UVM_FILE (see F.2.8)], which specifies where the output of uvm_object::print
(see 5.3.6.1) shall be directed.

If set_file has not been called since the printer was constructed or since the last call to flush (see 16.2.4.2),
then get_file shall return UVM_STDOUT (see F.2.9).

16.2.5.12 Line prefix

virtual function void set_line_prefix (string prefix)
virtual function string get_line_prefix()

Controls the string to use as a prefix to all lines of text generated by the printer during emit (see 16.2.4.1).

If set_line_prefix has not been called since the printer was constructed or since the last call to flush (see
16.2.4.2), then get_line_prefix shall return an empty string ("").
230
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
16.2.6 Methods for object print control

The following methods define values that may be used in do_print (see 5.3.6.3) or do_execute_op (see
5.3.13.1) to control how fields are printed within an object.

Array elements

virtual function void set_begin_elements (int elements = 5)

virtual function void set_end_elements (int elements = 5)

virtual function int get_begin_elements()

virtual function int get_end_elements()

These options can control the number of elements at the beginning and end of an array to print. A value less
than 0 for either begin_elements or end_elements indicates all elements of the array shall be printed. If both
values are 0 or greater, then the object may omit array elements that are both:

— greater than or equal to begin_elements from the beginning of the array;

— greater than or equal to end_elements from the end of the array.

When omitting array elements in this fashion, print_array_range (see 16.2.3.6) shall be used to represent
the skipped elements.

If set_begin_elements has not been called since the printer was constructed or since the last call to flush
(see 16.2.4.2), then get_begin_elements shall return 5. If set_end_elements has not been called since the
printer was constructed or since the last call to flush, then get_end_elements shall return 5.

16.2.7 Element stack

Within the printer, a stack of uvm_printer_element (see 16.2.8) is maintained. Each element stores the
name, type_name, size, and value to be printed as strings. The element stack allows for a separation between
the content of the data being printed and the structure of the eventual output string. For example, an integral
value that is printed looks the same regardless of whether it is printed in a tree structure or as a row in a
tabular structure. The bottom of the stack represents the outer most layer of encapsulation being printed,
while the top of the stack represents the layer of encapsulation currently being used.

When printing an individual field via print_generic (see 16.2.3.3), print_generic_element (see 16.2.3.4),
print_array_range (see 16.2.3.6), print_field (see 16.2.3.8), print_field_int (see 16.2.3.9), print_string
(see 16.2.3.10), print_time (see 16.2.3.11), and print_real (see 16.2.3.12), the printer shall push a new
element onto the stack (see 16.2.7.3) and immediately pop the element from the stack (see 16.2.7.4).

When printing structured data via print_object (see 16.2.3.1), print_array_header (see 16.2.3.5), and
print_array_footer (see 16.2.3.7), the printer shall push a new element onto the stack and eventually pop
the element from the stack when the structure is done being printed, i.e., immediately before print_object
returning or when print_array_footer is called.

16.2.7.1 get_bottom_element

protected virtual function uvm_printer_element get_bottom_element()

Returns the bottom element of the internal stack. This element represents the outermost layer of
encapsulation being printed.
231
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
16.2.7.2 get_top_element

protected virtual function uvm_printer_element get_top_element()

Returns the top element of the internal stack. This element represents the layer of encapsulation currently
being used.

16.2.7.3 push_element

virtual function void push_element(
string name,
string type_name,
string size,
string value=""

)

Pushes an element with the provided name, type_name, size, and value onto the top of the internal element
stack, becoming the new return value for get_top_element (see 16.2.7.2). If the bottom element (see
16.2.7.1) is currently null, then the pushed element becomes the new bottom. If the top element (see
16.2.7.2) was not previously null, then the pushed element is a child of the previous top.

16.2.7.4 pop_element

virtual function void pop_element()

Pops the top element (see 16.2.7.2) off of the internal element stack, thereby restoring the next element on
the stack to top.

If the top element on the stack is also the bottom element (see 16.2.7.1), then this request is silently ignored.

16.2.8 uvm_printer_element

This class is used by the uvm_printer (see 16.2) to represent the structure being printed in string form. The
uvm_printer::emit method (see 16.2.4) is responsible for parsing the elements to produce properly
formatted output.

16.2.8.1 Class declaration

class uvm_printer_element extends uvm_object

16.2.8.2 Methods

16.2.8.2.1 new

function new (string name="")

Initializes a new uvm_printer_element with the specified name. The default value of name shall be an
empty string ("").

16.2.8.2.2 set

virtual function void set(
string element_name = "",
element_type_name = "",
element_size = "",
232
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
element_value = ""
)

Convenience method for setting the element_name (see 16.2.8.2.3), element_type_name (see 16.2.8.2.4),
element_size (see 16.2.8.2.5), and element_value (see 16.2.8.2.6). The default value of all arguments shall
be an empty string ("").

16.2.8.2.3 element_name

virtual function void set_element_name (string element_name)
 virtual function string get_element_name()

Controls the name of the element to be printed. The get_element_name method shall return element_name,
as defined by the most recent call to set (see 16.2.8.2.2) or set_element_name. If set and
set_element_name have not been called since this printer element was constructed, then
get_element_name shall return an empty string ("").

16.2.8.2.4 element_type_name

virtual function void set_element_type_name (string element_type_name)
 virtual function string get_element_type_name()

Controls the type name associated with the element being printed. The get_element_type_name method
shall return element_type_name, as defined by the most recent call to set (see 16.2.8.2.2) or
set_element_type_name. If set and set_element_type_name have not been called since this printer
element was constructed, then get_element_type_name shall return an empty string ("").

16.2.8.2.5 element_size

virtual function void set_element_size (string element_size)
 virtual function string get_element_size()

Controls the size of the element to be printed. The get_element_size method shall return element_size, as
defined by the most recent call to set (see 16.2.8.2.2) or set_element_size. If set and set_element_size have
not been called since this printer element was constructed, then get_element_size shall return an empty
string ("").

16.2.8.2.6 element_value

virtual function void set_element_value (string element_value)
 virtual function string get_element_value()

Controls the value of the element to be printed. The get_element_value method shall return element_value,
as defined by the most recent call to set (see 16.2.8.2.2) or set_element_value. If set and
set_element_value have not been called since this printer element was constructed, then
get_element_value shall return an empty string ("").

16.2.9 uvm_printer_element_proxy

This is a structural proxy class (see F.5.2) for the uvm_printer_element (see 16.2.8). It can be used to
determine the children of an element.

uvm_printer_element (see 16.2.8) can be used to represent hierarchical elements, such as classes, arrays,
structs, etc. Each field/value within the printed structure can be stored as additional children elements within
233
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
the parent, e.g., an array of depth 2 could be represented using three elements; the parent element
representing the array itself, and then one child element per value within the array.

The representation of parent/child relationships within uvm_printer_element (see 16.2.8) is specific to an
implementation of the uvm_printer (see 16.2), however the uvm_printer_element_proxy is provided as a
standard mechanism for traversing the structure.

16.2.9.1 Class declaration

class uvm_printer_element_proxy extends uvm_structure_proxy#
(uvm_printer_element)

16.2.9.2 Methods

16.2.9.2.1 new

function new (string name="")

Initializes a new uvm_printer_element_proxy with the specified name. The default value of name shall be
an empty string ("").

16.2.9.2.2 get_immediate_children

virtual function void get_immediate_children(uvm_printer_element s,
 ref uvm_printer_element children[$])

This is an extension of the uvm_structure_proxy’s get_immediate_children method (see F.5.2). This
method pushes the children elements of s to the back of the children queue. Any previously existing values
within the children queue remain untouched.

16.2.10 uvm_table_printer

The table printer prints output in a tabular format.

16.2.10.1 Class declaration

class uvm_table_printer extends uvm_printer

16.2.10.2 Methods

16.2.10.2.1 new

function new (string name="")

Creates a new instance of uvm_table_printer with the specified instance name. If name is not provided, the
printer is unnamed.

16.2.10.2.2 get_type_name

virtual function string get_type_name()

Returns the string "uvm_table_printer".
234
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
16.2.10.2.3 set_default

static function void set_default (uvm_table_printer printer)

Overrides the default table printer instance printer, as retrieved by get_default (see 16.2.10.2.4).

16.2.10.2.4 get_default

static function uvm_table_printer get_default()

Retrieves the default table printer instance, as set by set_default (see 16.2.10.2.3). If set_default has not
been called prior to the first get_default call, then the implementation shall instance a uvm_table_printer
and pass that instance to set_default automatically.

16.2.10.3 Methods for printer configuration

The following method defines the printer settings available to table printers:

Indentation

virtual function void set_indent (int indent)

virtual function int get_indent()

Returns the number of spaces to use for indentation (indent) when printing the children of a
uvm_printer_element (see 16.2.8).

If set_indent has not been called since the printer was constructed or since the last call to flush (see
16.2.4.2), then get_indent shall return 2.

16.2.11 uvm_tree_printer

The tree printer prints output in a tree format.

16.2.11.1 Class declaration

class uvm_tree_printer extends uvm_printer

16.2.11.2 Methods

16.2.11.2.1 new

function new (string name="")

Creates a new instance of uvm_tree_printer with the specified instance name. If name is not provided, the
printer is unnamed.

16.2.11.2.2 get_type_name

virtual function string get_type_name()

Returns the string "uvm_tree_printer".
235
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
16.2.11.2.3 set_default

static function void set_default (uvm_tree_printer printer)

Overrides the default tree printer instance, as retrieved by get_default (see 16.2.11.2.4).

16.2.11.2.4 get_default

static function uvm_tree_printer get_default()

Retrieves the default tree printer instance, as set by set_default (see 16.2.11.2.3). If set_default has not been
called prior to the first get_default call, then the implementation shall instance a uvm_tree_printer and
pass that instance to set_default automatically.

16.2.11.3 Methods for printer configuration

The following methods define the printer settings available to tree printers.

16.2.11.3.1 Indentation

virtual function void set_indent (int indent)
virtual function int get_indent()

Returns the number of spaces to use for indentation (indent) when printing the children of a
uvm_printer_element (see 16.2.8).

If set_indent has not been called since the printer was constructed or since the last call to flush (see
16.2.4.2), then get_indent shall return 2.

16.2.11.3.2 Separators

virtual function void set_separators (string separators)
virtual function string get_separators()

Controls the separators used for printing the children of a uvm_printer_element (see 16.2.8). The first
character of the string represents the opening separator and the second character represents the closing
separator; all other characters are ignored.

If set_separators has not been called since the printer was constructed or since the last call to flush (see
16.2.4.2), then get_separators shall return the curly brackets as string ("{}").

16.2.12 uvm_line_printer

The line printer prints output in a line format.

16.2.12.1 Class declaration

class uvm_line_printer extends uvm_printer

16.2.12.2 Methods

16.2.12.2.1 new

function new (string name="")
236
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Creates a new instance of uvm_line_printer with the specified instance name. If name is not provided, the
printer is unnamed.

16.2.12.2.2 get_type_name

virtual function string get_type_name()

Returns the string "uvm_line_printer".

16.2.12.2.3 set_default

static function void set_default (uvm_line_printer printer)

Overrides the default line printer instance, as retrieved by get_default (see 16.2.12.2.4).

16.2.12.2.4 get_default

static function uvm_line_printer get_default()

Retrieves the default line printer instance, as set by set_default (see 16.2.10.2.3). If set_default has not been
called prior to the first get_default call, then the implementation shall instance a uvm_line_printer and
pass that instance to set_default automatically.

16.2.12.3 Methods for printer configuration

The following method defines the printer settings available to line printers:

Separators

virtual function void set_separators (string separators)

virtual function string get_separators()

Controls the separators used for printing the children of a uvm_printer_element (see 16.2.8). The first
character of the string represents the opening separator and the second character represents the closing
separator; all other characters are ignored.

If set_separators has not been called since the printer was constructed or since the last call to flush (see
16.2.4.2), then get_separators shall return the curly brackets as string ("{}").

16.3 uvm_comparer

The uvm_comparer class provides a policy object for doing comparisons. The policies determine how
miscompares are treated and counted. Results of a comparison are stored in the comparer object. The
uvm_object::compare (see 5.3.9.1) and uvm_object::do_compare (see 5.3.9.2) methods are passed a
uvm_comparer policy object.

16.3.1 Class declaration

class uvm_comparer extends uvm_policy
237
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
16.3.2 Methods

16.3.2.1 new

function new (string name="")

Creates a new uvm_comparer with the specified instance name. If name is not provided, the object is
unnamed.

16.3.2.2 flush

virtual function void flush()

The flush method resets the internal state of the comparer. This includes setting the value returned by
get_result (see 16.3.3.9) to 0 and setting the value returned by get_miscompares (see 16.3.3.8) to an empty
string ("").

16.3.2.3 get_type_name

virtual function string get_type_name()

Returns the string "uvm_comparer".

16.3.2.4 set_default

static function void set_default (uvm_comparer comparer)

Helper method for setting the default comparer policy instance via
uvm_coreservice_t::set_default_comparer (see F.4.1.4.16).

16.3.2.5 get_default

static function uvm_comparer get_default()

Helper method for retrieving the default comparer policy instance via
uvm_coreservice_t::get_default_comparer (see F.4.1.4.17).

16.3.3 Methods for comparer usage

16.3.3.1 compare_field

virtual function bit compare_field (
string name,
uvm_bitstream_t lhs,
uvm_bitstream_t rhs,
int size,
uvm_radix_enum radix = UVM_NORADIX

)

Compares two integral values.

The name variable is used for purposes of storing and printing a miscompare.

The left-hand-side lhs and right-hand-side rhs variables are the two values used for comparison.
238
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
The size variable indicates the number of bits to compare; size shall be less than or equal to
`UVM_MAX_STREAMBITS (see B.6.2).

The radix variable is used for the purposes of formatting the stored miscompare string.

16.3.3.2 compare_field_int

virtual function bit compare_field_int (
string name,
uvm_integral_t lhs,
uvm_integral_t rhs,
int size,
uvm_radix_enum radix = UVM_NORADIX

)

Compares two uvm_integral_t values (see F.2.1.4).

The name variable is used for purposes of storing and printing a miscompare.

The left-hand-side lhs and right-hand-side rhs variables are the two values used for comparison.

The size variable indicates the number of bits to compare; size shall be less than or equal to 64.

The radix variable is used for the purposes of formatting the stored miscompare string.

16.3.3.3 compare_field_real

virtual function bit compare_field_real (
string name,
real lhs,
real rhs

)

Compares two real values.

The name variable is used for purposes of storing and printing a miscompare.

The left-hand-side lhs and right-hand-side rhs variables are the two values used for comparison.

16.3.3.4 compare_object

virtual function bit compare_object (
string name,
uvm_object lhs,
uvm_object rhs

)

Compares two class objects using the recursion policy (see 16.3.4.1) to determine whether the comparison
should be deep, shallow, or reference.

The name input is used for purposes of storing and printing a miscompare.

The lhs and rhs objects are the two objects used for comparison.

For objects that are being compared, the following steps occur in order:

a) The object is pushed onto the active object stack via push_active_object (see 16.1.3.1).

b) The saved recursion state (see 16.1.4) for lhs, rhs, and the current recursion policy (see 16.3.4.1) is
set to uvm_policy::STARTED.
239
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
c) The do_execute_op method (see 5.3.13.1) on the object is passed a uvm_field_op (see 5.3.13.2)
with op_type UVM_COMPARE and policy set to this comparer.

d) If user_hook_enabled (see 5.3.13.2.9) returns 1, the comparer passes itself and the rhs to the
do_-compare method (see 5.3.9.2) on lhs.

e) The saved recursion state for lhs, rhs, and the current recursion policy is set to uvm_policy::
FINISHED, and the saved return value for lhs, rhs, and the current recursion policy is set as
follows:

1) If the value of the get_result counter (see 16.3.3.9) increased during c) or d), then the value to
return is set to 0.

2) If the do_compare call in d) returned 0, then the valueto return is set to 0.

3) If the value of the get_result counter did not increase during c) or d), and the do_compare call
in (d) returned 1, then the value set to return is set to 1.

f) The object is popped off of the active object stack via pop_active_object (see 16.1.3.2).

g) compare_object returns the valuedetermined in e).

16.3.3.5 object_compared

virtual function uvm_policy::recursion_state_e object_compared(
uvm_object lhs,
uvm_object rhs,
uvm_recursion_policy_enum recursion,
output bit ret_val

)

Returns the current recursion state (see 16.1.4) for lhs, rhs, and recursion within the comparer as defined by
compare_object (see 16.3.3.4). For objects that have never been passed to compare_object, the return
value shall be uvm_policy::NEVER.

If the recursion state is uvm_policy::FINISHED, then ret_val is the return value of the comparison as
defined by compare_object. If the recursion state is a value other than uvm_policy::FINISHED, then
the value of ret_val is 0.

The values passed to lhs and rhs need to be passed to object_compared using the same ordering as
compare_object.

16.3.3.6 compare_string

virtual function bit compare_string (
string name,
string lhs,
string rhs

)

Compares two string variables.

The name variable is used for purposes of storing and printing a miscompare.

The left-hand-side lhs and right-hand-side rhs variables are the two values used for comparison.

16.3.3.7 print_msg

function void print_msg (
string msg

)

240
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Causes the error count to be incremented and the message, msg, to be appended to the get_miscompares
string (see 16.3.3.8). (A newline character is used to separate messages.)

If the message count is less than set_show_max (see 16.3.5.1), the message is printed to the standard output
using the current verbosity and severity settings.

16.3.3.8 get_miscompares

virtual function string get_miscompares()

Returns the set of miscompares, if any, that have occurred since the comparer was constructed or since the
last call to flush (see 16.2.4.2).

If no miscompares have occurred, then get_miscompares shall return an empty string ("").

16.3.3.9 get_result

virtual function int unsigned get_result()

Returns the number of miscompares that have occurred since the comparer was constructed or since the last
call to flush (see 16.2.4.2).

16.3.4 Methods for comparer configuration

16.3.4.1 Recursion policy

virtual function void set_recursion_policy (uvm_recursion_policy_enum policy)
virtual function uvm_recursion_policy_enum get_recursion_policy()

Controls the recursion policy to use for object values supplied to compare_object (see 16.3.3.4).

UVM_DEEP—Compares all fields of the object, doing a “deep” compare (any object fields are
compared using a DEEP recursion).

UVM_SHALLOW—Compares all fields of the object using a “shallow” compare (any object fields are
compared as REFERENCES).

UVM_REFERENCE—Compares the object as a reference.

A value of UVM_DEFAULT_POLICY shall be treated as UVM_DEEP.

If set_recursion_policy has not been called since the comparer was constructed or since the last call to flush
(see 16.2.4.2), then get_recursion_policy shall return UVM_DEFAULT_POLICY.

16.3.4.2 Type checking

virtual function void set_check_type (bit enabled)
virtual function bit get_check_type()

Controls (via enabled) whether the compare_object method (see 16.3.3.4) compares the object types, given
by uvm_object::get_type (see 5.3.4.5).

If set_check_type has not been called since the comparer was constructed or since the last call to flush (see
16.2.4.2), then get_check_type shall return 1.
241
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
16.3.5 Methods for comparer reporting control

16.3.5.1 Max miscompare messages

virtual function void set_show_max (int unsigned show_max)
virtual function int unsigned get_show_max()

Controls the maximum allowed number of miscompare messages (show_max) generated by the comparer
during a compare operation.

If set_show_max has not been called since the comparer was constructed or since the last call to flush (see
16.2.4.2), then get_show_max shall return 1.

16.3.5.2 Verbosity

virtual function void set_verbosity (int unsigned verbosity)
virtual function int unsigned get_verbosity()

Controls the verbosity value to be used by the comparer when generating messages.

If set_verbosity has not been called since the comparer was constructed or since the last call to flush (see
16.2.4.2),then get_verbosity shall return UVM_LOW.

16.3.5.3 Severity

virtual function void set_severity (uvm_severity severity)
virtual function uvm_severity get_severity()

Controls the severity value to be used by the comparer when generating messages.

If set_severity has not been called since the comparer was constructed or since the last call to flush (see
16.2.4.2), then get_severity shall return UVM_INFO.

16.3.6 Methods for object compare control

The following methods define values that may be used in do_compare (see 5.3.9.2) or do_execute_op (see
5.3.13.1) to control how fields are printed within an object:

Return threshold

virtual function void set_threshold (int unsigned threshold)
virtual function int unsigned get_threshold()

Controls the return threshold value.

A threshold value greater than 0 indicates that the do_compare (see 5.3.9.2) or do_execute_op (see
5.3.13.1) method may return as quickly as possible after the result (see 16.3.3.9) reaches the threshold value,
potentially skipping additional field comparisons. A return value of 0 indicates all fields should be
compared, even if miscompares have already been detected. This allows for a “fast failure” mode, which can
detect a miscompare faster at the sacrifice of additional debugging information.

If set_threshold has not been called since the comparer was constructed or since the last call to flush (see
16.2.4.2), then get_threshold shall return 1.
242
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
16.4 uvm_recorder

The uvm_recorder class serves two purposes.

— Firstly, it is an abstract representation of a record within a uvm_tr_stream (see 7.2).

— Secondly, it is a policy object for recording fields into that record within the stream.

16.4.1 Class declaration

virtual class uvm_recorder extends uvm_object

16.4.2 Methods for recorder configuration

16.4.2.1 recursion_policy

virtual function void set_recursion_policy (uvm_recursion_policy_enum policy)
virtual function uvm_recursion_policy_enum get_recursion_policy()

Controls the recursion policy to use for object values supplied to record_object (see 16.4.6.4).

UVM_DEEP—Records all fields of the target, doing a “deep” record (any object fields are recorded
using a DEEP recursion).

UVM_SHALLOW—Records all fields of the target using a “shallow” record (any object fields are
recorded as REFERENCES).

UVM_REFERENCE—Records the target as a reference.

A value of UVM_DEFAULT_POLICY shall be treated as UVM_DEEP.

If set_recursion_policy has not been called since the recorder was constructed or since the last call to flush
(see 16.2.4.2), then get_recursion_policy shall return UVM_DEFAULT_POLICY.

16.4.2.2 ID enabled

virtual function void set_id_enabled (bit enabled)
virtual function bit get_id_enabled()

Controls (via enabled) whether a unique reference ID shall be printed for object fields during record_object
(see 16.4.6.4). A value of 1 indicates a unique reference ID shall be recorded; a value of 0 indicates the
unique reference ID shall be omitted.

If set_id_enabled has not been called since the recorder was constructed or since the last call to flush (see
16.2.4.2), then get_id_enabled shall return 1.

16.4.2.3 Default radix

virtual function void set_default_radix (uvm_radix_enum radix)
virtual function uvm_radix_enum get_default_radix()

Controls the default radix used by record_field (see 16.4.6.1) or record_field_int (see 16.4.6.2) when
get_radix_enabled (see 16.2.5.5) returns 1 and radix equals UVM_NORADIX.

If set_default_radix has not been called since the recorder was constructed or since the last call to flush
(see 16.2.4.2), then get_default_radix shall return UVM_HEX.
243
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
16.4.3 Introspection API

get_stream

function uvm_tr_stream get_stream()

Returns a reference to the stream that created this record.

A warning shall be issued if get_stream is called prior to the record being initialized via do_open (see
16.4.7.1).

16.4.4 Transaction recorder API

Once a recorder has been opened via uvm_tr_stream::open_recorder (see 7.2.5.1), the user can then close
(see 16.4.4.2) the recorder.

Since many database implementations cross a language boundary, an additional step of freeing the recorder
is required.

A link can be established within the database any time between when uvm_tr_stream::open_recorder (see
7.2.5.1) and then free (see 16.4.4.3) are called, however it shall be an error to establish a link after freeing
the recorder.

16.4.4.1 flush

virtual function void flush()

The flush method resets the internal state of the recorder. If the recorder is currently open (see 16.4.4.4),
then the implementation shall call free (see 16.4.4.3) with a close_time value of 0.

16.4.4.2 close

function void close(
time close_time = 0

)

Closes this recorder.

Closing a recorder marks the end of the transaction in the stream; it has the following parameter:

close_time—Optional time to record as the closing time of this transaction. The default value of
close_time shall be 0.

This method triggers a do_close call (see 16.4.7.2).

16.4.4.3 free

function void free(
time close_time = 0

)

Frees this recorder.

Freeing a recorder indicates the stream and database can release any references to the recorder; it has the
following parameter:
244
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
close_time—Optional time to record as the closing time of this transaction. The default value of
close_time shall be 0.

If a recorder has not yet been closed [via a call to close (see 16.4.4.2)], close is automatically called and
passed the close_time. If the recorder has already been closed, the close_time is ignored.

This method triggers a do_free call (see 16.4.7.3).

16.4.4.4 is_open

function bit is_open()

Returns True if this uvm_recorder was opened on its stream, but has not yet been closed.

16.4.4.5 get_open_time

function time get_open_time()

Returns the open_time. See also 7.2.5.1.

16.4.4.6 is_closed

function bit is_closed()

Returns True if this uvm_recorder was closed on its stream, but has not yet been freed.

16.4.4.7 get_close_time

function time get_close_time()

Returns the close_time (see 16.4.4.2).

16.4.5 Handles

16.4.5.1 get_handle

function int get_handle()

Returns a unique ID for this recorder.

A value of 0 indicates the recorder has been freed and no longer has a valid ID.

16.4.5.2 get_recorder_from_handle

static function uvm_recorder get_recorder_from_handle(
int id

)

This static accessor returns a recorder reference for a given unique id.

If no recorder exists with the given id or if the recorder with that id has been freed, then null is returned.

This method can be used to access the recorder associated with a call to uvm_transaction::begin_tr (see
5.4.2.4) or uvm_component::begin_tr (see 13.1.6.3).
245
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
16.4.6 Attribute recording

16.4.6.1 record_field

function void record_field(
string name,
uvm_bitstream_t value,
int size,
uvm_radix_enum radix = UVM_NORADIX

)

Records an integral field [less than or equal to the value defined by `UVM_MAX_STREAMBITS (see B.6.2)
bits]; it has the following parameters:

name—Name of the field.

value—Value of the field to record.

size—Number of bits of the field that apply.

radix—The uvm_radix_enum (see F.2.1.5) to use. No radix information is provided, the printer/
recorder can use its default radix. The default value of radix shall be UVM_NORADIX.

This method triggers a do_record_field call (see 16.4.7.4).

16.4.6.2 record_field_int

function void record_field_int(
string name,
uvm_integral_t value,
int size,
uvm_radix_enum radix = UVM_NORADIX

)

Records an integral field (less than or equal to 64 bits); it has the following parameters:

name—Name of the field.

value—Value of the field to record.

size—Number of bits of the field that apply.

radix—The uvm_radix_enum (see F.2.1.5) to use. No radix information is provided, the printer/
recorder can use its default radix. The default value of radix shall be UVM_NORADIX.

This optimized version of record_field (see 16.4.6.1) is useful for sizes up to 64 bits.

This method triggers a do_record_field_int call (see 16.4.7.5).

16.4.6.3 record_field_real

function void record_field_real(
string name,
real value

)

Records a real field; it has the following parameters:

name—Name of the field.

value—Value of the field to record.
246
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
This method triggers a do_record_field_real call (see 16.4.7.6).

16.4.6.4 record_object

function void record_object(
string name,
uvm_object value

)

Records an object field; it has the following parameters:

name—is the name to use when recording the object. Note that this may be different then the value
returned by the object’s get_name method (see 5.3.4.2).

value—is the value of the object to be recorded. null can be passed as a value.

This method triggers a do_record_object call (see 16.4.7.7).

Whether a non-null value is recursed depends on a variety of knobs, such as recursion_policy (see
16.4.2.1). For objects that are being recursed, the following steps occur in order:

a) The object is pushed onto the active object stack via push_active_object (see 16.1.3.1).

b) The do_record_object method is called (see 16.4.7.7).

c) The object is popped off of the active object stack via pop_active_object (see 16.1.3.2).

16.4.6.5 record_string

function void record_string(
string name,
string value

)

Records a string field; it has the following parameters:

name—Name of the field.

value—Value of the field.

This method triggers a do_record_string call (see 16.4.7.9).

16.4.6.6 record_time

function void record_time(
string name,
time value

)

Records a time field; it has the following parameters:

name—Name of the field.

value—Value of the field.

This method triggers a do_record_time call (see 16.4.7.10).
247
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
16.4.6.7 record_generic

function void record_generic(
string name,
string value,
string type_name = ""

)

Records a name/value pair, where value has been converted to a string; it has the following parameters:

name—Name of the field.

value—Value of the field.

type_name—Type name of the field (optional).

This method triggers a do_record_generic call (see 16.4.7.11).

16.4.6.8 use_record_attribute

virtual function bit use_record_attribute()

Indicates that this recorder does (or does not) support usage of the `uvm_record_attribute macro (see
B.2.3.1).

The default return value is 0 (not supported). uvm_recorder can be extended (set its value to 1) to support
`uvm_record_attribute.

16.4.6.9 get_record_attribute_handle

virtual function int get_record_attribute_handle()

This provides a tool-specific handle that is compatible with `uvm_record_attribute (see B.2.3.1).

By default, this method returns the same value as get_handle. Applications can override this method to
provide tool-specific handles to passed to the `uvm_record_attribute macro.

16.4.7 Implementation agnostic API

16.4.7.1 do_open

protected virtual function void do_open(
uvm_tr_stream stream,
time open_time,
string type_name

)

This is a callback triggered via uvm_tr_stream::open_recorder (see 7.2.5.1); it has the following
parameters:

stream – The stream on which the recorder was opened.

open_time—The time to record as the opening of this transaction.

type_name—The type name for the transaction.

The do_open callback can be used to initialize any internal state within the recorder, as well as providing a
location to record any initial information.
248
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
16.4.7.2 do_close

protected virtual function void do_close(
time close_time

)

This is a callback triggered via close (see 16.4.4.2); it has the following parameter:

close_time—The time to record as the closing time of this transaction.

The do_close callback can be used to specify the internal state within the recorder, as well as providing a
location to record any closing information.

16.4.7.3 do_free

protected virtual function void do_free()

This is a callback triggered via free (see 16.4.4.3).

The do_free callback can be used to release the internal state within the recorder, as well as providing a
location to record any “freeing” information.

16.4.7.4 do_record_field

pure virtual protected function void do_record_field(
string name,
uvm_bitstream_t value,
int size,
uvm_radix_enum radix

)

Intended to record an integral field [less than or equal to the value defined by `UVM_MAX_STREAMBITS
(see B.6.2) bits].

Derived classes need to provide an implementation of this API (see 16.4.6.1).

16.4.7.5 do_record_field_int

pure virtual protected function void do_record_field_int(
string name,
uvm_integral_t value,
int size,
uvm_radix_enum radix

)

Intended to record an integral field (less than or equal to 64 bits).

Derived classes need to provide an implementation of this API (see 16.4.6.2).

16.4.7.6 do_record_field_real

pure virtual protected function void do_record_field_real(
string name,
real value

)

249
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Intended to record a real field.

Derived classes need to provide an implementation of this API (see 16.4.6.3).

16.4.7.7 do_record_object

pure virtual protected function void do_record_object(
string name,
uvm_object value

)

Implementation hook for record_object (see 16.4.6.4).

The default implementation executes the following steps in order:

a) The do_execute_op method (see 5.3.13.1) on the object is passed a uvm_field_op (see 5.3.13.2)
with op_type UVM_RECORD and policy set to this recorder.

b) If user_hook_enabled (see 5.3.13.2.9) returns 1, the recorder passes itself the do_record method
(see 5.3.7.2) on the object; otherwise, the method returns without calling do_record_object.

16.4.7.8 object_recorded

virtual function uvm_policy::recursion_state_e object_recorded(
uvm_object value,
uvm_recursion_policy_enum recursion

)

Returns the current recursion state (see 16.1.4) for value and recursion within the recorder as defined by
record_object (see 16.4.6.4). For objects that have never been passed to record_object, the return value
shall be uvm_policy::NEVER.

16.4.7.9 do_record_string

pure virtual protected function void do_record_string(
string name,
string value

)

Intended to record a string field.

Derived classes need to provide an implementation of this API (see 16.4.6.5).

16.4.7.10 do_record_time

pure virtual protected function void do_record_time(
string name,
time value

)

Intended to record a time field.

Derived classes need to provide an implementation of this API (see 16.4.6.6).
250
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
16.4.7.11 do_record_generic

pure virtual protected function void do_record_generic(
string name,
string value,
string type_name

)

Intended to record a name/value pair, where value has been converted to a string.

Derived classes need to provide an implementation of this API (see 16.4.6.7).

16.5 uvm_packer

The uvm_packer class provides a policy object for packing and unpacking uvm_objects (see 5.3). The
policies determine how packing and unpacking shall be done.

16.5.1 Class declaration

class uvm_packer extends uvm_policy

16.5.2 Methods

16.5.2.1 new

function new (string name="")

Creates a new uvm_packer with the specified instance name. If name is not provided, the object is
unnamed.

16.5.2.2 flush

virtual function void flush()

The flush method resets the internal state of the packer. This includes clearing any data that has been
previously packed via a call to one of the packing methods (see 16.5.4).

16.5.2.3 get_type_name

virtual function string get_type_name()

Returns the string "uvm_packer".

16.5.2.4 set_default

static function void set_default (uvm_packer packer)

Helper method for setting the default packer policy instance via uvm_coreservice_t::set_default_packer
(see F.4.1.4.14).

16.5.2.5 get_default

static function uvm_packer get_default()
251
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Helper method for retrieving the default packer policy instance via
uvm_coreservice_t::get_default_packer (see F.4.1.4.15).

16.5.3 Methods for packer subtyping

16.5.3.1 State assignment

virtual function void set_packed_bits(
ref bit stream[]

)

virtual function void set_packed_bytes(
ref byte stream[]

)

virtual function void set_packed_ints(
ref int stream[]

)

virtual function void set_packed_longints(
ref longint stream[]

)

The state assignment methods set the internal state of the packer, such that the unpack methods can be used
to retrieve previously packed data. The stream argument is a bit, byte, int, or longint array of
unspecified length and format. Calling the state assignment methods with a stream that was not obtained
from an identically typed state retrieval method (see 16.5.3.2) of a compatible packer implementation is
undefined. Packers are considered compatible if their state retrieval methods return identical streams after
packing identical fields.

16.5.3.2 State retrieval

virtual function void get_packed_bits(
ref bit stream[]

)

virtual function void get_packed_bytes(
ref byte stream[]

)

virtual function void get_packed_ints(
ref int stream[]

)

virtual function void get_packed_longints(
ref longint stream[]

)

The state retrieval methods copy the internal state of the packer to the stream argument, which is a bit,
byte, int, or longint array of unspecified length and format. The length and contents of the stream are
implementation dependent.

16.5.3.3 get_packed_size

virtual function int get_packed_size()
252
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Returns the current number of bits of packed data stored within the packer.

16.5.4 Packing and unpacking

16.5.4.1 pack_bits

virtual function void pack_bits(
ref bit value[],
input int size = -1

)

Packs bits (value) from an unpacked array of bits. This method allows for fields of arbitrary length to be
passed in using the SystemVerilog stream operator.

An optional size parameter is provided, which defaults to -1. If set to any value greater than -1 (including
0), the packer uses size as the number of bits to pack; otherwise, the packer simply packs the entire stream.

It shall be an error if size exceeds the size of the source array.

16.5.4.2 pack_object

virtual function void pack_object (
uvm_object value

)

Packs an object value.

For objects that are being packed, the following steps occur in order:

a) The object is pushed onto the active object stack via push_active_object (see 16.1.3.1).

b) The do_execute_op method (see 5.3.13.1) on the object is passed a uvm_field_op (see 5.3.13.2)
with op_type UVM_PACK and policy set to this packer.

c) If user_hook_enabled (see 5.3.13.2.9) returns 1, the packer passes itself to the do_pack method
(see 5.3.10.2) on value.

d) The object is popped off of the active object stack via pop_active_object (see 16.1.3.2).

16.5.4.3 is_null

virtual function bit is_null()

This method is used during unpack operations to determine if the object at the current location in the pack
data is null (whether to allocate a new object or not). If the object is null, the return value is a 1; otherwise, it
is 0.

While is_null can be used to determine if an object in the packed data is null, it does not change the internal
state of the packer. As such, regardless of the return value of is_null, unpack_object (see 16.5.4.4), needs
to be called to move the packer’s internal state to the next field.

16.5.4.4 unpack_object

virtual function void unpack_object (
uvm_object value

)

253
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Unpacks an object and stores the result into value, which shall be an allocated object that has enough space
for the data being unpacked or is null.

Use is_null (see 16.5.4.3) to determine if the object shall be set to null before calling this method. It shall be
an error to pass a value argument that is incompatible with the return value of is_null, e.g., passing a null
value when is_null returns 0 or passing a non-null value when is_null returns 1. When this occurs, the
packer shall generate an error message and the resulting behavior of any further unpack_*calls on the
packer is undefined.

For non-null objects which are being unpacked, the following steps occur in order:

a) The object is pushed onto the active object stack via push_active_object (see 16.1.3.1).

b) The do_execute_op method (see 5.3.13.1) on the object is passed a uvm_field_op (see 5.3.13.2)
with op_type UVM_UNPACK and policy set to this packer.

c) If user_hook_enabled (see 5.3.13.2.9) returns 1, the packer passes itself to the do_unpack method
(see 5.3.11.2) on value.

d) The object is popped off of the active object stack via pop_active_object (see 16.1.3.2).

16.5.4.5 pack_string

virtual function void pack_string (
string value

)

Packs a string value.

16.5.4.6 pack_time

virtual function void pack_time (
time value

)

Packs a time value.

16.5.4.7 pack_real

virtual function void pack_real (
real value

)

Packs a real value.

16.5.4.8 pack_field

virtual function void pack_field (
uvm_bitstream_t value,
int size

)

Packs an integral value into the packed array. size is the number of bits of value to pack. An error message
shall be generated if the size is larger than `UVM_MAX_STREAMBITS (see B.6.2).
254
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
16.5.4.9 pack_field_int

virtual function void pack_field_int (
uvm_integral_t value,
int size

)

Packs an integral value into the pack array. size is the number of bits to pack. An error message shall be
generated if the size is larger that 64 bits.

NOTE—This optimized version of pack_field (see 16.5.4.8) is useful for sizes up to 64 bits.

16.5.4.10 pack_bytes

virtual function void pack_bytes(
ref byte value[],
input int size = -1

)

Packs bits from an unpacked array of bytes into the pack array. size represents the number of bits to pack
from the array. Setting size to -1 indicates that the entire array shall be packed. The default value of size
shall be -1.

An implementation shall generate an error message if the size is less than -1 or greater than the total number
of bits within the array.

See 16.5.4.1 for additional information.

16.5.4.11 pack_ints

virtual function void pack_ints(
ref int value[],
input int size = -1

)

Packs bits from an unpacked array of ints into the pack array. size represents the number of bits to pack from
the array. Setting size to -1 indicates that the entire array shall be packed. The default value of size shall be
-1.

An implementation shall generate an error message if the size is less than -1 or greater than the total number
of bits within the array.

See 16.5.4.1 for additional information.

16.5.4.12 unpack_ints

virtual function void unpack_ints(
ref int value[],
input int size = -1

)

Unpacks bits from the pack array into an unpacked array of ints.

The unpacked array is unpacked from the internal pack array. This method allows for fields of arbitrary
length to be passed in without expanding into a predefined integral type first.
255
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
An optional size parameter is provided, which defaults to -1. If set to any value greater than -1 (including
0), the packer uses size as the number of bits to unpack; otherwise, the packer simply unpacks the entire
stream.

It shall be an error to specify a size that exceeds the size of the source array.

16.5.4.13 unpack_string

virtual function string unpack_string()

Unpacks a string.

16.5.4.14 unpack_time

virtual function time unpack_time()

Unpacks a time variable.

16.5.4.15 unpack_real

virtual function real unpack_real()

Unpacks a real variable.

16.5.4.16 unpack_field

virtual function uvm_bitstream_t unpack_field (
int size

)

Unpacks bits from the pack array and returns the bitstream that was unpacked. size is the number of bits to
unpack; the maximum is the value defined by `UVM_MAX_STREAMBITS (see B.6.2) bits.

16.5.4.17 unpack_field_int

virtual function uvm_integral_t unpack_field_int (
int size

)

Unpacks bits from the pack array and returns the bitstream that was unpacked.

size is the number of bits to unpack; the maximum is 64 bits. This is a more efficient variant than
unpack_field (see 16.5.4.16) when unpacking into smaller vectors.

16.5.4.18 unpack_bits

virtual function void unpack_bits(
ref bit value[],
input int size = -1

)

Unpacks bits from the pack array into an unpacked array of bits.
256
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
An optional size parameter is provided, which defaults to -1. If set to any value greater than -1 (including
0), the packer uses size as the number of bits to unpack; otherwise, the packer simply unpacks the entire
stream.

16.5.4.19 unpack_bytes

virtual function void unpack_bytes(
ref byte value[],
input int size = -1

)

Unpacks bits from the pack array into an unpacked array of bytes.

An optional size parameter is provided, which defaults to -1. If set to any value greater than -1 (including
0), the packer uses size as the number of bits to unpack; otherwise, the packer simply unpacks the entire
stream.

16.6 uvm_copier

The uvm_copier class provides a policy object for copying uvm_objects (see 5.3). The policies determine
how copying should be done.

16.6.1 Class declaration

class uvm_copier extends uvm_policy

16.6.2 Methods

16.6.2.1 new

function new (
string name = ""

)

Creates a new uvm_copier with the specified instance name. If name is not provided, the object is unnamed.

16.6.2.2 get_type_name

virtual function string get_type_name()

Returns the string "uvm_copier".

16.6.2.3 set_default

static function void set_default (
uvm_copier copier

)

Helper method for setting the default copier policy instance via uvm_coreservice_t::set_default_copier
(see F.4.1.4.18).

16.6.2.4 get_default

static function uvm_copier get_default()
257
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Helper method for retrieving the default copier policy instance via uvm_coreservice_t::get_default_copier
(see F.4.1.4.19).

16.6.3 Methods for object copy control

The following methods define values that may be used in do_copy (see 5.3.8.2) or do_execute_op (see
5.3.13.1) to control how fields are copied within an object:

Recursion policy

virtual function void set_recursion_policy (uvm_recursion_policy_enum policy)
virtual function uvm_recursion_policy_enum get_recursion_policy()

Controls the recursion policy to use for object fields during do_copy (see 5.3.8.2) or do_execute_op (see
5.3.13.1).

UVM_DEEP—Copy all fields of rhs to lhs, doing a “deep” copy [any object fields are copied using a
DEEP recursion, i.e., copier.copy_object(tgt, src)].

UVM_SHALLOW—Copy all fields of rhs to lhs, using a “shallow” copy (any object fields are copied
as REFERENCES, i.e,. tgt = src).

UVM_REFERENCE—Copy the rhs to lhs as a reference.

A value of UVM_DEFAULT_POLICY shall be treated as UVM_DEEP.

If set_recursion_policy has not been called since the copier was constructed or since the last call to flush
(see 16.2.4.2), then get_recursion_policy shall return UVM_DEFAULT_POLICY.

16.6.4 Methods for copier usage

16.6.4.1 copy_object

virtual function void copy_object (
uvm_object lhs,
uvm_object rhs

)

Copies the fields of rhs to lhs using the recursion policy (see 16.6.3) to determine whether the copy should
be deep or shallow. Objects that are meant to be copied by reference shall use an assignment operation.

Unlike other policies, the copier relies on do_copy (see 5.3.8.2) and do_execute_op (see 5.3.13.1) to
process copies via direct assignment when the recursion policy is set to UVM_REFERENCE. The copier shall
generate an error message if copy_object is called when the recursion policy is set to UVM_REFERENCE,
and the result of the copy_object operation is undefined.

For objects that are being copied, the following steps occur in order:

a) The object is pushed onto the active object stack via push_active_object (see 16.1.3.1).

b) The saved recursion state (see 16.6.4.2) for lhs, rhs, and the current recursion policy (see 16.6.3) is
set to uvm_policy::STARTED.

c) The do_execute_op method (see 5.3.13.1) on the object is passed a uvm_field_op (see 5.3.13.2)
with op_type UVM_COPY and policy set to this copier.

d) If user_hook_enabled (see 5.3.13.2.9) returns 1, the copier passes itself and the rhs to the do_copy
method (see 5.3.8.2) on lhs; otherwise, the method returns without calling do_copy.
258
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
e) The saved recursion state (see 16.6.4.2) for lhs, rhs, and the current recursion policy is set to
uvm_policy::FINISHED.

f) The object is popped off of the active object stack via pop_active_object (see 16.1.3.2).

16.6.4.2 object_copied

virtual function uvm_policy::recursion_state_e object_copied(
uvm_object lhs,
uvm_object rhs,
uvm_recursion_policy_enum recursion,

)

Returns the current recursion state (see 16.1.4) for lhs, rhs, and recursion within the copier as defined by
copy_object (see 16.6.4.1). For objects that have never been passed to copy_object, the return value shall
be uvm_policy::NEVER.

The values passed to lhs and rhs need to be passed to object_copied using the same ordering as
copy_object.
259
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
17. Register layer

17.1 Overview

The UVM register layer defines base classes that, when properly extended, abstract the read/write operations
to registers and memories in a design-under-verification.

17.2 Global declarations

This subclause defines the globally available types, enums, and utility classes.

17.2.1 Types

17.2.1.1 uvm_reg_data_t

2-state data value with `UVM_REG_DATA_WIDTH bits (see B.6.5).

17.2.1.2 uvm_reg_data_logic_t

4-state data value with `UVM_REG_DATA_WIDTH bits (see B.6.5).

17.2.1.3 uvm_reg_addr_t

2-state address value with `UVM_REG_ADDR_WIDTH bits (see B.6.4).

17.2.1.4 uvm_reg_addr_logic_t

4-state address value with `UVM_REG_ADDR_WIDTH bits (see B.6.4).

17.2.1.5 uvm_reg_byte_en_t

2-state byte_enable value with `UVM_REG_BYTENABLE_WIDTH bits (see B.6.6).

17.2.1.6 uvm_reg_cvr_t

Coverage model value specified with `UVM_REG_CVR_WIDTH bits (see B.6.7).

Symbolic values for individual coverage models are defined by the uvm_coverage_model_e type (see
17.2.2.9).

The bits in the setting are assigned as follows:

Bits

17.2.1.7 uvm_hdl_path_slice

Slice of an HDL (hardware description language) path.

0-7 Reserved.
8-15 Coverage models defined by applications, implemented in a register model generator.
16-23 User-defined coverage models.
24-`UVM-REG_CVR_
WIDTH-1

Reserved.
260
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
This is a struct that specifies the HDL variable corresponding to all of or a portion of a register; it has the
following parameters:

path—Path to the HDL variable.

offset—Offset of the least significant bit (LSB) in the register that this variable implements.

size—Number of bits [toward the most significant bit (MSB)] that this variable implements.

If the HDL variable implements all of the register, offset and size are specified as -1, e.g.:
r1.add_hdl_path('{ '{"r1", -1, -1} }).

17.2.2 Enumerations

17.2.2.1 uvm_status_e

Return status for register operations; it has the following enumerated types:

UVM_IS_OK—Operation completed successfully.

UVM_NOT_OK—Operation completed with error.

UVM_HAS_X—Operation completed successfully, but had unknown bits.

17.2.2.2 uvm_door_e

Door used for register operation; it has the following enumerated types:

UVM_FRONTDOOR—Use the front door.

UVM_BACKDOOR—Use the back door.

UVM_PREDICT—Operation derived from observations by a bus monitor via the
uvm_reg_predictor class (see 19.3).

UVM_DEFAULT_DOOR—Operation specified by the context.

17.2.2.3 uvm_check_e

Use read-only or read-and-check; it has the following enumerated types:

UVM_NO_CHECK—Read only.

UVM_CHECK—Read and check.

17.2.2.4 uvm_endianness_e

Specifies byte ordering; it has the following enumerated types:

UVM_NO_ENDIAN—Byte ordering not applicable.

UVM_LITTLE_ENDIAN—Least-significant bytes first in consecutive addresses.

UVM_BIG_ENDIAN—Most-significant bytes first in consecutive addresses.

UVM_LITTLE_FIFO—Least-significant bytes first at the same address.

UVM_BIG_FIFO—Most-significant bytes first at the same address.

17.2.2.5 uvm_elem_kind_e

Type of element being read or written; it has the following enumerated types:
261
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
UVM_REG—Register.

UVM_FIELD—Field.

UVM_MEM—Memory location.

17.2.2.6 uvm_access_e

Type of operation begin performed; it has the following enumerated types:

UVM_READ—Read operation.

UVM_WRITE—Write operation.

17.2.2.7 uvm_hier_e

Whether to provide the requested information from a hierarchical context; it has the following enumerated
types:

UVM_NO_HIER—Provide info from the local context.

UVM_HIER—Provide info based on the hierarchical context.

17.2.2.8 uvm_predict_e

How the mirror is to be updated; it has the following enumerated types:

UVM_PREDICT_DIRECT—Predicted value is as is.

UVM_PREDICT_READ—Predict based on the specified value having been read.

UVM_PREDICT_WRITE—Predict based on the specified value having been written.

17.2.2.9 uvm_coverage_model_e

Coverage models available or desired; it has the following enumerated types:

UVM_NO_COVERAGE—None.

UVM_CVR_REG_BITS—Individual register bits.

UVM_CVR_ADDR_MAP—Individual register and memory addresses.

UVM_CVR_FIELD_VALS—Field values.

UVM_CVR_ALL—All coverage models.

Multiple models may be specified by bitwise ORing individual model identifiers.

17.2.2.10 uvm_reg_mem_tests_e

Selects which predefined test sequence to execute; it has the following parameters:

UVM_DO_REG_HW_RESET—Run uvm_reg_hw_reset_seq (see E.1).

UVM_DO_REG_BIT_BASH—Run uvm_reg_bit_bash_seq (see E.2.2).

UVM_DO_REG_ACCESS—Run uvm_reg_access_seq (see E.3.2).

UVM_DO_MEM_ACCESS—Run uvm_mem_access_seq (see E.5.2).

UVM_DO_SHARED_ACCESS—Run uvm_reg_mem_shared_access_seq (see E.4.3).

UVM_DO_MEM_WALK—Run uvm_mem_walk_seq (see E.6.2).

UVM_DO_ALL_REG_MEM_TESTS—Run all of the above.
262
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Multiple test sequences may be selected by bitwise ORing their respective symbolic values.

Test sequences, when selected, are executed in the order in which they are specified here.
263
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18. Register model

A register model is typically composed of a hierarchy of blocks. Blocks contain registers, register files,
memories, and address maps.

18.1 uvm_reg_block

This is the block abstraction base class.

A block represents a design hierarchy. It can contain registers, register files, memories, and sub-blocks. A
block has one or more address maps, each corresponding to a physical interface on the block.

18.1.1 Class declaration

class uvm_reg_block extends uvm_object

18.1.2 Methods

18.1.2.1 new

function new(
string name = "",
int has_coverage = UVM_NO_COVERAGE

)

This creates an instance of a block abstraction class with the specified name.

has_coverage specifies which functional coverage models are present in the extension of the block
abstraction class. Multiple functional coverage models may be specified by adding their symbolic names, as
defined by the uvm_coverage_model_e type (see 17.2.2.9). The default value of has_coverage shall be
UVM_NO_COVERAGE.

18.1.2.2 configure

function void configure(
uvm_reg_block parent = null,
string hdl_path = ""

)

This is an instance-specific configuration; it specifies the parent block of this block. A block without parent
is a root block.

If the block file corresponds to a hierarchical register transfer level (RTL) structure, its contribution to the
HDL path is specified as the hdl_path. Otherwise, the block does not correspond to a hierarchical RTL
structure (i.e., it is physically flattened) and does not contribute to the hierarchical HDL path of any
contained registers or memories.

18.1.2.3 create_map

virtual function uvm_reg_map create_map(
string name,
uvm_reg_addr_t base_addr,
int unsigned n_bytes,
uvm_endianness_e endian,
bit byte_addressing = 1

)

264
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
This creates an address map with the specified name, then configures it with the following properties:

a) base_addr—the base address for the map. All registers, memories, and sub-blocks within the map
will be at offsets to this address.

b) n_bytes—the byte-width of the bus on which this map is used.

c) endian—the endian format. See uvm_endianness_e for possible values (see 17.2.2.4).

d) byte_addressing—specifies whether consecutive addresses are 1 byte apart (TRUE; the default) or
n_bytes apart (FALSE).

18.1.2.4 set_default_map

function void set_default_map (
uvm_reg_map map

)

This makes the specified address map the default mapping for this block. The address map needs to be a map
of this address block.

18.1.2.5 lock_model

virtual function void lock_model()

This recursively locks an entire register model and builds the address maps to enable the
uvm_reg_map::get_reg_by_offset (see 18.2.4.17) and uvm_reg_map::get_mem_by_offset (see
18.2.4.18) methods.

When locked, no structural changes, such as adding registers or memories, can be made. Hence, it is
important that all sub-blocks, maps, and registers have been created before the lock_model is called.

18.1.2.6 unlock_model

virtual function void unlock_model()

Unlocks the register model, bringing the register mode to the state before lock_model (see 18.1.2.5), such
that structural changes are allowed again.

This invalidates all precomputed information derived in a previous call to lock_model, as well as any
information that has been cached since the last call to lock_model.

18.1.2.7 set_lock

virtual function void set_lock(
bit v

)

Sets the lock mode to v for the current register block and all its sub-blocks.

18.1.2.8 wait_for_lock

task wait_for_lock()

Blocks until lock_model (see 18.1.2.5) completes.
265
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.1.2.9 is_locked

function bit is_locked()

Returns TRUE if the model is locked.

18.1.2.10 unregister

virtual function void unregister(
uvm_reg_map m

)

Removes all knowledge of map m from the current block and, therefore, all registers, memories, and virtual
registers contained in m from the current block.

18.1.3 Introspection

18.1.3.1 get_parent

virtual function uvm_reg_block get_parent()

Returns the parent block.

When this a top-level block, returns null.

18.1.3.2 get_root_blocks

static function void get_root_blocks(
ref uvm_reg_block blks[$]

)

This returns an array of all root blocks in the simulation. blks shall be a queue.

18.1.3.3 find_blocks

static function int find_blocks(
input string name,
ref uvm_reg_block blks[$],
input uvm_reg_block root = null,
input uvm_object accessor = null

)

Finds the blocks whose hierarchical names match the specified name glob. If a root block is specified, the
name of the blocks are relative to that block; otherwise, they are absolute. blks shall be a queue.

This returns the number of blocks found.

18.1.3.4 find_block

static function uvm_reg_block find_block(
input string name,
input uvm reg block root = null,
input uvm_object accessor = null

)

266
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Finds the first block whose hierarchical names match the specified name glob. If a root block is specified,
the name of the blocks are relative to that block; otherwise, they are absolute.

This returns the first block found or null otherwise. A warning shall be issued if more than one block is
found.

18.1.3.5 get_blocks

virtual function void get_blocks (
ref uvm_reg_block blks[$],
input uvm_hier_e hier = UVM_HIER

)

Returns the sub-blocks instantiated in these blocks. If hier is UVM_HIER, recursively includes any sub-
blocks. The default value of hier shall be UVM_HIER. blks shall be a queue.

18.1.3.6 get_maps

virtual function void get_maps (
ref uvm_reg_map maps[$]

)

Returns the address maps instantiated in this block. maps shall be a queue.

18.1.3.7 get_registers

virtual function void get_registers (
ref uvm_reg regs[$],
input uvm_hier_e hier = UVM_HIER

)

Returns the registers instantiated in this block. If hier is TRUE, recursively includes the registers in the sub-
blocks. The default value of hier shall be UVM_HIER. regs shall be a queue.

Note that registers may be located in different and/or multiple address maps. To find the registers in a
specific address map, use the uvm_reg_map::get_registers method (see 18.2.4.11).

18.1.3.8 get_fields

virtual function void get_fields (
ref uvm_reg_field fields[$],
input uvm_hier_e hier = UVM_HIER

)

Returns the fields in the registers instantiated in this block. If hier is TRUE, recursively includes the fields of
the registers in the sub-blocks. The default value of hier shall be UVM_HIER. fields shall be a queue.

18.1.3.9 get_memories

virtual function void get_memories (
ref uvm_mem mems[$],
input uvm_hier_e hier = UVM_HIER

)

267
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Returns the memories instantiated in this block. If hier is TRUE, recursively includes the memories in the
sub-blocks. The default value of hier shall be UVM_HIER. mems shall be a queue.

Note that memories may be located in different and/or multiple address maps. To find the memories in a
specific address map, use the uvm_reg_map::get_memories method (see 18.2.4.13).

18.1.3.10 get_virtual_registers

virtual function void get_virtual_registers(
ref uvm_vreg regs[$],
input uvm_hier_e hier = UVM_HIER

)

Returns the virtual registers instantiated in this block. If hier is TRUE, recursively includes the virtual
registers in the sub-blocks. The default value of hier shall be UVM_HIER. regs shall be a queue.

18.1.3.11 get_virtual_fields

virtual function void get_virtual_fields (
ref uvm_vreg_field fields[$],
input uvm_hier_e hier = UVM_HIER

)

Returns the virtual fields from the virtual registers instantiated in this block. If hier is TRUE, recursively
includes the virtual fields in the virtual registers in the sub-blocks. The default value of hier shall be
UVM_HIER. fields shall be a queue.

18.1.3.12 get_block_by_name

virtual function uvm_reg_block get_block_by_name (
string name

)

Finds a sub-block with the specified simple name.

The name is the simple name of the block, not a hierarchical name relative to this block. If no block with that
name is found in this block, the sub-blocks are searched for a block of that name and the first one to be found
is returned.

If no blocks are found, returns null.

18.1.3.13 get_map_by_name

virtual function uvm_reg_map get_map_by_name (
string name

)

Finds an address map with the specified simple name.

The name is the simple name of the address map, not a hierarchical name relative to this block. If no map
with that name is found in this block, the sub-blocks are searched for a map of that name and the first one to
be found is returned.

If no address maps are found, returns null.
268
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.1.3.14 get_reg_by_name

virtual function uvm_reg get_reg_by_name (
string name

)

Finds a register with the specified simple name.

The name is the simple name of the register, not a hierarchical name relative to this block. If no register with
that name is found in this block, the sub-blocks are searched for a register of that name and the first one to be
found is returned.

If no registers are found, returns null.

18.1.3.15 get_field_by_name

virtual function uvm_reg_field get_field_by_name (
string name

)

Finds a field with the specified simple name.

The name is the simple name of the field, not a hierarchical name relative to this block. If no field with that
name is found in this block, the sub-blocks are searched for a field of that name and the first one to be found
is returned.

If no fields are found, returns null.

18.1.3.16 get_mem_by_name

virtual function uvm_mem get_mem_by_name (
string name

)

Finds a memory with the specified simple name.

The name is the simple name of the memory, not a hierarchical name relative to this block. If no memory
with that name is found in this block, the sub-blocks are searched for a memory of that name and the first
one to be found is returned.

If no memories are found, returns null.

18.1.3.17 get_vreg_by_name

virtual function uvm_vreg get_vreg_by_name (
string name

)

Finds a virtual register with the specified simple name.

The name is the simple name of the virtual register, not a hierarchical name relative to this block. If no
virtual register with that name is found in this block, the sub-blocks are searched for a virtual register of that
name and the first one to be found is returned.

If no virtual registers are found, returns null.
269
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.1.3.18 get_vfield_by_name

virtual function uvm_vreg_field get_vfield_by_name (

string name

)

Finds a virtual field with the specified simple name.

The name is the simple name of the virtual field, not a hierarchical name relative to this block. If no virtual
field with that name is found in this block, the sub-blocks are searched for a virtual field of that name and the
first one to be found is returned.

If no virtual fields are found, returns null.

18.1.4 Coverage

18.1.4.1 build_coverage

protected function uvm_reg_cvr_t build_coverage(

uvm_reg_cvr_t models

)

Checks if all of the specified coverage model needs to be built in this instance of the block abstraction class,
as specified by calls to uvm_reg::include_coverage (see 18.4.7.1).

models are specified by adding the symbolic value of individual coverage models as defined in 17.2.2.9.
This returns the sum of all coverage models to be built in the block model.

18.1.4.2 add_coverage

virtual protected function void add_coverage(

uvm_reg_cvr_t models

)

Specifies that additional coverage models are available.

Adds the specified coverage model to the coverage models available in this class. models are specified by
adding the symbolic value of individual coverage model as defined in 17.2.2.9.

This method shall be only called in the constructor of subsequently derived classes.

18.1.4.3 has_coverage

virtual function bit has_coverage(

uvm_reg_cvr_t models

)

Checks if this block has coverage model(s).

This returns TRUE if the block abstraction class contains a coverage model for all of the models specified.
models are specified by adding the symbolic value of individual coverage model as defined in 17.2.2.9.
270
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.1.4.4 get_coverage

virtual function bit get_coverage(
uvm_reg_cvr_t is_on = UVM_CVR_ALL

)

Checks if coverage measurement is on.

This returns TRUE if measurement for all of the specified functional coverage models are currently on.
Multiple functional coverage models can be specified by adding the functional coverage model identifiers.
The default value of is_on shall be UVM_CVR_ALL.

See 18.1.4.5 for more details.

18.1.4.5 set_coverage

virtual function uvm_reg_cvr_t set_coverage(
uvm_reg_cvr_t is_on

)

Turns on coverage measurement.

Turns the collection of functional coverage measurements on or off for this block and all blocks, registers,
fields, and memories within it. The functional coverage measurement is turned on for every coverage model
specified using uvm_coverage_model_e symbolic identifiers (see 17.2.2.9). Multiple functional coverage
models can be specified by adding the functional coverage model identifiers. All other functional coverage
models are turned off.

This returns the sum of all functional coverage models whose measurements were previously on.

This method can only control the measurement of functional coverage models that are present in the various
abstraction classes, then enabled during construction. See 18.1.4.3 to identify the available functional
coverage models.

18.1.4.6 sample

protected virtual function void sample(
uvm_reg_addr_t offset,
bit is_read,
uvm_reg_map map

)

This is a functional coverage sampling method; it is invoked by the block abstraction class whenever an
address within one of its address maps is successfully read or written. The specified offset is the offset within
the block, not an absolute address.

Empty by default, this method may be extended by the abstraction class generator to perform the required
sampling in any provided functional coverage model.

18.1.4.7 sample_values

virtual function void sample_values()

This is a functional coverage sampling method for field values; it is invoked by the user or by the
uvm_reg_block::sample_values method of the parent block to trigger the sampling of the current field
271
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
values in the block-level functional coverage model. It also recursively invokes the
uvm_reg_block::sample_values and uvm_reg::sample_values methods (see 18.4.7.8) in the blocks and
registers within this block.

This method may be extended by the abstraction class generator to perform the required sampling in any
provided field-value functional coverage model. If this method is extended, it shall call
super.sample_values.

18.1.5 Access

18.1.5.1 get_default_door

virtual function uvm_door_e get_default_door()

This returns the default door for this block (UVM_FRONTDOOR or UVM_BACKDOOR), see 17.2.2.2.

18.1.5.2 set_default_door

virtual function void set_default_door(
uvm_door_e door

)

This sets the default door for this block.

18.1.5.3 reset

virtual function void reset(
string kind = "HARD"

)

This clears all access semaphores and sets the mirror value of all registers in the block and sub-blocks to the
reset value corresponding to the specified reset event. See 18.5.5.4 for more details.

This does not actually set the value of the registers in the design, only the values mirrored in their
corresponding mirror. The default value of kind shall be "HARD".

18.1.5.4 needs_update

virtual function bit needs_update()

Checks if DUT registers need to be written.

If a mirror value has been modified in the abstraction model without actually updating the actual register
[either through randomization or via the uvm_reg::set method (see 18.4.4.2)], the mirror and state of the
registers are outdated. Then, any corresponding registers in the DUT need to be updated.

This method returns TRUE if the state of at least one register in the block or sub-blocks needs to be updated
to match the mirrored values. The mirror values, or actual content of registers, are not modified. For
additional information, see 18.1.5.5.

18.1.5.5 update

virtual task update(
output uvm_status_e status,
input uvm_door_e path = UVM_DEFAULT_DOOR,
272
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
input uvm_sequence_base parent = null,
input int prior = -1,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

This updates all of the design registers in this block and its sub-blocks with the mirrored value using the
minimum number of write operations. The accesses may be performed using front-door or back-door
operations (see 18.4.4.13).

This method performs the reverse operation of uvm_reg_block::mirror (see 18.1.5.6).

18.1.5.6 mirror

virtual task mirror(
output uvm_status_e status,
input uvm_check_e check = UVM_NO_CHECK,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_sequence_base parent = null,
input int prior = -1,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

This reads all of the registers in this block and its sub-blocks and updates their mirror values to match the
corresponding values in the design. If check is set to UVM_CHECK (see 17.2.2.3), an error message shall be
generated when the current mirrored value does not match the actual value in the design.

The accesses may be performed using front-door or back-door operations (see 18.4.4.14).

This method performs the reverse operation of uvm_reg_block::update (see 18.1.5.6).

18.1.5.7 Others

For other uvm_reg_block convenience access methods, see D.3.

18.1.6 Back door

18.1.6.1 get_backdoor

function uvm_reg_backdoor get_backdoor(
bit inherited = 1

)

This returns the user-defined back door for all registers in this block and all sub-blocks—unless it is
overridden by a back door specified in a lower-level block or in the register itself.

If inherited is TRUE, and no back door has been specified for this block, and a parent block has been
specified, then this returns the value of the get_backdoor (inherited) from the parent block. The default
value of inherited shall be 1, which is TRUE.
273
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.1.6.2 set_backdoor

function void set_backdoor (
uvm_reg_backdoor bkdr,
string fname = "",
int lineno = 0

)

This defines the back-door mechanism for all registers instantiated in this block and sub-blocks, unless
overridden by a definition in a lower-level block or register. The default value of lineno shall be 0.

18.1.6.3 clear_hdl_path

function void clear_hdl_path (
string kind = "RTL"

)

This removes any previously specified HDL path to the block instance for the specified design abstraction
kind. The default value of kind shall be "RTL".

18.1.6.4 add_hdl_path

function void add_hdl_path (
string path,
string kind = "RTL"

)

This adds the specified HDL path to the block instance for the specified design abstraction kind. This
method may be called more than once for the same design abstraction if the block is physically duplicated in
the design abstraction. The default value of kind shall be "RTL".

18.1.6.5 has_hdl_path

function bit has_hdl_path (
string kind = ""

)

This returns TRUE if the block instance has a HDL path defined for the specified design abstraction kind. If
no design abstraction is specified, it uses the default design abstraction specified for this block or the nearest
block ancestor with a specified default design abstraction.

18.1.6.6 get_hdl_path

function void get_hdl_path (
ref string paths[$],
input string kind = ""

)

This returns the HDL path(s) defined for the specified design abstraction, kind, in the block instance. It
returns only the component of the HDL paths that corresponds to the block, not a full hierarchical path.
paths shall be a queue.

If no design abstraction is specified, the default design abstraction for this block is used.
274
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.1.6.7 get_full_hdl_path

function void get_full_hdl_path (
ref string paths[$],
input string kind = "",
string separator = "."

)

This returns the full hierarchical HDL path(s) defined for the specified design abstraction, kind, in the block
instance. There may be more than one path returned when any of the parent components have more than one
path defined for the same design abstraction, even if only one path was defined for the block instance. paths
shall be a queue. The default separator of kind shall be ".".

If no design abstraction is specified for the current block, then it is determined via the default design
abstraction (see 18.1.6.8).

18.1.6.8 get_default_hdl_path

function string get_default_hdl_path()

This returns the default design abstraction for this block instance. If a default design abstraction has not been
explicitly specified for this block instance, it returns the default design abstraction for the nearest block
ancestor. This returns the string "RTL" if no default design abstraction has been specified.

18.1.6.9 set_default_hdl_path

function void set_default_hdl_path (
string kind

)

Specifies the default design abstraction, kind, for this block instance.

18.1.6.10 set_hdl_path_root

function void set_hdl_path_root (
string path,
string kind = "RTL"

)

This sets the specified path as the absolute HDL path to the block instance for the specified design
abstraction kind. This absolute root path is prepended to all hierarchical paths under this block. The HDL
path of any ancestor block is ignored. This method overrides any incremental path for the same design
abstraction specified using add_hdl_path (see 18.1.6.4). The default value of kind shall be "RTL".

18.1.6.11 is_hdl_path_root

function bit is_hdl_path_root (
string kind = ""

)

This returns TRUE if an absolute HDL path to the block instance for the specified design abstraction, kind,
has been defined. If no design abstraction is specified, the default design abstraction for this block is used.
275
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.2 uvm_reg_map

This class represents an address map. An address map is a collection of registers and memories accessible
via a specific physical interface. Address maps can be composed into higher-level address maps.

Address maps are created using the uvm_reg_block::create_map method (see 18.1.2.3).

18.2.1 Class declaration

class uvm_reg_map extends uvm_object

18.2.2 Common methods

backdoor

static function uvm_reg_map backdoor()

Returns the back-door pseudo-map singleton.

This pseudo-map is used to specify or configure the back door instead of a real address map.

18.2.3 Methods

18.2.3.1 new

function new(
string name = "uvm_reg_map"

)

Creates a new instance.

18.2.3.2 configure

virtual function void configure(
uvm_reg_block parent,
uvm_reg_addr_t base_addr,
int unsigned n_bytes,
uvm_endianness_e endian,
bit byte_addressing = 1

)

This is an instance-specific configuration.

Configures this map with the following properties:

a) parent—the block in which this map is created and applied.

b) base_addr—the base address for this map. All registers, memories, and sub-blocks are at offsets to
this address.

c) n_bytes—the byte-width of the bus on which this map is used.

d) endian—the endian format. See 17.2.2.4 for possible values.

e) byte_addressing—specifies whether the address increment is on a per-byte basis. For example,
consecutive memory locations with n_bytes=4 (a 32-bit bus) are 4 increments apart: 0, 4, 8, and
so on. The default value of byte_addressing shall be 1, which is TRUE.
276
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.2.3.3 add_reg

virtual function void add_reg (
uvm_reg rg,
uvm_reg_addr_t offset,
string rights = "RW",
bit unmapped = 0,
uvm_reg_frontdoor frontdoor = null

)

Adds the specified register instance rg to this address map.

The register is located at the specified address offset from this map’s configured base address.

The rights specify the register’s accessibility via this map. Valid values are “RW”, “RO”, and “WO”.
Whether a register field can be read or written depends on both the field’s configured access policy (see
18.4.4) and the register’s rights in the map being used to access the field. The default value of rights shall be
"RW".

The number of consecutive physical addresses occupied by the register depends on the width of the register
and the number of bytes in the physical interface corresponding to this address map.

If unmapped is True, the register does not occupy any physical addresses and the base address is ignored.
Unmapped registers require a user-defined front door to be specified. The default value of unmapped shall
be 0, which is FALSE.

A register may be added to multiple address maps if it is accessible from multiple physical interfaces. A
register may only be added to an address map whose parent block is the same as the register’s parent block.

18.2.3.4 add_mem

virtual function void add_mem (
uvm_mem mem,
uvm_reg_addr_t offset,
string rights = "RW",
bit unmapped = 0,
uvm_reg_frontdoor frontdoor = null

)

Adds the specified memory instance mem to this address map.

The memory is located at the specified base address, offset, and has the specified access rights (valid values
are “RW”, “RO”, and “WO”).The default value of rights shall be "RW".

The number of consecutive physical addresses occupied by the memory depends on the width and size of the
memory and the number of bytes in the physical interface corresponding to this address map.

If unmapped is True, the memory does not occupy any physical addresses and the base address is ignored.
Unmapped memories require a user-defined front door to be specified. The default value of unmapped shall
be 0, which is FALSE.

A memory may be added to multiple address maps if it is accessible from multiple physical interfaces. A
memory may only be added to an address map whose parent block is the same as the memory’s parent block.
277
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.2.3.5 add_submap

virtual function void add_submap (
uvm_reg_map child_map,
uvm_reg_addr_t offset

)

Adds the specified address map instance to this address map. The address map is located at the specified
base address. The number of consecutive physical addresses occupied by the submap depends on the
number of bytes in the physical interface that corresponds to the submap, the number of addresses used in
the submap, and the number of bytes in the physical interface corresponding to this address map.

An address map may be added to multiple address maps if it is accessible from multiple physical interfaces.
An address map may only be added to an address map in the grandparent block of the address submap.

18.2.3.6 set_sequencer

virtual function void set_sequencer (
uvm_sequencer_base sequencer,
uvm_reg_adapter adapter = null

)

Specifies the sequencer and adapter associated with this map. This method needs to be called before starting
any sequences based on uvm_reg_sequence (see 19.4.1).

18.2.3.7 get_submap_offset

virtual function uvm_reg_addr_t get_submap_offset (
uvm_reg_map submap

)

Returns the offset of the given submap. If the submap does not exist, or if the handle to the submap is null,
this generates an error and returns -1.

18.2.3.8 set_submap_offset

virtual function void set_submap_offset (
uvm_reg_map submap,
uvm_reg_addr_t offset

)

Specifies the offset of the given submap as offset.

18.2.3.9 set_base_addr

virtual function void set_base_addr (
uvm_reg_addr_t offset

)

Specifies the base address of this map.

18.2.3.10 reset

virtual function void reset(
string kind = "SOFT"

)

278
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Resets the mirror for all registers in this address map.

Sets the mirror value of all registers in this address map and all of its submaps to the reset value
corresponding to the specified reset event. See 18.5.5.4 for more details.

This does not actually set the value of the registers in the design, only the values mirrored in their
corresponding mirror.

Note that, unlike the other reset method (see 18.5.5.4), the default reset event for this method is “SOFT”.

18.2.3.11 unregister

virtual function void unregister()

Disassociates all content (registers, memories, virtual registers, submaps, etc.) from this map.

18.2.3.12 clone_and_update

virtual function clone_and_update(
string rights

)

Clones the current map into a new map instance. In contrast to the source map, the new map has the rights
for the content set to rights.

18.2.4 Introspection

18.2.4.1 get_root_map

virtual function uvm_reg_map get_root_map()

Returns the externally visible address map.

Returns the top-most address map where this address map is instantiated, which corresponds to the
externally visible address map that can be accessed by the verification environment.

18.2.4.2 get_parent

virtual function uvm_reg_block get_parent()

This returns the block that is the parent of this address map.

18.2.4.3 get_parent_map

virtual function uvm_reg_map get_parent_map()

This returns the address map in which this address map is mapped. This returns null if this is a top-level
address map.

18.2.4.4 get_base_addr

virtual function uvm_reg_addr_t get_base_addr (
uvm_hier_e hier = UVM_HIER

)

279
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Returns the base offset address for this map. If this map is the root map, the base address is that set with the
base_addr argument to uvm_reg_block::create_map (see 18.1.2.3). If this map is a submap of a higher-
level map, the base address is submap offset added to the parent map base address. See 18.2.3.8. The default
value of hier shall be UVM_HIER.

18.2.4.5 get_n_bytes

virtual function int unsigned get_n_bytes (
uvm_hier_e hier = UVM_HIER

)

Returns the width in bytes of the bus associated with this map. If hier is UVM_HIER, this retrieves the
effective bus width relative to the system level. The effective bus width is the narrowest bus width from this
map to the top-level root map. Each bus access is limited to this bus width. The default value of hier shall be
UVM_HIER.

18.2.4.6 get_addr_unit_bytes

virtual function int unsigned get_addr_unit_bytes()

Returns the number of bytes in the smallest addressable unit in the map. Returns 1 if the address map was
configured using byte-level addressing. Returns get_n_bytes otherwise (see 18.2.4.5).

18.2.4.7 get_endian

virtual function uvm_endianness_e get_endian (
uvm_hier_e hier = UVM_HIER

)

Returns the endianness (see 17.2.2.4) of the bus associated with this map. If hier is set to UVM_HIER (see
17.2.2.7), returns the system-level endianness.

18.2.4.8 get_sequencer

virtual function uvm_sequencer_base get_sequencer (
uvm_hier_e hier = UVM_HIER

)

Returns the sequencer for the bus associated with this map. If hier is set to UVM_HIER, this returns the
sequencer for the bus at the system-level. The default value of hier shall be UVM_HIER. See 18.2.3.6.

18.2.4.9 get_adapter

virtual function uvm_reg_adapter get_adapter (
uvm_hier_e hier = UVM_HIER

)

Returns the bus adapter for the bus associated with this map. If hier is set to UVM_HIER, this returns the
adapter for the bus used at the system level. The default value of hier shall be UVM_HIER. See 18.2.3.6.

18.2.4.10 get_submaps

virtual function void get_submaps (
ref uvm_reg_map maps[$],
input uvm_hier_e hier = UVM_HIER

)

280
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Returns the address sub-maps instantiated in this address map. If hier is UVM_HIER, this recursively
includes the address maps in the sub-maps. maps shall be a queue. The default value of hier shall be
UVM_HIER.

18.2.4.11 get_registers

virtual function void get_registers (
ref uvm_reg regs[$],
input uvm_hier_e hier = UVM_HIER

)

Returns the registers instantiated in this address map. If hier is UVM_HIER, this recursively includes the
registers in the sub-maps. regs shall be a queue. The default value of hier shall be UVM_HIER.

18.2.4.12 get_fields

virtual function void get_fields (
ref uvm_reg_field fields[$],
input uvm_hier_e hier = UVM_HIER

)

Returns the fields in the registers instantiated in this address map. If hier is UVM_HIER, this recursively
includes the fields of the registers in the sub-maps. The default value of hier shall be UVM_HIER. fields
shall be a queue.

18.2.4.13 get_memories

extern virtual function void get_memories (
ref uvm_mem mems[$],
input uvm_hier_e hier = UVM_HIER

)

Returns the memories instantiated in this address map. If hier is UVM_HIER, recursively includes the
memories in the sub-maps. The default value of hier shall be UVM_HIER. mems shall be a queue.

18.2.4.14 get_virtual_registers

virtual function void get_virtual_registers (
ref uvm_vreg regs[$],
input uvm_hier_e hier = UVM_HIER

)

Returns the virtual registers instantiated in this address map. If hier is UVM_HIER, this recursively includes
the virtual registers in the sub-maps. The default value of hier shall be UVM_HIER. regs shall be a queue.

18.2.4.15 get_virtual_fields

virtual function void get_virtual_fields (
ref uvm_vreg_field fields[$],
input uvm_hier_e hier = UVM_HIER

)

Returns the virtual fields instantiated in this address map. If hier is UVM_HIER, this recursively includes the
virtual fields in the sub-maps. The default value of hier shall be UVM_HIER. fields shall be a queue.
281
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.2.4.16 get_physical_addresses

virtual function int get_physical_addresses(
uvm_reg_addr_t base_addr,
uvm_reg_addr_t mem_offset,
int unsigned n_bytes,
ref uvm_reg_addr_t addr[]

)

This translates a local address into external addresses.

This identifies the sequence of addresses that need to be accessed physically to access the specified number
of bytes at the specified address within this address map. This returns the number of bytes of valid data in
each access.

The return in addr is a list of address in little endian order, with the granularity of the top-level address map.
A register is specified using a base address with a mem_offset of 0. A location within a memory is specified
using the base address of the memory and the index of the location within that memory.

18.2.4.17 get_reg_by_offset

virtual function uvm_reg get_reg_by_offset(
uvm_reg_addr_t offset,
bit read = 1

)

Returns the register mapped at offset.

This identifies the register located at the specified offset within this address map for the specified type of
access. This returns null if no such register is found. The default value of read shall be 1.

The model needs to be locked using uvm_reg_block::lock_model (see 18.1.2.5) to enable this
functionality.

18.2.4.18 get_mem_by_offset

virtual function uvm_mem get_mem_by_offset(
uvm_reg_addr_t offset

)

Returns the memory mapped at offset.

This identifies the memory located at the specified offset within this address map. The offset may refer to
any memory location in that memory. This returns null if no such memory is found.

The model needs to be locked using uvm_reg_block::lock_model (see 18.1.2.5) to enable this
functionality.

18.2.5 Bus access

18.2.5.1 get_auto_predict

virtual function bit get_auto_predict()

Returns the auto-predict mode setting for this map.
282
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.2.5.2 set_auto_predict

virtual function void set_auto_predict(
bit on = 1

)

Specifies the auto-predict mode for this map.

When on is 1, the register model automatically updates its mirror (what it thinks should be in the DUT)
immediately after any bus read or write operation via this map. Before a uvm_reg::write (see 18.4.4.9) or
uvm_reg::read operation (see 18.4.4.10) returns, the register’s uvm_reg::predict method (see 18.4.4.15) is
called to update the mirrored value in the register. The default value of on shall be 1, which is TRUE.

When on is False (the default), bus reads and writes via this map do not automatically update the mirror. For
real-time updates to the mirror in this mode, connect a uvm_reg_predictor instance (see 19.3) to the bus
monitor. The predictor takes observed bus transactions from the bus monitor, looks up the associated
uvm_reg register (see 18.4) given the address, then calls that register’s uvm_reg::predict method (see
18.4.4.15). While more complex, this mode captures all register read/write activity, including any not
directly descendant from calls to uvm_reg::write (see 18.4.4.9) and uvm_reg::read (see 18.4.4.10).

18.2.5.3 set_check_on_read

virtual function void set_check_on_read(
bit on = 1

)

Specifies the check-on-read mode for this map and all of its submaps.

When on is 1, the register model automatically checks any value read back from a register or field against
the current value in its mirror and report any discrepancy. This effectively combines the functionality of the
uvm_reg::read (see 18.4.4.10) and uvm_reg::mirror(UVM_CHECK) (see 18.4.4.14) methods. This
mode is useful when the register model is used passively. The default value of on shall be 1, which is TRUE.

When on is False (the default), no check is made against the mirrored value.

At the end of the read operation, the mirror value is updated based on the value that was read regardless of
this mode setting.

18.2.5.4 get_transaction_order_policy

virtual function uvm_reg_transaction_order_policy
get_transaction_order_policy()

Returns the transaction order policy.

18.2.5.5 set_transaction_order_policy

virtual function void set_transaction_order_policy(
uvm_reg_transaction_order_policy pol

)

Specifies the transaction order policy.
283
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.3 uvm_reg_file

The register file abstraction base class.

A register file is a collection of register files and registers used to create regular repeated structures.

18.3.1 Class declaration

class uvm_reg_file extends uvm_object

18.3.2 Methods

18.3.2.1 new

function new (
string name = ""

)

Creates a new instance of a register file abstraction class with the specified name.

18.3.2.2 configure

function void configure (
uvm_reg_block blk_parent,
uvm_reg_file regfile_parent,
string hdl_path = ""

)

Configures a register file instance.

This specifies the parent block and register file of the register file instance. If the register file is instantiated
in a block, regfile_parent is specified as null. If the register file is instantiated in a register file, blk_parent
shall be the block parent of that register file and regfile_parent is specified as that register file.

If the register file corresponds to a hierarchical RTL structure, its contribution to the HDL path is specified
as the hdl_path. Otherwise, the register file does not correspond to a hierarchical RTL structure (i.e., it is
physically flattened) and does not contribute to the hierarchical HDL path of any contained registers.

18.3.3 Introspection

18.3.3.1 get_parent

virtual function uvm_reg_block get_parent()

Returns the parent block.

18.3.3.2 get_regfile

virtual function uvm_reg_file get_regfile()

Returns the parent register file.

This returns null if this register file is instantiated in a block.
284
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.3.4 Back door

18.3.4.1 clear_hdl_path

function void clear_hdl_path (
string kind = "RTL"

)

This removes any previously specified HDL paths to the register file instance for the specified design
abstraction. The default value of kind shall be "RTL".

18.3.4.2 add_hdl_path

function void add_hdl_path (
string path,
string kind = "RTL"

)

This adds the specified HDL path to the register file instance for the specified design abstraction. This
method may be called more than once for the same design abstraction if the register file is physically
duplicated in the design abstraction. The default value of kind shall be "RTL".

18.3.4.3 has_hdl_path

function bit has_hdl_path (
string kind = ""

)

This returns True if the register file instance has a HDL path defined for the specified design abstraction. If
no design abstraction is specified, it uses the default design abstraction specified for the nearest enclosing
register file or block.

18.3.4.4 get_hdl_path

function void get_hdl_path (
ref string paths[$],
input string kind = ""

)

This returns the HDL path(s) defined for the specified design abstraction in the register file instance. If no
design abstraction is specified, it uses the default design abstraction specified for the nearest enclosing
register file or block. Only the component of the HDL paths that corresponds to the register file is returned,
not a full hierarchical path. paths shall be a queue.

18.3.4.5 get_full_hdl_path

function void get_full_hdl_path (
ref string paths[$],
input string kind = ""

)

This returns the full hierarchical HDL path(s) defined for the specified design abstraction in the register file
instance. If no design abstraction is specified, it uses the default design abstraction specified for the nearest
enclosing register file or block. If any of the parent components have more than one path defined for the
285
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
same design abstraction, there may be more than one path returned, even if only one path was defined for the
register file instance. paths shall be a queue.

18.3.4.6 get_default_hdl_path

function string get_default_hdl_path()

This returns the default design abstraction for this register file instance. If a default design abstraction has
not been explicitly specified for this register file instance, it returns the default design abstraction for the
nearest register file or block ancestor. The default is "RTL".

18.3.4.7 set_default_hdl_path

function void set_default_hdl_path (
string kind

)

Specifies the default design abstraction for this register file instance.

18.4 uvm_reg

The register abstraction base class.

A register represents a set of fields that are accessible as a single entity. A register may be mapped to one or
more address maps, each with different access rights and policy.

18.4.1 Class declaration

class uvm_reg extends uvm_object

18.4.2 Methods

18.4.2.1 new

Creates a new instance and type-specific configuration.

function new (
string name = "",
int unsigned n_bits,
int has_coverage

)

This creates an instance of a register abstraction class with the specified name.

n_bits specifies the total number of bits in the register. Not all bits need to be implemented.

has_coverage specifies which functional coverage models are present in the extension of the register
abstraction class. Multiple functional coverage models may be specified by adding their symbolic names, as
defined by the uvm_coverage_model_e type (see 17.2.2.9).

18.4.2.2 configure

function void configure (
uvm_reg_block blk_parent,
286
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
uvm_reg_file regfile_parent = null,
string hdl_path = ""

)

This is an instance-specific configuration. It specifies the parent block of this register. This may also set a
parent register file for this register.

If the register is implemented in a single HDL variable, its name is specified as the hdl_path. Otherwise, if
the register is implemented as a concatenation of variables (usually one per field), then the HDL path shall
be specified using the add_hdl_path (see 18.4.6.4) or add_hdl_path_slice (see 18.4.6.5) methods.

18.4.2.3 set_offset

virtual function void set_offset (
uvm_reg_map map,
uvm_reg_addr_t offset,
bit unmapped = 0

)

This modifies the offset of the register.

The offset of a register within an address map is set using the uvm_reg_map::add_reg method (see
18.2.3.3). This method is used to modify that offset dynamically.

Modifying the offset of a register shall make the register model diverge from the specification that was used
to create it. The default value of unmapped shall be 0.

18.4.2.4 uvm_reg_transaction_order_policy

uvm_reg_transaction_order_policy has the following Methods.

order

pure virtual function void order(
ref uvm_reg_bus_op q[$]

)

The order function may reorder the sequence of bus transactions produced by a single uvm_reg transaction
(read/write) (see 18.4.4). This can be used in scenarios when the register width differs from the bus width
and one register access results in a series of bus transactions. q shall be a queue.

The first item (0) of the queue is the first bus transaction; the last item ($) is the final transaction.

18.4.2.5 unregister

virtual function void unregister(
uvm_reg_map map

)

Removes the association that the current register instance resides in map.

18.4.3 Introspection

18.4.3.1 get_parent

virtual function uvm_reg_block get_parent()
287
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Returns the parent block.

18.4.3.2 get_regfile

virtual function uvm_reg_file get_regfile()

Returns the parent register file.

This returns null if this register is instantiated in a block.

18.4.3.3 get_n_maps

virtual function int get_n_maps()

Returns the number of address maps where this register is mapped.

18.4.3.4 is_in_map

function bit is_in_map (
uvm_reg_map map

)

Returns 1 if this register is in the specified address map.

18.4.3.5 get_maps

virtual function void get_maps (
ref uvm_reg_map maps[$]

)

Returns all of the address maps where this register is mapped. maps shall be a queue.

18.4.3.6 get_rights

virtual function string get_rights (
uvm_reg_map map = null

)

Returns the accessibility (“RW”, “RO”, or “WO”) of this register in the given map.

If map is null and the register is mapped in only one address map, that address map is used. If map is null
and the register is mapped in more than one address map, the default address map of the parent block is used.

Whether a register field can be read or written depends on both the field’s configured access policy (see
18.5.4.6) and the register’s accessibility rights in the map being used to access the field.

If an address map is specified and the register is not mapped in the specified address map, an error message
shall be generated and “RW” is returned.

18.4.3.7 get_n_bits

virtual function int unsigned get_n_bits()

Returns the width, in bits, of this register.
288
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.4.3.8 get_n_bytes

virtual function int unsigned get_n_bytes()

Returns the width, in bytes, of this register. Rounds up to next whole byte if the register is not a multiple
of 8.

18.4.3.9 get_max_size

static function int unsigned get_max_size()

Returns the maximum width, in bits, of all registers.

18.4.3.10 get_fields

virtual function void get_fields (
ref uvm_reg_field fields[$]

)

Fills the specified array with the abstraction class for all of the fields contained in this register. Fields are
ordered from least-significant position to most-significant position within the register. fields shall be a
queue.

18.4.3.11 get_field_by_name

virtual function uvm_reg_field get_field_by_name(
string name

)

Returns the named field in this register.

Finds a field with the specified name in this register and returns its abstraction class. If no fields are found,
this returns null.

18.4.3.12 get_offset

virtual function uvm_reg_addr_t get_offset (
uvm_reg_map map = null

)

Returns the offset of this register in an address map.

If map is null and the register is mapped in only one address map, that address map is used. If map is null
and the register is mapped in more than one address map, the default address map of the parent block is used.

If an address map is specified and the register is not mapped in the specified address map, a warning
message shall be issued and -1 is returned.

18.4.3.13 get_address

virtual function uvm_reg_addr_t get_address (
uvm_reg_map map = null

)

Returns the base external physical address of this register if accessed through the specified address map.
289
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
If map is null and the register is mapped in only one address map, that address map is used. If map is null
and the register is mapped in more than one address map, the default address map of the parent block is used.

If an address map is specified and the register is not mapped in the specified address map, a warning
message shall be issued and -1 is returned.

18.4.3.14 get_addresses

virtual function int get_addresses (
uvm_reg_map map = null,
ref uvm_reg_addr_t addr[]

)

Identifies the external physical address(es) of this register.

This computes all of the external physical addresses that need to be accessed to completely read or write this
register. The addressees are specified in little endian order. This returns the number of bytes transferred on
each access.

If map is null and the register is mapped in only one address map, that address map is used. If map is null
and the register is mapped in more than one address map, the default address map of the parent block is used.

If an address map is specified and the register is not mapped in the specified address map, a warning
message shall be issued and -1 is returned.

18.4.4 Access

18.4.4.1 get

virtual function uvm_reg_data_t get(
string fname = "",
int lineno = 0

)

Returns the desired value of the fields in the register. This does not actually read the value of the register in
the design, only the desired value in the abstraction class. Unless set to a different value using uvm_reg::set
(see 18.4.4.2), the desired value and the mirrored value are identical. The default value of lineno shall be 0.

Use the uvm_reg::read (see 18.4.4.10) or uvm_reg::peek (see 18.4.4.12) methods to retrieve the actual
register value.

If the register contains write-only fields, the desired/mirrored value for those fields are the value last written
and presumed to reside in the bits implementing these fields. Although a physical read operation would
return something different for these fields, the returned value is the actual content.

18.4.4.2 set

virtual function void set (
uvm_reg_data_t value,
string fname = "",
int lineno = 0

)

Specifies the desired value of the fields in the register. This does not actually set the value of the register in
the design, only the desired value in its corresponding abstraction class in the register model. Use the
290
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
uvm_reg::update method (see 18.4.4.13) to update the actual register with the mirrored value or the
uvm_reg::write method (see 18.4.4.9) to specify the actual register and its mirrored value. The default
value of lineno shall be 0.

Unless this method is used, the desired value is equal to the mirrored value.

Refer to 18.5.5.2 for more details on the effect of setting mirror values on fields with different access
policies.

To modify the mirrored field values to a specific value, and thus use the mirrored values as a scoreboard for
the register values in the DUT, use the uvm_reg::predict method (see 18.4.4.15).

18.4.4.3 get_mirrored_value

virtual function uvm_reg_data_t get_mirrored_value(
string fname = "",
int lineno = 0

)

Returns the mirrored value of the fields in the register. This does not actually read the value of the register in
the design. The default value of lineno shall be 0.

If the register contains write-only fields, the desired/mirrored value for those fields are the value last written
and presumed to reside in the bits implementing these fields.

Although a physical read operation would return something different for these fields, the returned value is
the actual content.

18.4.4.4 needs_update

virtual function bit needs_update()

Returns 1 if any of the fields need updating.

See 18.5.5.8 for details. Use uvm_reg::update (see 18.4.4.13) to actually update the DUT register.

18.4.4.5 reset

virtual function void reset(
string kind = "HARD"

)

Resets the desired/mirrored value for this register.

This sets the desired and mirror value of the fields in this register to the reset value for the specified reset
kind. The default value of kind shall be "HARD". See 18.5.5.4 for more details.

It also resets the semaphore that prevents concurrent access to the register. This semaphore needs to be
explicitly reset if a thread accessing this register array was killed before the access was completed.

18.4.4.6 get_reset

virtual function uvm_reg_data_t get_reset(
string kind = "HARD"

)

291
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Returns the specified reset value for this register; this returns the reset value for this register for the specified
reset kind. The default value of kind shall be "HARD".

18.4.4.7 has_reset

virtual function bit has_reset(
string kind = "HARD",
bit delete = 0

)

Checks if any field in the register has a reset value specified for the specified reset kind. The default value of
kind shall be "HARD".

If delete is TRUE, this removes the reset value, if any. The default value of delete shall be 0, which is
FALSE.

18.4.4.8 set_reset

virtual function void set_reset(
uvm_reg_data_t value,
string kind = "HARD"

)

Specifies or modifies the reset value for all the fields in the register corresponding to the cause specified by
kind. The default value of kind shall be "HARD".

18.4.4.9 write

virtual task write(
output uvm_status_e status,
input uvm_reg_data_t value,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input uvm_sequence_base parent = null,
input int prior = -1,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

This initiates a write (using value for data) to the register in the design that corresponds to this abstraction
class instance.

The write may be performed using either front-door or back-door operations (as defined by path). If back
door is specified, the effect of writing the register through a physical access is mimicked. For example, read-
only bits in the register will remain unchanged.

If front door is specified, and if the register is mapped in more than one address map, an address map shall
be specified. The value of parent sequence and extension are set into the uvm_reg_item (see 19.1.1), which
is provided to the uvm_reg_frontdoor (see 19.4.2) or uvm_reg_backdoor (see 19.5) associated with this
request. If the built-in front door is being used and parent is not null, the bus item returned by the
uvm_reg_adapter (see 19.2.1) shall be started as a child of parent. If the built-in front door is used, the bus
item returned by the adapter shall be started with the priority prior. Optionally, users may provide additional
information for the physical access with the extension argument. The status output argument reflects the
success or failure of the operation.
292
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
The filename (fname) and line number (lineno) arguments are available for an implementation to use for
debug purposes only; their value shall have no functional effect on the outcome of this method.

This method is affected by the auto-prediction configuration value (see 18.2.5.2).

18.4.4.10 read

virtual task read(
output uvm_status_e status,
output uvm_reg_data_t value,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input uvm_sequence_base parent = null,
input int prior = -1,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

This reads and returns the current value from the register in the design that corresponds to this abstraction
class instance.

The read may be performed using either front-door or back-door operations (as defined by path). If back
door is specified, the effect of reading the register through a physical access is mimicked. For example,
clear-on-read bits in the registers are set to zero (0).

If front door is specified, and if the register is mapped in more than one address map, an address map shall
be specified. The value of parent sequence and extension are set into the uvm_reg_item (see 19.1.1), which
is provided to the uvm_reg_frontdoor (see 19.4.2) or uvm_reg_backdoor (see 19.5) associated with this
request. If the built-in front door is being used and parent is not null, the bus item returned by the
uvm_reg_adapter (see 19.2.1) shall be started as a child of parent. If the built-in front door is used, the bus
item returned by the adapter shall be started with the priority prior. Optionally, users may provide additional
information for the physical access with the extension argument. The status output argument reflects the
success or failure of the operation.

The filename (fname) and line number (lineno) arguments are available for an implementation to use for
debug purposes only; their value shall have no functional effect on the outcome of this method.

This method is affected by the auto-prediction configuration value (see 18.2.5.2).

18.4.4.11 poke

virtual task poke(
output uvm_status_e status,
input uvm_reg_data_t value,
input string kind = "",
input uvm_sequence_base parent = null,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

This deposits the value in the DUT register corresponding to this abstraction class instance, as is, using a
back-door access. Uses the HDL path for the design abstraction specified by kind. The value of parent
sequence and extension are set into the uvm_reg_item (see 19.1.1), which is provided to the
293
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
uvm_reg_backdoor::read (see 19.5.2.7) and uvm_reg_backdoor::write (see 19.5.2.6) methods. The
status output argument reflects the success or failure of the operation.

The filename (fname) and line number (lineno) arguments are available for an implementation to use for
debug purposes only; their value shall have no functional effect on the outcome of this method.

This method is affected by the auto-prediction configuration value (see 18.2.5.2).

18.4.4.12 peek

virtual task peek(
output uvm_status_e status,
input uvm_reg_data_t value,
input string kind = "",
input uvm_sequence_base parent = null,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

This samples the value in the DUT register corresponding to this abstraction class instance using a back-
door access. The register value is sampled, not modified. Uses the HDL path for the design abstraction
specified by kind. The value of parent sequence and extension are set into the uvm_reg_item (see 19.1.1),
which is provided to the uvm_reg_backdoor::read method. The status output argument reflects the success
or failure of the operation.

The filename (fname) and line number (lineno) arguments are available for an implementation to use for
debug purposes only; their value shall have no functional effect on the outcome of this method.

This method is affected by the auto-prediction configuration value (see 18.2.5.2).

18.4.4.13 update

virtual task update(
output uvm_status_e status,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input uvm_sequence_base parent = null,
input int prior = -1,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

Updates the content of the register in the design with the mirrored value. Use the method
uvm_reg::needs_update (see 18.4.4.4) to determine if an update is necessary.

The update may be performed using either front-door or back-door operations (as defined by path). If back
door is specified, the effect of writing the register through a physical access is mimicked (see 18.4.4.11). For
example, read-only bits in the register will remain unchanged.

If front door is specified, and if the register is mapped in more than one address map, an address map shall
be specified. The value of parent sequence and extension are set into the uvm_reg_item (see 19.1.1), which
is provided to the uvm_reg_frontdoor (see 19.4.2) or uvm_reg_backdoor (see 19.5) associated with this
request. If the built-in front door is being used and parent is not null, the bus item returned by the
294
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
uvm_reg_adapter (see 19.2.1) shall be started as a child of parent. If the built-in front door is used, the bus
item returned by the adapter shall be started with the priority prior. Optionally, users may provide additional
information for the physical access with the extension argument. The status output argument reflects the
success or failure of the operation.

The filename (fname) and line number (lineno) arguments are available for an implementation to use for
debug purposes only; their value shall have no functional effect on the outcome of this method.

This method performs the reverse operation of uvm_reg::mirror (see 18.4.4.14).

18.4.4.14 mirror

virtual task mirror(
output uvm_status_e status,
input uvm_check_e check = UVM_NO_CHECK,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input uvm_sequence_base parent = null,
input int prior = -1,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

This reads the register and optionally compares the read back value with the current mirrored value if check
is UVM_CHECK (see 17.2.2.3). The mirrored value is then updated using the uvm_reg::predict method (see
18.4.4.15), based on the read back value.

The mirroring may be performed using either front-door or back-door operations (as defined by path). If
back door is specified, the effect of writing the register through a physical access is mimicked (see
18.4.4.11). The content of write-only fields is mirrored and optionally checked.

If front door is specified, and if the register is mapped in more than one address map, an address map shall
be specified. The value of parent sequence and extension are set into the uvm_reg_item (see 19.1.1), which
is provided to the uvm_reg_frontdoor (see 19.4.2) or uvm_reg_backdoor (see 19.5) associated with this
request. If the built-in front door is being used and parent is not null, the bus item returned by the
uvm_reg_adapter (see 19.2.1) shall be started as a child of parent. If the built-in front door is used, the bus
item returned by the adapter shall be started with the priority prior. Optionally, users may provide additional
information for the physical access with the extension argument. The status output argument reflects the
success or failure of the operation.

The filename (fname) and line number (lineno) arguments are available for an implementation to use for
debug purposes only; their value shall have no functional effect on the outcome of this method.

If check is specified as UVM_CHECK, an error message shall be generated if the current mirrored value does
not match the read back value. Any field whose check has been disabled with uvm_reg_field::set_compare
(see 18.5.5.15) shall not be considered in the comparison.

This method performs the reverse operation of uvm_reg::update (see 18.4.4.13).

18.4.4.15 predict

virtual function bit predict (
uvm_reg_data_t value,
uvm_reg_byte_en_t be = -1,
295
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
uvm_predict_e kind = UVM_PREDICT_DIRECT,
uvm_door_e path = UVM_FRONTDOOR,
uvm_reg_map map = null,
string fname = "",
int lineno = 0

)

Updates the mirrored and desired value for this register. The default value of be shall be -1. The default
value of kind shall be UVM_PREDICT_DIRECT. The default value of path shall be UVM_FRONTDOOR.
The default value of lineno shall be 0.

This predicts the mirror (and desired) value of the fields in the register based on the specified observed value
on a specified address map, or based on a calculated value. See 18.5.5.17 for more details.

This returns TRUE if the prediction was successful for each field in the register.

18.4.4.16 is_busy

function bit is_busy()

Returns 1 if the register is currently being read or written.

18.4.5 Front door

18.4.5.1 get_frontdoor

function uvm_reg_frontdoor get_frontdoor(
uvm_reg_map map = null

)

Returns the user-defined front door for this register.

If null, no user-defined front door has been defined. A user-defined front door is defined by using the
uvm_reg::set_frontdoor method (see 18.4.5.2).

If the register is mapped in multiple address maps, an address map shall be specified.

18.4.5.2 set_frontdoor

function void set_frontdoor(
uvm_reg_frontdoor ftdr,
uvm_reg_map map = null,
string fname = "",
int lineno = 0

)

Specifies a user-defined front door for this register. The default value of lineno shall be 0.

By default, registers are mapped linearly into the address space of the address maps that instantiate them. If
registers are accessed using a different mechanism, a user-defined access mechanism shall be defined and
associated with the corresponding register abstraction class.

If the register is mapped in multiple address maps, an address map shall be specified.
296
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.4.6 Back door

18.4.6.1 get_backdoor

function uvm_reg_backdoor get_backdoor(
bit inherited = 1

)

Returns the user-defined back door for this register.

If null, no user-defined back door has been defined. A user-defined back door is defined by using the
uvm_reg::set_backdoor method (see 18.4.6.1).

If inherited is TRUE, this returns the back door of the parent block if none have been specified for this
register. The default value of inherited shall be 1, which is TRUE.

18.4.6.2 set_backdoor

function void set_backdoor(
uvm_reg_backdoor bkdr,
string fname = "",
int lineno = 0

)

Specifies a user-defined back door for this register.The default value of lineno shall be 0.

By default, registers are accessed via the built-in string-based DPI routines if an HDL path has been
specified using the uvm_reg::configure (see 18.3.2.2) or uvm_reg::add_hdl_path (see 18.4.6.4) methods.

If this default mechanism is not suitable (e.g., because the register is not implemented in pure
SystemVerilog) a user-defined access mechanism needs to be defined and associated with the corresponding
register abstraction class. A user-defined back door is required if an active update of the mirror of this
register abstraction class, based on observed changes of the corresponding DUT register, is used.

18.4.6.3 clear_hdl_path

function void clear_hdl_path (
string kind = "RTL"

)

Deletes any HDL paths. The default value of kind shall be "RTL".

This removes any previously specified HDL path to the register instance for the specified design abstraction.

18.4.6.4 add_hdl_path

function void add_hdl_path (
uvm_hdl_path_slice slices[],
string kind = "RTL"

)

Adds the specified HDL path to the register instance for the specified design abstraction. The default value
of kind shall be "RTL".
297
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
This method may be called more than once for the same design abstraction if the register is physically
duplicated in the design abstraction.

18.4.6.5 add_hdl_path_slice

function void add_hdl_path_slice(
string name,
int offset,
int size,
bit first = 0,
string kind = "RTL"

)

Appends the specified HDL slice to the HDL path of the register instance for the specified design
abstraction. If first is TRUE, this starts the specification of a duplicate HDL implementation of the register.
The default value of first shall be 0, which is FALSE. The default value of kind shall be "RTL".

18.4.6.6 has_hdl_path

function bit has_hdl_path (
string kind = ""

)

Checks if a HDL path is specified.

This returns True if the register instance has a HDL path defined for the specified design abstraction. If no
design abstraction is specified, it uses the default design abstraction specified for the parent block.

18.4.6.7 get_hdl_path

function void get_hdl_path (
ref uvm_hdl_path_concat paths[$],

input string kind = ""
)

Returns the incremental HDL path(s).

This returns the HDL path(s) defined for the specified design abstraction in the register instance. It returns
only the component of the HDL paths that corresponds to the register, not a full hierarchical path. paths shall
be a queue.

If no design abstraction is specified, the default design abstraction for the parent block is used.

18.4.6.8 get_hdl_path_kinds

function void get_hdl_path_kinds (
ref string kinds[$]

)

Returns any design abstractions for which HDL paths have been defined. kinds shall be a queue.

18.4.6.9 get_full_hdl_path

function void get_full_hdl_path (
ref uvm_hdl_path_concat paths[$],
298
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
input string kind = "",
input string separator = "."

)

Returns the full hierarchical HDL path(s).

This returns the full hierarchical HDL path(s) defined for the specified design abstraction in the register
instance. There may be more than one path returned even if only one path was defined for the register
instance, if any of the parent components have more than one path defined for the same design abstraction.
paths shall be a queue.

If no design abstraction is specified, the default design abstraction for each ancestor block is used to retrieve
each incremental path. The default value of separator shall be ".".

18.4.6.10 backdoor_read

virtual task backdoor_read(
uvm_reg_item rw

)

User-defined back-door read access.

The implementation shall use the UVM HDL back-door access support routines (see 19.6) to perform a read
for this register.

18.4.6.11 backdoor_write

virtual task backdoor_write(
uvm_reg_item rw

)

User-defined back-door write access.

This overrides the default string-based DPI back-door access write for this register type.

18.4.6.12 backdoor_watch

virtual task backdoor_watch()

User-defined DUT register change monitor.

This watches the DUT register corresponding to this abstraction class instance for any change in value and
return when a value change occurs.

18.4.7 Coverage

18.4.7.1 include_coverage

static function void include_coverage(
string scope,
uvm_reg_cvr_t models,
uvm_object accessor = null

)

299
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Specifies which coverage model shall be included in various block, register, or memory abstraction class
instances.

The coverage models are specified by ORing or adding the uvm_coverage_model_e coverage model
identifiers (see 17.2.2.9) corresponding to the coverage model to be included.

The scope specifies a hierarchical name or pattern identifying a block, memory, or register abstraction class
instances. Any block, memory, or register whose full hierarchical name matches the specified scope shall
have the specified functional coverage models included in them.

The scope can be specified as a POSIX® regular expression or simple pattern. See C.2.4 for more details.7

The specification of which coverage model to include in which abstraction class is stored in a
uvm_reg_cvr_t resource (see 17.2.1.6) in the uvm_resource_db resource database (see C.3.2), in the
uvm_reg:: scope namespace.

18.4.7.2 build_coverage

protected function uvm_reg_cvr_t build_coverage(
uvm_reg_cvr_t models

)

Models are specified by adding the symbolic value of individual coverage model as defined in
uvm_coverage_model_e (see 17.2.2.9). This returns the sum of all coverage models to be built in the
register model.

18.4.7.3 add_coverage

virtual protected function void add_coverage(
uvm_reg_cvr_t models

)

Specifies that additional coverage models are available.

This adds the specified coverage model to the coverage models available in this class. Models are specified
by adding the symbolic value of individual coverage model as defined in uvm_coverage_model_e (see
17.2.2.9).

This method shall only be called in the constructor of subsequently derived classes.

18.4.7.4 has_coverage

virtual function bit has_coverage(
uvm_reg_cvr_t models

)

Checks if the register has coverage model(s).

This returns True if the register abstraction class contains a coverage model for all of the models specified.
Models are specified by adding the symbolic value of individual coverage model as defined in
uvm_coverage_model_e (see 17.2.2.9).

7POSIX is a registered trademark in the U.S. Patent & Trademark Office, owned by The Institute of Electrical and Electronics
Engineers, Incorporated.
300
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.4.7.5 get_coverage

virtual function bit get_coverage(
uvm_reg_cvr_t is_on

)

Checks if coverage measurement is on.

This returns 1 if measurement for all of the specified functional coverage models are currently on. Multiple
functional coverage models can be specified by adding the functional coverage model identifiers.

See 18.4.7.6 for more details.

18.4.7.6 set_coverage

virtual function uvm_reg_cvr_t set_coverage(
uvm_reg_cvr_t is_on

)

Turns on coverage measurement.

This turns the collection of functional coverage measurements on or off for this register. The functional
coverage measurement is turned on for every coverage model specified using uvm_coverage_model_e
coverage model identifiers (see 17.2.2.9). Multiple functional coverage models can be specified by adding
the functional coverage model identifiers. All other functional coverage models are turned off. This returns
the sum of all functional coverage models whose measurements were previously on.

This method can only control the measurement of functional coverage models that are present in the register
abstraction classes, then enabled during construction. See the uvm_reg::has_coverage method (see
18.4.7.4) to identify the available functional coverage models.

18.4.7.7 sample

protected virtual function void sample(
uvm_reg_data_t data,
uvm_reg_data_t byte_en,
bit is_read,
uvm_reg_map map

)

This is a functional coverage measurement method.

This method is invoked by the register abstraction class whenever it is read or written with the specified data
via the specified address map. It is invoked after the read or write operation has completed, but before the
mirror has been updated.

Empty by default, this method may be extended by the abstraction class generator to perform the required
sampling in any provided functional coverage model.

18.4.7.8 sample_values

virtual function void sample_values()

This is a functional coverage measurement method for field values.
301
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
This method is invoked by the user or by the uvm_reg_block::sample_values method (see 18.1.4.7) of the
parent block to trigger the sampling of the current field values in the register-level functional coverage
model.

This method may be extended by the abstraction class generator to perform the required sampling in any
provided field-value functional coverage model.

18.4.8 Callbacks

18.4.8.1 pre_write

virtual task pre_write(

uvm_reg_item rw

)

Called before register write.

If the specified data value, access path, or address map are modified, the updated data value, access path, or
address map is used to perform the register operation. If the status is modified to anything other than
UVM_IS_OK (see 17.2.2.1), the operation is aborted.

The registered callback methods are invoked after the invocation of this method. All register callbacks are
executed before the corresponding field callbacks.

18.4.8.2 post_write

virtual task post_write(

uvm_reg_item rw

)

Called after register write.

If the specified status is modified, the updated status is returned by the register operation.

The registered callback methods are invoked before the invocation of this method. All register callbacks are
executed before the corresponding field callbacks.

18.4.8.3 pre_read

virtual task pre_read(

uvm_reg_item rw

)

Called before register read.

If the specified access path or address map are modified, the updated access path or address map is used to
perform the register operation. If the status is modified to anything other than UVM_IS_OK (see 17.2.2.1),
the operation is aborted.

The registered callback methods are invoked after the invocation of this method. All register callbacks are
executed before the corresponding field callbacks.
302
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.4.8.4 post_read

virtual task post_read(
uvm_reg_item rw

)

Called after register read.

If the specified read back data or status is modified, the updated read back data or status is returned by the
register operation.

The registered callback methods are invoked before the invocation of this method. All register callbacks are
executed before the corresponding field callbacks.

18.5 uvm_reg_field

The field abstraction class.

A field represents a set of bits that behave consistently as a single entity.

A field is contained within a single register, but may have different access policies depending on the address
map used to access the register (thus the field).

18.5.1 Class declaration

class uvm_reg_field extends uvm_object

18.5.2 Common methods

value

rand uvm_reg_data_t value

This is a mirrored field value; it can be sampled in a functional coverage model or constrained when
randomized.

18.5.3 Methods

18.5.3.1 new

function new(
string name = "uvm_reg_field"

)

Initializes a new field instance.

18.5.3.2 configure

function void configure(
uvm_reg parent,
int unsigned size,
int unsigned lsb_pos,
string access,
bit volatile,
uvm_reg_data_t reset,
303
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
bit has_reset,
bit is_rand,
bit individually_accessible

)

This is an instance-specific configuration.

It specifies the parent register of this field, its size in bits, the position of its LSB within the register relative
to the LSB of the register, its access policy, volatility, “HARD” reset value, whether the field value is
actually reset (the reset value is ignored if FALSE), whether the field value may be randomized and whether
the field is the only one to occupy a byte lane in the register.

See 18.5.4.6 for a specification of the predefined field access policies.

If the field access policy is a predefined policy and NOT one of “RW”, “WRC”, “WRS”, “WO”, “W1”, or
“WO1”, the value of is_rand is ignored and the rand_mode for the field instance is turned off since it
cannot be written.

18.5.4 Introspection

18.5.4.1 get_parent

virtual function uvm_reg get_parent()

Returns the parent register.

18.5.4.2 get_lsb_pos

virtual function int unsigned get_lsb_pos()

Returns the position of the field.

This returns the index of the least significant bit (LSB) of the field in the register that instantiates it. An
offset of 0 indicates a field that is aligned with the LSB of the register.

18.5.4.3 get_n_bits

virtual function int unsigned get_n_bits()

Returns the width, in number of bits, of the field.

18.5.4.4 get_max_size

static function int unsigned get_max_size()

Returns the width, in number of bits, of the largest field.

18.5.4.5 get_access

virtual function string get_access(
uvm_reg_map map = null

)

Returns the access policy of the field.
304
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
This returns the current access policy of the field when written and read through the specified address map.
If the register containing the field is mapped in multiple address maps, an address map shall be specified.
The access policy of a field from a specific address map may be restricted by the register’s access policy in
that address map, e.g., a RW field may only be writable through one of the address maps and read-only
through all of the other maps.

If the field access contradicts the map’s access value (e.g., a field access of WO and map access value of RO),
the method’s return value is "NOACCESS" (see 18.5.4.6).

18.5.4.6 set_access

virtual function string set_access(
string mode

)

Modifies the access policy of the field to the specified one and return the previous access policy.

The predefined access policies are as follows (W = write; R= read). The effects of a read operation are
applied after the current value of the field is sampled. The read operation returns the current value, not the
value affected by the read operation (if any). For R, the “no effect” behavior either returns 0’s or the return
value; an “error” needs to define an error for negative testing.

a) “RO”—W: no effect, R: no effect.

b) “RW”—W: as is, R: no effect.

c) “RC”—W: no effect, R: clears all bits.

d) “RS”—W: no effect, R: sets all bits.

e) “WRC”—W: as is, R: clears all bits.

f) “WRS”—W: as is, R: sets all bits.

g) “WC”—W: clears all bits, R: no effect.

h) “WS”—W: sets all bits, R: no effect.

i) “WSRC”—W: sets all bits, R: clears all bits.

j) “WCRS”—W: clears all bits, R: sets all bits.

k) “W1C”—W: 1/0 clears/no effect on matching bit, R: no effect.

l) “W1S”—W: 1/0 sets/no effect on matching bit, R: no effect.

m) “W1T”—W: 1/0 toggles/no effect on matching bit, R: no effect.

n) “W0C”—W: 1/0 no effect on/clears matching bit, R: no effect.

o) “W0S”—W: 1/0 no effect on/sets matching bit, R: no effect.

p) “W0T”—W: 1/0 no effect on/toggles matching bit, R: no effect.

q) “W1SRC”—W: 1/0 sets/no effect on matching bit, R: clears all bits.

r) “W1CRS”—W: 1/0 clears/no effect on matching bit, R: sets all bits.

s) “W0SRC”—W: 1/0 no effect on/sets matching bit, R: clears all bits.

t) “W0CRS”—W: 1/0 no effect on/clears matching bit, R: sets all bits.

u) “WO”—W: as is, R: error.

v) “WOC”—W: clears all bits, R: error.

w) “WOS”—W: sets all bits, R: error.

x) “W1”—W: first one after HARD reset is as is, other W have no effects, R: no effect.

y) “WO1”—W: first one after HARD reset is as is, other W have no effects, R: error.

z) “NOACCESS”—W: no effect, R: no effect.
305
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
It is important to remember that modifying the access of a field makes the register model diverge from the
specification that was used to create it.

18.5.4.7 define_access

static function bit define_access(
string name

)

Defines a new access policy value.

Because field access policies are specified using string values, there is no way for SystemVerilog to verify if
a specific access value is valid or not. To help catch typing errors, user-defined access values shall be
defined using this method to avoid being reported as an invalid access policy.

The name of field access policies are always converted to all uppercase.

This returns TRUE if the new access policy was not previously defined. It returns FALSE otherwise, but
does not issue an error message.

18.5.4.8 is_known_access

virtual function bit is_known_access(
uvm_reg_map map = null

)

Checks if the access policy is a built-in one.

This returns TRUE if the current access policy of the field, when written and read through the specified
address map, is a built-in access policy.

18.5.4.9 set_volatility

virtual function void set_volatility(
bit volatile

)

Modifies the volatility of the field (volatile) to the specified one.

It is important to remember that modifying the volatility of a field makes the register model diverge from the
specification that was used to create it.

18.5.4.10 is_volatile

virtual function bit is_volatile()

Indicates if the field value is volatile. UVM uses the IEEE Std 1685™ definition of “volatility” [B3].8

If TRUE, the mirrored value in the register cannot be trusted. This typically indicates a field whose change
in value cannot be observed by UVM. The nature or cause of the change is not specified.

If FALSE, the mirrored value in the register can be trusted.

8The numbers in brackets correspond to those of the bibliography in Annex A.
306
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.5.5 Access

18.5.5.1 get

virtual function uvm_reg_data_t get(
string fname = "",
int lineno = 0

)

Returns the desired value of the field. The default value of lineno shall be 0.

This does not actually read the value of the field in the design, only the desired value in the abstraction class.
Unless set to a different value using uvm_reg_field::set (see 18.5.5.2), the desired value and the mirrored
value are identical. Use the uvm_reg_field::read (see 18.5.5.10) or uvm_reg_field::peek (see 18.5.5.12)
methods to retrieve the actual field value.

If the field is write-only, the desired/mirrored value is the value last written and presumed to reside in the
bits implementing it. Although a physical read operation would return something different, the returned
value is the actual content.

18.5.5.2 set

virtual function void set(
uvm_reg_data_t value,
string fname = "",
int lineno = 0

)

Sets the desired value for this field to the specified value modified by the field access policy. This does not
actually set the value of the field in the design, only the desired value in the abstraction class. Use the
uvm_reg::update method (see 18.4.4.13) to update the actual register with the desired value or the
uvm_reg_field::write method (see 18.5.5.9) to actually write the field and update its mirrored value. The
default value of lineno shall be 0.

The final desired value in the mirror is a function of the field access policy and the set value, just like a
normal physical write operation to the corresponding bits in the hardware. As such, this method [when
eventually followed by a call to uvm_reg::update (see 18.4.4.13)] is a zero-time functional replacement for
the uvm_reg_field::write method (see 18.5.5.9). For example, the desired value of a read-only field is not
modified by this method and the desired value of a write-once field can only be set if the field has not yet
been written to using a physical (for example, front-door) write operation.

Use the uvm_reg_field::predict (see 18.5.5.17) to modify the mirrored value of the field.

18.5.5.3 get_mirrored_value

virtual function uvm_reg_data_t get_mirrored_value(
string fname = "",
int lineno = 0

)

Returns the mirrored value of the field. The default value of lineno shall be 0.

This does not actually read the value of the field in the design, only the mirrored value in the abstraction
class.
307
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
If the field is write-only, the desired/mirrored value is the value last written and presumed to reside in the
bits implementing it. Although a physical read operation would something different, the returned value is the
actual content.

18.5.5.4 reset

virtual function void reset(
string kind = "HARD"

)

Resets the desired and mirrored value for this field.

This sets the desired and mirror value of the field to the reset event specified by kind. If the field does not
have a reset value specified for the specified reset kind, the field is unchanged. The default value of kind
shall be "HARD".

This does not actually reset the value of the field in the design, only the value mirrored in the field
abstraction class.

Write-once fields can be modified after a “HARD” reset operation.

18.5.5.5 has_reset

virtual function bit has_reset(
string kind = "HARD",
bit delete = 0

)

Check if the field has a reset value specified. The default value of kind shall be "HARD".

Return TRUE if this field has a reset value specified for the specified reset kind. If delete is TRUE, removes
the reset value, if any. The default value of delete shall be 0, which is FALSE.

18.5.5.6 get_reset

virtual function uvm_reg_data_t get_reset(
string kind = "HARD"

)

Returns the specified reset value for this field.

This returns the reset value for this field for the specified reset kind. It returns the current field value is no
reset value has been specified for the specified reset event. The default value of kind shall be "HARD".

18.5.5.7 set_reset

virtual function void set_reset(
uvm_reg_data_t value,
string kind = "HARD"

)

Specifies or modifies the reset value for this field corresponding to the cause specified by kind. The default
value of kind shall be "HARD".
308
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.5.5.8 needs_update

virtual function bit needs_update()

Checks if the abstract model contains different desired and mirrored values.

If a desired field value has been modified in the abstraction class without actually updating the field in the
DUT, the state of the DUT (and more specifically, what the abstraction class thinks the state of the DUT is)
is outdated. This method returns TRUE if the state of the field in the DUT needs to be updated to match the
desired value. The mirror values or actual content of DUT field are not modified. Use uvm_reg::update
(see 18.4.4.13) to actually update the DUT field.

18.5.5.9 write

virtual task write (

output uvm_status_e status,

input uvm_reg_data_t value,

input uvm_door_e path = UVM_DEFAULT_DOOR,

input uvm_reg_map map = null,

input uvm_sequence_base parent = null,

input int prior = -1,

input uvm_object extension = null,

input string fname = "",

input int lineno = 0

)

This writes the value in the DUT field that corresponds to this abstraction class instance.

The write may be performed using either front-door or back-door operations (as defined by path). If back
door is specified, the effect of writing the register through a physical access is mimicked. For example,
read-only bits in the register will remain unchanged.

If front door is specified, and if the register is mapped in more than one address map, an address map shall
be specified. The value of parent sequence and extension are set into the uvm_reg_item (see 19.1.1), which
is provided to the uvm_reg_frontdoor (see 19.4.2) or uvm_reg_backdoor (see 19.5) associated with this
request. If the built-in front door is being used and parent is not null, the bus item returned by the
uvm_reg_adapter (see 19.2.1) shall be started as a child of parent. If the built-in front door is used, the bus
item returned by the adapter shall be started with the priority prior. Optionally, users may provide additional
information for the physical access with the extension argument. The status output argument reflects the
success or failure of the operation.

The filename (fname) and line number (lineno) arguments are available for an implementation to use for
debug purposes only; their value shall have no functional effect on the outcome of this method.

If a front-door access is used, and if the field is the only field in a byte lane and if the physical interface
corresponding to the address map used to access the field supports byte-enabling, then only the field is
written. Otherwise, the entire register containing the field is written and the mirrored values of the other
fields in the same register are used in a best effort not to modify their value. If a back-door access is used, a
peek-modify-poke process is used in a best effort not to modify the value of the other fields in the register.

This method is affected by the auto-prediction configuration value (see 18.2.5.2).
309
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.5.5.10 read

virtual task read (
output uvm_status_e status,
output uvm_reg_data_t value,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input uvm_sequence_base parent = null,
input int prior = -1,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

This reads and returns the value in the DUT field that corresponds to this abstraction class instance.

The read may be performed using either front-door or back-door operations (as defined by path). If back
door is specified, the effect of reading the register through a physical access is mimicked. For example,
clear-on-read field bits are set to zero (0).

If front door is specified, and if the register is mapped in more than one address map, an address map shall
be specified. The value of parent sequence and extension are set into the uvm_reg_item (see 19.1.1), which
is provided to the uvm_reg_frontdoor (see 19.4.2) or uvm_reg_backdoor (see 19.5) associated with this
request. If the built-in front door is being used and parent is not null, the bus item returned by the
uvm_reg_adapter (see 19.2.1) shall be started as a child of parent. If the built-in front door is used, the bus
item returned by the adapter shall be started with the priority prior. Optionally, users may provide additional
information for the physical access with the extension argument. The status output argument reflects the
success or failure of the operation.

The filename (fname) and line number (lineno) arguments are available for an implementation to use for
debug purposes only; their value shall have no functional effect on the outcome of this method.

If a front-door access is used, and if the field is the only field in a byte lane and if the physical interface
corresponding to the address map used to access the field supports byte-enabling, then only the field is read.
Otherwise, the entire register containing the field is read and the mirrored values of the other fields in the
same register are updated. If a back-door access is used, the entire containing register is peeked and the
mirrored value of the other fields in the register is updated.

This method is affected by the auto-prediction configuration value (see 18.2.5.2).

18.5.5.11 poke

virtual task poke (
output uvm_status_e status,
input uvm_reg_data_t value,
input string kind = "",
input uvm_sequence_base parent = null,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

Deposits the specified value in this DUT field corresponding to this abstraction class instance, as is, using a
back-door access. The entire register shall automatically be peeked prior to the poke operation in order to
not modify the value of the other fields in the register. Uses the HDL path for the design abstraction
310
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
specified by kind. The value of parent sequence and extension are set into the uvm_reg_item (see 19.1.1),
which is provided to the uvm_reg_backdoor::read (see 19.5.2.7) and uvm_reg_backdoor::write (see
19.5.2.6) methods. The status output argument reflects the success or failure of the operation.

The filename (fname) and line number (lineno) arguments are available for an implementation to use for
debug purposes only; their value shall have no functional effect on the outcome of this method.

This method is affected by the auto-prediction configuration value (see 18.2.5.2).

18.5.5.12 peek

virtual task peek (
output uvm_status_e status,
output uvm_reg_data_t value,
input string kind = "",
input uvm_sequence_base parent = null,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

This samples the value in the DUT register corresponding to this abstraction class instance using a back-
door access. The field value is sampled, not modified. Uses the HDL path for the design abstraction
specified by kind. The value of parent sequence and extension are set into the uvm_reg_item (see 19.1.1),
which is provided to the uvm_reg_backdoor::read method. The status output argument reflects the success
or failure of the operation.

The filename (fname) and line number (lineno) arguments are available for an implementation to use for
debug purposes only; their value shall have no functional effect on the outcome of this method.

This method is affected by the auto-prediction configuration value (see 18.2.5.2).

18.5.5.13 mirror

virtual task mirror(
output uvm_status_e status,
input uvm_check_e check = UVM_NO_CHECK,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input uvm_sequence_base parent = null,
input int prior = -1,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

This reads the register and optionally compares the read back value with the current mirrored value if check
is UVM_CHECK (see 17.2.2.3). The mirrored value is then updated using the uvm_reg::predict method (see
18.4.4.15), based on the read back value.

The mirroring may be performed using either front-door or back-door operations (as defined by path). If
back door is specified, the effect of writing the register through a physical access is mimicked (see
18.4.4.11). The content of write-only fields is mirrored and optionally checked.
311
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
If front door is specified, and if the register is mapped in more than one address map, an address map shall
be specified. The value of parent sequence and extension are set into the uvm_reg_item (see 19.1.1), which
is provided to the uvm_reg_frontdoor (see 19.4.2) or uvm_reg_backdoor (see 19.5) associated with this
request. If the built-in front door is being used and parent is not null, the bus item returned by the
uvm_reg_adapter (see 19.2.1) shall be started as a child of parent. If the built-in front door is used, the bus
item returned by the adapter shall be started with the priority prior. Optionally, users may provide additional
information for the physical access with the extension argument. The status output argument reflects the
success or failure of the operation.

The filename (fname) and line number (lineno) arguments are available for an implementation to use for
debug purposes only; their value shall have no functional effect on the outcome of this method.

If check is specified as UVM_CHECK, an error message shall be generated if the current mirrored value does
not match the read back value, unless set_compare (see 18.5.5.15) was used to disable the check.

18.5.5.14 get_compare

function uvm_check_e get_compare()

Returns the compare policy for this field.

18.5.5.15 set_compare

function void set_compare(
uvm_check_e check = UVM_CHECK

)

Specifies the compare policy during a mirror update. The field value is checked against its mirror only when
both the check argument in uvm_reg_block::mirror (see 18.1.5.6), uvm_reg::mirror (see 18.4.4.14), or
uvm_reg_field::mirror (see 18.5.5.13) and the compare policy for the field is UVM_CHECK (see 17.2.2.3).

18.5.5.16 is_indv_accessible

function bit is_indv_accessible (
uvm_door_e path,
uvm_reg_map local_map

)

Checks if this field can be written individually, i.e., without affecting other fields in the containing register.

18.5.5.17 predict

function bit predict (
uvm_reg_data_t value,
uvm_reg_byte_en_t be = -1,
uvm_predict_e kind = UVM_PREDICT_DIRECT,
uvm_door_e path = UVM_FRONTDOOR,
uvm_reg_map map = null,
string fname = "",
int lineno = 0

)

Updates the mirrored and desired value for this field. The default value of be shall be -1. The default value
of kind shall be UVM_PREDICT_DIRECT. The default value of path shall be UVM_FRONTDOOR. The
default value of lineno shall be 0.
312
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
This predicts the mirror and desired value of the field based on the specified observed value on a bus using
the specified address map.

If kind is specified as UVM_PREDICT_READ (see 17.2.2.8), the value was observed in a read transaction on
the specified address map or back door [if path is UVM_BACKDOOR (see 17.2.2.2)]. If kind is specified as
UVM_PREDICT_WRITE (see 17.2.2.8), the value was observed in a write transaction on the specified
address map or back door [if path is UVM_BACKDOOR (see 17.2.2.2)]. If kind is specified as
UVM_PREDICT_DIRECT (see 17.2.2.8), the value was computed and is updated as is, without regard to
any access policy.

This method does not allow an update of the mirror (or desired) values when the register containing this field
is busy executing a transaction because the results are unpredictable and indicative of a race condition in the
testbench.

This returns TRUE if the prediction was successful.

18.5.6 Callbacks

18.5.6.1 pre_write

virtual task pre_write(
uvm_reg_item rw

)

Called before field write.

If the specified data value, access path, or address map are modified, the updated data value, access path, or
address map is used to perform the register operation. If the status is modified to anything other than
UVM_IS_OK (see 17.2.2.1), the operation is aborted.

The field callback methods are invoked after the callback methods on the containing register. The registered
callbacks are invoked after the invocation of this method.

18.5.6.2 post_write

virtual task post_write(
uvm_reg_item rw

)

Called after field write.

If the specified status is modified, the updated status is returned by the register operation.

The field callback methods are invoked after the callback methods on the containing register. The registered
callbacks are invoked before the invocation of this method.

18.5.6.3 pre_read

virtual task pre_read(
uvm_reg_item rw

)

Called before field read.
313
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
If the specified access path or address map are modified, the updated access path or address map is used to
perform the register operation. If the status is modified to anything other than UVM_IS_OK (see 17.2.2.1),
the operation is aborted.

The field callback methods are invoked after the callback methods on the containing register. The registered
callbacks are invoked after the invocation of this method.

18.5.6.4 post_read

virtual task post_read(
uvm_reg_item rw

)

Called after field read.

If the specified read back data or status is modified, the updated read back data or status is returned by the
register operation.

The field callback methods are invoked after the callback methods on the containing register. The registered
callbacks are invoked before the invocation of this method.

18.6 uvm_mem

The memory abstraction base class.

A memory is a collection of contiguous locations. A memory may be accessible via more than one address
map.

Unlike registers, memories are not mirrored because of the potentially large data space; tests that walk the
entire memory space would negate any benefit from sparse memory modeling techniques.

18.6.1 Class declaration

virtual class uvm_mem extends uvm_object

18.6.2 Variables

mam

uvm_mem_mam mam

This is the memory allocation manager for the memory corresponding to this abstraction class instance. It
can be used to allocate regions of consecutive addresses of specific sizes, such as DMA buffers, or to locate
virtual register array.

18.6.3 Methods

18.6.3.1 new

function new (
string name,
longint unsigned size,
int unsigned n_bits,
string access = "RW",
int has_coverage = UVM_NO_COVERAGE

)

314
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Creates a new instance and type-specific configuration; this creates an instance of a memory abstraction
class with the specified name.

size specifies the total number of memory locations. n_bits specifies the total number of bits in each memory
location. access specifies the access policy of this memory and may be one of “RW” for RAMs and “RO”
for ROMs. The default value of access shall be "RW".

has_coverage specifies which functional coverage models are present in the extension of the register
abstraction class. Multiple functional coverage models may be specified by adding their symbolic names, as
defined by the uvm_coverage_model_e type (see 17.2.2.9). The default value of has_coverage shall be
UVM_NO_COVERAGE.

18.6.3.2 configure

function void configure (
uvm_reg_block parent,

string hdl_path = ""
)

This is an instance-specific configuration; it specifies the parent block of this memory.

If this memory is implemented in a single HDL variable, its name is specified as the hdl_path. Otherwise, if
the memory is implemented as a concatenation of variables (usually one per bank), then the HDL path shall
be specified using the add_hdl_path (see 18.6.7.4) or add_hdl_path_slice (see 18.6.7.4) methods.

18.6.3.3 set_offset

virtual function void set_offset (
uvm_reg_map map,
uvm_reg_addr_t offset,
bit unmapped = 0

)

Modifies the offset of the memory.

The offset of a memory within an address map is set using the uvm_reg_map::add_mem method (see
18.2.3.4). This method is used to modify that offset dynamically.

Modifying the offset of a memory makes the abstract model diverge from the specification that was used to
create it.

18.6.4 Introspection

18.6.4.1 get_parent

virtual function uvm_reg_block get_parent()

Returns the parent block.

18.6.4.2 get_n_maps

virtual function int get_n_maps()

Returns the number of address maps mapping this memory.
315
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.6.4.3 is_in_map

function bit is_in_map (
uvm_reg_map map

)

Returns TRUE if this memory is in the specified address map.

18.6.4.4 get_maps

virtual function void get_maps (
ref uvm_reg_map maps[$]

)

Returns all of the address maps where this memory is mapped. maps shall be a queue.

18.6.4.5 get_rights

virtual function string get_rights (
uvm_reg_map map = null

)

Returns the access rights of this memory.

This returns “RW”, “RO”, or “WO”. The access rights of a memory is always “RW”, unless it is a shared
memory with access restriction in a particular address map.

If no address map is specified and the memory is mapped in only one address map, that address map is used.
If the memory is mapped in more than one address map, the default address map of the parent block is used.

If an address map is specified and the memory is not mapped in the specified address map, a warning
message shall be issued and “RW” is returned.

18.6.4.6 get_access

virtual function string get_access(
uvm_reg_map map = null

)

Returns the access policy of the memory when written and read via an address map.

If the memory is mapped in more than one address map, an address map shall be specified. If access
restrictions are present when accessing a memory through the specified address map, the access mode
returned takes the access restrictions into account, e.g., a read-write memory accessed through a domain
with read-only restrictions would return “RO”.

18.6.4.7 get_size

function longint unsigned get_size()

Returns the number of unique memory locations in this memory.

18.6.4.8 get_n_bytes

function int unsigned get_n_bytes()
316
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Returns the width, in number of bytes, of each memory location. Rounds up to next whole byte if the
memory word is not a multiple of 8 bits.

18.6.4.9 get_n_bits

function int unsigned get_n_bits()

Returns the width, in number of bits, of each memory location.

18.6.4.10 get_max_size

static function int unsigned get_max_size()

Returns the maximum width, in number of bits, of all memories.

18.6.4.11 get_virtual_registers

virtual function void get_virtual_registers(
ref uvm_vreg regs[$]

)

Returns the virtual registers in this memory.

This fills the specified array with the abstraction class for all of the virtual registers implemented in this
memory. The order in which the virtual registers are located in the array is not specified. regs shall be a
queue.

18.6.4.12 get_virtual_fields

virtual function void get_virtual_fields(
ref uvm_vreg_field fields[$]

)

Returns the virtual fields in this memory.

This fills the specified dynamic array with the abstraction class for all of the virtual fields implemented in
this memory. The order in which the virtual fields are located in the array is not specified. fields shall be a
queue.

18.6.4.13 get_vreg_by_name

virtual function uvm_vreg get_vreg_by_name(
string name

)

Finds a virtual register with the specified name implemented in this memory and returns its abstraction class
instance. If no virtual register with the specified name is found, this returns null.

18.6.4.14 get_vfield_by_name

virtual function uvm_vreg_field get_vfield_by_name(
string name

)

317
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Finds a virtual field with the specified name implemented in this memory and returns its abstraction class
instance. If no virtual field with the specified name is found, this returns null.

18.6.4.15 get_offset

virtual function uvm_reg_addr_t get_offset (
uvm_reg_addr_t offset = 0,
uvm_reg_map map = null

)

Returns the base offset of the specified location in this memory in an address map. The default value of offset
shall be 0.

If map is null and the memory is mapped in only one address map, that address map is used. If map is null
and the memory is mapped in more than one address map, the default address map of the parent block is
used.

If an address map is specified and the memory is not mapped in the specified address map, a warning
message shall be issued.

18.6.4.16 get_address

virtual function uvm_reg_addr_t get_address(
uvm_reg_addr_t offset = 0,
uvm_reg_map map = null

)

Returns the base external physical address of the specified location in this memory if accessed through the
specified address map. The default value of offset shall be 0.

If map is null and the memory is mapped in only one address map, that address map is used. If map is null
and the memory is mapped in more than one address map, the default address map of the parent block is
used.

If an address map is specified and the memory is not mapped in the specified address map, a warning
message shall be issued.

18.6.4.17 get_addresses

virtual function int get_addresses(
uvm_reg_addr_t offset = 0,
uvm_reg_map map = null,
ref uvm_reg_addr_t addr[]

)

Identifies the external physical address(es) of a memory location. The default value of offset shall be 0.

This computes all of the external physical addresses that need to be accessed to completely read or write the
specified location in this memory. The addressed are specified in little endian order. This returns the number
of bytes transferred on each access.

If map is null and the memory is mapped in only one address map, that address map is used. If map is null
and the memory is mapped in more than one address map, the default address map of the parent block is
used.
318
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
If an address map is specified and the memory is not mapped in the specified address map, an error message
shall be generated.

18.6.5 HDL access

18.6.5.1 write

virtual task write(
output uvm_status_e status,
input uvm_reg_addr_t offset,
input uvm_reg_data_t value,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input uvm_sequence_base parent = null,
input int prior = -1,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

This initiates a write (using value for data) to the memory location that corresponds to this abstraction class
instance at the specified offset.

The write may be performed using either front-door or back-door operations (as defined by path). If back
door is specified, the effect of writing the memory through a physical access is mimicked. For example,
read-only memory will remain unchanged.

If front door is specified, and if the memory is mapped in more than one address map, an address map shall
be specified. The value of parent sequence and extension are set into the uvm_reg_item (see 19.1.1), which
is provided to the uvm_reg_frontdoor (see 19.4.2) or uvm_reg_backdoor (see 19.5) associated with this
request. If the built-in front door is being used and parent is not null, the bus item returned by the
uvm_reg_adapter (see 19.2.1) shall be started as a child of parent. If the built-in front door is used, the bus
item returned by the adapter shall be started with the priority prior. Optionally, users may provide additional
information for the physical access with the extension argument. The status output argument reflects the
success or failure of the operation.

The filename (fname) and line number (lineno) arguments are available for an implementation to use for
debug purposes only; their value shall have no functional effect on the outcome of this method.

18.6.5.2 read

virtual task read(
output uvm_status_e status,
input uvm_reg_addr_t offset,
output uvm_reg_data_t value,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input uvm_sequence_base parent = null,
input int prior = -1,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

This reads and returns the value from the memory location that corresponds to this abstraction class instance
at the specified offset.
319
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
The read may be performed using either front-door or back-door operations (as defined by path). If back
door is specified, the effect of reading the memory through a physical access is mimicked.

If front door is specified, and if the memory is mapped in more than one address map, an address map shall
be specified. The value of parent sequence and extension are set into the uvm_reg_item (see 19.1.1), which
is provided to the uvm_reg_frontdoor (see 19.4.2) or uvm_reg_backdoor (see 19.5) associated with this
request. If the built-in front door is being used and parent is not null, the bus item returned by the
uvm_reg_adapter (see 19.2.1) shall be started as a child of parent. If the built-in front door is used, the bus
item returned by the adapter shall be started with the priority prior. Optionally, users may provide additional
information for the physical access with the extension argument. The status output argument reflects the
success or failure of the operation.

The filename (fname) and line number (lineno) arguments are available for an implementation to use for
debug purposes only; their value shall have no functional effect on the outcome of this method.

18.6.5.3 burst_write

virtual task burst_write(
output uvm_status_e status,
input uvm_reg_data_t value[],
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input uvm_sequence_base parent = null,
input int prior = -1,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

This initiates a burst-write (using the elements in value for data) to the memory locations that correspond to
this abstraction class instance beginning at the specified offset.

The write may be performed using either front-door or back-door operations (as defined by path). If back
door is specified, the effect of writing the memory through a physical access is mimicked. For example,
read-only memory will remain unchanged.

If front door is specified, and if the memory is mapped in more than one address map, an address map shall
be specified. The value of parent sequence and extension are set into the uvm_reg_item (see 19.1.1), which
is provided to the uvm_reg_frontdoor (see 19.4.2) or uvm_reg_backdoor (see 19.5) associated with this
request. If the built-in front door is being used and parent is not null, the bus item returned by the
uvm_reg_adapter (see 19.2.1) shall be started as a child of parent. If the built-in front door is used, the bus
item returned by the adapter shall be started with the priority prior. Optionally, users may provide additional
information for the physical access with the extension argument. The status output argument reflects the
success or failure of the operation.

The filename (fname) and line number (lineno) arguments are available for an implementation to use for
debug purposes only; their value shall have no functional effect on the outcome of this method.

18.6.5.4 burst_read

virtual task burst_read(
output uvm_status_e status,
input uvm_reg_addr_t offset,
ref uvm_reg_data_t value[],
input uvm_door_e path = UVM_DEFAULT_DOOR,
320
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
input uvm_reg_map map = null,
input uvm_sequence_base parent = null,
input int prior = -1,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

This initiates a burst-read that returns the date in the elements in value from the memory location that
corresponds to this abstraction class instance at the specified offset.

The read may be performed using either front-door or back-door operations (as defined by path). If back
door is specified, the effect of reading the memory through a physical access is mimicked.

If front door is specified, and if the memory is mapped in more than one address map, an address map shall
be specified. The value of parent sequence and extension are set into the uvm_reg_item (see 19.1.1), which
is provided to the uvm_reg_frontdoor (see 19.4.2) or uvm_reg_backdoor (see 19.5) associated with this
request. If the built-in front door is being used and parent is not null, the bus item returned by the
uvm_reg_adapter (see 19.2.1) shall be started as a child of parent. If the built-in front door is used, the bus
item returned by the adapter shall be started with the priority prior. Optionally, users may provide additional
information for the physical access with the extension argument. The status output argument reflects the
success or failure of the operation.

The filename (fname) and line number (lineno) arguments are available for an implementation to use for
debug purposes only; their value shall have no functional effect on the outcome of this method.

18.6.5.5 poke

virtual task poke(
output uvm_status_e status,
input uvm_reg_addr_t offset,
input uvm_reg_data_t value,
input string kind = "",
input uvm_sequence_base parent = null,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

Deposits the value in the DUT memory location corresponding to this abstraction class instance at the
specified offset, as is, using a back-door access.

Uses the HDL path for the design abstraction specified by kind. The default value of lineno shall be 0.

18.6.5.6 peek

virtual task peek(
output uvm_status_e status,
input uvm_reg_addr_t offset,
output uvm_reg_data_t value,
input string kind = "",
input uvm_sequence_base parent = null,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

321
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Reads the current value from a memory location.

This samples the value in the DUT memory location corresponding to this abstraction class instance at the
specified offset using a back-door access. The memory location value is sampled, not modified.

Uses the HDL path for the design abstraction specified by kind. The default value of lineno shall be 0.

18.6.6 Front door

18.6.6.1 get_frontdoor

function uvm_reg_frontdoor get_frontdoor(
uvm_reg_map map = null

)

Returns the user-defined front door for this memory.

If null, no user-defined front door has been defined. A user-defined front door is defined by using the
uvm_mem::set_frontdoor method (see18.6.6.1).

If the memory is mapped in multiple address maps, an address map shall be specified.

18.6.6.2 set_frontdoor

function void set_frontdoor(
uvm_reg_frontdoor ftdr,
uvm_reg_map map = null,
string fname = "",
int lineno = 0

)

Specifies a user-defined front door for this memory. The default value of lineno shall be 0.

By default, memories are mapped linearly into the address space of the address maps that instantiate them. If
memories are accessed using a different mechanism, a user-defined access mechanism shall be defined and
associated with the corresponding memory abstraction class.

If the memory is mapped in multiple address maps, an address map shall be specified.

18.6.7 Back door

18.6.7.1 get_backdoor

function uvm_reg_backdoor get_backdoor(
bit inherited = 1

)

Returns the user-defined back door for this memory.

If null, no user-defined back door has been defined. A user-defined back door is defined by using the
uvm_mem::set_backdoor method (see 18.6.7.2).

If inherited is TRUE, this returns the back door of the parent block if none have been specified for this
memory. The default value of inherited shall be 1, which is TRUE.
322
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.6.7.2 set_backdoor

function void set_backdoor(
uvm_reg_backdoor bkdr,
string fname = "",
int lineno = 0

)

Specifies a user-defined back door for this memory. The default value of lineno shall be 0.

By default, memories are accessed via the built-in string-based DPI routines if an HDL path has been
specified using the uvm_mem::configure (see 18.6.3.2) or uvm_mem::add_hdl_path (see 18.6.7.4)
methods.

If this default mechanism is not suitable (e.g., because the register is not implemented in pure
SystemVerilog) a user-defined access mechanism needs to be defined and associated with the corresponding
memory abstraction class.

18.6.7.3 clear_hdl_path

function void clear_hdl_path (
string kind = "RTL"

)

Deletes any HDL paths. The default value of kind shall be "RTL".

This removes any previously specified HDL path to the memory instance for the specified design
abstraction.

18.6.7.4 add_hdl_path

function void add_hdl_path (
uvm_hdl_path_slice slices[],
string kind = "RTL"

)

Adds the specified HDL path to the memory instance for the specified design abstraction. The default value
of kind shall be "RTL".

This method may be called more than once for the same design abstraction if the memory is physically
duplicated in the design abstraction.

18.6.7.5 add_hdl_path_slice

function void add_hdl_path_slice(
string name,
int offset,
int size,
bit first = 0,
string kind = "RTL"

)

Appends the specified HDL slice to the HDL path for the specified design abstraction. If first is TRUE, this
starts the specification of a duplicate HDL implementation of the memory. The default value of first shall be
0, which is FALSE. The default value of kind shall be "RTL".
323
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.6.7.6 has_hdl_path

function bit has_hdl_path (

string kind = ""

)

Checks if a HDL path is specified.

This returns True if the memory instance has a HDL path defined for the specified design abstraction. If no
design abstraction is specified, it uses the default design abstraction specified for the parent block.

18.6.7.7 get_hdl_path

function void get_hdl_path (

ref uvm_hdl_path_concat paths[$],

input string kind = ""

)

Returns the incremental HDL path(s).

This returns the HDL path(s) defined for the specified design abstraction in the memory instance. It returns
only the component of the HDL paths that corresponds to the memory, not a full hierarchical path. paths
shall be a queue.

If no design abstraction is specified, the default design abstraction for the parent block is used.

18.6.7.8 get_hdl_path_kinds

function void get_hdl_path_kinds (

ref string kinds[$]

)

Returns any design abstractions for which HDL paths have been defined. kinds shall be a queue.

18.6.7.9 get_full_hdl_path

function void get_full_hdl_path (

ref uvm_hdl_path_concat paths[$],

input string kind = "",

input string separator = "."

)

Returns the full hierarchical HDL path(s).

This returns the full hierarchical HDL path(s) defined for the specified design abstraction in the memory
instance. If any of the parent components have more than one path defined for the same design abstraction,
there may be more than one path returned (even if only one path was defined for the memory instance).

If no design abstraction is specified, the default design abstraction for each ancestor block is used to retrieve
each incremental path.
324
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.6.7.10 backdoor_read

virtual task backdoor_read(

uvm_reg_item rw

)

User-defined back-door read access.

The implementation shall use the UVM HDL back-door access support routines (see 19.6) to perform a read
for this register.

18.6.7.11 backdoor_write

virtual task backdoor_write(

uvm_reg_item rw

)

User-defined back-door write access.

This overrides the default string-based DPI back-door access write for this memory type.

18.6.8 Coverage

18.6.8.1 build_coverage

protected function uvm_reg_cvr_t build_coverage(

uvm_reg_cvr_t models

)

Checks if all of the specified coverage models need to be built.

This checks which of the specified coverage model need to be built in this instance of the memory
abstraction class, as specified by calls to uvm_reg::include_coverage (see 18.4.7.1).

Models are specified by adding the symbolic value of individual coverage model as defined in
uvm_coverage_model_e (see 17.2.2.9). This returns the sum of all coverage models to be built in the
memory model.

18.6.8.2 add_coverage

virtual protected function void add_coverage(

uvm_reg_cvr_t models

)

Specifies that additional coverage models are available.

This adds the specified coverage model to the coverage models available in this class. Models are specified
by adding the symbolic value of individual coverage model as defined in uvm_coverage_model_e (see
17.2.2.9).

This method shall only be called in the constructor of subsequently derived classes.
325
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.6.8.3 has_coverage

virtual function bit has_coverage(
uvm_reg_cvr_t models

)

Checks if the register has coverage model(s).

This returns True if the memory abstraction class contains a coverage model for all of the models specified.
Models are specified by adding the symbolic value of individual coverage model as defined in
uvm_coverage_model_e (see 17.2.2.9).

18.6.8.4 get_coverage

virtual function bit get_coverage(
uvm_reg_cvr_t is_on

)

Checks if coverage measurement is on.

This returns True if measurement for all of the specified functional coverage models are currently on.
Multiple functional coverage models can be specified by adding the functional coverage model identifiers.

See 18.6.8.4 for more details.

18.6.8.5 set_coverage

virtual function uvm_reg_cvr_t set_coverage(
uvm_reg_cvr_t is_on

)

Turns on coverage measurement.

This turns the collection of functional coverage measurements on or off for this memory. The functional
coverage measurement is turned on for every coverage model specified using uvm_coverage_model_e
coverage model identifiers (see 17.2.2.9). Multiple functional coverage models can be specified by adding
the functional coverage model identifiers. All other functional coverage models are turned off. This returns
the sum of all functional coverage models whose measurements were previously on.

This method can only control the measurement of functional coverage models that are present in the
memory abstraction classes, then enabled during construction. See the uvm_mem::has_coverage method
(see 18.6.8.3) to identify the available functional coverage models.

18.6.8.6 sample

protected virtual function void sample(
uvm_reg_addr_t offset,
bit is_read,
uvm_reg_map map

)

This is a functional coverage measurement method.
326
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
This method is invoked by the memory abstraction class whenever it is read or written with the specified
data via the specified address map. It is invoked after the read or write operation has completed, but before
the mirror has been updated.

Empty by default, this method may be extended by the abstraction class generator to perform the required
sampling in any provided functional coverage model.

18.6.9 Callbacks

18.6.9.1 pre_write

virtual task pre_write(
uvm_reg_item rw

)

Called before memory write.

If the specified data value access path or address map are modified, the updated data value, access path, or
address map is used to perform the memory operation. If the status is modified to anything other than
UVM_IS_OK (see 17.2.2.1), the operation is aborted.

The registered callback methods are invoked after the invocation of this method.

18.6.9.2 post_write

virtual task post_write(
uvm_reg_item rw

)

Called after memory write.

If the specified status is modified, the updated status is returned by the memory operation.

The registered callback methods are invoked before the invocation of this method.

18.6.9.3 pre_read

virtual task pre_read(
uvm_reg_item rw

)

Called before memory read.

If the specified access path or address map are modified, the updated access path or address map is used to
perform the memory operation. If the status is modified to anything other than UVM_IS_OK (see 17.2.2.1),
the operation is aborted.

The registered callback methods are invoked after the invocation of this method.

18.6.9.4 post_read

virtual task post_read(
uvm_reg_item rw

)

327
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Called after memory read.

If the specified read back data or status is modified, the updated read back data or status is returned by the
memory operation.

The registered callback methods are invoked before the invocation of this method.

18.7 uvm_reg_indirect_data

The indirect data access abstraction class.

This models the behavior of a register used to indirectly access a register array, indexed by a second address
register.

This class should not be instantiated directly. A type-specific class extension should be used to provide a
factory-enabled constructor and specify the n_bits and coverage models.

18.7.1 Class declaration

class uvm_reg_indirect_data extends uvm_reg

18.7.2 Methods

18.7.2.1 new

function new(
string name = "uvm_reg_indirect",
int unsigned n_bits,
int has_cover

)

Creates an instance of this class.

This should not be called directly, other than via super.new. The value of n_bits needs to match the
number of bits in the indirect register array.

18.7.2.2 configure

function void configure (
uvm_reg idx,
uvm_reg reg_a[],
uvm_reg_block blk_parent,
uvm_reg_file regfile_parent = null

)

Configures the indirect data register.

The idx register specifies the index, in the reg_a register array, of the register to access. The idx needs to be
written to first. A read or write operation to this register will subsequently read or write the indexed register
in the register array.

The number of bits in each register in the register array shall be equal to n_bits of this register.

See also 18.4.2.2.
328
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.8 uvm_reg_fifo

This special register models a DUT FIFO accessed via write/read, where writes push to the FIFO and reads
pop from it.

Back-door access is not enabled, as it is not yet possible to force complete FIFO state, i.e., the write and read
indexes used to access the FIFO data.

18.8.1 Class declaration

class uvm_reg_fifo extends uvm_reg

18.8.2 Common variables

fifo

rand uvm_reg_data_t fifo[$]

This is the abstract representation of the FIFO. It is constrained to be no larger than the size parameter and is
public to enable subtypes to add constraints on it and randomize. fifo shall be a queue.

18.8.3 Methods

18.8.3.1 new

function new(
string name = "reg_fifo",
int unsigned size,
int unsigned n_bits,
int has_cover

)

Creates an instance of a FIFO register having size elements of n_bits each.

18.8.3.2 set_compare

function void set_compare(
uvm_check_e check = UVM_CHECK

)

Specifies the compare policy during a mirror (read) of the DUT FIFO. The DUT read value is checked
against its mirror only when both the check argument in the mirror call (see 18.8.5.8) and the compare
policy for the field is UVM_CHECK (see 17.2.2.3).

18.8.4 Introspection

18.8.4.1 size

function int unsigned size()

This is the number of entries currently in the FIFO.

18.8.4.2 capacity

function int unsigned capacity()
329
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
The maximum number of entries, or depth, of the FIFO.

18.8.5 Access

18.8.5.1 get

virtual function uvm_reg_data_t get(
string fname = "",
int lineno = 0

)

Returns the next value from the abstract FIFO, but does not pop it. Used to find the expected value in a
mirror operation (see 18.8.5.8). See 18.4.4.1 for additional information.

18.8.5.2 set

virtual function void set(
uvm_reg_data_t value,
string fname = "",
int lineno = 0

)

Pushes the given value to the abstract FIFO. This method may be called several times before an update (see
18.8.5.7) as a means of preloading the DUT FIFO. Calls to set a full FIFO are ignored. Call update to
update the DUT FIFO with the appropriate values. See 18.4.4.2 for additional information.

18.8.5.3 write

virtual task write(
output uvm_status_e status,
input uvm_reg_data_t value,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input uvm_sequence_base parent = null,
input int prior = -1,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

Pushes the given value to the DUT FIFO. If auto-prediction is enabled, the written value is also pushed to
the abstract FIFO before the call returns. If auto-prediction is not enabled [via
uvm_reg_map::set_auto_predict (see 18.2.5.2)], the value is pushed to abstract FIFO only when the write
operation is observed on the target bus. This mode requires using the uvm_reg_predictor class (see 19.3). If
the write is called by an update operation (see 18.8.5.7), the abstract FIFO already contains the written
value and is thus not affected by either prediction mode. See 18.4.4.9 for additional information.

18.8.5.4 read

virtual task read(
output uvm_status_e status,
output uvm_reg_data_t value,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input uvm_sequence_base parent = null,
input int prior = -1,
330
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

Reads the next value out of the DUT FIFO. If auto-prediction is enabled, the frontmost value in abstract
FIFO is popped. See 18.4.4.10 for additional information.

18.8.5.5 poke

virtual task poke(
output uvm_status_e status,
input uvm_reg_data_t value,
input string kind = "",
input uvm_sequence_base parent = null,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

This deposits the value in the DUT register corresponding to this abstraction class instance, as is, using a
back-door access. See 18.4.4.11 for additional information.

18.8.5.6 peek

virtual task poke(
output uvm_status_e status,
input uvm_reg_data_t value,
input string kind = "",
input uvm_sequence_base parent = null,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

This samples the value in the DUT register corresponding to this abstraction class instance using a back-
door access. See 18.4.4.12 for additional information.

18.8.5.7 update

virtual task update(
output uvm_status_e status,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input uvm_sequence_base parent = null,
input int prior = -1,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

Pushes (writes) all values preloaded using set (see 18.8.5.2) to the DUT. This method needs to be used after
set and before any blocking statements, otherwise reads/writes to the DUT FIFO may cause the mirror to
become out of sync with the DUT. See 18.4.4.13 for additional information.
331
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.8.5.8 mirror

virtual task mirror(
output uvm_status_e status,
input uvm_check_e check = UVM_NO_CHECK,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input uvm_sequence_base parent = null,
input int prior = -1,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

Reads the next value out of the DUT FIFO. If auto-prediction is enabled, the frontmost value in abstract
FIFO is popped when the check argument is set and comparison is enabled with set_compare (see 18.8.3.2).
See 18.4.4.14 for additional information.

18.8.5.9 predict

virtual function bit predict (
uvm_reg_data_t value,
uvm_reg_byte_en_t be = -1,
uvm_predict_e kind = UVM_PREDICT_DIRECT,
uvm_door_e path = UVM_FRONTDOOR,
uvm_reg_map map = null,
string fname = "",
int lineno = 0

)

Updates the mirrored FIFO. See 18.4.4.15 for additional information.

18.9 uvm_vreg

A virtual register is a collection of fields, overlaid on top of a memory, usually in an array. The semantics
and layout of virtual registers comes from an agreement between the software and the hardware, not any
physical structures in the DUT. uvm_reg is the virtual register abstraction base class.

A virtual register represents a set of fields that are logically implemented in consecutive memory locations.
All virtual register accesses eventually turn into memory accesses. A virtual register array may be
implemented on top of any memory abstraction class and possibly dynamically resized and/or relocated.

18.9.1 Class declaration

class uvm_vreg extends uvm_object

18.9.1.1 Methods

18.9.1.1.1 new

function new(
string name,
int unsigned n_bits

)

332
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Creates a new instance and type-specific configuration; this creates an instance of a virtual register
abstraction class with the specified name.

n_bits specifies the total number of bits in a virtual register. Not all bits need to be mapped to a virtual field.
This value is usually a multiple of 8.

18.9.1.1.2 configure

function void configure(
uvm_reg_block parent,
uvm_mem mem = null,
longint unsigned size = 0,
uvm_reg_addr_t offset = 0,
int unsigned incr = 0

)

This is an instance-specific configuration.

This specifies the parent block of this virtual register array. If one of the other parameters is specified, the
virtual register is presumed to be dynamic and can be later (re-)implemented using the
uvm_vreg::implement method (see 18.9.1.1.3).

If mem is specified, the virtual register array is presumed to be statically implemented in the memory
corresponding to the specified memory abstraction class and the size, offset, and incr also need to be
specified. Static virtual register arrays cannot be re-implemented. The default values for size, offset, and incr
shall each be 0.

18.9.1.1.3 implement

virtual function bit implement(
longint unsigned n,
uvm_mem mem = null,
uvm_reg_addr_t offset = 0,
int unsigned incr = 0

)

Dynamically implements, resizes, or relocates a virtual register array.

This implements an array of virtual registers of the specified size, in the specified memory and offset. If an
offset increment is specified, each virtual register is implemented at the specified offset increment from the
previous one. If an offset increment of 0 is specified, virtual registers are packed as closely as possible in the
memory. The default values for size and offset, shall be 0.

If no memory is specified, the virtual register array is in the same memory, at the same base offset using the
same offset increment as originally implemented. Only the number of virtual registers in the virtual register
array is modified.

The initial value of the newly implemented or relocated set of virtual registers is whatever values are
currently stored in the memory now implementing them.

This returns TRUE if the memory can implement the number of virtual registers at the specified base offset
and offset increment. Otherwise, it returns FALSE.

The memory region used to implement a virtual register array is reserved in the memory allocation manager
associated with the memory to prevent it from being allocated for another purpose.
333
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.9.1.1.4 allocate

virtual function uvm_mem_region allocate(

longint unsigned n,

uvm_mem_mam mam,

uvm_mem_mam_policy alloc = null

)

Randomly implements, resizes, or relocates a virtual register array.

This implements a virtual register array of the specified size in a randomly allocated region of the
appropriate size in the address space managed by the specified memory allocation manager. If a memory
allocation policy is specified, it is passed to the uvm_mem_mam::request_region method (see 18.12.5.2).

The initial value of the newly implemented or relocated set of virtual registers is whatever values are
currently stored in the memory region now implementing them.

This returns a reference to a uvm_mem_region memory region descriptor (see 18.12.7) if the memory
allocation manager was able to allocate a region that can implement the virtual register array with the
specified allocation policy. Otherwise, it returns null.

A region implementing a virtual register array cannot be released using the
uvm_mem_mam::release_region method (see 18.12.5.3); instead, use the uvm_vreg::release_region
method (see 18.9.1.1.6).

18.9.1.1.5 get_region

virtual function uvm_mem_region get_region()

Returns the region where the virtual register array is implemented.

This returns a reference to the uvm_mem_region memory region descriptor (see 18.12.7) that implements
the virtual register array.

It returns null if the virtual registers array is not currently implemented. A region implementing a virtual
register array cannot be released using the uvm_mem_mam::release_region method (see 18.12.5.3);
instead, use the uvm_vreg::release_region method (see 18.9.1.1.6).

18.9.1.1.6 release_region

virtual function void release_region()

Dynamically unimplements a virtual register array.

This releases the memory region used to implement a virtual register array and returns it to the pool of
available memory that can be allocated by the memory’s default allocation manager. The virtual register
array is subsequently considered as unimplemented and can no longer be accessed.

Statically implemented virtual registers cannot be released.
334
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.9.1.2 Introspection

18.9.1.2.1 get_parent

virtual function uvm_reg_block get_parent()

Returns the parent block.

18.9.1.2.2 get_memory

virtual function uvm_mem get_memory()

Returns the memory where the virtual register array is implemented.

18.9.1.2.3 get_n_maps

virtual function int get_n_maps()

Returns the number of address maps mapping this virtual register array.

18.9.1.2.4 is_in_map

function bit is_in_map (
uvm_reg_map map

)

Returns TRUE if this virtual register array is in the specified address map.

18.9.1.2.5 get_maps

virtual function void get_maps (
ref uvm_reg_map maps[$]

)

Returns all of the address maps where this virtual register array is mapped. maps shall be a queue.

18.9.1.2.6 get_rights

virtual function string get_rights(
uvm_reg_map map = null

)

Returns the access rights of this virtual register array.

This returns “RW”, “RO”, or “WO”. The access rights of a virtual register array is always “RW”, unless it
is implemented in a shared memory with access restriction in a particular address map.

If no address map is specified and the memory is mapped in only one address map, that address map is used.
If the memory is mapped in more than one address map, the default address map of the parent block is used.

If an address map is specified and the memory is not mapped in the specified address map, an error message
shall be generated and “RW” is returned.
335
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.9.1.2.7 get_access

virtual function string get_access(
uvm_reg_map map = null

)

Returns the access policy of the virtual register array when written and read via an address map.

If the memory implementing the virtual register array is mapped in more than one address map, an address
map shall be specified. If access restrictions are present when accessing a memory through the specified
address map, the access mode returned takes the access restrictions into account. For example, a read-write
memory accessed through an address map with read-only restrictions returns “RO”.

18.9.1.2.8 get_size

virtual function int unsigned get_size()

Returns the size of the virtual register array.

18.9.1.2.9 get_n_bytes

virtual function int unsigned get_n_bytes()

Returns the width, in bytes, of a virtual register.

The width of a virtual register is always a multiple of the width of the memory locations used to implement
it. For example, a virtual register containing two 1-byte fields implemented in a memory with 4-byte
memory locations is 4-bytes wide.

18.9.1.2.10 get_n_memlocs

virtual function int unsigned get_n_memlocs()

Returns the number of memory locations used by a single virtual register.

18.9.1.2.11 get_incr

virtual function int unsigned get_incr()

Returns the number of memory locations between two individual virtual registers in the same array.

18.9.1.2.12 get_fields

virtual function void get_fields(
ref uvm_vreg_field fields[$]

)

Returns the virtual fields in this virtual register.

Fills the specified array with the abstraction class for all of the virtual fields contained in this virtual register.
Fields are ordered from least significant position to most significant position within the register. fields shall
be a queue.
336
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.9.1.2.13 get_field_by_name

virtual function uvm_vreg_field get_field_by_name(
string name

)

Returns the named virtual field in this virtual register.

This finds a virtual field with the specified name in this virtual register and returns its abstraction class. If no
fields are found, it returns null.

18.9.1.2.14 get_offset_in_memory

virtual function uvm_reg_addr_t get_offset_in_memory(
longint unsigned idx

)

Returns the offset of a virtual register.

This returns the base offset of the specified virtual register, in the overall address space of the memory that
implements the virtual register array.

18.9.1.2.15 get_address

virtual function uvm_reg_addr_t get_address(
longint unsigned idx,
uvm_reg_map map = null

)

Returns the base external physical address of the specified virtual register if accessed through the specified
address map.

If no address map is specified and the memory implementing the virtual register array is mapped in only one
address map, that address map is used. If the memory is mapped in more than one address map, the default
address map of the parent block is used.

If an address map is specified and the memory is not mapped in the specified address map, a warning
message shall be issued.

18.9.1.3 HDL access

18.9.1.3.1 write

virtual task write(
input longint unsigned idx,
output uvm_status_e status,
input uvm_reg_data_t value,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input uvm_sequence_base parent = null,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

337
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
This writes the value in the DUT memory location(s) (specified by idx) that implements the virtual register
array corresponding to this abstraction class instance using the specified access path. See 18.6.5.1 for
additional information.

18.9.1.3.2 read

virtual task read(
input longint unsigned idx,
output uvm_status_e status,
output uvm_reg_data_t value,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input uvm_sequence_base parent = null,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

This reads from the DUT memory location(s) (specified by idx) that implements the virtual register array
corresponding to this abstraction class instance using the specified access path and returns the read back
value. See 18.6.5.2 for additional information.

18.9.1.3.3 poke

virtual task poke(
input longint unsigned idx,
output uvm_status_e status,
input uvm_reg_data_t value,
input uvm_sequence_base parent = null,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

Deposits the specified value in a virtual register; this deposits the value in the DUT memory location(s)
(specified by idx) that implements the virtual register array corresponding to this abstraction class instance
using the memory back-door access. See 18.6.5.5 for additional information.

18.9.1.3.4 peek

virtual task peek(
input longint unsigned idx,
output uvm_status_e status,
output uvm_reg_data_t value,
input uvm_sequence_base parent = null,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

Samples the DUT memory location(s) (specified by idx) that implements the virtual register array
corresponding to this abstraction class instance using the memory back-door access and returns the sampled
value. See 18.6.5.6 for additional information.
338
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.9.1.3.5 reset

function void reset(
string kind = "HARD"

)

Resets the semaphore that prevents concurrent access to the virtual register. This semaphore shall be
explicitly reset if a thread accessing this virtual register array was killed before the access was completed.
The default value of kind shall be "HARD".

18.9.1.4 Callbacks

18.9.1.4.1 pre_write

virtual task pre_write(
longint unsigned idx,
ref uvm_reg_data_t wdat,
ref uvm_door_e path,
ref uvm_reg_map map

)

Called before virtual register write.

If the specified data value, access path, or address map are modified, the updated data value, access path, or
address map are used to perform the virtual register operation.

The registered callback methods are invoked after the invocation of this method. All register callbacks are
executed after the corresponding field callbacks. The pre-write virtual register and field callbacks are
executed before the corresponding pre-write memory callbacks.

18.9.1.4.2 post_write

virtual task post_write(
longint unsigned idx,
uvm_reg_data_t wdat,
uvm_door_e path,
uvm_reg_map map,
ref uvm_status_e status

)

Called after virtual register write.

If the specified status is modified, the updated status is returned by the virtual register operation.

The registered callback methods are invoked before the invocation of this method. All register callbacks are
executed before the corresponding field callbacks. The post-write virtual register and field callbacks are
executed after the corresponding post-write memory callbacks.

18.9.1.4.3 pre_read

virtual task pre_read(
longint unsigned idx,
ref uvm_door_e path,
ref uvm_reg_map map

)

339
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Called before virtual register read.

If the specified access path or address map are modified, the updated access path or address map are used to
perform the virtual register operation.

The registered callback methods are invoked after the invocation of this method. All register callbacks are
executed after the corresponding field callbacks. The pre-read virtual register and field callbacks are
executed before the corresponding pre-read memory callbacks.

18.9.1.4.4 post_read

virtual task post_read(
longint unsigned idx,
ref uvm_reg_data_t rdat,
input uvm_door_e path,
input uvm_reg_map map,
ref uvm_status_e status

)

Called after virtual register read.

If the specified read back data or status is modified, the updated read back data or status is returned by the
virtual register operation.

The registered callback methods are invoked before the invocation of this method. All register callbacks are
executed before the corresponding field callbacks. The post-read virtual register and field callbacks are
executed after the corresponding post-read memory callbacks.

18.9.2 uvm_vreg_cbs

The pre/post read/write callback facade class.

18.9.2.1 Class declaration

class uvm_vreg_cbs extends uvm_callback

18.9.2.2 Callbacks

18.9.2.2.1 pre_write

virtual task pre_write(
uvm_vreg rg,
longint unsigned idx,
ref uvm_reg_data_t wdat,
ref uvm_door_e path,
ref uvm_reg_map map

)

Called before a write operation.

The registered callback methods are invoked after the invocation of the uvm_vreg::pre_write method (see
18.9.1.4.1). All virtual register callbacks are executed after the corresponding virtual field callbacks. The
pre-write virtual register and field callbacks are executed before the corresponding pre-write memory
callbacks.
340
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
If the specified wdat value, access path, or address map are modified, the updated value, access path, or
address map are used to perform the virtual register operation.

18.9.2.2.2 post_write

virtual task post_write(
uvm_vreg rg,
longint unsigned idx,
uvm_reg_data_t wdat,
uvm_door_e path,
uvm_reg_map map,
ref uvm_status_e status

)

Called after register write.

The registered callback methods are invoked before the invocation of the uvm_vreg::post_write method
(see 18.9.1.4.2). All virtual register callbacks are executed before the corresponding virtual field callbacks.
The post-write virtual register and field callbacks are executed after the corresponding post-write memory
callbacks.

If the specified status is modified, the updated status is returned by the virtual register operation.

18.9.2.2.3 pre_read

virtual task pre_read(
uvm_vreg rg,
longint unsigned idx,
ref uvm_door_e path,
ref uvm_reg_map map

)

Called before register read.

The registered callback methods are invoked after the invocation of the uvm_vreg::pre_read method (see
18.9.1.4.3). All virtual register callbacks are executed after the corresponding virtual field callbacks. The
pre-read virtual register and field callbacks are executed before the corresponding pre-read memory
callbacks.

If the specified access path or address map are modified, the updated access path or address map are used to
perform the virtual register operation.

18.9.2.2.4 post_read

virtual task post_read(
uvm_vreg rg,
longint unsigned idx,
ref uvm_reg_data_t rdat,
input uvm_door_e path,
input uvm_reg_map map,
ref uvm_status_e status

)

Called after register read.
341
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
The registered callback methods are invoked before the invocation of the uvm_vreg::post_read method
(see 18.9.1.4.4). All virtual register callbacks are executed before the corresponding virtual field callbacks.
The post-read virtual register and field callbacks are executed after the corresponding post-read memory
callbacks.

If the specified read back rdat value or status is modified, the updated read back value or status is returned
by the virtual register operation.

18.10 uvm_vreg_field

This subclause defines the virtual field and callback classes.

A virtual field is a set of contiguous bits in one or more memory locations. The semantics and layout of
virtual fields comes from an agreement between the software and the hardware, not any physical structures
in the DUT. uvm_reg_field is the virtual field abstraction base class.

18.10.1 Class declaration

class uvm_vreg_field extends uvm_object

18.10.2 Methods

18.10.2.1 new

function new(
string name = "uvm_vreg_field"
)

Creates a new virtual field instance.

This method should not be used directly. The uvm_vreg_field::type_id::create method should be used
instead.

18.10.2.2 configure

function void configure(
uvm_vreg parent,
int unsigned size,
int unsigned lsb_pos

)

This is an instance-specific configuration.

This specifies the parent virtual register of this virtual field, its size in bits, and the position of its LSB within
the virtual register relative to the LSB of the virtual register.

18.10.3 Introspection

18.10.3.1 get_parent

virtual function uvm_vreg get_parent()

Returns the parent of the virtual field.
342
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.10.3.2 get_lsb_pos_in_register

virtual function int unsigned get_lsb_pos_in_register()

Returns the position of the virtual field; Or returns the index of the LSB of the virtual field in the virtual
register that instantiates it. An offset of 0 indicates a field that is aligned with the LSB of the register.

18.10.3.3 get_n_bits

virtual function int unsigned get_n_bits()

Returns the width, in bits, of the virtual field.

18.10.3.4 get_access

virtual function string get_access(
uvm_reg_map map = null

)

Returns the access policy of the virtual field register when written and read via an address map.

If the memory implementing the virtual field is mapped in more than one address map, an address map shall
be specified. If access restrictions are present when accessing a memory through the specified address map,
the access mode returned takes the access restrictions into account. For example, a read-write memory
accessed through an address map with read-only restrictions returns “RO”.

18.10.4 HDL access

18.10.4.1 write

virtual task write(
input longint unsigned idx,
output uvm_status_e status,
input uvm_reg_data_t value,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input uvm_sequence_base parent = null,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

This writes the value in the DUT memory location(s) (specified by idx) that implements the virtual field that
corresponds to this abstraction class instance using the specified access path. See 18.6.5.1 for additional
information.

18.10.4.2 read

virtual task read(
input longint unsigned idx,
output uvm_status_e status,
output uvm_reg_data_t value,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input uvm_sequence_base parent = null,
input uvm_object extension = null,
343
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
input string fname = "",
input int lineno = 0

)

This reads from the DUT memory location(s) (specified by idx) that implements the virtual field that
corresponds to this abstraction class instance using the specified access path and returns the read back value.
See 18.6.5.2 for additional information.

18.10.4.3 poke

virtual task poke(
input longint unsigned idx,
output uvm_status_e status,
input uvm_reg_data_t value,
input uvm_sequence_base parent = null,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

This deposits the value in the DUT memory location(s) (specified by idx) that implements the virtual field
corresponding to this abstraction class instance using the specified access path. See 18.6.5.5 for additional
information.

18.10.4.4 peek

virtual task peek(
input longint unsigned idx,
output uvm_status_e status,
output uvm_reg_data_t value,
input uvm_sequence_base parent = null,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

This samples from the DUT memory location(s) (specified by idx) that implements the virtual field
corresponding to this abstraction class instance using the specified access path and returns the read back
value. See 18.6.5.6 for additional information.

18.10.5 Callbacks

18.10.5.1 pre_write

virtual task pre_write(
longint unsigned idx,
ref uvm_reg_data_t wdat,
ref uvm_door_e path,
ref uvm_reg_map map

)

Called before virtual field write.

If the specified data value, access path, or address map are modified, the updated data value, access path, or
address map are used to perform the virtual register operation.
344
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
The virtual field callback methods are invoked before the callback methods on the containing virtual
register. The registered callback methods are invoked after the invocation of this method. The pre-write
virtual register and field callbacks are executed before the corresponding pre-write memory callbacks.

18.10.5.2 post_write

virtual task post_write(
longint unsigned idx,
uvm_reg_data_t wdat,
uvm_door_e path,
uvm_reg_map map,
ref uvm_status_e status

)

Called after virtual field write.

If the specified status is modified, the updated status is returned by the virtual register operation.

The virtual field callback methods are invoked after the callback methods on the containing virtual register.
The registered callback methods are invoked before the invocation of this method. The post-write virtual
register and field callbacks are executed after the corresponding post-write memory callbacks.

18.10.5.3 pre_read

virtual task pre_read(
longint unsigned idx,
ref uvm_door_e path,
ref uvm_reg_map map

)

Called before virtual field read.

If the specified access path or address map are modified, the updated access path or address map are used to
perform the virtual register operation.

The virtual field callback methods are invoked after the callback methods on the containing virtual register.
The registered callback methods are invoked after the invocation of this method. The pre-read virtual
register and field callbacks are executed before the corresponding pre-read memory callbacks.

18.10.5.4 post_read

virtual task post_read(
longint unsigned idx,
ref uvm_reg_data_t rdat,
uvm_door_e path,
uvm_reg_map map,
ref uvm_status_e status

)

Called after virtual field read.

If the specified read back data rdat or status is modified, the updated read back data or status is returned by
the virtual register operation.
345
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
The virtual field callback methods are invoked after the callback methods on the containing virtual register.
The registered callback methods are invoked before the invocation of this method. The post-read virtual
register and field callbacks are executed after the corresponding post-read memory callbacks.

18.10.6 uvm_vreg_field_cbs

The pre/post read/write callback facade class.

18.10.6.1 Class declaration

virtual class uvm_vreg_field_cbs extends uvm_callback

18.10.6.2 Callbacks

18.10.6.2.1 pre_write

virtual task pre_write(
uvm_vreg_field field,
longint unsigned idx,
ref uvm_reg_data_t wdat,
ref uvm_door_e path,
ref uvm_reg_map map

)

Called before a write operation.

The registered callback methods are invoked before the invocation of the virtual register pre-write callbacks
and after the invocation of the uvm_vreg_field::pre_write method (see 18.10.5.1).

If the specified wdat value, access path, or address map are modified, the updated value, access path, or
address map are used to perform the register operation.

18.10.6.2.2 post_write

virtual task post_write(
uvm_vreg_field field,
longint unsigned idx,
uvm_reg_data_t wdat,
uvm_door_e path,
uvm_reg_map map,
ref uvm_status_e status

)

Called after a write operation.

The registered callback methods are invoked after the invocation of the virtual register post-write callbacks
and before the invocation of the uvm_vreg_field::post_write method (see 18.10.5.2).

If the specified status is modified, the updated status is returned by the operation.

18.10.6.2.3 pre_read

virtual task pre_read(
uvm_vreg_field field,
longint unsigned idx,
346
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
ref uvm_door_e path,
ref uvm_reg_map map

)

Called before a virtual field read.

The registered callback methods are invoked after the invocation of the virtual register pre-read callbacks
and after the invocation of the uvm_vreg_field::pre_read method (see 18.10.5.3).

If the specified access path or address map are modified, the updated access path or address map are used to
perform the register operation.

18.10.6.2.4 post_read

virtual task post_read(
uvm_vreg_field field,
longint unsigned idx,
ref uvm_reg_data_t rdat,
uvm_door_e path,
uvm_reg_map map,
ref uvm_status_e status

)

Called after a virtual field read.

The registered callback methods are invoked after the invocation of the virtual register post-read callbacks
and before the invocation of the uvm_vreg_field::post_read method (see 18.10.5.4).

If the specified read back data rdat or status is modified, the updated read back data or status is returned by
the operation.

18.11 uvm_reg_cbs

This subclause defines the base class used for all register callback extensions. It also includes predefined
callback extensions for use on read-only and write-only registers. uvm_reg_cbs is the facade class for field,
register, memory and back-door access callback methods.

18.11.1 Class declaration

class uvm_reg_cbs extends uvm_callback

18.11.2 Methods

18.11.2.1 new

function new(
string name="uvm_reg_cbs"

)

This creates an instance of the register call back class with the specified name.

18.11.2.2 pre_write

virtual task pre_write(
uvm_reg_item rw

)

347
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Called before a write operation.

All registered pre_write callback methods are invoked after the invocation of the pre_write method of
associated object [uvm_reg_backdoor (see 19.5), uvm_reg (see 18.4), uvm_reg_field (see 18.5), or
uvm_mem (see 18.6)].

a) Back door—uvm_reg_backdoor::pre_write (see 19.5.2.13) and uvm_reg_cbs::pre_write
callbacks for back door.

b) Register—uvm_reg::pre_write (see 18.4.8.1) and uvm_reg_cbs::pre_write callbacks for reg; then
for each field: uvm_reg_field::pre_write (see 18.5.6.1) and uvm_reg_cbs::pre_write callbacks
for field.

When the element being written is a uvm_reg, all pre_write callback methods are invoked before
the contained uvm_reg_fields.

c) RegField—uvm_reg_field::pre_write (see 18.5.6.1) and uvm_reg_cbs::pre_write callbacks for
field.

d) Memory—uvm_mem::pre_write (see 18.6.9.1) and uvm_reg_cbs::pre_write callbacks for mem.

The rw argument holds information about the operation.

— Modifying the value modifies the actual value written.

— For memories, modifying the offset modifies the offset used in the operation.

— For non back-door operations, modifying the access path or address map modifies the actual path or
map used in the operation.

If the rw.status is modified to anything other than UVM_IS_OK (see 17.2.2.1), the operation is aborted. See
19.1.1 for more details on rw.

18.11.2.3 post_write

virtual task post_write(
uvm_reg_item rw

)

Called after a write operation.

All registered post_write callback methods are invoked before the invocation of the post_write method of
associated object [uvm_reg_backdoor (see 19.5), uvm_reg (see 18.4), uvm_reg_field (see 18.5), or
uvm_mem (see 18.6)].

a) Back door—uvm_reg_cbs::post_write callbacks for back door, uvm_reg_backdoor::post_write
(see 19.5.2.14).

b) Register—uvm_reg_cbs::post_write callbacks for reg, uvm_reg::post_write (see 18.4.8.2); then
for each field: uvm_reg_cbs::post_write callbacks for field, uvm_reg_field::post_write (see
18.5.6.2).

When the element being written is a uvm_reg, all post_write callback methods are invoked before
the contained uvm_reg_fields.

c) RegField— uvm_reg_cbs::post_write callbacks for field, uvm_reg_field::post_write (see
18.5.6.2).

d) Memory—uvm_reg_cbs::post_write callbacks for mem, uvm_mem::post_write (see 18.6.9.2).

The rw argument holds information about the operation.
348
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
— Modifying the status member modifies the returned status.

— Modifying the value or offset members has no effect, as the operation has already completed.

See 19.1.1 for more details on rw.

18.11.2.4 pre_read

virtual task pre_read(

uvm_reg_item rw

)

Called before a read operation.

All registered pre_read callback methods are invoked after the invocation of the pre_read method of
associated object [uvm_reg_backdoor (see 19.5), uvm_reg (see 18.4), uvm_reg_field (see 18.5), or
uvm_mem (see 18.6)].

a) Back door—uvm_reg_backdoor::pre_read (see 19.5.2.11) and uvm_reg_cbs::pre_read
callbacks for back door.

b) Register—uvm_reg::pre_read (see 18.4.8.3) and uvm_reg_cbs::pre_read callbacks for reg; then
for each field: uvm_reg_field::pre_read (see 18.5.6.3) and uvm_reg_cbs::pre_read callbacks for
field.

When the element being written is a uvm_reg, all pre_read callback methods are invoked before
the contained uvm_reg_fields.

c) RegField—uvm_reg_field::pre_read (see 18.5.6.3) and uvm_reg_cbs::pre_read callbacks for
field.

d) Memory—uvm_mem::pre_read (see 18.6.9.3) and uvm_reg_cbs::pre_read callbacks for mem.

The rw argument holds information about the operation.

— The value member of rw is not used and has no effect if modified.

— For memories, modifying the offset modifies the offset used in the operation.

— For non back-door operations, modifying the access path or address map modifies the actual path or
map used in the operation.

If the rw.status is modified to anything other than UVM_IS_OK (see 17.2.2.1), the operation is aborted. See
19.1.1 for more details on rw.

18.11.2.5 post_read

virtual task post_read(

uvm_reg_item rw

)

Called after a read operation.

All registered post_read callback methods are invoked before the invocation of the post_read method of
associated object [uvm_reg_backdoor (see 19.5), uvm_reg (see 18.4), uvm_reg_field (see 18.5), or
uvm_mem (see 18.6)].
349
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
a) Back door—uvm_reg_cbs::post_read callbacks for back door, uvm_reg_backdoor::post_read
(see 19.5.2.12).

b) Register—uvm_reg_cbs::post_read callbacks for reg, uvm_reg::post_read (see 18.4.8.4); then
for each field: uvm_reg_cbs::post_read callbacks for field, uvm_reg_field::post_read (see
18.5.6.4).

When the element being written is a uvm_reg, all post_read callback methods are invoked before
the contained uvm_reg_fields.

c) RegField— uvm_reg_cbs::post_read callbacks for field, uvm_reg_field::post_read (see
18.5.6.4).

d) Memory—uvm_reg_cbs::post_read callbacks for mem, uvm_mem::post_read (see 18.6.9.4).

The rw argument holds information about the operation.

— Modifying the read back value or status modifies the actual returned value or status.

— Modifying the value or offset members has no effect, as the operation has already completed.

See 19.1.1 for more details on rw.

18.11.2.6 post_predict

virtual function void post_predict(
input uvm_reg_field fld,
input uvm_reg_data_t previous,
inout uvm_reg_data_t value,
input uvm_predict_e kind,
input uvm_door_e path,
input uvm_reg_map map

)

Called by the uvm_reg_field::predict method (see 18.5.5.17) after a successful UVM_PREDICT_READ
or UVM_PREDICT_WRITE prediction (see 17.2.2.8).

previous is the previous value in the mirror and value is the latest predicted value. Any change to value
modifies the predicted mirror value.

18.11.2.7 encode

virtual function void encode(
ref uvm_reg_data_t data[]

)

This is a data encoder.

The registered callback methods are invoked in order of registration after all the pre_write methods (see
18.11.2.2) have been called. The encoded data is passed through each invocation in sequence. This allows
the pre_write methods to deal with clear-text data.

By default, the data is not modified.

18.11.2.8 decode

virtual function void decode(
ref uvm_reg_data_t data[]

)

350
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
This is a data decoder.

The registered callback methods are invoked in reverse order of registration before all the post_read
methods (see 18.11.2.5) are called. The decoded data is passed through each invocation in sequence. This
allows the post_read methods to deal with clear-text data.

The reversal of the invocation order is to allow the decoding of the data to be performed in the opposite
order of the encoding, with both operations specified in the same callback extension.

By default, the data is not modified.

18.11.3 Types

For a description of the convenience callback types for uvm_reg_cbs, see D.4.6.

18.11.4 uvm_reg_read_only_cbs

This is a predefined register callback class for read-only registers that generates an error if a write operation
is attempted.

18.11.4.1 Class declaration

virtual class uvm_reg_read_only_cbs extends uvm_reg_cbs

18.11.4.2 Methods

18.11.4.2.1 pre_write

virtual task pre_write(
uvm_reg_item rw

)

Generates an error message and sets status to UVM_NOT_OK (see17.2.2.1).

18.11.4.2.2 add

static function void add(
uvm_reg rg

)

Adds this callback to the specified register and its contained fields.

18.11.4.2.3 remove

static function void remove(
uvm_reg rg

)

Removes this callback from the specified register and its contained fields.

18.11.5 uvm_reg_write_only_cbs

This is a predefined register callback method for write-only registers that generates an error if a read
operation is attempted.
351
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.11.5.1 Class declaration

virtual class uvm_reg_write_only_cbs extends uvm_reg_cbs

18.11.5.2 Methods

18.11.5.2.1 pre_read

virtual task pre_read(
uvm_reg_item rw

)

Generates an error message and sets status to UVM_NOT_OK (see17.2.2.1).

18.11.5.2.2 add

static function void add(
uvm_reg rg

)

Adds this callback to the specified register and its contained fields.

18.11.5.2.3 remove

static function void remove(
uvm_reg rg

)

Removes this callback from the specified register and its contained fields.

18.12 uvm_mem_mam

The memory allocation management utility class is similar to C’s malloc and free functions. A single
instance of this class is used to manage the exclusive allocation of consecutive memory locations called
regions. The regions can subsequently be accessed like little memories of their own, without knowing in
which memory or offset they are actually located.

The memory allocation manager should be used by any application-level process that requires reserved
space in the memory, such as DMA buffers.

A region shall remain reserved until it is explicitly released.

18.12.1 Class declaration

class uvm_mem_mam

18.12.2 Types

18.12.2.1 alloc_mode_e

typedef enum {GREEDY, THRIFTY} alloc_mode_e

The memory allocation mode.
352
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Specifies how to allocate a memory region.

a) GREEDY—Consume new, previously unallocated memory.

b) THRIFTY—Reuse previously released memory as much as possible.

18.12.2.2 locality_e

typedef enum {BROAD, NEARBY} locality_e

Location of memory regions.

Specifies where to locate new memory regions.

a) BROAD—Locate new regions randomly throughout the address space.

b) NEARBY—Locate new regions adjacent to existing regions.

18.12.3 Variables

default_alloc

uvm_mem_mam_policy default_alloc

This is the region allocation policy.

This object is repeatedly randomized when allocating new regions.

18.12.4 Methods

18.12.4.1 new

function new(
string name,
uvm_mem_mam_cfg cfg,
uvm_mem mem = null

)

Creates a new manager instance of a memory allocation manager with the specified name and configuration.
This instance manages all memory region allocation within the address range specified in the configuration
descriptor.

If a reference to a memory abstraction class is provided, the memory locations within the regions can be
accessed through the region descriptor, using the uvm_mem_region::read (see 18.12.7.2.9) and
uvm_mem_region::write (see 18.12.7.2.8) methods. See 18.12.9 for more details on cfg.

18.12.4.2 reconfigure

function uvm_mem_mam_cfg reconfigure(
uvm_mem_mam_cfg cfg = null

)

Reconfigures the manager.

This modifies the maximum and minimum addresses of the address space managed by the allocation
manager, allocation mode, or locality. The number of bytes per memory location cannot be modified once
353
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
an allocation manager has been constructed. All currently allocated regions must fall within the new address
space.

This returns the previous configuration. If no new configuration is specified, this simply returns the current
configuration.

18.12.5 Memory management

18.12.5.1 reserve_region

function uvm_mem_region reserve_region(
bit [63:0] start_offset,
int unsigned n_bytes,
string fname = "",
int lineno = 0

)

Reserves a specific memory region of the specified number of bytes starting at the specified offset. A
descriptor of the reserved region is returned. If the specified region cannot be reserved, null is returned. The
default value of lineno shall be 0.

It may not be possible to reserve a region because it overlaps with an already allocated region or it lies
outside the address range managed by the memory manager.

Regions can be reserved to create “holes” in the managed address space.

18.12.5.2 request_region

function uvm_mem_region request_region(
int unsigned n_bytes,
uvm_mem_mam_policy alloc = null,
string fname = "",
int lineno = 0

)

Requests and reserves a memory region of the specified number of bytes starting at a random location. If a
policy is specified, it is randomized to determine the start offset of the region. If no policy is specified, the
policy found in the uvm_mem_mam::default_alloc class property (see 18.12.4.2) is randomized. The
default value of lineno shall be 0.

A descriptor of the allocated region is returned. If no region can be allocated, null is returned.

It may not be possible to allocate a region because there is no area in the memory with enough consecutive
locations to meet the size requirements or there is another contradiction when randomizing the policy.

If the memory allocation is configured to THRIFTY or NEARBY, a suitable region is first sought
procedurally.

18.12.5.3 release_region

function void release_region(
uvm_mem_region region

)

354
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Releases a previously allocated memory region. An error shall be generated if the specified region has not
been previously allocated or is no longer allocated. See 18.12.7 for more details on region.

18.12.5.4 release_all_regions

function void release_all_regions()

Forcibly releases all allocated memory regions.

18.12.6 Introspection

18.12.6.1 convert2string

function string convert2string()

Creates a human-readable description of the state of the memory manager and the currently allocated
regions.

18.12.6.2 for_each

function uvm_mem_region for_each(
bit reset = 0

)

This iterates over all currently allocated regions.

If reset is TRUE, this resets the iterator and returns the first allocated region. It returns null when there are no
additional allocated regions to iterate. The default value of reset shall be 0, which is FALSE.

18.12.6.3 get_memory

function uvm_mem get_memory()

Returns the managed memory implementation.

This returns the reference to the memory abstraction class for the memory implementing the locations
managed by this instance of the allocation manager. It returns null if no memory abstraction class was
specified at construction time.

18.12.7 uvm_mem_region

Each instance of this class describes an allocated memory region. Instances of this class are created only by
the memory manager and returned by the uvm_mem_mam::reserve_region (see 18.12.5.1) and
uvm_mem_mam::request_region (see 18.12.5.2) methods.

18.12.7.1 Class declaration

class uvm_mem_region

18.12.7.2 Methods

18.12.7.2.1 get_start_offset

function bit [63:0] get_start_offset()
355
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Returns the start offset of the region.

This returns the address offset, within the memory, where this memory region starts.

18.12.7.2.2 get_end_offset

function bit [63:0] get_end_offset()

Returns the end offset of the region.

This returns the address offset, within the memory, where this memory region ends.

18.12.7.2.3 get_len

function int unsigned get_len()

The size of the memory region.

This returns the number of consecutive memory locations (not necessarily bytes) in the allocated region.

18.12.7.2.4 get_n_bytes

function int unsigned get_n_bytes()

The number of bytes in the region.

This returns the number of consecutive bytes in the allocated region. If the managed memory contains more
than one byte per address, the number of bytes in an allocated region may be greater than the number of
requested or reserved bytes.

18.12.7.2.5 release_region

function void release_region()

Releases this region.

18.12.7.2.6 get_memory

function uvm_mem get_memory()

Returns the memory where the region resides.

This returns a reference to the memory abstraction class for the memory implementing this allocated
memory region. It returns null if no memory abstraction class was specified for the allocation manager that
allocated this region.

18.12.7.2.7 get_virtual_registers

function uvm_vreg get_virtual_registers()

Returns the virtual register array in this region.

This returns a reference to the virtual register array abstraction class implemented in this region. It returns
null if the memory region is not known to implement virtual registers.
356
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.12.7.2.8 write

task write(
output uvm_status_e status,
input uvm_reg_addr_t offset,
input uvm_reg_data_t value,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input uvm_sequence_base parent = null,
input int prior = -1,
input uvm object extension = null,
input string fname = "",
input int lineno = 0

)

Writes to the memory location that corresponds to the specified offset within this region. This requires that
the memory abstraction class be associated with the memory allocation manager that allocated this region.
See 18.6.5.1 for additional information.

18.12.7.2.9 read

task read(
output uvm_status_e status,
input uvm_reg_addr_t offset,
output uvm_reg_data_t value,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input uvm_sequence_base parent = null,
input int prior = -1,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

Reads from the memory location that corresponds to the specified offset within this region. This requires that
the memory abstraction class be associated with the memory allocation manager that allocated this region.
See 18.6.5.2 for additional information.

18.12.7.2.10 burst_write

task burst_write(
output uvm_status_e status,
input uvm_reg_addr_t offset,
input uvm_reg_data_t value[],
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input uvm_sequence_base parent = null,
input int prior = -1,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

Writes to the memory locations that corresponds to the specified burst within this region. This requires that
the memory abstraction class be associated with the memory allocation manager that allocated this region.
See 18.6.5.3 for additional information.
357
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
18.12.7.2.11 burst_read

task burst_read(
output uvm_status_e status,
input uvm_reg_addr_t offset,
output uvm_reg_data_t value[],
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input uvm_sequence_base parent = null,
input int prior = -1,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

Reads from the memory locations that corresponds to the specified burst within this region. This requires
that the memory abstraction class be associated with the memory allocation manager that allocated this
region. See 18.6.5.4 for additional information.

18.12.7.2.12 poke

task poke(
output uvm_status_e status,
input uvm_reg_addr_t offset,
input uvm_reg_data_t value,
input uvm_sequence_base parent = null,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

Deposits the specified value in the memory location that corresponds to the specified offset within this
region. This requires that the memory abstraction class be associated with the memory allocation manager
that allocated this region. See 18.6.5.5 for additional information.

18.12.7.2.13 peek

task peek(
output uvm_status_e status,
input uvm_reg_addr_t offset,
output uvm_reg_data_t value,
input uvm_sequence_base parent = null,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

Samples the memory location that corresponds to the specified offset within this region. This requires that
the memory abstraction class be associated with the memory allocation manager that allocated this region.
See 18.6.5.6 for additional information.

18.12.8 uvm_mem_mam_policy

An instance of this class is randomized to determine the starting offset of a randomly allocated memory
region. This class can be extended to provide additional constraints on the starting offset, such as word
358
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
alignment or location of the region within a memory page. If a procedural region allocation policy is
required, it can be implemented in the pre_randomize/post_randomize method.

18.12.8.1 Class declaration

class uvm_mem_mam_policy

18.12.8.2 Variables

18.12.8.2.1 len

int unsigned len

The number of addresses required.

18.12.8.2.2 start_offset

rand bit [63:0] start_offset

The starting offset of the region.

18.12.8.2.3 min_offset

bit [63:0] min_offset

The minimum address offset in the managed address space.

18.12.8.2.4 max_offset

bit [63:0] max_offset

The maximum address offset in the managed address space.

18.12.8.2.5 in_use

uvm_mem_region in_use[$]

The regions already allocated in the managed address space. in_use shall be a queue.

18.12.9 uvm_mem_mam_cfg

This specifies the memory managed by an instance of a uvm_mem_mam memory allocation manager class
(see 18.12).

18.12.9.1 Class declaration

class uvm_mem_mam_cfg

18.12.9.2 Variables

18.12.9.2.1 n_bytes

rand int unsigned n_bytes
359
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
The number of bytes in each memory location.

18.12.9.2.2 start_offset

rand bit [63:0] start_offset

The starting address of managed space.

18.12.9.2.3 end_offset

rand bit [63:0] end_offset

The last address of managed space.

18.12.9.2.4 mode

rand uvm_mem_mam::alloc_mode_e mode

The region allocation mode.

18.12.9.2.5 locality

rand uvm_mem_mam::locality_e locality

The region location mode.
360
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
19. Register layer interaction with RTL design

19.1 Generic register operation descriptors

This subclause defines the abstract register transaction item. It also defines a descriptor for a physical bus
operation that is used by uvm_reg_adapter subtypes (see 19.2.1) to convert from a protocol-specific
address/data/rw operation to a bus-independent, canonical rw operation.

19.1.1 uvm_reg_item

Defines an abstract register transaction item. No bus-specific information is present, although a handle to a
uvm_reg_map (see 18.2) is provided in case a user wishes to implement a custom address translation
algorithm.

19.1.1.1 Class declaration

class uvm_reg_item extends uvm_sequence_item

19.1.1.2 Methods for item use

19.1.1.2.1 Element kind

virtual function void set_element_kind (uvm_elem_kind_e element_kind)
virtual function uvm_elem_kind_e get_element_kind()

Kind of element being accessed: UVM_REG, UVM_MEM, or UVM_FIELD (see 18.2.5).
get_element_kind shall return the most recent element_kind assigned via set_element_kind. The value
returned by get_element_kind prior to any set_element_kind call is undefined.

19.1.1.2.2 Element

virtual function void set_element (uvm_object element)
virtual function uvm_object get_element()

A handle to the RegModel model element associated with this transaction. Use the element king (see
19.1.1.2.1) to determine the type to cast to: uvm_reg (see 18.4), uvm_mem (see 18.6), or uvm_reg_field
(see 18.5). get_element shall return the most recent element assigned via set_element. The value returned
by get_element prior to any set_element call shall be null.

19.1.1.2.3 Kind

virtual function void set_kind (uvm_access_e kind)
virtual function uvm_access_e get_kind()

Kind of access: UVM_READ, UVM_WRITE, UVM_BURST_READ, or UVM_BURST_WRITE (see
17.2.2.6). get_kind shall return the most recent kind assigned via set_kind. The value returned by get_kind
prior to any set_kind call is undefined.

19.1.1.2.4 Data value

virtual function void set_value (uvm_reg_data_t value, int unsigned idx=0)
virtual function uvm_reg_data_t get_value (int unsigned idx=0)
361
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
virtual function void set_value_size (int unsigned sz)
virtual function int unsigned get_value_size()

virtual function void set_value_array (const ref uvm_reg_data_t value[])
virtual function void get_value_array (ref uvm_reg_data_t value[])

The value to write to, or after completion, the value read from the DUT.

get_value_size shall return the size of the item’s internal value array. By default, the item stores a single
value element (i.e., get_value_size returns 1). Burst operations may change the size of the item’s internal
value array using set_value_size. Data values at indexes less than sz are unaffected by set_value_size. Any
new data values created by passing a sz greater than the current get_value_size shall be initialized to 0.

A warning message shall be issued if the idx of set_value is equal to or greater than the current
get_value_size, and the request shall be ignored. If get_value is called with an idx equal to or greater than
get_value_size, then a warning message shall be issued and 0 shall be returned.

Additionally, methods are provided for efficiently getting or setting item value(s) using dynamic arrays.
set_value_array shall be functionally equivalent to calling set_value_size, followed by set_value for each
value in the value array. get_value_array shall be functionally equivalent to calling
new[item.get_value_size] on value and then passing in the values returned by get_value.

19.1.1.2.5 Offset

virtual function void set_offset (uvm_reg_addr_t offset)
virtual function uvm_reg_addr_t get_offset()

For memory accesses, the offset address. For bursts, the starting offset address. get_offset shall return the
most recent offset assigned via set_offset. The value returned by get_offset prior to any set_offset call is 0.

19.1.1.2.6 Status

virtual function void set_status (uvm_status_e status)
virtual function uvm_status_e get_status()

The result of the transaction: UVM_IS_OK, UVM_HAS_X, or UVM_NOT_OK (see 17.2.2.1). get_status
shall return the most recent status assigned via set_status. The value returned by get_status prior to any
set_status call is undefined.

19.1.1.2.7 Local map

virtual function void set_local_map (uvm_reg_map map)
virtual function uvm_reg_map get_local_map()

The local map used to obtain addresses. Users may customize address-translation using this map. Access to
the sequencer and bus adapter can be obtained by retrieving this map’s root map, then calling
uvm_reg_map::get_sequencer (see 18.2.4.8) and uvm_reg_map::get_adapter (see 18.2.4.9).
get_local_map shall return the most recent map assigned via set_local_map. The value returned by
get_local_map prior to any set_local_map call is null.

19.1.1.2.8 Map

virtual function void set_map (uvm_reg_map map)
virtual function uvm_reg_map get_map()
362
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
The original map specified for the operation. The actual map used may differ when a test or sequence
written at the block level is reused at the system level. get_map shall return the most recent map assigned
via set_map. The value returned by get_map prior to any set_map call is null.

19.1.1.2.9 Door

virtual function void set_door (uvm_door_e door)
virtual function uvm_door_e get_door()

The door being used (see 17.2.2.2). get_door shall return the most recent door assigned via set_door. The
value returned by get_door prior to any set_door call is undefined.

19.1.1.2.10 Parent sequence

virtual function void set_parent_sequence (uvm_sequence_base parent)
virtual function uvm_sequence_base get_parent_sequence()

The sequence from which the operation originated. get_parent_sequence shall return the most recent
parent assigned via set_parent_sequence. The value returned by get_parent_sequence prior to any
set_parent_sequence call is null.

19.1.1.2.11 Priority

virtual function void set_priority (int value)
virtual function int get_priority()

The priority requested of this transfer, as defined by uvm_sequence_base::start_item (see 14.2.6.2).
get_priority shall return the most recent value assigned via set_priority. The value returned by
get_priority prior to any set_priority call is -1.

19.1.1.2.12 Extension

virtual function void set_extension (uvm_object extension)
virtual function uvm_object get_extension()

A handle to optional user data, as conveyed in the call to write, read, mirror, or update, which is used to
trigger the operation. get_extension shall return the most recent extension assigned via set_extension. The
value returned by get_extension prior to any set_extension call is null.

19.1.1.2.13 Back door kind

virtual function void set_bd_kind (string bd_kind)
virtual function string get_bd_kind()

When path is UVM_BACKDOOR (see 19.1.1.2.9), this member specifies the abstraction kind for the back-
door access, e.g., “RTL”. get_bd_kind shall return the most recent bd_kind assigned via set_bd_kind. The
value returned by get_bd_kind prior to any set_bd_kind call is an empty string ("").

19.1.1.2.14 File name

virtual function void set_fname (string fname)
virtual function string get_fname()
363
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
The file name from where this transaction originated, if provided at the call site. get_fname shall return the
most recent fname assigned via set_fname. The value returned by get_fname prior to any set_fname call is
an empty string ("").

19.1.1.2.15 Line number

virtual function void set_line (int line)
virtual function int get_line()

The line number from where this transaction originated, if provided at the call site. get_line shall return the
most recent line assigned via set_line. The value returned by get_line prior to any set_line call is 0.

19.1.1.3 Methods for item sub-typing

19.1.1.3.1 new

function new(
string name = ""

)

Creates a new instance of this type, giving it the optional name.

19.1.1.3.2 convert2string

virtual function string convert2string()

Returns a string showing the contents of this transaction.

19.1.2 uvm_reg_bus_op

A struct that defines a generic bus transaction for register and memory accesses, having kind (read or write),
address, data, and byte enable information. If the bus is narrower than the register or memory location being
accessed, there shall be multiples of these bus operations for every abstract uvm_reg_item transaction (see
19.1.1). In this case, data represents the portion of uvm_reg_item::value (see 19.1.1.2.4) being transferred
during this bus cycle. If the bus is wide enough to perform the register or memory operation in a single
cycle, data is the same as the uvm_reg_item::value.

uvm_reg_bus_op has the following Properties.

19.1.2.1 kind

uvm_access_e kind

The kind of access: READ or WRITE.

19.1.2.2 addr

uvm_reg_addr_t addr

This is the bus address.

19.1.2.3 data

uvm_reg_data_t data
364
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
The data to write or read. If the bus width is smaller than the register or memory width, data represents only
the portion of value that is being transferred this bus cycle.

19.1.2.4 n_bits

int n_bits

The number of bits of uvm_reg_item::value (see 19.1.1.2.4) being transferred by this transaction.

19.1.2.5 byte_en

uvm_reg_byte_en_t byte_en

Specifies the enables for the byte lanes on the bus. Meaningful only when the bus supports byte enables and
the operation originates from a field write/read.

19.1.2.6 status

uvm_status_e status

The result of the transaction: UVM_IS_OK, UVM_HAS_X, or UVM_NOT_OK. See 17.2.2.1.

19.2 Classes for adapting between register and bus operations

This subclause defines the classes used to convert transaction streams between generic register address/data
reads and writes and physical bus accesses.

19.2.1 uvm_reg_adapter

This class defines an interface for converting between a uvm_reg_bus_op (see 19.1.2) and a specific bus
transaction.

19.2.1.1 Class declaration

virtual class uvm_reg_adapter extends uvm_object

19.2.1.2 Common methods

19.2.1.2.1 new

function new(
string name = ""

)

Creates a new instance of this type, giving it the optional name.

19.2.1.2.2 supports_byte_enable

bit supports_byte_enable

Specifies this bit in extensions of this class if the bus protocol supports byte enables.
365
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
19.2.1.2.3 provides_responses

bit provides_responses

Specifies this bit in extensions of this class if the bus driver provides separate response items.

19.2.1.2.4 parent_sequence

uvm_sequence_base parent_sequence

Specifies this member in extensions of this class if the bus driver requires bus items be executed via a
particular sequence base type. The sequence assigned to this member needs to implement do_clone.

19.2.1.2.5 reg2bus

pure virtual function uvm_sequence_item reg2bus(
const ref uvm_reg_bus_op rw

)

Extensions of this class need to implement this method to convert the specified uvm_reg_bus_op (see
19.1.2) to a corresponding uvm_sequence_item subtype (see 14.1) that defines the bus transaction.

The method shall allocate a new bus-specific uvm_sequence_item, assign its members from the
corresponding members from the given generic rw bus operation, then return it.

19.2.1.2.6 bus2reg

pure virtual function void bus2reg(
uvm_sequence_item bus_item,

ref uvm_reg_bus_op rw
)

Extensions of this class need to implement this method to copy members of the given bus-specific bus_item
to corresponding members of the provided rw instance. Unlike reg2bus (see 19.2.1.2.5), the resulting
transaction is not allocated from scratch. This is to accommodate applications where the bus response needs
to be returned in the original request.

19.2.1.2.7 get_item

virtual function uvm_reg_item get_item()

This returns the bus-independent read/write information corresponding to the generic bus transaction
currently translated to a bus-specific transaction. This function returns a value reference only when called in
the uvm_reg_adapter::reg2bus method (see 19.2.1.2.5); otherwise, it returns null. The content of the
returned uvm_reg_item instance (see 19.1.1) shall not be modified and is used strictly to obtain additional
information about the operation.

19.2.2 uvm_reg_tlm_adapter

This class defines an interface for converting between uvm_reg_bus_op (see 19.1.2) and uvm_tlm_gp (see
12.3.4.3) items.

19.2.2.1 Class declaration

class uvm_reg_tlm_adapter extends uvm_reg_adapter
366
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
19.2.2.2 Methods

19.2.2.2.1 reg2bus

virtual function uvm_sequence_item reg2bus(
const ref uvm_reg_bus_op rw

)

Converts a uvm_reg_bus_op struct (see 19.1.2) to a uvm_tlm_gp item (see 12.3.4.3).

19.2.2.2.2 bus2reg

virtual function void bus2reg(
uvm_sequence_item bus_item,

ref uvm_reg_bus_op rw
)

Converts a uvm_tlm_gp item (see 12.3.4.3) to a uvm_reg_bus_op (see 19.1.2), using the provided rw
transaction.

19.3 uvm_reg_predictor

The uvm_reg_predictor class defines a predictor component, which is used to update the register model’s
mirror values based on transactions explicitly observed on a physical bus.

This class converts observed bus transactions of type BUSTYPE to generic registers transactions, determines
how the register is being accessed based on the bus address, then updates the register’s mirror value with the
observed bus data, subject to the register’s access mode. See 18.4.4.15 for details.

Memories can be large, so their accesses are not predicted.

19.3.1 Class declaration

class uvm_reg_predictor #(
type BUSTYPE = int

) extends uvm_component

19.3.2 Variables

19.3.2.1 bus_in

uvm_analysis_imp #(
BUSTYPE,

uvm_reg_predictor #(BUSTYPE)
) bus_in

Observed bus transactions of type BUSTYPE are received from this port and processed.

For each incoming transaction, the predictor attempts to find the register handle corresponding to the
observed bus address.

If there is a match, the predictor calls the register’s predict method, passing in the observed bus data. The
register mirror is updated with this data, subject to its configured access behavior: RW, RO, etc. The predictor
367
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
also converts the bus transaction to a generic uvm_reg_item (see 19.1.1) and sends it out the reg_ap
analysis port (see 19.3.2.2).

If the register is wider than the bus, the predictor collects the multiple bus transactions needed to determine
the value being read or written.

19.3.2.2 reg_ap

uvm_analysis_port #(
uvm_reg_item

) reg_ap

This is an analysis output port that publishes uvm_reg_item transactions (see 19.1.1) converted from bus
transactions received on bus_in (see 19.3.2.1).

19.3.2.3 map

uvm_reg_map map

This is the map used to convert a bus address to the corresponding register or memory handle. It needs to be
configured before the run phase.

19.3.2.4 adapter

uvm_reg_adapter adapter

This is the adapter used to convey the parameters of a bus operation in terms of a canonical
uvm_reg_bus_op datum (see 19.1.2). The uvm_reg_adapter (see 19.2.1) needs to be configured before the
run phase.

19.3.3 Methods

19.3.3.1 new

function new (
string name,
uvm_component parent

)

Creates a new instance of this type, giving it the optional name and parent.

19.3.3.2 pre_predict

virtual function void pre_predict(
uvm_reg_item rw

)

Override this method to change the value or redirect the target register.

19.3.3.3 check_phase

virtual function void check_phase(
uvm_phase phase

)

368
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Checks that no pending register transactions are still queued.

19.4 Register sequence classes

This subclause defines the base classes used for register stimulus generation.

19.4.1 uvm_reg_sequence

This class provides base functionality for both user-defined RegModel test sequences and “register
translation sequences.”

— When used as a base for user-defined RegModel test sequences, this class provides convenience
methods for reading and writing registers and memories. Users implement the body method to
interact directly with the RegModel model [held in the model property (see 19.4.1.3.1)] or
indirectly via the delegation methods in this class.

— When used as a translation sequence, objects of this class are executed directly on a bus sequencer,
which are used in support of a layered sequencer use model; a predefined convert-and-execute
algorithm is also provided.

Register operations do not require extending this class if none of the preceding services are needed. Register
test sequences can be extended from the uvm_sequence #(REQ,RSP) base class (see 14.3) or even from
outside a sequence.

This class defines convenience methods.

19.4.1.1 Class declaration

class uvm_reg_sequence #(
type BASE = uvm_sequence #(uvm_reg_item)

) extends BASE

19.4.1.2 Common parameters

BASE

Specifies the sequence type from which to extend.

— When used as a translation sequence running on a bus sequencer, BASE shall be compatible with the
sequence type expected by the bus sequencer.

— When used as a test sequence running on a particular sequencer, BASE shall be compatible with the
sequence type expected by that sequencer.

— When used as a virtual test sequence without a sequencer, BASE does not need to be specified, i.e.,
the default specialization is adequate.

To maximize opportunities for reuse, user-defined RegModel sequences should “promote” the BASE
parameter.

class my_reg_sequence #(type BASE=uvm_sequence #(uvm_reg_item))
extends uvm_reg_sequence #(BASE)

This way, the RegModel sequence can be extended from user-defined base sequences.
369
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
19.4.1.3 Variables

19.4.1.3.1 model

uvm_reg_block model

Block abstraction on which this sequence executes, defined only when this sequence is a user-defined test
sequence.

19.4.1.3.2 adapter

uvm_reg_adapter adapter

This is an adapter to use for translating between abstract register transactions and physical bus transactions,
defined only when this sequence is a translation sequence.

19.4.1.3.3 reg_seqr

uvm_sequencer #(
uvm_reg_item

) reg_seqr

This is a layered upstream “register” sequencer.

It specifies the upstream sequencer between abstract register transactions and physical bus transactions. This
is defined only when this sequence is a translation sequence to “pull” from an upstream sequencer.

19.4.1.4 Common methods

19.4.1.4.1 new

function new (
string name = "uvm_reg_sequence_inst"

)

Creates a new instance, giving it the optional name.

19.4.1.4.2 body

virtual task body()

Continually retrieves a register transaction from the configured upstream sequencer, reg_seqr (see
19.4.1.3.3), and executes the corresponding bus transaction via do_reg_item (see 19.4.1.4.3).

User-defined RegModel test sequences need to override body and not call super.body(); otherwise, a
warning shall be issued and the calling process does not return.

19.4.1.4.3 do_reg_item

virtual task do_reg_item(uvm_reg_item rw)

Executes the given register transaction, rw, via the sequencer on which this sequence was started. This uses
the configured adapter (see 19.4.1.3.2) to convert the register transaction into the type expected by this
sequencer.
370
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
19.4.1.5 Convenience read/write APIs

The following methods delegate to the corresponding method in the register or memory element. They allow
a sequence body (see 19.4.1.4.2) to do reads and writes without having to explicitly supply itself to the
parent sequence argument. Thus, a register write

model.regA.write(status, value, .parent(this))

could be written instead as

write_reg(model.regA, status, value)

19.4.1.5.1 write_reg

virtual task write_reg(
input uvm_reg rg,
output uvm_status_e status,
input uvm_reg_data_t value,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input int prior = -1,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

Writes the given register rg using uvm_reg::write (see 18.4.4.9), supplying this as the parent argument.
The default value of path shall be UVM_DEFAULT_DOOR. The default value of prior shall be -1. The
default value of lineno shall be 0.

19.4.1.5.2 read_reg

virtual task read_reg(
input uvm_reg rg,
output uvm_status_e status,
output uvm_reg_data_t value,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input int prior = -1,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

Reads the given register rg using uvm_reg::read (see 18.4.4.10), supplying this as the parent argument.
The default value of path shall be UVM_DEFAULT_DOOR. The default value of prior shall be -1. The
default value of lineno shall be 0.

Thus,

read_reg(model.regA, status, value)

is equivalent to

model.regA.read(status, value, .parent(this))
371
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
19.4.1.5.3 poke_reg

virtual task poke_reg(
input uvm_reg rg,
output uvm_status_e status,
input uvm_reg_data_t value,
input string kind = "",
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

Pokes the given register rg using uvm_reg::poke (see 18.4.4.11), supplying this as the parent argument.
The default value of lineno shall be 0.

Thus,

poke_reg(model.regA, status, value)

is equivalent to

model.regA.poke(status, value, .parent(this))

19.4.1.5.4 peek_reg

virtual task peek_reg(
input uvm_reg rg,
output uvm_status_e status,
output uvm_reg_data_t value,
input string kind = "",
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

Peeks the given register rg using uvm_reg::peek (see 18.4.4.12), supplying this as the parent argument.
The default value of lineno shall be 0.

Thus,

peek_reg(model.regA, status, value)

is equivalent to

model.regA.peek(status, value, .parent(this))

19.4.1.5.5 update_reg

virtual task update_reg(
input uvm_reg rg,
output uvm_status_e status,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input int prior = -1,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

372
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Updates the given register rg using uvm_reg::update (see 18.4.4.13), supplying this as the parent
argument. The default value of path shall be UVM_DEFAULT_DOOR. The default value of prior shall be -1.
The default value of lineno shall be 0.

Thus,

update_reg(model.regA, status, value)

is equivalent to

model.regA.update(status, value, .parent(this))

19.4.1.5.6 mirror_reg

virtual task mirror_reg(
input uvm_reg rg,
output uvm_status_e status,
input uvm_check_e check = UVM_NO_CHECK,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input int prior = -1,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

Mirrors the given register rg using uvm_reg::mirror (see 18.4.4.14), supplying this as the parent
argument. The default value of check shall be UVM_NO_CHECK. The default value of path shall be
UVM_DEFAULT_DOOR. The default value of prior shall be -1. The default value of lineno shall be 0.

Thus,

mirror_reg(model.regA, status, value)

is equivalent to

model.regA.mirror(status, value, .parent(this))

19.4.1.5.7 write_mem

virtual task write_mem(
input uvm_mem mem,
output uvm status e status,
input uvm_reg_addr_t offset,
input uvm_reg_data_t value,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input int prior = -1,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

Writes the given memory mem using uvm_mem::write (see 18.6.5.1), supplying this as the parent
argument. The default value of path shall be UVM_DEFAULT_DOOR. The default value of prior shall be -1.
The default value of lineno shall be 0.
373
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Thus,

write_mem(model.memA, status, offset, value)

is equivalent to

model.memA.write(status, offset, value, .parent(this))

19.4.1.5.8 read_mem

virtual task read_mem(
input uvm_mem mem,
output uvm_status_e status,
input uvm_reg_addr_t offset,
output uvm_reg_data_t value,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input int prior = -1,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

Reads the location offset in the given memory mem using uvm_mem::read (see 18.6.5.2), supplying this
as the parent argument. The default value of path shall be UVM_DEFAULT_DOOR. The default value of
prior shall be -1. The default value of lineno shall be 0.

Thus,

read_mem(model.memA, status, offset, value)

is equivalent to

model.memA.read(status, offset, value, .parent(this))

19.4.1.5.9 poke_mem

virtual task poke_mem(
input uvm_mem mem,
output uvm_status_e status,
input uvm_reg_addr_t offset,
input uvm_reg_data_t value,
input string kind = "",
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

Pokes the location offset in the given memory mem using uvm_mem::poke (see 18.6.5.5), supplying this
as the parent argument. The default value of lineno shall be 0.

Thus,

poke_mem(model.memA, status, offset, value)

is equivalent to

model.memA.poke(status, offset, value, .parent(this))
374
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
19.4.1.5.10 peek_mem

virtual task peek_mem(
input uvm_mem mem,
output uvm_status_e status,
input uvm_reg_addr_t offset,
output uvm_reg_data_t value,
input string kind = "",
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

Peeks the location offset in the given memory mem using uvm_mem::peek (see 18.6.5.6), supplying this
as the parent argument. The default value of lineno shall be 0.

Thus,

peek_mem(model.memA, status, offset, value)

is equivalent to

model.memA.peek(status, offset, value, .parent(this))

19.4.2 uvm_reg_frontdoor

The facade class for register and memory front-door access; a user-defined front-door access sequence.

This is the base class for user-defined access to register and memory reads and writes through a physical
interface. By default, different registers and memories are mapped to different addresses in the address space
and are accessed via those physical addresses.

The front-door allows access using a non-linear and/or non-mapped mechanism. Users can extend this class
to provide the physical access to these registers.

19.4.2.1 Class declaration

virtual class uvm_reg_frontdoor extends uvm_reg_sequence
#(

uvm_sequence #(uvm_sequence_item)
)

19.4.2.2 Variables

19.4.2.2.1 rw_info

uvm_reg_item rw_info

Holds information about the register being read or written.

19.4.2.2.2 sequencer

uvm_sequencer_base sequencer

This is the sequencer executing the operation.
375
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
19.4.2.3 Methods

new

function new(

string name = ""

)

This is a constructor; it creates a new object given the optional name.

19.5 uvm_reg_backdoor

The base class for user-defined back-door register and memory access.

This class can be extended by users to provide user-specific back-door access to registers and memories that
are not implemented in pure SystemVerilog or that are not accessible using the default DPI back-door
mechanism.

19.5.1 Class declaration

virtual class uvm_reg_backdoor extends uvm_object

19.5.2 Methods

19.5.2.1 new

function new(

string name = ""

)

Initializes an instance of the user-defined back-door class for the specified register or memory.

19.5.2.2 do_pre_read

protected task do_pre_read(

uvm_reg_item rw

)

Executes the pre-read callbacks.

This method shall be called as the first statement in a user extension of the read method (see 19.5.2.7).

19.5.2.3 do_post_read

protected task do_post_read(

uvm_reg_item rw

)

Executes the post-read callbacks

This method shall be called as the last statement in a user extension of the read method (see 19.5.2.7).
376
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
19.5.2.4 do_pre_write

protected task do_pre_write(
uvm_reg_item rw

)

Executes the pre-write callbacks.

This method shall be called as the first statement in a user extension of the write method (see 19.5.2.6).

19.5.2.5 do_post_write

protected task do_post_write(
uvm_reg_item rw

)

Execute the post-write callbacks

This method shall be called as the last statement in a user extension of the write method (see 19.5.2.6).

19.5.2.6 write

protected task write(
uvm_reg_item rw

)

A user-defined back-door write operation.

This calls do_pre_write (see 19.5.2.4) and deposits the specified value in the specified register HDL
implementation. Then it calls do_post_write (see 19.5.2.5) and returns an indication of the success of the
operation.

19.5.2.7 read

virtual task read(
uvm_reg_item rw

)

A user-defined back-door read operation; overload this method only if the back door requires the use of task.

This calls do_pre_read (see 19.5.2.2) and peeks the current value of the specified HDL implementation.
Then it calls do_post_read (see 19.5.2.3) and returns the current value and an indication of the success of
the operation.

By default, this calls read_func (see 19.5.2.8) to perform the peek step.

19.5.2.8 read_func

virtual function void read_func(
uvm_reg_item rw

)

A user-defined back-door read operation.
377
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
This peeks the current value in the HDL implementation. It then returns the current value and an indication
of the success of the operation.

19.5.2.9 is_auto_updated

virtual function bit is_auto_updated(
uvm_reg_field field

)

Indicates if a wait_for_change method (see 19.5.2.10) is implemented for the given field.

This returns TRUE if and only if wait_for_change is implemented to watch for changes in the HDL
implementation of the specified field.

19.5.2.10 wait_for_change

virtual local task wait_for_change(
uvm_object element

)

Wait for a change in the value of the register or memory element in the DUT.

19.5.2.11 pre_read

virtual task pre_read(
uvm_reg_item rw

)

Called before any user-defined back-door register reads.

The registered callback methods are invoked after the invocation of this method.

19.5.2.12 post_read

virtual task post_read(
uvm_reg_item rw

)

Called after any user-defined back-door register reads.

The registered callback methods are invoked before the invocation of this method.

19.5.2.13 pre_write

virtual task pre_write(
uvm_reg_item rw

)

Called before any user-defined back-door register writes.

The registered callback methods are invoked after the invocation of this method.

The written value, if modified, modifies the actual value to be written.
378
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
19.5.2.14 post_write

virtual task post_write(
uvm_reg_item rw

)

Called after any user-defined back-door register writes.

The registered callback methods are invoked before the invocation of this method.

19.6 UVM HDL back-door access support routines

These routines provide an interface to the DPI/PLI/VHPI/application-API implementation of back-door
access used by registers.

NOTE—To avoid having to use these APIs, define the UVM_HDL_NO_DPI macro at compile time.

19.6.1 Variables

UVM_HDL_MAX_WIDTH

parameter int UVM_HDL_MAX_WIDTH = `UVM_HDL_MAX_WIDTH

Specifies the maximum size bit vector for back-door access.

The default value of UVM_HDL_MAX_WIDTH shall be `UVM_HDL_MAX_WIDTH.

19.6.2 Methods

19.6.2.1 uvm_hdl_check_path

import "DPI-C" context function int uvm_hdl_check_path(
string path

)

Checks that the given HDL path exists. This returns 0 if not found, 1 otherwise.

19.6.2.2 uvm_hdl_deposit

import "DPI-C" context function int uvm_hdl_deposit(
string path,
uvm_hdl_data_t value

)

Specifies the given HDL path as the specified value. This returns 1 if the call succeeded, 0 otherwise.

19.6.2.3 uvm_hdl_force

import "DPI-C" context function int uvm_hdl_force(
string path,
uvm_hdl_data_t value

)

Forces the value on the given path. This returns 1 if the call succeeded, 0 otherwise.
379
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
19.6.2.4 uvm_hdl_force_time

task uvm_hdl_force_time(

string path,

uvm_hdl_data_t value,

time force_time = 0

)

Forces the value on the given path for the specified amount of force_time. If force_time is 0,
uvm_hdl_deposit (see 19.6.2.2) is called. This returns 1 if the call succeeded, 0 otherwise. The default
value of force_time shall be 0.

19.6.2.5 uvm_hdl_release_and_read

import "DPI-C" context function int uvm_hdl_release_and_read(

string path,

inout uvm_hdl_data_t value

)

Releases a value previously specified by uvm_hdl_force (see 19.6.2.3). This returns 1 if the call succeeded,
0 otherwise. value is reset to the HDL value after the release. For reg, the value remains the forced value
until it has been procedurally reassigned. For wire, the value changes immediately to the resolved value of
its continuous drivers, if any. If none, its value remains as forced until the next direct assignment.

19.6.2.6 uvm_hdl_release

import "DPI-C" context function int uvm_hdl_release(

string path

)

Releases a value previously specified by uvm_hdl_force (see 19.6.2.3). This returns 1 if the call succeeded,
0 otherwise.

19.6.2.7 uvm_hdl_read

import "DPI-C" context function int uvm_hdl_read(

string path,

output uvm_hdl_data_t value

)

Returns the value at the given path. This returns 1 if the call succeeded, 0 otherwise.
380
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

381
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual

Annex A

(informative)

Bibliography

[B1] IEEE Std 1003.1™-2008, IEEE Standard for Information Technology—Portable Operating System
Interface (POSIX).9, 10

[B2] IEEE Std 1666™, IEEE Standard for System C Language Reference Manual.

[B3] IEEE Std 1685™, IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating, and
Reusing IP within Tool Flows.

9The IEEE standards or products referred to in Annex A are trademarks owned by the Institute of Electrical and Electronics Engineers,
Incorporated.
10IEEE publications are available from the Institute of Electrical and Electronics Engineers (http://standards.ieee.org).

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Annex B

(normative)

Macros and defines

UVM includes some macros to allow the user to specify intent without the need to specify multiple types of
SystemVerilog constructs. These macros assist with reporting, object behavior (interaction with the factory
and field usage in comparing/copying, etc.), sequence specification, and UVM TLM connection.

UVM also includes some defines to specify sizing in the register space and to determine version of the UVM
standard and/or implementation.

B.1 Report macros

This set of macros provides wrappers around the uvm_report_* reporting functions (see F.2.2). The macros
serve two essential purposes, as follows:

— To reduce the processing overhead associated with filtered out info messages, a check is made
against the report’s verbosity setting and the action for the id/severity pair before any string
formatting is performed.

— The `__FILE__ and `__LINE__ information is automatically provided to the underlying
uvm_report_* call. Having the file and line number from where a report was issued aides in
debugging.

The macros also enforce a verbosity setting of UVM_NONE for warnings, errors, and fatals.

While the implementation of the macros is not strictly defined, the following restrictions are placed upon the
implementation:

— The implementation shall be a complete SystemVerilog statement.

— No time consuming statements shall be introduced.

B.1.1 Basic messaging macros

B.1.1.1 `uvm_info

`uvm_info(ID, MSG, VERBOSITY)

Calls uvm_report_info (see F.3.2.3) if VERBOSITY is lower than the configured verbosity of the associated
reporter. ID is the message tag and MSG is the message text. The file and line are also sent to the
uvm_report_info call.

B.1.1.2 `uvm_warning

`uvm_warning(ID, MSG)

Calls uvm_report_warning (see F.3.2.3) with a verbosity of UVM_NONE. ID is the message tag and MSG is
the message text. The file and line are also sent to the uvm_report_warning call.
382
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
B.1.1.3 `uvm_error

`uvm_error(ID, MSG)

Calls uvm_report_error (see F.3.2.3) with a verbosity of UVM_NONE. ID is the message tag and MSG is the
message text. The file and line are also sent to the uvm_report_error call.

B.1.1.4 `uvm_fatal

`uvm_fatal(ID, MSG)

Calls uvm_report_fatal (see F.3.2.3) with a verbosity of UVM_NONE. ID is the message tag and MSG is the
message text. The file and line are also sent to the uvm_report_fatal call.

B.1.1.5 `uvm_info_context

`uvm_info_context(ID, MSG, VERBOSITY, RO)

Operates identically to `uvm_info (see B.1.1.1), but requires that the context, or uvm_report_object (see
6.3), in which the message is printed is also explicitly supplied as a macro argument. RO is an optional
reference to a user-declared report message that will be used by the macro.

B.1.1.6 `uvm_warning_context

`uvm_warning_context(ID, MSG, RO)

Operates identically to `uvm_warning (see B.1.1.2), but requires that the context, or uvm_report_object
(see 6.3), in which the message is printed is also explicitly supplied as a macro argument. RO is an optional
reference to a user-declared report message that will be used by the macro.

B.1.1.7 `uvm_error_context

`uvm_error_context(ID, MSG, RO)

Operates identically to `uvm_error (see B.1.1.3), but requires that the context, or uvm_report_object (see
6.3), in which the message is printed is also explicitly supplied as a macro argument.

B.1.1.8 `uvm_fatal_context

`uvm_fatal_context(ID, MSG, RO)

Operates identically to `uvm_fatal (see B.1.1.4), but requires that the context, or uvm_report_object (see
6.3), in which the message is printed is also explicitly supplied as a macro argument. RO is an optional
reference to a user-declared report message that will be used by the macro.

B.2 Utility and field macros for components and objects

B.2.1 Utility macros

The utils macros define the infrastructure needed to enable the object/component for correct factory
operation. See B.2.1.2 and B.2.1.3 for details.
383
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
A utils macro should be used inside every user-defined class that extends uvm_object directly or indirectly
(see 5.3), including uvm_sequence_item (see 14.1) and uvm_component (see 13.1).

Examples

Using the utils macro for a user-defined object.

class mydata extends uvm_object
`uvm_object_utils(mydata)
// declare data properties

function new(string name="mydata_inst")
super.new(name)

endfunction
endclass

Using the utils macro for a user-defined component.

class my_comp extends uvm_component
`uvm_component_utils(my_comp)
// declare data properties

function new(string name, uvm_component parent=null)
super.new(name,parent)

endfunction
endclass

B.2.1.1 `uvm_field_utils_begin and `uvm_field_utils_end

These macros provide a default implementation of uvm_object::do_execute_op (see 5.3.13.1).

These macros form a block in which `uvm_field_* macros (see B.2.2) can be placed, as shown in the
following meta-example:

`uvm_field_utils_begin(TYPE)
`uvm_field_* macros here

`uvm_field_utils_end

These macros do not perform factory registration nor implement the get_type_name and create methods.
Use this form when custom implementations of these two methods are needed or to set up field macros for
an abstract class (i.e., a virtual class).

B.2.1.2 `uvm_object_utils, `uvm_object_param_utils, `uvm_object_utils_begin,
`uvm_object_param_utils_begin, and `uvm_object_utils_end; `uvm_object_abstract_utils,
`uvm_object_abstract_param_utils, `uvm_object_abstract_utils_begin, and
`uvm_object_abstract_param_utils_begin

The `uvm_object*_utils_begin and _end macros, as well as their `uvm_component* counterparts, use
these macros.

uvm_object-based class declarations (see 5.3) may contain one of these forms of utility macros.

For simple objects with no field macros, use:

`uvm_object_utils(TYPE)

For simple objects with field macros, use:
384
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
`uvm_object_utils_begin(TYPE)
`uvm_field_* macro invocations here

`uvm_object_utils_end

For parameterized objects with no field macros, use:

`uvm_object_param_utils(TYPE)

For parameterized objects with field macros, use:

`uvm_object_param_utils_begin(TYPE)
`uvm_field_* macro invocations here

`uvm_object_utils_end

Simple (non-parameterized) objects use the uvm_object_utils* versions, which do the following:

— Implement get_type_name (see 5.3.4.7), which returns TYPE as a string.

— Implement create (see 5.3.5.1), which allocates an object of type TYPE by calling its constructor
with no arguments. When defined, TYPE’s constructor shall have default values on all it arguments.

— Implement a typedef of type uvm_object_registry#(TYPE, "TYPE"), with the name
type_id.

— Implement the static get_type method (see 5.3.4.5), which returns a factory proxy object for the
type.

— Implement the virtual get_object_type method (see 5.3.4.6), which works just like the static
get_type method (see 5.3.4.5), but operates on an already allocated object.

Parameterized classes shall use the uvm_object_param_utils* versions. They differ from
uvm_object_utils* only in that they do not supply a type name when registering the object with the factory.
As such, name-based lookup with the factory for parameterized classes is not possible.

Abstract classes shall use the uvm_object_abstract* versions. They only differ from the
uvm_object_utils* and uvm_object_param_utils* in that they use uvm_abstract_object_registry instead
of uvm_object_registry.

Any macros with _begin suffixes are the same as the non-suffixed versions except they also start a block
in which `uvm_field_* macros (see B.2.2) can be placed. This block shall be terminated by
`uvm_object_utils_end.

B.2.1.3 `uvm_component_utils, `uvm_component_param_utils,
`uvm_component_utils_begin, `uvm_component_param_utils_begin, and
`uvm_component_end; `uvm_component_abstract_utils,
`uvm_component_abstract_param_utils, `uvm_component_abstract_utils_begin, and
`uvm_component_abstract_param_utils_begin

uvm_component-based class declarations (see 13.1) may contain one of these forms of utility macros.

For simple components with no field macros, use:

`uvm_component_utils(TYPE)

For simple components with field macros, use:

`uvm_component_utils_begin(TYPE)
`uvm_field_* macro invocations here

`uvm_component_utils_end
385
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
For parameterized components with no field macros, use:

`uvm_component_param_utils(TYPE)

For parameterized components with field macros, use:

`uvm_component_param_utils_begin(TYPE)

`uvm_field_* macro invocations here

`uvm_component_utils_end

Simple (non-parameterized) components use the uvm_component_utils* versions, which do the following:

— Implement get_type_name (see 5.3.4.7), which returns TYPE as a string.

— Implement create (see 5.3.5.1), which allocates an object of type TYPE using a two argument
constructor. TYPE’s constructor shall have a name and a parent argument.

— Implement a typedef of type uvm_component_registry#(TYPE, "TYPE"), with the
name type_id.

— Implement the static get_type method (see 5.3.4.5), which returns a factory proxy object for the
type.

— Implement the virtual get_object_type method (see 5.3.4.6), which works just like the static
get_type method (see 5.3.4.5), but operates on an already allocated object.

Parameterized classes shall use the uvm_component_param_utils* versions. These differ from
uvm_component_utils* only in that they do not supply a type name when registering the object with the
factory. As such, name-based lookup with the factory for parameterized classes is not possible.

Abstract classes shall use the uvm_component_abstract* versions. They only differ from the
uvm_component_utils* and uvm_component_param_utils* in that they use
uvm_abstract_component_registry instead of uvm_component_registry.

Any macros with _begin suffixes are the same as the non-suffixed versions except they also start a block
in which `uvm_field_* macros (see B.2.2) can be placed. This block shall be terminated by
`uvm_component_utils_end.

B.2.1.4 `uvm_object_registry

`uvm_object_registry(T,S)

Registers a uvm_object-based class T and lookup string S with the factory (see 5.3). S typically is the name
of the class in quotes (""). The `uvm_object_utils family of macros (see B.2.1.2) uses this macro.

B.2.1.5 `uvm_component_registry

`uvm_component_registry(T,S)

Registers a uvm_component-based class T and lookup string S with the factory (see 13.1). S typically is the
name of the class in quotes (""). The `uvm_component_utils family of macros (see B.2.1.3) uses this
macro.
386
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
B.2.2 Field macros

The `uvm_field_* macros are invoked inside of the `uvm_*_utils_begin / `uvm_*_utils_end macro blocks
(see B.2.1) to form “automatic” implementations of the core data methods: copy, compare, pack, unpack,
record, print, and sprint.

NOTE—By using these macros, the do_* methods inherited from uvm_object (see 5.3) do not have to be implemented.
However, be aware that the field macros expand into general inline code that is not as run-time efficient nor as flexible
as direct implementations of the do_* methods.

Each `uvm_field_* macro is named according to the particular data type it handles: integrals, strings,
objects, queues, etc.; each also has at least two arguments: ARG and FLAG.

a) ARG—is the instance name of the variable, whose type shall be compatible with the macro being
invoked. ARG shall not be a constant, such as const variables, compile time constants, or
elaboration time constants.

b) FLAG—specifies the operations, abstraction, radix, and recursion policy to be applied by the macro
when operating on ARG. Flag options are bitwise ORed to form a complete description.

Any number of field operation types (see F.2.1.9) and field macro operation flags (see F.2.1.10) may be
bitwise ORed, however, the negative flags (UVM_NO*) take precedence over their positive counterparts
(including UVM_ALL_ON and UVM_DEFAULT). For example: (UVM_COPY | UVM_NOCOPY) is treated
as UVM_NOCOPY within the macro. Additionally, the packing and unpacking operations are paired, such
that UVM_PACK enables both packing and unpacking, and UVM_NOPACK disables both packing and
unpacking.

All uvm_radix_enum values (see F.2.1.5), as well as all uvm_recursion_policy_enum values (see
F.2.1.6), are supported as flags; however, only a single radix and a single recursion policy can be selected for
a given declaration. This has the consequence of mandating the two enums shall use compatible values. The
result of bitwise ORing multiple radix or recursion policy values within a single FLAG description is
undefined. If no uvm_radix_enum value is provided, then the macro shall proceed as though
UVM_NORADIX had been provided. If no uvm_recursion_policy_enum is provided, then the macro
shall proceed as though UVM_DEFAULT_POLICY had been provided.

B.2.2.1 `uvm_field_* macros

These are macros that implement data operations for scalar properties.

B.2.2.1.1 `uvm_field_int

`uvm_field_int(ARG,FLAG=UVM_DEFAULT)

Implements the data operations for any packed integral property.

ARG is an integral non constant property of the class, and FLAG is a bitwise OR of one or more flag settings
as described in B.2.2.

B.2.2.1.2 `uvm_field_object

`uvm_field_object(ARG,FLAG=UVM_DEFAULT)

Implements the data operations for a uvm_object-based property (see 5.3).
387
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
ARG is an object property of the class, and FLAG is a bitwise OR of one or more flag settings as described in
B.2.2.

B.2.2.1.3 `uvm_field_string

`uvm_field_string(ARG,FLAG=UVM_DEFAULT)

Implements the data operations for a string property.

ARG is a string property of the class, and FLAG is a bitwise OR of one or more flag settings as described in
B.2.2.

B.2.2.1.4 `uvm_field_enum

`uvm_field_enum(T, ARG,FLAG=UVM_DEFAULT)

Implements the data operations for an enumerated property.

T is an enumerated type, ARG is an instance of that type, and FLAG is a bitwise OR of one or more flag
settings as described in B.2.2.

B.2.2.1.5 `uvm_field_real

`uvm_field_real(ARG,FLAG=UVM_DEFAULT)

Implements the data operations for any real property.

ARG is a real property of the class, and FLAG is a bitwise OR of one or more flag settings as described in
B.2.2.

B.2.2.1.6 `uvm_field_event

`uvm_field_event(ARG,FLAG=UVM_DEFAULT)

Implements the data operations for an event property.

ARG is an event property of the class, and FLAG is a bitwise OR of one or more flag settings as described in
B.2.2.

B.2.2.2 `uvm_field_sarray_* macros

These are macros that implement data operations for one-dimensional static array properties.

B.2.2.2.1 `uvm_field_sarray_int

`uvm_field_sarray_int(ARG,FLAG=UVM_DEFAULT)

Implements the data operations for a one-dimensional static array of integrals.

ARG is a one-dimensional static array of integrals, and FLAG is a bitwise OR of one or more flag settings as
described in B.2.2.

B.2.2.2.2 `uvm_field_sarray_object

`uvm_field_sarray_object(ARG,FLAG=UVM_DEFAULT)
388
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Implements the data operations for a one-dimensional static array of uvm_object-based objects (see 5.3).

ARG is a one-dimensional static array of uvm_object-based objects, and FLAG is a bitwise OR of one or
more flag settings as described in B.2.2.

B.2.2.2.3 `uvm_field_sarray_string

`uvm_field_sarray_string(ARG,FLAG=UVM_DEFAULT)

Implements the data operations for a one-dimensional static array of strings.

ARG is a one-dimensional static array of strings, and FLAG is a bitwise OR of one or more flag settings as
described in B.2.2.

B.2.2.2.4 `uvm_field_sarray_enum

`uvm_field_sarray_enum(T, ARG,FLAG=UVM_DEFAULT)

Implements the data operations for a one-dimensional static array of enums.

T is a one-dimensional static array of enums type, ARG is an instance of that type, and FLAG is a bitwise OR
of one or more flag settings as described in B.2.2.

B.2.2.3 `uvm_field_array_* macros

These are macros that implement data operations for one-dimensional dynamic array properties.

B.2.2.3.1 `uvm_field_array_int

`uvm_field_array_int(ARG,FLAG=UVM_DEFAULT)

Implements the data operations for a one-dimensional dynamic array of integrals.

ARG is a one-dimensional dynamic array of integrals, and FLAG is a bitwise OR of one or more flag settings
as described in B.2.2.

B.2.2.3.2 `uvm_field_array_object

`uvm_field_array_object(ARG,FLAG=UVM_DEFAULT)

Implements the data operations for a one-dimensional dynamic array of uvm_object-based objects (see 5.3).

ARG is a one-dimensional dynamic array of uvm_object-based objects, and FLAG is a bitwise OR of one or
more flag settings as described in B.2.2.

B.2.2.3.3 `uvm_field_array_string

`uvm_field_array_string(ARG,FLAG=UVM_DEFAULT)

Implements the data operations for a one-dimensional dynamic array of strings.

ARG is a one-dimensional dynamic array of strings, and FLAG is a bitwise OR of one or more flag settings as
described in B.2.2.
389
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
B.2.2.3.4 `uvm_field_array_enum

`uvm_field_array_enum(T, ARG,FLAG=UVM_DEFAULT)

Implements the data operations for a one-dimensional dynamic array of enums.

T is a one-dimensional dynamic array of enums type, ARG is an instance of that type, and FLAG is a bitwise
OR of one or more flag settings as described in B.2.2.

B.2.2.4 `uvm_field_queue_* macros

These are macros that implement data operations for dynamic queues.

B.2.2.4.1 `uvm_field_queue_int

`uvm_field_queue_int(ARG,FLAG=UVM_DEFAULT)

Implements the data operations for a queue of integrals.

ARG is a one-dimensional queue of integrals, and FLAG is a bitwise OR of one or more flag settings as
described in B.2.2.

B.2.2.4.2 `uvm_field_queue_object

`uvm_field_queue_object(ARG,FLAG=UVM_DEFAULT)

Implements the data operations for a one-dimensional queue of uvm_object-based objects (see 5.3).

ARG is a one-dimensional queue of uvm_object-based objects, and FLAG is a bitwise OR of one or more
flag settings as described in B.2.2.

B.2.2.4.3 `uvm_field_queue_string

`uvm_field_queue_string(ARG,FLAG=UVM_DEFAULT)

Implements the data operations for a one-dimensional queue of strings.

ARG is a one-dimensional queue of strings, and FLAG is a bitwise OR of one or more flag settings as
described in B.2.2.

B.2.2.4.4 `uvm_field_queue_enum

`uvm_field_queue_enum(T, ARG,FLAG=UVM_DEFAULT)

Implements the data operations for a one-dimensional queue of enums.

T is a one-dimensional queue of enums type, ARG is an instance of that type, and FLAG is a bitwise OR of
one or more flag settings as described in B.2.2.

B.2.2.5 `uvm_field_aa_*_string macros

These are macros that implement data operations for associative arrays indexed by string.
390
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
B.2.2.5.1 `uvm_field_aa_int_string

`uvm_field_aa_int_string(ARG,FLAG)

Implements the data operations for an associative array of integrals indexed by string.

ARG is the name of a property that is an associative array of integrals with the string key, and FLAG is a
bitwise OR of one or more flag settings as described in B.2.2.

B.2.2.5.2 `uvm_field_aa_object_string

`uvm_field_aa_object_string(ARG,FLAG=UVM_DEFAULT)

Implements the data operations for an associative array of uvm_object-based objects (see 5.3).

ARG is the name of a property that is an associative array of objects with the string key, and FLAG is a
bitwise OR of one or more flag settings as described in B.2.2.

B.2.2.5.3 `uvm_field_aa_string_string

`uvm_field_aa_string_string(ARG,FLAG=UVM_DEFAULT)

Implements the data operations for an associative array of string indexed by string.

ARG is the name of a property that is an associative array of strings with the string key, and FLAG is a
bitwise OR of one or more flag settings as described in B.2.2.

B.2.2.6 `uvm_field_aa_*_int macros

These are macros that implement data operations for associative arrays indexed by an integral type.

B.2.2.6.1 `uvm_field_aa_object_int

`uvm_field_aa_object_int(ARG,FLAG=UVM_DEFAULT)

Implements the data operations for an associative array of uvm_object-based objects (see 5.3) indexed by
the int data type.

ARG is the name of a property that is an associative array of objects with the int key, and FLAG is a bitwise
OR of one or more flag settings as described in B.2.2.

B.2.2.6.2 `uvm_field_aa_int_int

`uvm_field_aa_int_int(ARG,FLAG=UVM_DEFAULT)

Implements the data operations for an associative array of integral types indexed by the int data type.

ARG is the name of a property that is an associative array of integrals with the int key, and FLAG is a bitwise
OR of one or more flag settings as described in B.2.2.

B.2.2.6.3 `uvm_field_aa_int_int_unsigned

`uvm_field_aa_int_int_unsigned(ARG,FLAG=UVM_DEFAULT)
391
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Implements the data operations for an associative array of integral types indexed by the int unsigned data
type.

ARG is the name of a property that is an associative array of integrals with the int unsigned key, and FLAG
is a bitwise OR of one or more flag settings as described in B.2.2.

B.2.2.6.4 `uvm_field_aa_int_integer

`uvm_field_aa_int_integer(ARG,FLAG=UVM_DEFAULT)

Implements the data operations for an associative array of integral types indexed by the integer data type.

ARG is the name of a property that is an associative array of integrals with the integer key, and FLAG is a
bitwise OR of one or more flag settings as described in B.2.2.

B.2.2.6.5 `uvm_field_aa_int_integer_unsigned

`uvm_field_aa_int_integer_unsigned(ARG,FLAG=UVM_DEFAULT)

Implements the data operations for an associative array of integral types indexed by the integer unsigned
data type.

ARG is the name of a property that is an associative array of integrals with the integer unsigned key, and
FLAG is a bitwise OR of one or more flag settings as described in B.2.2.

B.2.2.6.6 `uvm_field_aa_int_byte

`uvm_field_aa_int_byte(ARG,FLAG)

Implements the data operations for an associative array of integral types indexed by the byte data type.

ARG is the name of a property that is an associative array of integrals with the byte key, and FLAG is a
bitwise OR of one or more flag settings as described in B.2.2.

B.2.2.6.7 `uvm_field_aa_int_byte_unsigned

`uvm_field_aa_int_byte_unsigned(ARG,FLAG=UVM_DEFAULT)

Implements the data operations for an associative array of integral types indexed by the byte unsigned data
type.

ARG is the name of a property that is an associative array of integrals with the byte unsigned key, and FLAG
is a bitwise OR of one or more flag settings as described in B.2.2.

B.2.2.6.8 `uvm_field_aa_int_shortint

`uvm_field_aa_int_shortint(ARG,FLAG=UVM_DEFAULT)

Implements the data operations for an associative array of integral types indexed by the shortint data type.

ARG is the name of a property that is an associative array of integrals with the shortint key, and FLAG is a
bitwise OR of one or more flag settings as described in B.2.2.
392
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
B.2.2.6.9 `uvm_field_aa_int_shortint_unsigned

`uvm_field_aa_int_shortint_unsigned(ARG,FLAG=UVM_DEFAULT)

Implements the data operations for an associative array of integral types indexed by the shortint unsigned
data type.

ARG is the name of a property that is an associative array of integrals with the shortint unsigned key, and
FLAG is a bitwise OR of one or more flag settings as described in B.2.2.

B.2.2.6.10 `uvm_field_aa_int_longint

`uvm_field_aa_int_longint(ARG,FLAG=UVM_DEFAULT)

Implements the data operations for an associative array of integral types indexed by the longint data type.

ARG is the name of a property that is an associative array of integrals with the longint key, and FLAG is a
bitwise OR of one or more flag settings as described in B.2.2.

B.2.2.6.11 `uvm_field_aa_int_longint_unsigned

`uvm_field_aa_int_longint_unsigned(ARG,FLAG=UVM_DEFAULT)

Implements the data operations for an associative array of integral types indexed by the longint unsigned
data type.

ARG is the name of a property that is an associative array of integrals with the longint unsigned key, and
FLAG is a bitwise OR of one or more flag settings as described in B.2.2.

B.2.2.6.12 `uvm_field_aa_int_key

`uvm_field_aa_int_key(KEY,ARG,FLAG=UVM_DEFAULT)

Implements the data operations for an associative array of integral types indexed by any integral key data
type.

KEY is the data type of the integral key, ARG is the name of a property that is an associative array of
integrals, and FLAG is a bitwise OR of one or more flag settings as described in B.2.2.

B.2.2.6.13 `uvm_field_aa_int_enumkey

`uvm_field_aa_int_enumkey(KEY,ARG,FLAG=UVM_DEFAULT)

Implements the data operations for an associative array of integral types indexed by any enumeration key
data type.

KEY is the enumeration type of the integral key, ARG is the name of a property that is an associative array of
integrals, and FLAG is a bitwise OR of one or more flag settings as described in B.2.2.

B.2.3 Recording macros

The recording macros assist users who implement the uvm_object::do_record method (see 5.3.7.2). They
help ensure that the fields are recorded using a user-specific API. Unlike the uvm_recorder policy
393
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
(see 16.4.1), fields recorded using the macros do not lose type information—they are passed directly to the
user-specific API. This results in more efficient recording and no artificial limit on bit-widths.

B.2.3.1 `uvm_record_attribute

`uvm_record_attribute(TR_HANDLE, NAME, VALUE)

This is a macro to hide a tool-specific interface for recording attributes (fields) to a transaction database.

TR_HANDLE shall always be passed to uvm_recorder::get_record_attribute_handle (see 16.4.6.9).

The default implementation of the macro passes NAME and VALUE through to the
uvm_recorder::record_generic method (see 16.4.6.7).

B.2.3.2 `uvm_record_int

`uvm_record_int(NAME,VALUE,SIZE[,RADIX])

This macro takes the same arguments as the uvm_recorder::record_field method (see 16.4.6.1) (including
the optional RADIX).

The default implementation passes the name/value pair to `uvm_record_attribute if enabled (see B.2.3.1);
otherwise, the information is passed to uvm_recorder::record_field.

B.2.3.3 `uvm_record_string

`uvm_record_string(NAME,VALUE)

This macro takes the same arguments as the uvm_recorder::record_string method (see 16.4.6.5).

The default implementation passes the name/value pair to `uvm_record_attribute if enabled (see B.2.3.1);
otherwise, the information is passed to uvm_recorder::record_string.

B.2.3.4 `uvm_record_time

`uvm_record_time(NAME,VALUE)

This macro takes the same arguments as the uvm_recorder::record_time method (see 16.4.6.6).

The default implementation passes the name/value pair to `uvm_record_attribute if enabled (see B.2.3.1);
otherwise, the information is passed to uvm_recorder::record_time.

B.2.3.5 `uvm_record_real

`uvm_record_real(NAME,VALUE)

This macro takes the same arguments as the uvm_recorder::record_field_real method (see 16.4.6.3).

The default implementation passes the name/value pair to `uvm_record_attribute if enabled (see B.2.3.1);
otherwise, the information is passed to uvm_recorder::record_field_real.

B.2.3.6 `uvm_record_field

`uvm_record_field(NAME,VALUE)
394
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
This is a macro for recording arbitrary name-value pairs into a transaction recording database. It requires a
valid transaction handle, as provided by the uvm_transaction::begin_tr (see 5.4.2.4) and
uvm_component::begin_tr (see 13.1.6.3) methods.

The default implementation passes the name/value pair to `uvm_record_attribute if enabled (see B.2.3.1);
otherwise, the information is passed to uvm_recorder::record_generic (see 16.4.6.7), with the VALUE
being converted to a string using %p notation, i.e.,

recorder.record_generic(NAME,$sformatf("%p",VALUE))

B.2.4 Packing macros

The packing macros assist users who implement the uvm_object::do_pack method (see 5.3.10.2). They
help ensure that the pack operation is the exact inverse of the unpack operation. See also B.2.5.

The N versions of these macros take an explicit size argument, which shall be a compile-time constant value
greater than 0.

B.2.4.1 `uvm_pack_intN

`uvm_pack_intN(VAR,SIZE)

Packs an integral variable.

B.2.4.2 `uvm_pack_enumN

`uvm_pack_enumN(VAR,SIZE)

Packs an enum variable.

B.2.4.3 `uvm_pack_sarrayN

`uvm_pack_sarrayN(VAR,SIZE)

Packs a static array of integrals.

B.2.4.4 `uvm_pack_arrayN

`uvm_pack_arrayN(VAR,SIZE)

Packs a dynamic array of integrals.

B.2.4.5 `uvm_pack_queueN

`uvm_pack_queueN(VAR,SIZE)

Packs a queue of integrals.

B.2.4.6 `uvm_pack_int

`uvm_pack_int(VAR)

Packs an integral variable without having to also specify the bit size.
395
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
B.2.4.7 `uvm_pack_enum

`uvm_pack_enum(VAR)

Packs enumeration value. Packing this does not require its type be specified.

B.2.4.8 `uvm_pack_string

`uvm_pack_string(VAR)

Packs a string variable.

B.2.4.9 `uvm_pack_real

`uvm_pack_real(VAR)

Packs a variable of type real.

B.2.4.10 `uvm_pack_sarray

`uvm_pack_sarray(VAR)

Packs a static array without having to also specify the bit size of its elements. The array elements shall be of
integral type.

B.2.4.11 `uvm_pack_array

`uvm_pack_array(VAR)

Packs a dynamic array without having to also specify the bit size of its elements. The array size shall be non-
zero. The array elements shall be of integral type.

B.2.4.12 `uvm_pack_queue

`uvm_pack_queue(VAR)

Packs a queue without having to also specify the bit size of its elements. The queue shall not be empty. The
array elements shall be of integral type.

B.2.5 Unpacking macros

The unpacking macros assist users who implement the uvm_object::do_unpack method (see 5.3.11.2).
They help ensure that the unpack operation is the exact inverse of the pack operation. See also B.2.4.

The N versions of these macros take an explicit size argument, which shall be a compile-time constant value
greater than 0.

B.2.5.1 `uvm_unpack_intN

`uvm_unpack_intN(VAR,SIZE)

Unpacks an integral variable.
396
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
B.2.5.2 `uvm_unpack_enumN

`uvm_unpack_enumN(VAR,SIZE,TYPE)

Unpacks an enum of type TYPE into VAR.

B.2.5.3 `uvm_unpack_sarrayN

`uvm_unpack_sarrayN(VAR,SIZE)

Unpacks a static array of integrals.

B.2.5.4 `uvm_unpack_arrayN

`uvm_unpack_arrayN(VAR,SIZE)

Unpacks into a dynamic array of integrals.

B.2.5.5 `uvm_unpack_queueN

`uvm_unpack_queueN(VAR,SIZE)

Unpacks into a queue of integrals.

B.2.5.6 `uvm_unpack_int

`uvm_unpack_int(VAR)

Unpacks an integral variable without having to also specify the bit size.

B.2.5.7 `uvm_unpack_enum

`uvm_unpack_enum(VAR)

Unpacks enumeration value, which requires its type be specified.

B.2.5.8 `uvm_unpack_string

`uvm_unpack_string(VAR)

Unpacks a string variable.

B.2.5.9 `uvm_unpack_real

`uvm_unpack_real(VAR)

Unpacks a variable of type real.

B.2.5.10 `uvm_unpack_sarray

`uvm_unpack_sarray(VAR)

Unpacks a static array without having to also specify the bit size of its elements. The array elements shall be
of integral type.
397
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
B.2.5.11 `uvm_unpack_array

`uvm_unpack_array(VAR)

Unpacks a dynamic array without having to also specify the bit size of its elements. The array size shall be
non-zero. The array elements shall be of integral type.

B.2.5.12 `uvm_unpack_queue

`uvm_unpack_queue(VAR)

Unpacks a queue without having to also specify the bit size of its elements. The queue shall not be empty.
The array elements shall be of integral type.

B.3 Sequence-related macros

B.3.1 Sequence action macros

These macros are used to create and start sequences and sequence items.

B.3.1.1 `uvm_create

`uvm_create(SEQ_OR_ITEM, SEQR=get_sequencer())

This action creates a child item or sequence using create_item (see 14.2.6.1), passing the return value of
SEQ_OR_ITEM.get_type as type_var, SEQR as l_sequencer, and the string equivalent of
SEQ_OR_ITEM as name. After this action completes, the user can manually specify values, manipulate the
rand_mode and constraint_mode, etc.

B.3.1.2 `uvm_send

`uvm_send(SEQ_OR_ITEM, PRIORITY=-1)

This action processes a child item or sequence, without randomization.

a) For items, the implementation shall perform the following steps in order:

1) The start_item method (see 14.2.6.2) is called on this sequence, with SEQ_OR_ITEM as item
and PRIORITY as set_priority.

2) The finish_item method (see 14.2.6.3) is called on this sequence, with SEQ_OR_ITEM as item
and PRIORITY as set_priority.

b) For sequences, the start method (see 14.2.3.1) is called on SEQ_OR_ITEM with this for
parent_sequence, PRIORITY for this_priority, and 0 for call_pre_post.

B.3.1.3 `uvm_rand_send

`uvm_rand_send(SEQ_OR_ITEM, PRIORITY=-1, CONSTRAINTS={})

This action processes a child item or sequence, with randomization.

a) For items, the implementation shall perform the following steps in order:

1) The start_item method (see 14.2.6.2) is called on this sequence, with SEQ_OR_ITEM as item
and PRIORITY as set_priority.
398
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
2) SEQ_OR_ITEM is randomized with CONSTRAINTS.

3) The finish_item method (see 14.2.6.3) is called on this sequence, with SEQ_OR_ITEM as item
and PRIORITY as set_priority.

b) For sequences, the implementation shall perform the following steps in order:

1) If the get_randomize_enabled method (see 14.2.2.2) on SEQ_OR_ITEM returns 1, then the
sequence is randomized with CONSTRAINTS.

2) The start method (see 14.2.3.1) is called on SEQ_OR_ITEM with this for parent_sequence,
PRIORITY for this_priority, and 0 for call_pre_post.

B.3.1.4 `uvm_do

`uvm_do(SEQ_OR_ITEM, SEQR=get_sequencer(), PRIORITY=-1,
CONSTRAINTS={})

This action creates and processes a child item or sequence, with randomization.

The implementation shall perform the following steps in order:

a) `uvm_create (see B.3.1.1) is passed SEQ_OR_ITEM and SEQR.

b) `uvm_rand_send (see B.3.1.3) is passed SEQ_OR_ITEM, PRIORITY, and CONSTRAINTS.

B.3.2 Sequence library macros

B.3.2.1 `uvm_add_to_sequence_library

`uvm_add_to_seq_lib(TYPE,LIBTYPE)

Adds the given sequence TYPE to the given sequence library LIBTYPE.

This can be invoked once for a specific combination of TYPE and LIBTYPE within a sequence class to
statically add the TYPE sequence to the LIBTYPE library. The sequence will then be available for selection
and execution in all instances of the given library type.

A sequence class can invoke this macro for any number of combinations of TYPE and LIBTYPE, potentially
adding TYPE to multiple LIBTYPEs.

B.3.2.2 `uvm_sequence_library_utils

`uvm_sequence_library_utils(TYPE)

This shall be invoked in extensions to the uvm_sequence_library class (see 14.4), with TYPE equal to the
type of the extension. It enables the extension class to hold a static list of member sequences. See also
B.3.2.1 for more information.

B.3.3 Sequencer subtypes

`uvm_declare_p_sequencer

`uvm_declare_p_sequencer(SEQUENCER)

This macro is used to declare a variable p_sequencer whose type is specified by SEQUENCER.
399
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
B.4 Callback macros

These macros are used to register and execute callbacks extending from uvm_callbacks (see 10.7.2).

B.4.1 `uvm_register_cb

`uvm_register_cb(T,CB)

Registers the given CB callback type with the given T object type. If a type-callback pair is not registered,
then a warning shall be issued if an attempt is made to use the pair (add, delete, etc.).

Callback type CB is used to construct the name of bit that holds the result of registration. When the callback
type is parameterized, this results in errors. To avoid this, a typedef-ed name should be used instead.

The registration typically occurs in the component that executes the given type of callback.

B.4.2 `uvm_set_super_type

`uvm_set_super_type(T,ST)

Defines the super type of T to be ST. This allows for derived class objects to inherit type-wide callbacks that
are registered with the base class.

The registration typically occurs in the component that executes the given type of callback.

B.4.3 `uvm_do_callbacks

`uvm_do_callbacks(T,CB,METHOD)

Calls the given METHOD of all callbacks of type CB registered with the calling object (i.e., this object),
which is, or is based on, type T. This macro takes the following arguments:

— CB is the class type of the callback objects to execute. The class type shall have a function signature
that matches the METHOD argument.

— T is the type associated with the callback. Typically, an instance of type T is passed as one the
arguments in the METHOD call.

— METHOD is the method call to invoke, containing all required arguments as if they were invoked
directly.

B.4.4 `uvm_do_obj_callbacks

`uvm_do_obj_callbacks(T,CB,OBJ,METHOD)

Calls the given METHOD of all callbacks based on type CB registered with the given object, OBJ, which is
or is based on type T.

This macro is identical to `uvm_do_callbacks macro (see B.4.3), but it has an additional OBJ argument to
allow the specification of an external object with which to associate the callback.
400
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
B.4.5 `uvm_do_callbacks_exit_on

`uvm_do_callbacks_exit_on(T,CB,METHOD,VAL)

Calls the given METHOD of all callbacks of type CB registered with the calling object (i.e., this object),
which is, or is based on, type T, returning upon the first callback returning the bit value given by VAL. This
macro takes the following arguments:

— CB is the class type of the callback objects to execute. The class type shall have a function signature
that matches the METHOD argument.

— T is the type associated with the callback. Typically, an instance of type T is passed as one the
arguments in the METHOD call.

— METHOD is the method call to invoke, containing all required arguments as if they were invoked
directly.

— VAL, when 1, means return upon the first callback invocation that returns 1. When 0, it means return
upon the first callback invocation that returns 0.

Since this macro calls return, its use is restricted to implementations of functions that return a bit value.

B.4.6 `uvm_do_obj_callbacks_exit_on

`uvm_do_obj_callbacks_exit_on(T,CB,OBJ,METHOD,VAL)

Calls the given METHOD of all callbacks of type CB registered with the given object OBJ, which is, or is
based on, type T, returning upon the first callback returning the bit value given by VAL. This is the same as
`uvm_do_callbacks_exit_on (see B.4.5) except this has a specific object instance (instead of the implicit
this instance) as the third argument.

Since this macro calls return, its use is restricted to implementations of functions that return a bit value.

B.5 UVM TLM implementation port declaration macros

The UVM TLM implementation declaration macros are a way for components to provide multiple
implementation ports of the same implementation interface. When an implementation port is defined using
the built-in set of imps, there shall be exactly one implementation of the interface.

Be aware each `uvm_interface_imp_decl creates a new class of type uvm_interface_imp_suffix, where
suffix is the input argument to the macro. Given this, typically these macros should be put into separate
packages to avoid collisions and to allow sharing of the definitions.

B.5.1 `uvm_blocking_put_imp_decl

`uvm_blocking_put_imp_decl(SFX)

Defines the class uvm_blocking_put_impSFX for providing blocking put implementations. SFX is the
suffix for the new class type.

B.5.2 `uvm_nonblocking_put_imp_decl

`uvm_nonblocking_put_imp_decl(SFX)
401
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Defines the class uvm_nonblocking_put_impSFX for providing non-blocking put implementations. SFX
is the suffix for the new class type.

B.5.3 `uvm_put_imp_decl

`uvm_put_imp_decl(SFX)

Defines the class uvm_put_impSFX for providing both blocking and non-blocking put implementations.
SFX is the suffix for the new class type.

B.5.4 `uvm_blocking_get_imp_decl

`uvm_blocking_get_imp_decl(SFX)

Defines the class uvm_blocking_get_impSFX for providing blocking get implementations. SFX is the
suffix for the new class type.

B.5.5 `uvm_nonblocking_get_imp_decl

`uvm_nonblocking_get_imp_decl(SFX)

Defines the class uvm_nonblocking_get_impSFX for providing non-blocking get implementations. SFX
is the suffix for the new class type.

B.5.6 `uvm_get_imp_decl

`uvm_get_imp_decl(SFX)

Defines the class uvm_get_impSFX for providing both blocking and non-blocking get implementations.
SFX is the suffix for the new class type.

B.5.7 `uvm_blocking_peek_imp_decl

`uvm_blocking_peek_imp_decl(SFX)

Defines the class uvm_blocking_peek_impSFX for providing blocking peek implementations. SFX is the
suffix for the new class type.

B.5.8 `uvm_nonblocking_peek_imp_decl

`uvm_nonblocking_peek_imp_decl(SFX)

Defines the class uvm_nonblocking_peek_impSFX for providing non-blocking peek implementations.
SFX is the suffix for the new class type.

B.5.9 `uvm_peek_imp_decl

`uvm_peek_imp_decl(SFX)
402
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Defines the class uvm_peek_impSFX for providing both blocking and non-blocking peek
implementations. SFX is the suffix for the new class type.

B.5.10 `uvm_blocking_get_peek_imp_decl

`uvm_blocking_get_peek_imp_decl(SFX)

Defines the class uvm_blocking_get_peek_impSFX for providing blocking get_peek implementations.
SFX is the suffix for the new class type.

B.5.11 `uvm_nonblocking_get_peek_imp_decl

`uvm_nonblocking_peek_imp_decl(SFX)

Defines the class uvm_nonblocking_get_peek_impSFX for providing non-blocking get_peek
implementations. SFX is the suffix for the new class type.

B.5.12 `uvm_get_peek_imp_decl

`uvm_get_peek_imp_decl(SFX)

Defines the class uvm_get_peek_impSFX for providing both blocking and non-blocking get_peek
implementations. SFX is the suffix for the new class type.

B.5.13 `uvm_blocking_master_imp_decl

`uvm_blocking_master_imp_decl(SFX)

Defines the class uvm_blocking_master_impSFX for providing blocking master implementations. SFX
is the suffix for the new class type.

B.5.14 `uvm_nonblocking_master_imp_decl

`uvm_nonblocking_master_imp_decl(SFX)

Defines the class uvm_nonblocking_master_impSFX for providing non-blocking master
implementations. SFX is the suffix for the new class type.

B.5.15 `uvm_master_imp_decl

`uvm_master_imp_decl(SFX)

Defines the class uvm_master_impSFX for providing both blocking and non-blocking master
implementations. SFX is the suffix for the new class type.

B.5.16 `uvm_blocking_slave_imp_decl

`uvm_blocking_slave_imp_decl(SFX)
403
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Defines the class uvm_blocking_slave_impSFX for providing blocking slave implementations. SFX is
the suffix for the new class type.

B.5.17 `uvm_nonblocking_slave_imp_decl

`uvm_nonblocking_slave_imp_decl(SFX)

Defines the class uvm_nonblocking_slave_impSFX for providing non-blocking slave implementations.
SFX is the suffix for the new class type.

B.5.18 `uvm_slave_imp_decl

`uvm_slave_imp_decl(SFX)

Defines the class uvm_slave_impSFX for providing both blocking and non-blocking slave
implementations. SFX is the suffix for the new class type.

B.5.19 `uvm_blocking_transport_imp_decl

`uvm_blocking_transport_imp_decl(SFX)

Defines the class uvm_blocking_transport_impSFX for providing blocking transport
implementations. SFX is the suffix for the new class type.

B.5.20 `uvm_nonblocking_transport_imp_decl

`uvm_nonblocking_transport_imp_decl(SFX)

Defines the class uvm_nonblocking_transport_impSFX for providing non-blocking transport
implementations. SFX is the suffix for the new class type.

B.5.21 `uvm_transport_imp_decl

`uvm_transport_imp_decl(SFX)

Defines the class uvm_transport_impSFX for providing both blocking and non-blocking transport
implementations. SFX is the suffix for the new class type.

B.5.22 `uvm_analysis_imp_decl

`uvm_analysis_imp_decl(SFX)

Defines the class uvm_analysis_impSFX for providing an analysis implementation. SFX is the suffix for
the new class type.

The analysis implementation is the write function. `uvm_analysis_imp_decl allows a scoreboard (or
another analysis component) to support input from many places.
404
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
B.6 Size defines

B.6.1 `UVM_FIELD_FLAG_SIZE

Defines the number of bits in uvm_field_flag_t (see F.2.1.2). This size may be defined by the user; if so, the
defined value needs to be greater than or equal to UVM_FIELD_FLAG_RESERVED_BITS (see F.2.1.1).

The default value of `UVM_FIELD_FLAG_SIZE is implementation specific; however, it shall be greater
than or equal to UVM_FIELD_FLAG_RESERVED_BITS.

While the user may use this define to extend the size of uvm_field_flag_t, the exact definition of the lower
bits, i.e., [UVM_FIELD_FLAG_RESERVED_BITS-1:0], is reserved for an implementation.

B.6.2 `UVM_MAX_STREAMBITS

Defines the maximum bit vector size for integral types. Can be defined by the user; otherwise, this defaults
to 4096.

B.6.3 `UVM_PACKER_MIN_BITS

Defines the minimum number of bits that the default implementation of uvm_packer (see 16.5) shall be
capable of storing internally. The default value of `UVM_PACKER_MIN_BITS shall be 32768.

B.6.4 `UVM_REG_ADDR_WIDTH

This is the maximum address width in bits. The default value is 64. This macro is used to define the
uvm_reg_addr_t type (see 17.2.1.3).

B.6.5 `UVM_REG_DATA_WIDTH

This is the maximum data width in bits. The default value is 64. This macro is used to define the
uvm_reg_data_t type (see 17.2.1.2).

B.6.6 `UVM_REG_BYTENABLE_WIDTH

This is the maximum number of byte enable bits. The default value is one per byte in
`UVM_REG_DATA_WIDTH (see B.6.5). This macro is used to define the uvm_reg_byte_en_t type
(see 17.2.1.5).

B.6.7 `UVM_REG_CVR_WIDTH

This is the maximum number of bits in a uvm_reg_cvr_t (see 17.2.1.6) coverage model set. The default
value is 32.
405
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
B.7 UVM version globals

B.7.1 UVM_VERSION

`define UVM_VERSION 2016

A define shall be provided that indicates the version of UVM being used.

B.7.2 UVM_VERSION_STRING

A string parameter shall be provided in uvm_pkg that creates a version string identifying the
implementation being used.
406
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Annex C

(normative)

Configuration and resource classes

C.1 Overview

The configuration and resources classes provide access to a centralized database where type specific
information can be stored and retrieved. The uvm_resource_db (see C.3.2) is the low-level resource
database that users can write to or read from. The uvm_config_db (see C.4.2) is layered on top of the
resource database and provides a typed interface for a configuration setting that is consistent with the
configuration interface of uvm_component (see 13.1.5).

Information can be read from or written to the database at any time during simulation. A resource may be
associated with a specific hierarchical scope of a uvm_component (see 13.1) or it may be visible to all
components regardless of their hierarchical position.

C.2 Resources

C.2.1 Introduction

A resource is a parameterized container that holds arbitrary data. Resources can be used to configure
components, supply data to sequences, or enable sharing of information across disparate parts of a testbench.
They are stored using scoping information such that their visibility can be constrained to certain parts of the
testbench. Resource containers can hold any type of data, as constrained by the data types available in
SystemVerilog. Resources can contain scalar objects, class handles, queues, lists, or even virtual interfaces.

Resources are stored in a resource database such that each resource can be retrieved by name or by type. The
database is globally accessible. To support type lookup, each resource has a static type handle that uniquely
identifies the type of each specialized resource container.

Each resource has a set of scopes over which it is visible (see C.2.4). When a resource is looked up, the
scope of the entity doing the looking up is supplied to the lookup function. This is called the current scope.
If the current scope is in the set of scopes over which a resource is visible, the resource can be returned in the
lookup.

Multiple resources that have the same name are stored in a queue. Each resource is pushed into a queue with
the first one at the front of the queue and each subsequent one behind it. The same happens for multiple
resources that have the same type. The resource queues are searched front to back, so those placed earlier in
the queue have precedence over those placed later.

The precedence of resources with the same name or same type can be altered. One way is to set the name
(see C.2.3.2.1) of the resource container to any arbitrary value. The search algorithm returns the resource
with the highest precedence. In the case where there are multiple resources that match the search criteria and
have the same (highest) precedence, the earliest one located in the queue is the one returned. Another way to
change the precedence is to use the set_priority function (see C.2.4.5.3) to move a resource to either the
front or back of the queue.
407
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
The classes defined here form the low-level layer of the resource database. The classes include the resource
container and the database that holds the containers. The following set of classes are defined in this C.2:

a) uvm_resource_types—A class for containing definitions of types used by resources. See C.2.2.

b) uvm_resource_base—The base (untyped) resource class living in the resource database. This class
includes the interface for setting a resource as read-only, notification, scope management, and
altering search priority. See C.2.3.

c) uvm_resource_pool—The resource database. This is a singleton class object. See C.2.4.

d) uvm_resource#(T)—A parameterized resource container. This class includes the interfaces for
reading and writing each resource. Because the class is parameterized, all the access functions are
type safe. See C.2.5.

C.2.2 uvm_resource_types

This class provides a namespace for types that are used by the resource facility.

C.2.2.1 rsrc_q_t

A type defined as uvm_queue#(uvm_resource_base). See C.2.3.

C.2.2.2 priority_e

Specifies the priority of a resource; the values are:

PRI_HIGH—resource is moved to the front of the queue.

PRI_LOW—resource is moved to the back of the queue.

C.2.3 uvm_resource_base

This is a non-parameterized base class for resources. It supports interfaces for scope matching and virtual
functions for printing the resource.

C.2.3.1 Class declaration

virtual class uvm_resource_base extends uvm_object

C.2.3.2 Common methods

C.2.3.2.1 new

function new(
string name = "",

)

This is a constructor for uvm_resource_base. The constructor takes two arguments, the name of the
resource and s, a regular expression, which represents the set of scopes over which this resource is visible.
The default value of s shall be "*".

C.2.3.2.2 get_type_handle

pure virtual function uvm_resource_base get_type_handle()

Intended to return the type handle of the resource container.
408
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
C.2.3.3 Read-only interface

C.2.3.3.1 set_read_only

function void set_read_only()

Establishes this resource as a read-only resource. An attempt to call uvm_resource#(T)::write (see C.2.5)
on the resource shall generate an error.

C.2.3.3.2 is_read_only

function bit is_read_only()

Returns 1 if this resource has been set to read-only, 0 otherwise.

C.2.3.4 Notification

wait_modified

task wait_modified()

This task blocks until the resource has been modified, i.e., until a uvm_resource#(T)::write operation (see
C.2.5.4.2) has been performed.

C.2.4 uvm_resource_pool

The global (singleton) resource database.

Each resource is stored both by primary name and by type handle. Each resource has a regular expression
that represents the set of scopes over which it is visible.

Resources are added to the pool by calling set_scope (see C.2.4.3.1); they are retrieved from the pool by
calling get_by_name (see C.2.4.4.4) or get_by_type (see C.2.4.4.6).

C.2.4.1 Class declaration

class uvm_resource_pool

C.2.4.2 Common methods

C.2.4.2.1 new

function new()

C.2.4.2.2 get

static function uvm_resource_pool get()

Returns the global resource pool.

This method is provided as a wrapper function to conveniently retrieve the resource pool via the
uvm_coreservice_t::get_resource_pool method (see F.4.1.4.22).
409
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
C.2.4.3 Scope

Resource scope matching shall be determined using uvm_is_match (see F.3.3.1), with the stored scope as
the expr and the lookup as str.

C.2.4.3.1 set_scope

virtual function void set_scope (
uvm_resource_base rsrc,
string scope

)

Adds a resource to the resource pool, with the provided scope. If the resource already exists in the pool, then
its scope is replaced with the new scope.

The resource is inserted with low priority (see C.2.4.5) into both the name map and type map so it can be
located by either. Later, other objects that want to access the resource need to retrieve it using the lookup
interface (see C.2.4.4).

If rsrc is null, the implementation shall issue a warning message, and the request is ignored.

To override existing resources, use the set_override (see C.2.4.3.2), set_name_override (see C.2.4.3.3), or
set_type_override (see C.2.4.3.2) functions.

C.2.4.3.2 set_override

virtual function void set_override(
uvm_resource_base rsrc,
string scope

)

Adds a resource to the resource pool, placing it with high priority (see C.2.4.5) in both the name and type
maps.

This is functionally identical to calling set_scope (see C.2.4.3.1), immediately followed by set_priority (see
C.2.4.5.3).

C.2.4.3.3 set_name_override

virtual function void set_name_override(
uvm_resource_base rsrc,
string scope

)

Adds a resource to the resource pool, placing it with high priority (see C.2.4.5) in the name map and low
priority in the type map.

This is functionally identical to calling set_scope (see C.2.4.3.1), immediately followed by
set_priority_name (see C.2.4.5.2).

C.2.4.3.4 set_type_override

virtual function void set_type_override(
uvm_resource_base rsrc,
string scope

)

410
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Adds a resource to the resource pool, placing it with high priority (see C.2.4.5) in the type map and low
priority in the name map.

This is functionally identical to calling set_scope (see C.2.4.3.1), immediately followed by
set_priority_type (see C.2.4.5.1).

C.2.4.3.5 get_scope

virtual function bit get_scope (
uvm_resource_base rsrc,
output string scope)

If rsrc exists within the pool, then scope is set to the scope of the resource within the pool, and 1 is returned.
If rsrc does not exist within the pool, then scope is set to an empty string (""), and 0 is returned.

C.2.4.3.6 delete

virtual function void delete (uvm_resource_base rsrc)

If rsrc exists within the pool, then it is removed from all internal maps. If the rsrc is null, or does not exist
within the pool, then the request is silently ignored.

C.2.4.4 Lookup

This group of functions is for finding resources in the resource database.

— lookup_name (see C.2.4.4.1) and lookup_type (see C.2.4.4.5) locate the set of resources that
matches the name or type (respectively) and is visible in the current scope. These functions return a
queue of resources.

— get_highest_precedence (see C.2.4.4.2) traverses a queue of resources and returns the one with the
highest precedence, i.e., the one whose precedence member has the highest value.

— get_by_name (see C.2.4.4.4) and get_by_type (see C.2.4.4.6) use lookup_name (see C.2.4.4.1) and
lookup_type (see C.2.4.4.5) (respectively) and get_highest_precedence (see C.2.4.4.2) to find the
resource with the highest priority that matches the other search criteria.

C.2.4.4.1 lookup_name

virtual function uvm_resource_types::rsrc_q_t lookup_name(
string scope = "",
string name,
uvm_resource_base type_handle = null,
bit rpterr = 1

)

This looks up resources by name. It returns a queue of resources that match the name, scope, and
type_handle. If no resources match or if name is an empty string (""), the queue is returned empty. If rpterr
is set to 1, a warning is issued when no matches are found. If type_handle is null, a type check is not made
and only resources that match the name and scope are returned. The default value of rpterr shall be 1.

C.2.4.4.2 get_highest_precedence

static function uvm_resource_base get_highest_precedence(
ref uvm_resource_types::rsrc_q_t q

)

411
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
This traverses a queue, q, of resources and returns the one with the highest precedence. When more than one
resource with the highest precedence value exists, the first one that has that precedence is the one that is
returned.

C.2.4.4.3 sort_by_precedence

static function void sort_by_precedence(
ref uvm_resource_types::rsrc_q_t q

)

Given a list of resources, this sorts the resources in precedence order. The highest precedence resource is
first in the list and the lowest precedence is last. Resources that have the same precedence are ordered by
whichever is most recently set first.

C.2.4.4.4 get_by_name

virtual function uvm_resource_base get_by_name(
string scope = "",
string name,
uvm_resource_base type_handle,
bit rpterr = 1

)

This looks up a resource by name, scope, and type_handle and returns the highest precedence match. The
rpterr flag indicates whether to report errors or not. The default value of rpterr shall be 1.

C.2.4.4.5 lookup_type

virtual function uvm_resource_types::rsrc_q_t lookup_type(
string scope = "",
uvm_resource_base type_handle

)

This is a convenience method, functionally equivalent to calling get_highest_precedence (see C.2.4.4.2) on
the result of lookup_name (see C.2.4.4.1).

This looks up resources by type. It returns a queue of resources that match the type_handle and scope. If no
resources match, the returned queue is empty.

C.2.4.4.6 get_by_type

virtual function uvm_resource_base get_by_type(
string scope = "",
uvm_resource_base type_handle

)

This is a convenience method, functionally equivalent to calling lookup_type (see C.2.4.4.5) and returning
the first resource in the queue.

This looks up a resource by type_handle and scope.

C.2.4.4.7 lookup_regex

virtual function uvm_resource_types::rsrc_q_t lookup_regex(
string re,
string scope

)

412
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Looks for all the resources whose name matches the regular expression argument and whose scope matches
the current scope.

C.2.4.4.8 lookup_scope

virtual function uvm_resource_types::rsrc_q_t lookup_scope(
string scope

)

This is a utility function that answers the question: For a given scope, what resources are visible to it? It
locates all the resources that are visible to a particular scope. This operation could be quite expensive, as it
has to traverse all of the resources in the database.

C.2.4.5 Prioritization

The resource pool supports prioritization of the resources contained within. This prioritization is represented
by two values: the priority and the precedence.

Priority is used to determine how the resource pool should act when new resources are added to the pool
with identical types and/or names to pre-existing resources within the pool. The type and name maps
maintained within the pool are maps of queues, allowing multiple resources to appear at a given key within
the map. Resources with high priority are moved to the front of the queue, whereas resources with low
priority are moved to the back of the queue. The default priority when adding resources to the pool is low.

Precedence is used to determine how the resource pool should react when it encounters multiple resources
that match a given scope and name for a lookup (see C.2.4.4). Resources with a higher precedence outrank
resources with a lower precedence. Precedence has no effect on type-based lookups. The default precedence
when adding resources to the pool is determined via get_default_precedence (see C.2.4.5.5).

C.2.4.5.1 set_priority_type

virtual function void set_priority_type(
uvm_resource_base rsrc,

uvm_resource_types::priority_e pri
)

This changes the priority of the rsrc based on the value of pri, the priority enum argument. This function
changes the priority only in the type map, leaving the name map untouched.

C.2.4.5.2 set_priority_name

virtual function void set_priority_name(
uvm_resource_base rsrc,

uvm_resource_types::priority_e pri
)

This changes the priority of the rsrc based on the value of pri, the priority enum argument. This function
changes the priority only in the name map, leaving the type map untouched.

C.2.4.5.3 set_priority

virtual function void set_priority (
uvm_resource_base rsrc,

uvm_resource_types::priority_e pri
)

413
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
This changes the search priority of the rsrc based on the value of pri, the priority enum argument. This
function changes the priority in both the name and type maps.

C.2.4.5.4 set_default_precedence

static function void set_default_precedence(
int unsigned precedence

)

Overrides the current default precedence being used by the resource pool.

This method is provided as a wrapper function to conveniently assign the resource pool default precedence
via the uvm_coreservice_t::set_resource_pool_default_precedence method (see F.4.1.4.23).

C.2.4.5.5 get_default_precedence

static function int unsigned get_default_precedence()

This method is provided as a wrapper function to conveniently retrieve the resource pool default precedence
via the uvm_coreservice_t::get_resource_pool_default_precedence method (see F.4.1.4.24).

C.2.4.5.6 set_precedence

virtual function void set_precedence(
uvm_resource_base r,
int unsigned
p=uvm_resource_pool::get_default_precedence()

)

Assigns the precedence value of a specific resource within the pool.

An implementation shall issue an warning message if the user passes in a null or a resource that has not
previously been placed within the pool, and the request shall be ignored.

C.2.4.5.7 get_precedence

virtual function int unsigned get_precedence(
uvm_resource_base r

)

Returns the precedence value of a specific resource within the pool.

An implementation shall issue an warning message if the argument r is set to null or if the resource is not
stored within the resource pool, and the function shall return the current default precedence, as determined
by get_default_precedence (see C.2.4.5.5).

C.2.4.5.8 get_highest_precedence

static function uvm_resource_base get_highest_precedence(
ref uvm_resource_types::rsrc_q_t q

)

In a queue of resources, this locates the resource with the highest precedence. This function is static so that it
can be called from anywhere.
414
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
C.2.5 uvm_resource #(T)

This is a parameterized resource. It provides access methods to store in, read from, and write to a resource.

C.2.5.1 Class declaration

class uvm_resource #(
type T = int

) extends uvm_resource_base

C.2.5.2 new

function new(
string name

)

Constructs a resource with the given instance name. If name is not supplied, then the resource is unnamed.

C.2.5.3 Type interface

Resources can be identified by type using a static type handle. The parent class provides the virtual function
interface get_type_handle (see C.2.5.3.2). This can be implemented by returning the static type handle.

C.2.5.3.1 get_type

static function uvm_resource #(T) get_type()

This is a static function that returns the static type handle. The return type is uvm_resource #(T), which is the
type of the parameterized class.

C.2.5.3.2 get_type_handle

function uvm_resource_base get_type_handle()

This returns the static type handle of this resource in a polymorphic fashion. The return type is
uvm_resource_base. This function is not static and, therefore, can only be used by instances of a
parameterized resource.

C.2.5.4 Read/write interface

read (see C.2.5.4.1) and write (see C.2.5.4.2) provide a type-safe interface for retrieving and specifying the
object in the resource container. The interface is type safe because the value argument for write and the
return value of read are T, the type supplied in the class parameter. If either of these functions is used in an
incorrect type context, the compiler will complain.

C.2.5.4.1 read

function T read(
uvm_object accessor = null

)

This returns the object stored in the resource container.
415
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
C.2.5.4.2 write

function void write(
T t,
uvm_object accessor = null

)

This modifies the object stored in this resource container. If the resource is read-only, this generates an error
message and returns without modifying the object in the container. Lastly, it replaces the value in the
container with the value supplied as the argument, t, and releases any processes blocked on
uvm_resource_base::wait_modified (see C.2.3.4). If the value to be written is the same as the value
already present in the resource: the write is not done, the accessor record is not updated, and the modified bit
is not set.

C.3 UVM resource database

C.3.1 Introduction

The uvm_resource_db class (see C.3.2) provides a convenience interface for the resources facility. In many
cases, basic operations such as creating and specifying a resource or retrieving a resource could take
multiple lines of code using the interfaces in uvm_resource_base (see C.2.3) or uvm_resource#(T) (see
C.2.5). The uvm_resource_db convenience layer reduces many of those operations to a single line of code.

C.3.2 uvm_resource_db

All of the functions in uvm_resource_db#(T) are static, so they need to be called using the Scope
Resolution Operator (::), e.g., uvm_resource_db#(int)::set("A", "*", 17, this).

The parameter value “int” identifies the resource type as uvm_resource#(int). Thus, the type of the
object in the resource container is int. This maintains the type-safety characteristics of resource operations.

C.3.2.1 Class declaration

class uvm_resource_db #(
type T = uvm_object

)

C.3.2.2 Methods

C.3.2.2.1 set

static function void set(
input string scope,
input string name,

T val,
input uvm_object accessor = null

)

Create a new resource, write a val to it, and set it into the database using name and scope as the lookup
parameters. The accessor is available for an implementation to use for debug purposes only; its value shall
have no functional effect on outcome of this method.
416
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
C.3.2.2.2 set_default

static function rsrc_t set_default(
string scope,
string name

)

Adds a new item into the resources database. The item will not be written to so it uses its default value. The
resource is created using name and scope as the lookup parameters.

C.3.2.2.3 set_anonymous

static function void set_anonymous(
input string scope,

T val,
input uvm_object accessor = null

)

Creates a new resource, writes a val to it, and sets it into the database. The resource has no name and,
therefore, cannot be entered into the name map. It can still be retrieved by type, using scope for lookup
purposes. The accessor is available for an implementation to use for debug purposes only; its value shall
have no functional effect on outcome of this method.

C.3.2.2.4 get_by_name

static function rsrc_t get_by_name(
string scope,
string name,
bit rpterr = 1

)

Imports a resource by name. The first argument is the current scope of the resource to be retrieved and the
second argument is the name. The rpterr flag indicates whether or not to issue a warning if no matching
resource is found. The default value of rpterr shall be 1.

C.3.2.2.5 get_by_type

static function rsrc_t get_by_type(
string scope

)

Returns a resource by type. The type is specified in the db class parameter, so the only argument to this
function is the scope.

C.3.2.2.6 read_by_name

static function bit read_by_name(
input string scope,
input string name,
output T val,
input uvm_object accessor = null

)

Locates a resource by name and scope and reads its value. The value is returned through the output argument
val. The return value is a bit that indicates whether or not the read was successful. The accessor is available
417
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
for an implementation to use for debug purposes only; its value shall have no functional effect on outcome
of this method.

C.3.2.2.7 read_by_type

static function bit read_by_type(
input string scope,
output T val,
input uvm_object accessor = null

)

Reads a value by type. The value is returned through the output argument val. The scope is used for the
lookup. The return value is a bit that indicates whether or not the read is successful. The accessor is
available for an implementation to use for debug purposes only; its value shall have no functional effect on
outcome of this method.

C.3.2.2.8 write_by_name

static function bit write_by_name(
input string scope,
input string name,
input T val,
input uvm_object accessor = null

)

Writes a val into the resources database. First, look up the resource by name and scope. If it is not located,
write_by_name returns 0. If the resource is located, then val is written to the resource. The accessor is
available for an implementation to use for debug purposes only; its value shall have no functional effect on
outcome of this method.

Because the scope is matched to a resource that may be a regular expression, and consequently may target
other scopes beyond the scope argument, be careful using this function. If a get_by_name match (see
C.3.2.2.4) is found for name and scope, then val is written to that matching resource and, thus, may impact
other scopes that also match the resource.

C.3.2.2.9 write_by_type

static function bit write_by_type(
input string scope,
input T val,
input uvm_object accessor = null

)

Writes a val into the resources database. First, look up the resource by type. If it is not located,
write_by_name returns 0. If the resource is located, then val is written to the resource. The accessor is
available for an implementation to use for debug purposes only; its value shall have no functional effect on
outcome of this method.

Because the scope is matched to a resource that may be a regular expression and consequently may target
other scopes beyond the scope argument, be careful using this function. If a get_by_name match (see
C.3.2.2.4) is found for name and scope, then val is written to that matching resource and, thus, may impact
other scopes that also match the resource.
418
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
C.3.2.2.10 get_highest_precedence

static function uvm_resource #(T) get_highest_precedence(
ref uvm_resource_types::rsrc_q_t q

)

In a queue of resources, this locates the first one with the highest precedence whose type is T. This function
is static so that it can be called from anywhere.

C.4 UVM configuration database

C.4.1 Introduction

The uvm_config_db class (see C.4.2) provides a convenience interface on top of the uvm_resource_db (see
C.3.2) to simplify the basic interface that is used for configuring uvm_component instances (see 13.1).

C.4.2 uvm_config_db

All of the functions in uvm_config_db#(T) are static, so they need to be called using the Scope
Resolution Operator (::), e.g., uvm_config_db#(int)::set(this, "*", "A").

The parameter value “int” identifies the configuration type as an int property.

C.4.2.1 Class declaration

class uvm_config_db#(
type T = int

) extends uvm_resource_db#(T)

C.4.2.2 Methods

C.4.2.2.1 set

static function void set(
uvm_component cntxt,
string inst_name,
string field_name,
T value

)

Creates a new or updates an existing configuration specification for field_name in inst_name from cntxt. The
setting is made at cntxt, with the full scope of the set being {cntxt,”.”,inst_name}. If cntxt is null,
then inst_name provides the complete scope information of the setting. field_name is the target field. Both
inst_name and field_name may be simplified notation or regular expression style expressions.

If a setting is made at build time, the cntxt hierarchy is used to determine the setting’s precedence in the
database. Settings from hierarchically higher levels have higher precedence. All settings use PRI_HIGH
priority. A precedence setting of uvm_resource_pool:: set_default_precedence (see C.2.4.5.4) is used for
the implicit top-level component (see F.7), and each hierarchical level below it is decremented by 1.

After build time, all settings use the default precedence and PRI_HIGH priority. So, if at run time, a low-
level component makes a run-time setting of some field, that setting shall have precedence over a setting
from the test level that was made earlier in the simulation.
419
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
C.4.2.2.2 get

static function bit get(
uvm_component cntxt,
string inst_name,
string field_name,

inout T value
)

Returns the value for field_name in inst_name, using the component cntxt as the starting search point.
inst_name is an explicit instance name relative to cntxt and may be an empty string ("") if the cntxt is the
instance to which the configuration object applies. field_name is the specific field in the scope that is being
searched.

C.4.2.2.3 exists

static function bit exists(
uvm_component cntxt,
string inst_name,
string field_name,
bit spell_chk = 0

)

Checks if a value for field_name is available in inst_name, using the component cntxt as the starting search
point. inst_name is an explicit instance name relative to cntxt and may be an empty string ("") if the cntxt is
the instance to which the configuration object applies. field_name is the specific field in the scope that is
being searched for. spell_chk is available for an implementation to use for debug purposes only; its value
shall have no functional effect on outcome of this method. The function returns 1 if a config parameter
exists and 0 if it does not exist. The default value of spell_chk shall be 0.

C.4.2.2.4 wait_modified

static task wait_modified(
uvm_component cntxt,
string inst_name,
string field_name

)

Waits for a configuration setting to be set for field_name in cntxt and inst_name. The task blocks until a new
configuration setting is applied that effects the specified field.

C.4.2.3 Types

There are several convenience types for uvm_config_db (see C.4.2).

C.4.2.3.1 uvm_config_int

typedef uvm_config_db#(uvm_bitstream_t) uvm_config_int

This is a convenience type for uvm_config_db#(uvm_bitstream_t).

C.4.2.3.2 uvm_config_string

typedef uvm_config_db#(string) uvm_config_string

This is a convenience type for uvm_config_db#(string).
420
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
C.4.2.3.3 uvm_config_object

typedef uvm_config_db#(uvm_object) uvm_config_object

This is a convenience type for uvm_config_db#(uvm_object).

C.4.2.3.4 uvm_config_wrapper

typedef uvm_config_db#(uvm_object_wrapper) uvm_config_wrapper

This is a convenience type for uvm_config_db#(uvm_object_wrapper).
421
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Annex D

(normative)

Convenience classes, interface, and methods

This annex details additional convenience classes, interfaces, and methods that can be used in UVM.

D.1 uvm_callback_iter

This class can be used as part of the callbacks classes (see 10.7).

The uvm_callback_iter class is an iterator class for iterating over callback queues of a specific callback
type. The typical usage of the class is:

uvm_callback_iter#(mycomp,mycb) iter = new(this)
for(mycb cb = iter.first(); cb != null; cb = iter.next())

cb.dosomething()

D.1.1 Class declaration

class uvm_callback_iter#(
type T = uvm_object,
type CB = uvm_callback

)

This class shall not have a type_id declared (see 8.2.2).

D.1.2 Methods

D.1.2.1 new

function new(
T obj

)

Creates a new callback iterator object. It is required that the object context be provided.

D.1.2.2 first

function CB first()

Returns the first valid (enabled) callback of the callback type (or a derivative) that is in the queue of the
context object. If the queue is empty, null is returned.

D.1.2.3 last

function CB last()

Returns the last valid (enabled) callback of the callback type (or a derivative) that is in the queue of the
context object. If the queue is empty, null is returned.
422
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
D.1.2.4 next

function CB next()

Returns the next valid (enabled) callback of the callback type (or a derivative) that is in the queue of the
context object. If there are no more valid callbacks in the queue, null is returned.

D.1.2.5 prev

function CB prev()

Returns the previous valid (enabled) callback of the callback type (or a derivative) that is in the queue of the
context object. If there are no more valid callbacks in the queue, null is returned.

D.1.2.6 get_cb

function CB get_cb()

Returns the last callback accessed via a first (see D.1.2.2), next (see D.1.2.4), last (see D.1.2.3), or prev
(see D.1.2.5) call.

D.2 Component interfaces

These interfaces can be used with uvm_component (see 13.1).

D.2.1 Factory interface

The factory interface provides convenient access to a portion of the uvm_factory interface (see 8.3.1). For
creating new objects and components, the preferred method of accessing the factory is via the object or
component wrapper (see 8.2.4 and 8.2.3, respectively). The wrapper also provides functions for setting type
and instance overrides.

D.2.1.1 create_component

function uvm_component create_component (
string requested_type_name,
string name

)

A convenience function for uvm_factory::create_component_by_name (see 8.3.1.5), this method calls
upon the factory to create a new child component whose type corresponds to the preregistered type name,
requested_type_name, and instance name, name. This method is equivalent to

uvm_factory factory = uvm_factory::get()
factory.create_component_by_name(requested_type_name,

get_full_name(), name, this)

If the factory determines that a type or instance override exists, the type of the component created may be
different from the requested type. See set_type_override (see D.2.1.5) and set_inst_override (see D.2.1.6).
See also 8.3.1 for details on factory operation.
423
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
D.2.1.2 create_object

function uvm_component create_object (
string requested_type_name,
string name = ""

)

A convenience function for uvm_factory::create_object_by_name (see 8.3.1.5), this method calls upon
the factory to create a new object whose type corresponds to the preregistered type name,
requested_type_name, and instance name, name. This method is equivalent to

uvm_factory factory = uvm_factory::get()
factory.create_object_by_name(requested_type_name,

get_full_name(), name, this)

If the factory determines that a type or instance override exists, the type of the object created may be
different from the requested type. See 8.3.1 for details on factory operation.

D.2.1.3 set_type_override_by_type

static function void set_type_override_by_type (
uvm_object_wrapper original_type,
uvm_object_wrapper override_type,
bit replace = 1

)

A convenience function for uvm_factory::set_type_override_by_type (see 8.3.1.4.2); this method is
equivalent to:

uvm_factory factory = uvm_factory::get()
factory.set_type_override_by_type(original_type, override_type, replace)

The original_type and override_type arguments are lightweight proxies to the types they represent. See
D.2.1.4 for information on usage.

D.2.1.4 set_inst_override_by_type

function void set_inst_override_by_type(
string relative_inst_path,
uvm_object_wrapper original_type,
uvm_object_wrapper override_type

)

A convenience function for uvm_factory::set_inst_override_by_type (see 8.3.1.4.1); this method is
equivalent to:

uvm_factory factory = uvm_factory::get()
factory.set_inst_override_by_type(original_type,

override_type,
{get_full_name(),".",
relative_inst_path})

D.2.1.5 set_type_override

static function void set_type_override (
string original_type_name,
424
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
string override_type_name,
bit replace = 1

)

A convenience function for uvm_factory::set_type_override_by_name (see 8.3.1.4.2), this method
configures the factory to create an object of type override_type_name whenever the factory is asked to
produce a type represented by original_type_name. This method is equivalent to:

uvm_factory factory = uvm_factory::get()
factory.set_type_override_by_name(original_type_name,

override_type_name, replace)

original_type_name typically refers to a preregistered type in the factory. It may, however, be any arbitrary
string. Subsequent calls to create_component (see D.2.1.1) or create_object (see D.2.1.2) with the same
string and matching instance path produce the type represented by override_type_name.
override_type_name shall refer to a preregistered type in the factory. The default value of replace shall be 1.

D.2.1.6 set_inst_override

function void set_inst_override(
string relative_inst_path,
string original_type_name,
string override_type_name

)

A convenience function for uvm_factory::set_inst_override_by_name (see 8.3.1.4.1), this method
registers a factory override for components and objects created at this level of hierarchy or below. This
method is equivalent to:

uvm_factory factory = uvm_factory::get()
factory.set_inst_override_by_name(original_type_name,

override_type_name,
{get_full_name(),".",
relative_inst_path})

relative_inst_path is relative to this component and may include wildcards. original_type_name represents a
preregistered type in the factory. It may, however, be any arbitrary string. Subsequent calls to
create_component (see D.2.1.1) or create_object (see D.2.1.2) with the same string and matching instance
path produce the type represented by override_type_name. override_type_name shall refer to a preregistered
type in the factory.

D.2.2 Hierarchical reporting interface

This interface provides versions of the set_report_* methods in the uvm_report_object base class (see 6.3)
that are applied recursively to this component and all its children.

When a report is issued and its associated action has the LOG bit set to 1, the report is sent to its associated
FILE descriptor.

D.2.2.1 set_report_id_verbosity_hier and set_report_severity_id_verbosity_hier

function void set_report_id_verbosity_hier (
string id,
int verbosity

)

425
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
function void set_report_severity_id_verbosity_hier(
uvm_severity severity,
string id,
int verbosity

)

These methods recursively associate the specified verbosity with reports of the given severity, id, or severity-
id pair. A verbosity associated with a particular severity-id pair takes precedence over a verbosity associated
with id, which takes precedence over a verbosity associated with a severity.

For a list of severities and their default verbosities, refer to 6.4.

D.2.2.2 set_report_severity_action_hier, set_report_id_action_hier, and
set_report_severity_id_action_hier

function void set_report_severity_action_hier (
uvm_severity severity,
uvm_action action

)

function void set_report_id_action_hier (
string id,
uvm_action action

)

function void set_report_severity_id_action_hier(
uvm_severity severity,
string id,
uvm_action action

)

These methods recursively associate the specified action with reports of the given severity, id, or severity-id
pair. A action associated with a particular severity-id pair takes precedence over a action associated with id,
which takes precedence over a action associated with a severity.

For a list of severities and their default actions, refer to 6.4.

D.2.2.3 set_report_default_file_hier, set_report_severity_file_hier, set_report_id_file_hier,
and set_report_severity_id_file_hier

function void set_report_default_file_hier (
UVM_FILE file

)

function void set_report_severity_file_hier (
uvm_severity severity,
UVM_FILE file

)

function void set_report_id_file_hier (
string id,
UVM_FILE file

)

function void set_report_severity_id_file_hier(
uvm_severity severity,
426
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
string id,
UVM_FILE file

)

These methods recursively associate the specified FILE descriptor with reports of the given severity, id, or
severity-id pair. A FILE associated with a particular severity-id pair takes precedence over a FILE
associated with id, which takes precedence over a FILE associated with a severity.

For a list of severities and other information related to the report mechanism, refer to 6.4.

D.2.2.4 set_report_verbosity_level_hier

function void set_report_verbosity_level_hier (
int verbosity

)

This method recursively specifies the maximum verbosity level for reports for this component and all those
below it. Any report from this component subtree whose verbosity exceeds this maximum is ignored.

See 6.4 for a list of predefined message verbosity levels and their meaning.

D.3 uvm_reg_block access methods

These access methods can be used with uvm_reg_block (see 18.1.5).

D.3.1 write_reg_by_name

virtual task write_reg_by_name(
output uvm_status_e status,
input string name,
input uvm_reg_data_t data,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input uvm_sequence_base parent = null,
input int prior = -1,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

Writes the named register. The default value of path shall be UVM_DEFAULT_DOOR. The default value of
prior shall be -1. The default value of lineno shall be 0.

This is equivalent to get_reg_by_name (see 18.1.3.14) followed by uvm_reg::write (see 18.4.4.9).

D.3.2 read_reg_by_name

virtual task read_reg_by_name(
output uvm_status_e status,
input string name,
output uvm_reg_data_t data,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input uvm_sequence_base parent = null,
427
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
input int prior = -1,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

Reads the named register. The default value of path shall be UVM_DEFAULT_DOOR. The default value of
prior shall be -1. The default value of lineno shall be 0.

This is equivalent to get_reg_by_name (see 18.1.3.14) followed by uvm_reg::read (see 18.4.4.10).

D.3.3 write_mem_by_name

virtual task write_mem_by_name(
output uvm_status_e status,
input string name,
input uvm_reg_addr_t offset,
input uvm_reg_data_t data,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input uvm_sequence_base parent = null,
input int prior = -1,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

Writes the named memory. The default value of path shall be UVM_DEFAULT_DOOR. The default value of
prior shall be -1. The default value of lineno shall be 0.

This is equivalent to get_mem_by_name (see 18.1.3.16) followed by uvm_mem::write (see 18.6.5.1).

D.3.4 read_mem_by_name

virtual task read_mem_by_name(
output uvm_status_e status,
input string name,
input uvm_reg_addr_t offset,
output uvm_reg_data_t data,
input uvm_door_e path = UVM_DEFAULT_DOOR,
input uvm_reg_map map = null,
input uvm_sequence_base parent = null,
input int prior = -1,
input uvm_object extension = null,
input string fname = "",
input int lineno = 0

)

Reads the named memory. The default value of path shall be UVM_DEFAULT_DOOR. The default value of
prior shall be -1. The default value of lineno shall be 0.

This is equivalent to get_mem_by_name (see 18.1.3.16) followed by uvm_mem::read (see 18.6.5.2).
428
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
D.4 Callback typedefs

The following uvm_callbacks#(T,CB) (see 10.7.2) typedefs are provided as a convenience to the user.

D.4.1 uvm_phase_cb_pool

typedef uvm_callbacks#(uvm_phase, uvm_phase_cb) uvm_phase_cb_pool

D.4.2 uvm_heartbeat_cbs_t

typedef uvm_callbacks#(uvm_objection, uvm_heartbeat_callback)
uvm_heartbeat_cbs_t

D.4.3 uvm_objection_cbs_t

typedef uvm_callbacks#(uvm_objection, uvm_objection_callback)

D.4.4 uvm_report_cb

typedef uvm_callbacks#(uvm_report_object, uvm_report_catcher)

D.4.5 uvm_report_cb_inter

typedef uvm_callback_iter#(uvm_report_object, uvm_report_catcher)
uvm_report_cb_iter

D.4.6 uvm_reg_cbs typedefs

These callback types can be used as part of the typedefs for uvm_reg_cbs (see 18.11.3).

D.4.6.1 uvm_reg_cb

typedef uvm_callbacks#(uvm_reg, uvm_reg_cbs) uvm_reg_cb

D.4.6.2 uvm_reg_cb_iter

typedef uvm_callback_iter#(uvm_reg, uvm_reg_cbs) uvm_reg_cb_iter

D.4.6.3 uvm_reg_bd_cb

typedef uvm_callbacks#(uvm_reg_backdoor, uvm_reg_cbs) uvm_reg_bd_cb

D.4.6.4 uvm_reg_bd_cb_iter

typedef uvm_callback_iter#(uvm_reg_backdoor, uvm_reg_cbs) uvm_reg_bd_cb_iter

D.4.6.5 uvm_mem_cb

typedef uvm_callbacks#(uvm_mem, uvm_reg_cbs) uvm_mem_cb
429
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
D.4.6.6 uvm_mem_cb_iter

typedef uvm_callback_iter#(uvm_mem, uvm_reg_cbs) uvm_mem_cb_iter

D.4.6.7 uvm_reg_field_cb

typedef uvm_callbacks#(uvm_reg_field, uvm_reg_cbs) uvm_reg_field_cb

D.4.6.8 uvm_reg_field_cb_iter

typedef uvm_callback_iter#(uvm_reg_field, uvm_reg_cbs) uvm_reg_field_cb_iter

D.4.6.9 uvm_vreg_cb

typedef uvm_callbacks#(uvm_vreg, uvm_vreg_cbs) uvm_vreg_cb

D.4.6.10 uvm_vreg_cb_iter

typedef uvm_callback_iter#(uvm_vreg, uvm_vreg_cbs) uvm_vreg_cb_iter

D.4.6.11 uvm_vreg_field_cb

typedef uvm_callbacks#(uvm_vreg_field, uvm_vreg_field_cbs) uvm_vreg_field_cb

D.4.6.12 uvm_vreg_field_cb_iter

typedef uvm_callback_iter#(uvm_vreg_field, uvm_vreg_field_cbs)
uvm_vreg_field_cb_iter
430
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Annex E

(normative)

Test sequences

E.1 uvm_reg_hw_reset_seq

Tests the hard reset values of registers.

The test sequence performs the following steps:

a) Resets the DUT and the block abstraction class associated with this sequence.

b) Reads all of the registers in the block, via all of the available address maps, comparing the value
read with the expected reset value.

If a bit-type resource named “NO_REG_TESTS” or “NO_REG_HW_RESET_TEST” in the “REG::”
namespace matches the full name of the block or register, the block or register is not tested.

This is usually the first test executed on any DUT.

E.1.1 Class declaration

class uvm_reg_hw_reset_seq extends uvm_reg_sequence #(
uvm_sequence #(uvm_reg_item)

)

E.1.2 Variables

model

The block to be tested. This is declared in the base class, e.g., uvm_reg_block model.

E.1.2.1 Methods

E.1.2.1.1 new

function new(
string name = "uvm_reg_hw_reset_seq")
super.name(new)

endfunction

Creates a new instance of the class with the given name.

E.1.2.1.2 body

virtual task body()

Executes the uvm_reg_hw_reset_seq sequence.
431
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
E.2 Bit bashing test sequences

This subclause defines classes that test individual bits of the registers defined in a register model.

E.2.1 uvm_reg_single_bit_bash_seq

Verifies the implementation of a single register by attempting to write 1’s and 0’s to every bit in it, via every
address map in which the register is mapped, making sure that the resulting value matches the mirrored
value.

If a bit-type resource named “NO_REG_TESTS” or “NO_REG_BIT_BASH_TEST” in the “REG::”
namespace matches the full name of the register, the register is not tested.

Registers that contain fields with unknown access policies cannot be tested.

The DUT should be idle and not modify any register during this test.

E.2.1.1 Class declaration

class uvm_reg_single_bit_bash_seq extends
uvm_reg_sequence #(

uvm_sequence #(uvm_reg_item)
)

E.2.1.2 Variables

rg

uvm_reg rg

The register to be tested.

E.2.1.3 Methods

new

function new(
string name = "uvm_reg_single_bit_bash_seq")
super.name(new)

endfunction

Creates a new instance of the class with the given name.

E.2.2 uvm_reg_bit_bash_seq

Verifies the implementation of all registers in a block, and its sub-blocks, recursively, by executing the
uvm_reg_single_bit_bash_seq sequence (see E.2.1) on it.

If a bit-type resource named “NO_REG_TESTS” or “NO_REG_BIT_BASH_TEST” in the “REG::”
namespace matches the full name of the block, the block is not tested.

E.2.2.1 Class declaration

class uvm_reg_bit_bash_seq extends uvm_reg_sequence #(
uvm_sequence #(uvm_reg_item)

)

432
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
E.2.2.2 Variables

E.2.2.2.1 model

The block to be tested. This is declared in the base class, e.g., uvm_reg_block model.

E.2.2.2.2 req_seq

protected uvm_reg_single_bit_bash_seq reg_seq

The sequence used to test one register.

E.2.2.3 Methods

E.2.2.3.1 new

function new(
string name = "uvm_reg_bit_bash_seq")
super.name(new)

endfunction

Creates a new instance of the class with the given name.

E.2.2.3.2 body

virtual task body()

Executes the uvm_reg_bit_bash_seq sequence.

E.3 Register access test sequences

This subclause defines sequences that test DUT register access via the available front-door and back-door
paths defined in the provided register model.

E.3.1 uvm_reg_single_access_seq

Verifies the accessibility of a register by writing it through its default address map, then reading it via the
back door and reversing the process, making sure the resulting value matches the mirrored value.

If a bit-type resource named “NO_REG_TESTS” or “NO_REG_ACCESS_TEST” in the “REG::”
namespace matches the full name of the register, the register is not tested.

Registers that either do not have an available back door, or only contain read-only fields and/or fields with
unknown access policies, cannot be tested.

The DUT should be idle and not modify any register during this test.

E.3.1.1 Class declaration

class uvm_reg_single_access_seq extends uvm_reg_sequence
#(

uvm_sequence #(uvm_reg_item)
)

433
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
E.3.1.2 Variables

rg

uvm_reg rg

The register to be tested.

E.3.1.3 Methods

new

function new(
string name = "uvm_reg_single_access_seq")
super.name(new)

endfunction

Creates a new instance of the class with the given name.

E.3.2 uvm_reg_access_seq

Verifies the accessibility of all registers in a block by executing the uvm_reg_single_access_seq sequence
(see E.3.1) on every register within it.

If a bit-type resource named “NO_REG_TESTS” or “NO_REG_ACCESS_TEST” in the “REG::”
namespace matches the full name of the block, the block is not tested.

E.3.2.1 Class declaration

class uvm_reg_access_seq extends uvm_reg_sequence #(
uvm_sequence #(uvm_reg_item)

)

E.3.2.2 Variables

E.3.2.2.1 model

The block to be tested. This is declared in the base class, e.g., uvm_reg_block model.

E.3.2.2.2 req_seq

protected uvm_reg_single_access_seq reg_seq

The sequence used to test one register.

E.3.2.3 Methods

E.3.2.3.1 new

function new(
string name = "uvm_reg_access_seq")
super.name(new)

endfunction

Creates a new instance of the class with the given name.
434
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
E.3.2.3.2 body

virtual task body()

Executes the uvm_reg_access_seq sequence.

E.3.3 uvm_reg_mem_access_seq

Verifies the accessibility of all registers and memories in a block by executing the uvm_reg_access_seq
(see E.3.2) and uvm_mem_access_seq sequence (see E.5.2), respectively, on every register and memory
within it.

Blocks and registers with the NO_REG_TESTS or NO_REG_ACCESS_TEST attributes are not verified.

E.3.3.1 Class declaration

class uvm_reg_mem_access_seq extends uvm_reg_sequence #(
uvm_sequence #(uvm_reg_item)

)

E.3.3.2 Methods

new

function new(
string name = "uvm_reg_mem_access_seq")
super.name(new)

endfunction

Creates a new instance of the class with the given name.

E.4 Shared register and memory access test sequences

This subclause defines sequences for testing registers and memories that are shared between two or more
physical interfaces, i.e., are associated with more than one uvm_reg_map instance (see 18.2).

E.4.1 uvm_reg_shared_access_seq

Verifies the accessibility of a shared register by writing through each address map, then reading it via every
other address map in which the register is readable, making sure the resulting value matches the mirrored
value.

If a bit-type resource named “NO_REG_TESTS” or “NO_REG_SHARED_ACCESS_TEST” in the
“REG::” namespace matches the full name of the register, the register is not tested.

Registers that contain fields with unknown access policies cannot be tested.

The DUT should be idle and not modify any register during this test.

E.4.1.1 Class declaration

class uvm_reg_shared_access_seq extends uvm_reg_sequence
#(

uvm_sequence #(uvm_reg_item)
)

435
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
E.4.1.2 Variables

rg

uvm_reg rg

The register to be tested.

E.4.1.3 Methods

new

function new(

string name = "uvm_reg_shared_access_seq")

super.name(new)

endfunction

Creates a new instance of the class with the given name.

E.4.2 uvm_mem_shared_access_seq

Verifies the accessibility of a shared memory by writing through each address map, then reading it via every
other address map in which the memory is readable, making sure the resulting value matches the mirrored
value.

If a bit-type resource named “NO_REG_TESTS”, “NO_MEM_TESTS”,
“NO_REG_SHARED_ACCESS_TEST”, or “NO_MEM_SHARED_ACCESS_TEST” in the “REG::”
namespace matches the full name of the memory, the memory is not tested.

The DUT should be idle and not modify the memory during this test.

E.4.2.1 Class declaration

class uvm_mem_shared_access_seq extends uvm_reg_sequence

#(

uvm_sequence #(uvm_reg_item)

)

E.4.2.2 Variables

mem

uvm_mem mem

The memory to be tested.

E.4.2.3 Methods

new

function new(

string name = "uvm_mem_shared_access_seq")

super.name(new)

endfunction

Creates a new instance of the class with the given name.
436
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
E.4.3 uvm_reg_mem_shared_access_seq

Verifies the accessibility of all shared registers and memories in a block by executing the
uvm_reg_shared_access_seq (see E.4.1) and uvm_mem_shared_access_seq (see E.4.2) sequences,
respectively, on every register and memory within it.

If a bit-type resource named “NO_REG_TESTS”, “NO_MEM_TESTS”,
“NO_REG_SHARED_ACCESS_TEST”, or “NO_MEM_SHARED_ACCESS_TEST” in the “REG::”
namespace matches the full name of the block, the block is not tested.

E.4.3.1 Class declaration

class uvm_reg_mem_shared_access_seq extends
uvm_reg_sequence #(

uvm_sequence #(uvm_reg_item)
)

E.4.3.2 Variables

E.4.3.2.1 model

The block to be tested. This is declared in the base class, e.g., uvm_reg_block model.

E.4.3.2.2 req_seq

protected uvm_reg_shared_access_seq reg_seq

The sequence used to test one register.

E.4.3.2.3 mem_seq

protected uvm_mem_shared_access_seq mem_seq

The sequence used to test one memory.

E.4.3.3 Methods

E.4.3.3.1 new

function new(
string name = "uvm_reg_mem_shared_access_seq")
super.name(new)

endfunction

Creates a new instance of the class with the given name.

E.4.3.3.2 body

virtual task body()

Executes the uvm_reg_mem_shared_access_seq sequence.
437
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
E.5 Memory access test sequences

E.5.1 uvm_mem_single_access_seq

Verifies the accessibility of a memory by writing through its default address map, then reading it via the
back door and reversing the process, making sure the resulting value matches the mirrored value.

If a bit-type resource named “NO_REG_TESTS”, “NO_MEM_TESTS”, or “NO_MEM_ACCESS_TEST” in
the “REG::” namespace matches the full name of the memory, the memory is not tested.

Memories without an available back door cannot be tested.

The DUT should be idle and not modify the memory during this test.

E.5.1.1 Class declaration

class uvm_mem_single_access_seq extends uvm_reg_sequence
#(

uvm_sequence #(uvm_reg_item)
)

E.5.1.2 Variables

mem

uvm_mem mem

The memory to be tested.

E.5.1.3 Methods

new

function new(
string name = "uvm_mem_single_access_seq")
super.name(new)

endfunction

Creates a new instance of the class with the given name.

E.5.2 uvm_mem_access_seq

Verifies the accessibility of all memories in a block by executing the uvm_mem_single_access_seq
sequence (see E.5.1) on every memory within it.

If a bit-type resource named “NO_REG_TESTS”, “NO_MEM_TESTS”, or “NO_MEM_ACCESS_TEST” in
the “REG::” namespace matches the full name of the block, the block is not tested.

E.5.2.1 Class declaration

class uvm_mem_access_seq extends uvm_reg_sequence #(
uvm_sequence #(uvm_reg_item)

)

438
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
E.5.2.2 Variables

E.5.2.2.1 model

The block to be tested. This is declared in the base class, e.g., uvm_reg_block model.

E.5.2.2.2 mem_seq

protected uvm_mem_single_access_seq mem_seq

The sequence used to test one memory.

E.5.2.3 Methods

E.5.2.3.1 new

function new(
string name = "uvm_mem_access_seq")
super.name(new)

endfunction

Creates a new instance of the class with the given name.

E.5.2.3.2 body

virtual task body()

Executes the uvm_mem_access_seq sequence.

E.6 Memory walking-ones test sequences

This subclause defines sequences for applying a “walking-ones” algorithm on one or more memories.

E.6.1 uvm_mem_single_walk_seq

Runs the walking-ones algorithm on the memory given by the mem class property (see E.6.1.2), which
needs to be assigned prior to starting this sequence.

If a bit-type resource named “NO_REG_TESTS”, “NO_MEM_TESTS”, or “NO_MEM_WALK_TEST” in
the “REG::” namespace matches the full name of the memory, the memory is not tested.

The walking-ones algorithm is performed for each map in which the memory is defined.

E.6.1.1 Class declaration

class uvm_mem_single_walk_seq extends uvm_reg_sequence #(
uvm_sequence #(uvm_reg_item)

)

E.6.1.2 Variables

mem

uvm_mem mem
439
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
The memory to test; this needs to be assigned prior to starting the sequence.

E.6.1.3 Methods

E.6.1.3.1 new

function new(
string name = "uvm_mem_single_walk_seq")
super.name(new)

endfunction

Creates a new instance of the class with the given name.

E.6.1.3.2 body

virtual task body()

Performs the walking-ones algorithm on each map of the memory specified in mem (see E.6.1.2).

E.6.2 uvm_mem_walk_seq

Verifies all the memories in a block by executing the uvm_mem_single_walk_seq sequence (see E.6.1) on
every memory within it.

If a bit-type resource named “NO_REG_TESTS”, “NO_MEM_TESTS”, or “NO_MEM_WALK_TEST” in
the “REG::” namespace matches the full name of the block, the block is not tested.

E.6.2.1 Class declaration

class uvm_mem_walk_seq extends uvm_reg_sequence #(
uvm_sequence #(uvm_reg_item)

)

E.6.2.2 Variables

E.6.2.2.1 model

The block to be tested. This is declared in the base class, e.g., uvm_reg_block model.

E.6.2.2.2 mem_seq

protected uvm_mem_single_walk_seq mem_seq

The sequence used to test one memory.

E.6.3 Methods

E.6.3.1 new

function new(
string name = "uvm_mem_walk_seq")
super.name(new)

endfunction
440
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Creates a new instance of the class with the given name.

E.6.3.2 body

virtual task body()

Executes the uvm_mem_walk_seq sequence, one block at a time.

E.7 uvm_reg_mem_hdl_paths_seq

Verifies the correctness of the HDL paths specified for registers and memories.

This sequence checks that the specified back-door paths are indeed accessible by the simulator. By default,
the check is performed for the default design abstraction. If the simulation contains multiple models of the
DUT, HDL paths for multiple design abstractions can be checked.

If a path is not accessible by the simulator, it cannot be used for read/write back-door accesses. In that case,
a warning is issued. A simulator may have finer-grained access permissions, such as separate read or write
permissions. These extra access permissions are not checked.

The test is performed in zero time and does not require any reads/writes to/from the DUT.

E.7.1 Class declaration

class uvm_reg_mem_hdl_paths_seq extends uvm_reg_sequence

#(

uvm_sequence #(uvm_reg_item)

)

E.7.2 Variables

abstractions

string abstractions[$]

When not empty, this checks the HDL paths for the specified design abstractions. If empty, it checks the
HDL path for the default design abstraction, as specified with uvm_reg_block::set_default_hdl_path (see
18.1.6.8). abstractions shall be a queue.

E.7.3 Methods

new

function new(

string name = "uvm_reg_mem_hdl_paths_seq")

super.name(new)

endfunction

Creates a new instance of the class with the given name.
441
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
E.8 uvm_reg_mem_built_in_seq

A sequence that executes a user-defined selection of predefined register and memory test sequences.

E.8.1 Class declaration

virtual class uvm_reg_mem_built_in_seq extends uvm_reg_sequence

#(

uvm_sequence #(uvm_reg_item)

)

E.8.2 Variables

E.8.2.1 model

The block to be tested. This is declared in the base class, e.g., uvm_reg_block model.

E.8.2.2 tests

bit [63:0] tests = UVM_DO_ALL_REG_MEM_TESTS

By default, all the predefined register and memory tests are executed. tests can also be set to execute any
combination of the predefined register and/or memory tests by bitwise ORing the desired values defined by
uvm_reg_mem_tests_e (see 17.2.2.10). The default value of tests shall be
UVM_DO_ALL_REG_MEM_TESTS.

E.8.3 Methods

E.8.3.1 new

function new(

string name = "uvm_reg_mem_built_in_seq")

super.name(new)

endfunction

Creates a new instance of the class with the given name.

E.8.3.2 body

virtual task body()

Executes any or all the built-in register and memory sequences.
442
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Annex F

(normative)

Package scope functionality

F.1 Overview

UVM provides other functionality at the package scope including methods, enums, defines, and classes.
Some of these are targeted towards specific aspects of the functionality described in this standard and others
are useful across multiple aspects.

F.2 Types and enumerations

F.2.1 Field automation

F.2.1.1 UVM_FIELD_FLAG_RESERVED_BITS

parameter UVM_FIELD_FLAG_RESERVED_BITS

Represents the number of implementation reserved bits in uvm_field_flag_t (see F.2.1.2).

The exact value of the UVM_FIELD_FLAG_RESERVED_BITS is implementation specific; however, it
shall be sufficiently large to store the result of a bitwise ORing of the uvm_radix_enum (see F.2.1.5),
uvm_recursion_policy_enum (see F.2.1.6), and `uvm_field_* macro flags (see F.2.1.9).

F.2.1.2 uvm_field_flag_t

bit[`UVM_FIELD_FLAG_SIZE-1:0] uvm_field_flag_t

The field flag type is a type for storing flag values passed onto the `uvm_field_* macros (see B.2.2).

F.2.1.3 uvm_bitstream_t

logic signed [`UVM_MAX_STREAMBITS-1:0]

The bitstream type is used as an argument type for passing integral values in such methods as
uvm_object::set_local (see 5.3.12), uvm_config_int (see C.4.2.3.1), uvm_printer::print_field (see
16.2.3.8), uvm_recorder::record_field (see 16.4.6.1), uvm_packer::pack_field (see 16.5.4.8), and
uvm_packer::unpack_field (see 16.5.4.16).

F.2.1.4 uvm_integral_t

logic signed [63:0]

The integral type is used as an argument type for passing integral values of 64 bits or less in such methods
as uvm_printer::print_field_int (see 16.2.3.9), uvm_recorder::record_field_int (see 16.4.6.2),
uvm_packer::pack_field_int (see 16.5.4.9), and uvm_packer::unpack_field_int (see 16.5.4.17).
443
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
F.2.1.5 uvm_radix_enum

Specifies the radix for printing or recording; it can contain the following literals:

UVM_BIN—Selects the binary (%b) format.

UVM_DEC—Selects the decimal (%d) format.

UVM_UNSIGNED—Selects the unsigned decimal (%u) format.

UVM_UNFORMAT2—Selects the unformatted 2-value data (%u) format.

UVM_UNFORMAT4—Selects the unformatted 4-value data (%z) format.

UVM_OCT—Selects the octal (%o) format.

UVM_HEX—Selects the hexadecimal (%h) format.

UVM_STRING—Selects the string (%s) format.

UVM_TIME—Selects the time (%t) format.

UVM_ENUM—Selects the enumeration value (name) format.

UVM_REAL—Selects real (%g) in the exponential or decimal format, whichever results in the
shorter printed output.

UVM_REAL_DEC—Selects real (%f) in the decimal format.

UVM_REAL_EXP—Selects real (%e) in the exponential format.

UVM_NORADIX—No radix information is provided, the printer/recorder can use its default radix.

F.2.1.6 uvm_recursion_policy_enum

Specifies the policy for recursively entering object-based member variables; it has the following parameters:

UVM_DEFAULT_POLICY—No policy information is provided, the operation can use its default
policy.

UVM_DEEP—Deep recursion. The operation shall recursively enter object-based member variables
of the target object.

UVM_SHALLOW—Shallow recursion. The operation shall not recursively enter object-based
member variables of the target object, instead treating them as simple references.

UVM_REFERENCE—Zero recursion. The target object itself shall be treated as a simple reference.

F.2.1.7 uvm_active_passive_enum

Defines whether a component, usually an agent, is in “active” mode or “passive” mode; it has the following
values:

UVM_PASSIVE—“Passive” mode.

UVM_ACTIVE—“Active” mode.

F.2.1.8 Field operation types

The following flags describe the operation types supported by uvm_field_op (see 5.3.13.2):

UVM_COPY—The field will participate in uvm_object::copy (see 5.3.8.1).

UVM_COMPARE—The field will participate in uvm_object::compare (see 5.3.9.1).

UVM_PRINT—The field will participate in uvm_object::print (see 5.3.6.1).

UVM_RECORD—The field will participate in uvm_object::record (see 5.3.7.1).
444
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
UVM_PACK—The field will participate in uvm_object::pack (see 5.3.10.1).

UVM_UNPACK—The field will participate in uvm_object::unpack (see 5.3.11.1).

UVM_SET—The field will participate in uvm_object::configuration methods (see 5.3.12) and
during the uvm_component::apply_config_settings operation (see 13.1.5.1).

F.2.1.9 Field macro operation flags

The following values describe additional flags that are supported by the `uvm_field_* macros (see B.2.2):

UVM_ALL_ON—Turn all operations on.

UVM_NOCOPY—The field will not participate in uvm_object::copy (see 5.3.8.1).

UVM_NOCOMPARE—The field will not participate in uvm_object::compare (see 5.3.9.1).

UVM_NOPRINT—The field will not participate in uvm_object::print (see 5.3.6.1).

UVM_NORECORD—The field will not participate in uvm_object::record (see 5.3.7.1).

UVM_NOPACK—The field will not participate in uvm_object::pack (see 5.3.10.1) and
uvm_object::unpack (see 5.3.11.1).

UVM_NOSET—The field will not participate in uvm_object::configuration methods (see 5.3.12) or
during the uvm_component::apply_config_settings operation (see 13.1.5.1).

F.2.1.10 UVM_DEFAULT

The default value for FLAG (see B.2.2) is UVM_DEFAULT, which is functionally identical to UVM_ALL_ON
(see F.2.1.9).

F.2.2 Reporting

F.2.2.1 uvm_severity

An enumerated type representing all possible values for report severity; it has the following values:

UVM_INFO—Informative message.

UVM_WARNING—Indicates a potential problem.

UVM_ERROR—Indicates a real problem. Simulation continues subject to the configured message
action.

UVM_FATAL—Indicates a problem from which simulation cannot recover.

F.2.2.2 uvm_action_type

An enumerated type representing all possible report actions; it has the following values:

UVM_NO_ACTION—No action is taken.

UVM_DISPLAY—Sends the report to the standard output.

UVM_LOG—Sends the report to the log file(s) specified within the report object.

UVM_COUNT—The report server shall increment its internal quit counter, see 6.5.1.

UVM_EXIT—Terminates the simulation immediately.

UVM_STOP—Causes $stop to be executed, putting the simulation into interactive mode.

UVM_RM_RECORD—Sends the report to the recorder.
445
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
The numeric values of uvm_action_type shall be one-hot, with UVM_NO_ACTION having a value of 0, so
as to allow bitwise ORing via uvm_action (see F.2.2.3).

F.2.2.3 uvm_action

Defines an integer representing possible report actions (see F.2.2.2). Each of the bits of this type determines
whether a corresponding action is taken (1) or not (0). Multiple actions can be specified by doing a bitwise
OR of any number of the enumerated values. The exact size of the uvm_action vector is implementation
specific; however, it shall be sufficiently large to store the result of bitwise ORing all uvm_action_type
values (see F.2.2.2).

F.2.2.4 uvm_verbosity

Defines the standard verbosity levels for reports; it has the following parameters:

UVM_NONE—The report is always printed (NONE = 0); the verbosity level setting cannot disable it.

UVM_LOW—The report is issued if the configured verbosity is set to UVM_LOW (LOW = 100) or
above.

UVM_MEDIUM—The report is issued if the configured verbosity is set to UVM_MEDIUM (MEDIUM =
200) or above.

UVM_HIGH—The report is issued if the configured verbosity is set to UVM_HIGH (HIGH = 300) or
above.

UVM_FULL—The report is issued if the configured verbosity is set to UVM_FULL (FULL = 400) or
above.

F.2.3 Port type

uvm_port_type_e

Specifies the type of port; it has the following parameters:

UVM_PORT—The port requires the interface that is its type parameter.

UVM_EXPORT—The port provides the interface that is its type parameter via a connection to some
other export or implementation.

UVM_IMPLEMENTATION—The port provides the interface that is its type parameter, and it is
bound to the component that implements the interface.

F.2.4 Sequences

F.2.4.1 uvm_sequencer_arb_mode

Specifies a sequencer’s arbitration mode; it has the following parameters:

UVM_SEQ_ARB_FIFO—Requests are granted in FIFO order (the default).

UVM_SEQ_ARB_WEIGHTED—Requests are granted randomly by weight.

UVM_SEQ_ARB_RANDOM—Requests are granted randomly.

UVM_SEQ_ARB_STRICT_FIFO—Requests at the highest priority are granted in FIFO order.

UVM_SEQ_ARB_STRICT_RANDOM—Requests at the highest priority are granted randomly.

UVM_SEQ_ARB_USER—Arbitration is delegated to the user-defined function,
user_priority_arbitration (see 15.3.2.3), which specifies the next sequence to grant.
446
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
F.2.4.2 uvm_sequence_state_enum

Defines the current sequence state. These enumeration values shall be one-hot to support bitwise ORing,
such as that used by uvm_sequence_base::wait_for_sequence_state (see 14.2.2.5).

UVM_CREATED—The sequence has been allocated.

UVM_PRE_START—The sequence is started and the uvm_sequence_base::pre_start task (see
14.2.3.2) is being executed.

UVM_PRE_BODY—The sequence is started and the uvm_sequence_base::pre_body task (see
14.2.3.3) is being executed.

UVM_BODY—The sequence is started and the uvm_sequence_base::body task (see 14.2.3.6) is
being executed.

UVM_ENDED—The sequence has completed the execution of the uvm_sequence_base::body task
(see 14.2.3.6).

UVM_POST_BODY—The sequence is started and the uvm_sequence_base::post_body task (see
14.2.3.8) is being executed.

UVM_POST_START—The sequence is started and the uvm_sequence_base::post_start task (see
14.2.3.9) is being executed.

UVM_STOPPED—The sequence has been forcibly ended by issuing a uvm_sequence_base::kill
(see 14.2.5.11) on the sequence.

UVM_FINISHED—The sequence is completely finished executing and was not forcibly ended.

F.2.4.3 uvm_sequence_lib_mode

Specifies the random selection mode of a sequence library; it has the following parameters:

UVM_SEQ_LIB_RAND—Random sequence selection.

UVM_SEQ_LIB_RANDC—Random cyclic sequence selection.

UVM_SEQ_LIB_ITEM—Emits only items, no sequence execution.

UVM_SEQ_LIB_USER—Applies a user-defined random-selection algorithm.

F.2.5 Phasing

F.2.5.1 uvm_phase_type

This is the set of possible objects of a uvm_phase object (see 9.3.1); it has the following parameters:

UVM_PHASE_IMP—This phase object is used to traverse the component hierarchy and call the
component phase method as well as the phase_started (see 13.1.4.3.1) and phase_ended (see
13.1.4.3.3) callbacks.

UVM_PHASE_NODE—This object represents a simple node instance in the graph (see 9.3.1). These
nodes contain a reference to their corresponding UVM_PHASE_IMP object.

UVM_PHASE_SCHEDULE—This object represents a portion of the phasing graph, typically
consisting of several UVM_PHASE_NODE types, in series, in parallel, or both.

UVM_PHASE_DOMAIN—This object represents an entire graph segment that executes in parallel
with the “run” phase. Domains may define any network of UVM_PHASE_NODEs and
UVM_PHASE_SCHEDULEs. The built-in domain, uvm, consists of a single schedule of all the run-
time phases, starting with pre_reset and ending with post_shutdown.
447
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
F.2.5.2 uvm_phase_state

Following is the set of possible states of a phase:

UVM_PHASE_UNINITIALIZED—The state is uninitialized. This is the default state for phases
and for nodes that have not yet been added to a schedule.

UVM_PHASE_DORMANT—The phase is part of a schedule, but not currently executing. It could be
scheduled at some point in the future when its predecessors are done.

UVM_PHASE_SCHEDULED—The immediate predecessors of the phase are all done.

UVM_PHASE_SYNCING—All predecessors complete; waiting for all synced phases (e.g., across
domains) to be at or beyond this point.

UVM_PHASE_STARTED—Any synced phases are at UVM_PHASE_SYNCING or beyond; call the
phase_started callback (see 13.1.4.3.1) for each component in the domain, then wait a delta cycle.

UVM_PHASE_EXECUTING—Past the delta cycle after calling phase_started (see 13.1.4.3.1);
executing phase behavior until terminated by all objections being dropped, a jump, or a timeout.

UVM_PHASE_READY_TO_END—No objections remain in this phase or in any predecessors of its
successors or in any synched phases. In this state, if an objection is raised to this phase, the state
returns to UVM_PHASE_EXECUTING. If no objection is raised before a delta cycle elapses, the
state transitions to UVM_PHASE_ENDED.

UVM_PHASE_ENDED—The phase has completed execution; it is now running the phase_ended
callback (see 13.1.4.3.3). Completes in a delta cycle.

UVM_PHASE_CLEANUP—(No jump is in progress.) All processes related to phase are being killed.
Completes in a delta cycle.

UVM_PHASE_JUMPING—(A jump is in progress.) All processes related to phase are being killed.
Completes in a delta cycle. All predecessors are forced into the UVM_PHASE_DONE state and the
phase target is forced to UVM_DORMANT state.

UVM_PHASE_DONE—The phase has finished execution, which may enable a waiting successor
phase to execute.

F.2.5.3 uvm_wait_op

Specifies the operand when using methods like uvm_phase::wait_for_state (see 9.3.1.8.3); it can be one of
the following:

UVM_EQ—Equal.

UVM_NE—Not equal.

UVM_LT—Less than.

UVM_LTE—Less than or equal to.

UVM_GT—Greater than.

UVM_GTE—Greater than or equal to.

F.2.6 Objections

uvm_objection_event

Enumerates the possible objection events on which one could wait; it has the following parameters. See also
10.5.1.5.2.

UVM_RAISED—An objection was raised.
448
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
UVM_DROPPED—An objection was dropped.

UVM_ALL_DROPPED—All objections have been dropped.

F.2.7 uvm_apprepend

Specifies whether order-dependent API should put new items at the front or at the back, as follows:

 UVM_APPEND—Put new items at the back.

 UVM_PREPEND—Put new items at the front.

F.2.8 UVM_FILE

A type that can represent a SystemVerilog file descriptor or multichannel descriptor.

F.2.9 UVM_STDIN, UVM_STDOUT, and UVM_STDERR

parameter UVM_FILE UVM_STDIN = 32'h8000_0000

parameter UVM_FILE UVM_STDOUT = 32'h8000_0001

parameter UVM_FILE UVM_STDERR = 32'h8000_0002

The UVM_STDIN, UVM_STDOUT, and UVM_STDERR values align to the SystemVerilog file
descriptor values for STDIN, STDOUT, and STDERR, respectively.

F.2.10 uvm_core_state

This is an enumeration containing the set of possible states for the UVM core; it has the following values:

UVM_CORE_UNINITIALIZED—The core has yet to be initialized.

UVM_CORE_INITIALIZED—The core has been initialized via uvm_init (see F.3.1.3).

UVM_CORE_PRE_RUN—uvm_root::run_test (see F.7.2.1) has been called, but the pre_run_test
callbacks (see F.6.2.2) have yet to complete.

UVM_CORE_RUNNING—The pre_run_test callbacks have completed, and the core is now phasing
all components.

UVM_CORE_POST_RUN—The core has completed phasing all components, but the post_run_test
callbacks (see F.6.2.3) have yet to complete.

UVM_CORE_FINISHED—All post_run_test callbacks have completed, the core considers the test
finished.

UVM_CORE_PRE_ABORT—The die method (see F.7.2.2) method has been called, but the
uvm_component::pre_abort hooks (see 13.1.4.6), uvm_run_test_callback::pre_abort hooks
(see F.6.2.4), and report_summarize method (see 6.5.1.16) have yet to complete.

UVM_CORE_ABORTED—The die method has been called, and the pre_abort and post_run_test
callbacks have completed. $finish is about to be called.
449
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
F.3 Methods and types

F.3.1 Simulation control

F.3.1.1 get_core_state

function uvm_core_state get_core_state()

Returns the current status of the UVM core.

F.3.1.2 run_test

task run_test (
string test_name = ""

)

This is a convenience function for uvm_root::run_test (see F.7.2.1).

F.3.1.3 uvm_init

function void uvm_init (
uvm_coreservice_t cs = null

)

Initializes the UVM framework and sets the uvm_coreservice_t instance (see F.4) returned by
uvm_coreservice_t::get (see F.4.1.3). If cs is null, then uvm_coreservice_t::get returns an implementation
defined core service instance; otherwise, the provided cs is returned.

Additionally, the initialize hook on all registered uvm_object_registry#(T,Tname) (see 8.2.4) and
uvm_component_registry#(T,Tname) (see 8.2.3) types shall be called, after which the UVM core state
(see F.3.1.1) is set to UVM_CORE_INITIALIZED. Only the first call to uvm_init shall initialize the UVM
framework. Subsequent calls to uvm_init are silently ignored.

F.3.2 Reporting

F.3.2.1 uvm_get_report_object

function uvm_report_object uvm_get_report_object()

Returns uvm_root (see F.7) to act as the uvm_report_object (see 6.3).

F.3.2.2 uvm_report_enabled

function bit uvm_report_enabled (
int verbosity,
uvm_severity severity = UVM_INFO,
string id = ""

)

Returns 1 if the configured verbosity in the implicit top-level component (see F.7) for this severity/id is
greater than or equal to verbosity, else returns 0. See also 6.3.3.2.

The default value of severity shall be UVM_INFO.
450
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
F.3.2.3 uvm_report, uvm_report_info, uvm_report_warning, uvm_report_error, and
uvm_report_fatal

function void uvm_report(
uvm_severity severity,
string id,
string message,
int verbosity = (severity ==

uvm_severity'(UVM_ERROR)) ?
UVM_NONE : (severity ==
uvm_severity'(UVM_FATAL)) ?
UVM_NONE : UVM_MEDIUM,

string filename = "",
int line = 0,
string context_name = "",
bit report_enabled_checked = 0

)

function void uvm_report_info(
string id,
string message,
int verbosity = UVM_MEDIUM,
string filename = "",
int line = 0,
string context_name = "",
bit report_enabled_checked = 0

)

function void uvm_report_warning(
string id,
string message,
int verbosity = UVM_MEDIUM,
string filename = "",
int line = 0,
string context_name = "",
bit report_enabled_checked = 0

)

function void uvm_report_error(
string id,
string message,
int verbosity = UVM_NONE,
string filename = "",
int line = 0,
string context_name = "",
bit report_enabled_checked = 0

)

function void uvm_report_fatal(
string id,
string message,
int verbosity = UVM_NONE,
string filename = "",
int line = 0,
string context_name = "",
bit report_enabled_checked = 0

)

451
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
function void uvm_process_report_message(

uvm_report_message report_message

)

These methods, defined in the package scope, delegate to the corresponding component methods in the
implicit top-level component (see F.7). They can be used in module-based code to use the same reporting
mechanism as class-based components. See 6.3 for details on the reporting mechanism.

F.3.3 Miscellaneous

F.3.3.1 uvm_is_match

function bit uvm_is_match (

string expr,

string str

)

Returns 1 if the two strings match, 0 otherwise.

The expr can be made to match multiple str by using either POSIX regular expression notation
(IEEE Std 1003.1-2008™ [B1]) or a simplified notation.

Each resource within the pool has a set of scopes over which it is visible. When attempting to retrieve
resources from the pool via the lookup interface (see C.2.4.4), the scope of the lookup is compared against
any stored scopes set via set_scope (see C.2.4.3.1), set_override (see F.3.3.2), set_name_override (see
C.2.4.3.3), or set_type_override (see C.2.4.3.4).

A single resource can be made to match multiple lookup scopes by using either POSIX regular expression
notation (IEEE Std 1003.1-2008™ [B1]) or a simplified notation when setting its scope within the pool.

Regular expressions are identified as such when they are surrounded by ‘/’ characters. The enclosing ‘/’
characters are not part of the actual regular expression. For example, the scope /^top\.*/ is interpreted
as the regular expression ^top\.*. Any expressions not surrounded by ‘/’ shall be treated as simplified
notation.

The simplified notation has only three meta-characters: *, +, and ?. Table F.1 shows the regular expression
equivalents of the simplified notation’s meta-characters.

Table F.1—Simplified notation meta-character equivalents

Character Meaning
Regular

expression
equivalent

* Zero or more characters .*

+ One or more characters .+

? Exactly one character .
452
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
F.3.3.2 uvm_split_string

function automatic void uvm_split_string (
string str,
byte sep,

ref string values[$]
)

Returns a queue of strings, values, that is the result of the str split based on the sep. values shall be a queue.

F.3.4 uvm_enum_wrapper#(T)

The uvm_enum_wrapper#(T) class is a utility mechanism provided as a convenience to the user. It
provides a from_name method (see F.3.4.2), which is the logical inverse of the SystemVerilog name
method that is built into all enumerations.

F.3.4.1 Class declaration

class uvm_enum_wrapper#(
type T = uvm_active_passive_enum

)

T shall be an enumerated type.

F.3.4.2 Methods

from_name

static function bit from_name(
string name,

ref T value
)

This attempts to convert a string name to an enumerated value.

If the conversion is successful, this method return 1, otherwise 0.

The name passed in to the method is case sensitive and needs to exactly match the value that would be
produced by enum::name.

F.4 Core service

The UVM core service provides a common point for all central UVM services such as uvm_factory (see
8.3.1), uvm_report_server (see 6.5.1), etc. The service class provides a static ::get (see F.4.1.3), which
returns an instance adhering to uvm_coreservice_t.

The rest of the set_facility get_facility pairs provide access to internal UVM services.

F.4.1 uvm_coreservice_t

F.4.1.1 Class declaration

virtual class uvm_coreservice_t
453
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
F.4.1.2 Constructor

function new

Constructor for the uvm_coreservice_t type. This constructor takes no arguments.

F.4.1.3 get

static function uvm_coreservice_t get()

Returns the uvm_coreservice_t instance, as defined by uvm_init (see F.3.1.3). If get_core_state (see
F.3.1.1) returns UVM_CORE_UNINITIALIZED, then get shall call uvm_init with cs set to null and return
the implementation defined core service instance (see F.4.2).

F.4.1.4 Methods for core service sub-typing

F.4.1.4.1 get_root

pure virtual function uvm_root get_root()

Intended to return the uvm_root instance (see F.7).

F.4.1.4.2 get_factory

pure virtual function uvm_factory get_factory()

Intended to return the currently enabled UVM factory.

F.4.1.4.3 set_factory

pure virtual function void set_factory(
uvm_factory f

)

Intended to set the current UVM factory.

F.4.1.4.4 get_report_server

pure virtual function uvm_report_server get_report_server()

Intended to return the current global report_server.

F.4.1.4.5 set_report_server

pure virtual function void set_report_server(
uvm_report_server server

)

Intended to set the central report server to server.

F.4.1.4.6 get_default_tr_database

pure virtual function uvm_tr_database get_default_tr_database()

Intended to return the current default record database.
454
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
F.4.1.4.7 set_default_tr_database

pure virtual function void set_default_tr_database(
uvm_tr_database db

)

Intended to set the current default record database to db.

F.4.1.4.8 get_component_visitor

pure virtual function uvm_visitor#(
uvm_component

) get_component_visitor()

Intended to retrieve the current component visitor. See also F.4.1.4.9.

F.4.1.4.9 set_component_visitor

pure virtual function void set_component_visitor(
uvm_visitor#(uvm_component) v

)

Intended to set the component visitor to v (this visitor is being used for the traversal at
end_of_elaboration_phase, e.g., for name checking).

F.4.1.4.10 set_phase_max_ready_to_end

pure virtual function void set_phase_max_ready_to_end(int max)

Intended to set the default value for maximum iterations of ready_to_end for all phases (see 9.3.1.3.5).

F.4.1.4.11 get_phase_max_ready_to_end

pure virtual function int get_phase_max_ready_to_end()

Intended to get the default value for maximum iterations of ready_to_end for all phases.

F.4.1.4.12 set_default_printer

pure virtual function void set_default_printer (uvm_printer printer)

Sets the default printer policy instance.

F.4.1.4.13 get_default_printer

pure virtual function uvm_printer get_default_printer()

Retrieves the default printer policy instance, as defined by set_default_printer (see F.4.1.4.12). If
set_default_printer has not been called or has been called with a value of null, the implementation returns
the implementation’s default printer instance.

F.4.1.4.14 set_default_packer

pure virtual function void set_default_packer (uvm_packer packer)

Sets the default packer policy instance.
455
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
F.4.1.4.15 get_default_packer

pure virtual function uvm_packer get_default_packer()

Retrieves the default packer policy instance, as defined by set_default_packer (see F.4.1.4.14). If
set_default_packer has not been called or has been called with a value of null, the implementation returns
the implementation’s default packer instance.

F.4.1.4.16 set_default_comparer

pure virtual function void set_default_comparer (uvm_comparer comparer)

Sets the default comparer policy instance.

F.4.1.4.17 get_default_comparer

pure virtual function uvm_comparer get_default_comparer()

Retrieves the default comparer policy instance, as defined by set_default_comparer (see F.4.1.4.16). If
set_default_comparer has not been called or has been called with a value of null, the implementation
returns the implementation’s default comparer instance.

F.4.1.4.18 set_default_copier

pure virtual function void set_default_copier(
uvm_copier copier

)

Sets the default copier policy instance.

F.4.1.4.19 get_default_copier

pure virtual function uvm_copier get_default_copier()

Retrieves the default copier policy instance, as defined by set_default_copier (see F.4.1.4.18). If
set_default_copier has not been called or has been called with a value of null, the implementation shall
return the implementation’s default copier instance.

F.4.1.4.20 get_global_seed

pure virtual function int unsigned get_global_seed()

Returns a seed that shall be used by the UVM base class library to initialize the random number generators
of objects and/or processes.

The return value is implementation specific, however the return value shall be immutable. Successive calls
to get_global_seed within a single simulation shall return the same value.

The mechanism for generating seeds based off of the return value of get_global_seed is implementation
specific. The seeds generated within the UVM base class library shall be deterministic, such that if all
interactions with the UVM base class library between two simulations are identical, including the global
seed value, then the seeds generated within the UVM base class library shall be identical.

Refer to use_uvm_seeding (see 5.3.3.1) and random stability (see 1.3.6) for additional information
regarding random stability within the UVM base class library.
456
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
F.4.1.4.21 set_resource_pool

pure virtual function void set_resource_pool (
uvm_resource_pool pool

)

Intended to set the global resource pool instance to pool.

F.4.1.4.22 get_resource_pool

pure virtual function uvm_resource_pool get_resource_pool()

Intended to return the global resource pool instance.

F.4.1.4.23 set_resource_pool_default_precedence

pure virtual function void set_resource_pool_default_precedence(
int unsigned precedence

)

Overrides the current default precedence being used by the resource pool.

Calling this method only changes the value used for future calls to get_default_precedence (see C.2.4.5.5).
The precedence of any resources already stored within the pool remains unchanged.

F.4.1.4.24 get_resource_pool_default_precedence

pure virtual function int unsigned get_resource_pool_default_precedence()

Returns the current default precedence being used by the resource pool.

This value shall be 1000, unless overwritten via a call to set_default_precedence (see C.2.4.5.4).

F.4.2 uvm_default_coreservice_t

Default implementation of the UVM core service. uvm_default_coreservice_t can be extended; it provides
a full implementation of all uvm_coreservice_t methods (see F.4.1.4).

F.4.2.1 Class declaration

class uvm_default_coreservice_t extends uvm_coreservice_t

F.4.2.2 Constructor

function new

Constructor for the uvm_default_coreservice_t type. This constructor takes no arguments.

F.4.3 get_uvm_seeding

virtual function bit get_uvm_seeding()

Returns the current UVM seeding enable value, as set by set_uvm_seeding (see F.4.4). If set_uvm_seeding
has not been called, this returns 1.
457
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
F.4.4 set_uvm_seeding

virtual function void set_uvm_seeding (bit enable)

Sets the UVM seeding enable value.

This bit enables or disables the UVM seeding mechanism. It globally affects the operation of the reseed
method (see 5.3.3.3). The default value shall be 1 (enabled).

When enabled, UVM-based objects are seeded based on their type and full hierarchical name rather than
allocation order. This improves random stability for objects whose instance names are unique across each
type. The uvm_component class (see 13.1) is an example of a type that has a unique instance name.

F.5 Traversal

F.5.1 uvm_visitor #(NODE)

The uvm_visitor class provides an abstract base class for a visitor. The visitor visits instances of type NODE.

F.5.1.1 Class declaration

virtual class uvm_visitor#(type NODE=uvm_component) extends uvm_object

F.5.1.2 Methods

F.5.1.2.1 begin_v

virtual function void begin_v()

This method is invoked by the visitor before the first NODE is visited. This base version does nothing.

F.5.1.2.2 end_v

virtual function void end_v()

This method is invoked by the visitor after the last NODE is visited. This base version does nothing.

F.5.1.2.3 visit

pure virtual function void visit(
NODE node

)

Intended to be invoked by the visitor for every visited node of the provided structure. The user needs to
provide the functionality in this function.

F.5.2 uvm_structure_proxy #(STRUCTURE)

The uvm_structure_proxy is a wrapper that provides a set of elements of the STRUCTURE to the caller on
demand. This is to decouple the retrieval of the STRUCTURE’s subelements from the actual function being
invoked on STRUCTURE.
458
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
F.5.2.1 Class declaration

virtual class uvm_structure_proxy#(
type STRUCTURE = uvm_component
) extends uvm_object

F.5.2.2 Methods

F.5.2.2.1 new

function new (string name="")

Initializes a new uvm_structure_proxy with the specified name. The default value of name shall be an
empty string ("").

F.5.2.2.2 get_immediate_children

pure virtual function void get_immediate_children(
STRUCTURE s,

ref STRUCTURE children[$]
)

Intended to return a set of the direct subelements of s within children. children shall be a queue.

F.5.3 uvm_visitor_adapter #(STRUCTURE,uvm_visitor#(STRUCTURE))

This visitor adapter traverses all nodes of the STRUCTURE and invokes visitor.visit on every node.

F.5.3.1 Class declaration

class uvm_visitor_adapter#(
type STRUCTURE, VISITOR

) extends uvm_object

The type of VISITOR shall be derived from uvm_visitor#(STRUCTURE).

F.5.3.2 Methods

F.5.3.2.1 new

function new (string name="")

Initializes a new uvm_visitor_adapter with the specified name. The default value of name shall be an
empty string ("").

F.5.3.2.2 accept

pure virtual function void accept(
STRUCTURE s,
VISITOR v,
uvm_structure_proxy#(STRUCTURE) p,
bit invoke_begin_end = 1

)

459
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Intended to traverse through s (and every subnode of s), invoking v.visit(node) for each node found. The
children of s are intended to be determined by invoking p.get_immediate_children. invoke_begin_end
determines whether the visitors begin/end functions should be invoked prior to traversal. The default value
of invoke_begin_end shall be 1.

F.5.4 uvm_top_down_visitor_adapter

This adapter traverses the STRUCTURE s (and invokes the visitor) in a hierarchical fashion. During
traversal, s is visited before any subnodes of s are visited.

F.5.4.1 Class declaration

class uvm_top_down_visitor_adapter#(
type STRUCTURE = uvm_component,

VISITOR = uvm_visitor#(STRUCTURE)
) extends uvm_visitor_adapter#(STRUCTURE,VISITOR)

F.5.4.2 Methods

new

function new (string name="")

Initializes a new uvm_top_down_visitor_adapter with the specified name. The default value of name shall
be an empty string ("").

F.5.5 uvm_bottom_up_visitor_adapter

This adapter traverses the STRUCTURE s (and invokes the visitor) in a hierarchical fashion. During
traversal, all the children of s are visited before s is visited.

F.5.5.1 Class declaration

class uvm_bottom_up_visitor_adapter#(
type STRUCTURE = uvm_component,

VISITOR = uvm_visitor#(STRUCTURE)
) extends uvm_visitor_adapter#(STRUCTURE,VISITOR)

F.5.5.2 Methods

new

function new (string name="")

Initializes a new uvm_bottom_up_visitor_adapter with the specified name. The default value of name
shall be an empty string ("").

F.5.6 uvm_by_level_visitor_adapter

This adapter traverses the STRUCTURE s (and invokes the visitor) in a hierarchical fashion. During
traversal, all the direct children of s are visited before any grandchildren are visited.

F.5.6.1 Class declaration

class uvm_by_level_visitor_adapter#(
type STRUCTURE = uvm_component,
460
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
VISITOR = uvm_visitor#(STRUCTURE)
) extends uvm_visitor_adapter#(STRUCTURE,VISITOR)

F.5.6.2 Methods

new

function new (string name="")

Initializes a new uvm_by_level_visitor_adapter with the specified name. The default value of name shall
be an empty string ("").

F.5.7 uvm_component_proxy

The class provides an implementation of uvm_structure_proxy::get_immediate_children that returns the
subcomponents of the component instance passed into it.

F.5.7.1 Class declaration

class uvm_component_proxy extends uvm_structure_proxy#(
uvm_component

)

F.5.7.2 Methods

new

function new (string name="")

Initializes a new uvm_component_proxy with the specified name. The default value of name shall be an
empty string ("").

F.6 uvm_run_test_callback

Callback used for notification of the beginning and ending of a UVM test.

F.6.1 Class declaration

virtual class uvm_run_test_callback extends uvm_callback

F.6.2 Methods

F.6.2.1 new

function new(
string name="uvm_run_test_callback"

)

Creates a new uvm_run_test_callback with the given instance name. The default value of name is
uvm_run_test_callback.

F.6.2.2 pre_run_test

virtual function void pre_run_test()
461
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
The pre_run_test method is called on all registered uvm_run_test_callback instances upon entry to
uvm_root::run_test (see F.7.2.1).

F.6.2.3 post_run_test

virtual function void post_run_test()

The post_run_test method is called on all registered uvm_run_test_callback instances immediately prior
to the uvm_root::run_test (see F.7.2.1) returning or calling $finish.

F.6.2.4 pre_abort

virtual function void pre_abort()

The pre_abort method is called on all registered uvm_run_test_callback instances prior to uvm_root::die
(see F.7.2.2) terminating the simulation.

F.6.2.5 add

static function bit add(
uvm_run_test_callback cb

)

Adds cb to the list of callbacks to be processed. The method returns 1 if cb is not already in the list of
callbacks; otherwise, a 0 is returned. If cb is null, 0 is returned.

F.6.2.6 delete

static function bit delete(
uvm_run_test_callback cb

)

Removes cb from the list of callbacks to be processed. The method returns 1 if cb is in the list of callbacks;
otherwise, a 0 is returned. If cb is null, 0 is returned.

F.7 uvm_root

The uvm_root class serves as the implicit top-level and phase controller for all UVM components. Users do
not directly instantiate uvm_root. UVM automatically creates a singleton of uvm_root that users can access
via uvm_root::get.

The root instance of uvm_root plays several key roles in UVM.

a) Implicit top-level—The root instance serves as an implicit top-level component. Any component
whose parent is specified as NULL becomes a child of this instance. Thus, all UVM components in
simulation are descendants of this instance.

b) Phase control—The root instance is responsible for executing the test (see F.7.2.1).

c) Search—Use the root instance to search for components based on their hierarchical name. See
F.7.3.1.

d) Report configuration—Use the root instance to globally configure report verbosity, logfiles, and
actions.

e) Global reporter—Because the root instance is accessible via the uvm_pkg scope, the reporting
mechanism can be used from anywhere. See F.3.2.3.
462
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
The root instance checks during the end_of_elaboration phase if any errors have been generated so
far. If errors are found, an UVM_FATAL error shall be generated so the simulation does not continue to the
uvm_start_of_simulation_phase (see 9.8.1.4).

F.7.1 Common methods

F.7.1.1 new

protected function new()

Constructor.

As root is a singleton at the top of the component hierarchy, it does not support creation via the
uvm_factory (see 8.3.1). A fatal message shall be generated if multiple instances or extensions of
uvm_root are constructed.

F.7.1.2 get

static function uvm_root get()

Static accessor for uvm_root.

The static accessor is provided as a convenience wrapper around retrieving the root via the
uvm_coreservice_t::get_root method (see F.5).

F.7.2 Simulation control

F.7.2.1 run_test

virtual task run_test (
string test_name = ""

)

Executes the test. The following operations are performed in order:

a) The uvm_coreservice_t instance (see F.4) is retrieved via uvm_coreservice_t::get (see F.4.1.3).

b) The UVM core state (see F.3.1.1) is set to UVM_CORE_PRE_RUN.

c) The pre_run_test (see F.6.2.2) method is called on all registered uvm_run_test_callback instances
(see F.5.7.2).

d) If the command-line plusarg, +UVM_TESTNAME=<TEST_NAME> (see G.2.1), is found, then an
implementation shall call create_component_by_name (see 8.3.1.5) on the current factory (see
F.4.1.4.2) with requested_type_name set to the plusarg defined <TEST_NAME> and name set to
uvm_test_top.

e) If test_name is not an empty string ("") and no name was provided via the command-line plusarg,
then an implementation calls create_component_by_name on the current factory with
requested_type_name set to test_name and name set to uvm_test_top.

f) If no components other than uvm_root (see F.7) have been created at this point, either by run_test
or by the user, then an implementation shall generate a fatal message and run_test shall return
immediately.

g) The UVM core state is set to UVM_CORE_RUNNING.

h) All components are phased through all registered phases (see Clause 9).
463
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
i) The UVM core state is set to UVM_CORE_POST_RUN.

j) The post_run_test method (see F.6.2.3) is called on all registered uvm_run_test_callback
instances.

k) The report_summarize method (see 6.5.1.16) is called on the current report server (see F.4.1.4.4).

l) The UVM core state is set to UVM_CORE_FINISHED.

m) If get_finish_on_completion (see F.7.2.5) returns 1, then $finish is called; otherwise, run_test
shall return.

F.7.2.2 die

virtual function void die()

This method is called by the report server if a report reaches the maximum quit count or has an UVM_EXIT
action associated with it, e.g., as with fatal errors.

The following operations are performed in order:

a) The UVM core state (see F.3.1.1) is set to UVM_CORE_PRE_ABORT and the previous core state
value is temporarily stored for use in c).

b) The uvm_component::pre_abort method (see 13.1.4.6) is called on the entire uvm_component
hierarchy (see 13.1) in a bottom-up fashion.

c) The pre_abort method (see F.6.2.4) is called on all registered uvm_run_test_callback instances
(see F.5.7.2).

d) The report_summarize method (see 6.5.1.16) is called on the current report server (see F.4.1.4.4).

e) The UVM core state is set to UVM_CORE_ABORTED.

f) The simulation is terminated with $finish.

F.7.2.3 set_timeout

function void set_timeout(
time timeout,
bit overridable = 1

)

Specifies the global timeout for the simulation, which is applied in uvm_run_phase (see 9.8.1.5). If this
method is not called, the default timeout value is implementation specific.

The timeout is simply the maximum absolute simulation time allowed before a UVM_FATAL timeout occurs.
If timeout is set to 20ns, the simulation needs to end before 20 ns or a UVM_FATAL timeout will occur.
This feature is provided so a user can prevent the simulation from potentially consuming too many resources
(disk, memory, CPU, etc.) when the testbench is essentially hung.

If overridable is 0, any future calls to set_timeout have no effect. If overridable is 1, this call puts no such
restrictions on any future calls. The default value of overridable shall be 1.

F.7.2.4 set_finish_on_completion

virtual function void set_finish_on_completion(bit f)

If this function has never been called or this function is passed a 1, run_test (see F.7.2.1) calls $finish
after all phases are executed. When this function is passed a 0, the user needs to implement a mechanism to
terminate the simulation.
464
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
F.7.2.5 get_finish_on_completion

virtual function bit get_finish_on_completion()

Returns the latest value set by set_finish_on_completion (see F.7.2.4) or 1 if set_finish_on_completion
has never been called.

F.7.2.6 end_of_elaboration_phase

virtual function void end_of_elaboration_phase(
uvm_phase phase
)

Extension of uvm_component::end_of_elaboration_phase (see 13.1.4.1.3). The root instance checks if
any errors have been generated so far in the default report server (see 6.5.2) using get_severity_count (see
6.5.1.5). If the count is greater than 0, a UVM_FATAL message is generated so the simulation does not
continue to the uvm_start_of_simulation_phase (see 9.8.1.4).

F.7.3 Topology

F.7.3.1 find and find_all

function uvm_component find (
string comp_match

)

function void find_all (
string comp_match,

ref uvm_component comps[$],
input uvm_component comp = null

)

Returns the component (find) or list of components (find_all) matching a given comp_match string.
Matches are determined using uvm_is_match (see F.3.3.1), with comp_match as expr, and the component’s
full name (see 13.1.3.2) as str.

If the comp argument is not null, the search begins from that component down; otherwise, all component
instances are compared.

find does a find_all with comp = null and returns the first element in the output queue or null if there is
an empty queue. Any elements in the comps queue prior to the call to find_all are unaffected by find_all and
will still be present in the comps queue after find_all.

F.7.3.2 print_topology

function void print_topology (
uvm_printer printer = null

)

Prints the verification environment’s component topology. The printer argument provides the policy class to
be used for this operation. If no printer is provided (or the value provided is null), print_topology shall
use the default printer policy, as returned by get_default_printer (see F.4.1.4.13).
465
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
Annex G

(normative)

Command line arguments

G.1 Command line processing

The uvm_cmdline_processor class provides an interface to the command line arguments that were
provided for the given simulation. Users can retrieve the complete arguments using methods such as
get_args and get_arg_matches and also retrieve the suffixes of arguments using get_arg_values.

The generation of the data structures that hold the command line argument information happens during
construction of the class object. A global variable called uvm_cmdline_proc is created at initialization
time and may be used to access command line information. Command line arguments that are in uppercase
should only have one setting per invocation. Command line arguments that are in lowercase can have
multiple settings per invocation.

The uvm_cmdline_processor class also provides support for setting various UVM variables from the
command line, such as components’ verbosities and configuration settings for integral types and strings.
Each of these capabilities is described in G.2.

G.1.1 Class declaration

class uvm_cmdline_processor extends uvm_report_object

G.1.2 Singleton

get_inst

static function uvm_cmdline_processor get_inst()

This is a convenience mechanism, it returns the singleton instance of the UVM command line processor.

G.1.3 Basic arguments

G.1.3.1 get_args

function void get_args (
output string args[$]

)

This function returns a queue with all of the command line arguments that were used to start the simulation.
Element 0 of the array is always the name of the executable that started the simulation. args shall be a
queue.

G.1.3.2 get_plusargs

function void get_plusargs (
output string args[$]

)

466
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
This function returns a queue with all of the plus arguments that were used to start the simulation. Plus
arguments may be used by the simulator, or may be specific to a company or individual user. plusargs
never use extra arguments (i.e., if there is a plusarg as the second argument on the command line, the
third argument is unrelated); this is not necessarily the case with application specific dash arguments. args
shall be a queue.

G.1.3.3 get_uvmargs
function void get_uvm_args (

 output string args[$]
)

This function loads the queue args with all of the uvm arguments that were used to start the simulation. A
uvm argument is taken to be any argument that starts with a - or + and uses the keyword UVM (case
insensitive) as the first three letters of the argument.

G.1.3.4 get_arg_matches

function int get_arg_matches (
string match,

ref string args[$]
)

This function replaces any contents of the queue args with all of the arguments that match the expression in
match, and it returns the number of items that matched. If match is bracketed with //, it is taken as an
extended regular expression; otherwise, it is taken as the beginning of an argument to match. For example:

string myargs[$]
initial begin

void'(uvm_cmdline_proc.get_arg_matches("+foo",myargs))
//matches +foo, +foobar

//doesn't match +barfoo
void'(uvm_cmdline_proc.get_arg_matches("/foo/",myargs))

//matches +foo, +foobar,
//foo.sv, barfoo, etc.

void'(uvm_cmdline_proc.get_arg_matches("/^foo.*\.sv",myargs))
//matches foo.sv

//and foo123.sv,
//not barfoo.sv.

G.1.4 Argument values

G.1.4.1 get_arg_value

function int get_arg_value (

string match,
ref string value

)

This function finds the first argument that matches match and assigns the suffix of the argument to value. It
then returns the number of command line arguments that match match. match is interpreted as described in
G.1.3.4.
467
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
G.1.4.2 get_arg_values

function int get_arg_values (
string match,

ref string args[$]
)

This function finds all arguments that match match and replaces any contents of the args queue with the
suffixes of the matching arguments. It then returns the number of command line arguments that match
match. match is interpreted as described in G.1.3.4. For example, if ‘+foo=1,yes,on
+foo=5,no,off’ was provided on the command line and the following code was executed:

string foo_values[$]
initial begin

void'(uvm_cmdline_proc.get_arg_values("+foo=",foo_values))

the foo_values queue would contain two entries:

0“1,yes,on”

1“5,no,off”

G.2 Built-in UVM-aware command line arguments

G.2.1 +UVM_TESTNAME

+UVM_TESTNAME=<class name> can be used to specify which uvm_test (or uvm_component)
should be created via the factory and cycled through the UVM phases. If multiple settings occur, the first
occurrence is used and a warning is issued for subsequent settings. For example:

<sim command> +UVM_TESTNAME=read_modify_write_test

G.2.2 +UVM_VERBOSITY

+UVM_VERBOSITY=<verbosity> can be used to specify the initial verbosity for all components. If
multiple settings occur, the first occurrence is used and a warning is issued for subsequent settings. For
example:

<sim command> +UVM_VERBOSITY=UVM_HIGH

G.2.3 +uvm_set_verbosity

+uvm_set_verbosity=<comp>,<id>,<verbosity>,<phase> and
+uvm_set_verbosity=<comp>,<id>,<verbosity>,time,<time> can be used to manipulate
the verbosity of specific components at specific phases (and times during the “run” phases) of the
simulation. The id argument can be either ALL for all IDs or a specific message id. Wild carding is not
supported for id due to performance concerns. Settings for non-“run” phases are executed in order of
occurrence on the command line. Settings for “run” phases (times) are sorted by time and then executed in
order of occurrence for settings of the same time. For example:

<sim command>
+uvm_set_verbosity=uvm_test_top.env0.agent1.*,_ALL_,UVM_FULL,time,800
468
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
G.2.4 +uvm_set_action

+uvm_set_action=<comp>,<id>,<severity>,<action> provides the equivalent of various
uvm_report_object’s set_report_*_action APIs (see 6.3.5.2). The special keyword ALL can be provided
for the id and/or severity arguments. The action can be UVM_NO_ACTION or a | separated list of the other
UVM message actions. For example:

<sim command>
+uvm_set_action=uvm_test_top.env0.*,_ALL_,UVM_ERROR,UVM_NO_ACTION

G.2.5 +uvm_set_severity

+uvm_set_severity=<comp>,<id>,<current severity>,<new severity> provides the
equivalent of the various uvm_report_object’s set_report_*_severity_override APIs (see 6.3.7). The
special keyword ALL can be provided for the id and/or current severity arguments. For example:

<sim command>
+uvm_set_severity=uvm_test_top.env0.*,BAD_CRC,UVM_ERROR,UVM_WARNING

G.2.6 +UVM_MAX_QUIT_COUNT

+UVM_MAX_QUIT_COUNT=<count>,<overridable> changes the max quit count for the report
server. The <overridable> argument (‘YES’ or ‘NO’) specifies whether user code can subsequently
change this value. If set to ‘NO’ and the user code tries to change the max quit count value, a warning
message is issued and the attempted change is ignored.

<sim command> +UVM_MAX_QUIT_COUNT=5,NO

G.2.7 +uvm_set_inst_override and +uvm_set_type_override

+uvm_set_inst_override=<req_type>,<override_type>,<full_inst_path> and
+uvm_set_type_override=<req_type>,<override_type>[,<replace>] work like the
name-based overrides in the factory (see 8.2.3.2): factory.set_inst_override_by_name and
factory.set_type_override_by_name. For uvm_set_type_override, the third argument is 0 or 1 (the
default is 1 if this argument is left off); this argument specifies whether previous type overrides for the type
should be passed to the replace field of the factory calls. For example:

<sim command> +uvm_set_type_override=eth_packet,short_eth_packet

G.2.8 +uvm_set_config_int and +uvm_set_config_string

+uvm_set_config_int=<comp>,<field>,<value> and
+uvm_set_config_string=<comp>,<field>,<value> work like their procedural counterparts:
set_config_int and set_config_string. For the value of the settings, using ‘b (0b), ‘o, ‘d, and ‘h (‘x or
0x) as the first two characters of the value is treated as a base specifier for interpreting the base of the
number. Size specifiers are not used since SystemVerilog does not allow size specifiers in string to value
conversions. For example:

<sim command> +uvm_set_config_int=uvm_test_top.soc_env,mode,5

No equivalent of set_config_object exists as an uvm_object cannot be passed into the simulation via the
command line.
469
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 1800.2-2017
IEEE Standard for Universal Verification Methodology Language Reference Manual
G.2.9 +uvm_set_default_sequence

The +uvm_set_default_sequence=<seqr>,<phase>,<type> plusarg defines a default
sequence from the command line, using the typename of that sequence. For example:

<sim command>
+uvm_set_default_sequence=path.to.sequencer,main_phase,seq_type

This is functionally equivalent to calling the following in a test:

uvm_coreservice_t cs = uvm_coreservice_t::get()
uvm_factory f = cs.get_factory()
uvm_config_db#(uvm_object_wrapper)::set(this,
"path.to.sequencer.main_phase",
"default_sequence",
f.find_wrapper_by_name("seq_type"))
470
Copyright © 2017 IEEE. All rights reserved.

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

IEEE
standards.ieee.org
Phone: +1 732 981 0060 Fax: +1 732 562 1571
© IEEE

Authorized licensed use limited to: Wu Shan. Downloaded on March 15,2018 at 13:59:08 UTC from IEEE Xplore. Restrictions apply.

	IEEE Std 1800.2™-2017 Front cover
	Title page
	Important Notices and Disclaimers Concerning IEEE Standards Documents
	Participants
	Introduction
	Contents
	1. Overview
	1.1 Scope
	1.2 Purpose
	1.3 Conventions used
	1.3.1 Visual cues (meta-syntax)
	1.3.2 Return values
	1.3.3 Inheritance
	1.3.4 Operation order on equivalent data objects
	1.3.5 uvm_pkg
	1.3.6 Random stability

	2. Normative references
	3. Definitions, acronyms, and abbreviations
	3.1 Definitions
	3.2 Acronyms and abbreviations

	4. UVM class reference
	5. Base classes
	5.1 Overview
	5.2 uvm_void
	5.3 uvm_object
	5.3.1 Class declaration
	5.3.2 Common methods
	5.3.3 Seeding
	5.3.4 Identification
	5.3.5 Creation
	5.3.6 Printing
	5.3.7 Recording
	5.3.8 Copying
	5.3.9 Comparing
	5.3.10 Packing
	5.3.11 Unpacking
	5.3.12 Configuration
	5.3.13 Field operations
	5.3.14 Active policy

	5.4 uvm_transaction
	5.4.1 Class declaration
	5.4.2 Methods

	5.5 uvm_port_base #(IF)
	5.5.1 Class declaration
	5.5.2 Methods

	5.6 uvm_time
	5.6.1 Class declaration
	5.6.2 Common methods

	6. Reporting classes
	6.1 Overview
	6.2 uvm_report_message
	6.2.1 Class declaration
	6.2.2 Common methods
	6.2.3 Infrastructure references
	6.2.4 Message fields

	6.3 uvm_report_object
	6.3.1 Class declaration
	6.3.2 Common methods
	6.3.3 Reporting
	6.3.4 Verbosity configuration
	6.3.5 Action configuration
	6.3.6 File configuration
	6.3.7 Override configuration
	6.3.8 Report handler configuration

	6.4 uvm_report_handler
	6.4.1 Class declaration
	6.4.2 Common methods
	6.4.3 Verbosity configuration
	6.4.4 Action configuration
	6.4.5 File configuration
	6.4.6 Override configuration
	6.4.7 Message processing

	6.5 Report server
	6.5.1 uvm_report_server
	6.5.2 uvm_default_report_server

	6.6 uvm_report_catcher
	6.6.1 Class declaration
	6.6.2 Common methods
	6.6.3 Current message state
	6.6.4 Change message state
	6.6.5 Callback interface
	6.6.6 Reporting

	7. Recording classes
	7.1 uvm_tr_database
	7.1.1 Class declaration
	7.1.2 Common methods
	7.1.3 Database API
	7.1.4 Stream API
	7.1.5 Link API
	7.1.6 Implementation agnostic API

	7.2 uvm_tr_stream
	7.2.1 Class declaration
	7.2.2 Common methods
	7.2.3 Introspection API
	7.2.4 Stream API
	7.2.5 Transaction recorder API
	7.2.6 Handles
	7.2.7 Implementation agnostic API

	7.3 UVM links
	7.3.1 uvm_link_base
	7.3.2 uvm_parent_child_link
	7.3.3 uvm_cause_effect_link
	7.3.4 uvm_related_link

	8. Factory classes
	8.1 Overview
	8.2 Factory component and object wrappers
	8.2.1 Introduction
	8.2.2 type_id
	8.2.3 uvm_component_registry #(T,Tname)
	8.2.4 uvm_object_registry #(T,Tname)
	8.2.5 Abstract registries

	8.3 UVM factory
	8.3.1 uvm_factory
	8.3.2 uvm_object_wrapper
	8.3.3 uvm_default_factory

	9. Phasing
	9.1 Overview
	9.2 Implementation
	9.2.1 Class hierarchy
	9.2.2 Phasing related classes
	9.2.3 Common and run-time phases

	9.3 Phasing definition classes
	9.3.1 uvm_phase
	9.3.2 uvm_phase_state_change
	9.3.3 uvm_phase_cb

	9.4 uvm_domain
	9.4.1 Class declaration
	9.4.2 Methods

	9.5 uvm_bottomup_phase
	9.5.1 Class declaration
	9.5.2 Methods

	9.6 uvm_task_phase
	9.6.1 Class declaration
	9.6.2 Methods

	9.7 uvm_topdown_phase
	9.7.1 Class declaration
	9.7.2 Methods

	9.8 Predefined phases
	9.8.1 Common phases
	9.8.2 UVM run-time phases

	10. Synchronization classes
	10.1 Event classes
	10.1.1 uvm_event_base
	10.1.2 uvm_event#(T)

	10.2 uvm_event_callback
	10.2.1 Class declaration
	10.2.2 Methods

	10.3 uvm_barrier
	10.3.1 Class declaration
	10.3.2 Methods

	10.4 Pool classes
	10.4.1 uvm_event_pool
	10.4.2 uvm_barrier_pool

	10.5 Objection mechanism
	10.5.1 uvm_objection
	10.5.2 uvm_objection_callback

	10.6 uvm_heartbeat
	10.6.1 Class declaration
	10.6.2 Methods

	10.7 Callbacks classes
	10.7.1 uvm_callback
	10.7.2 uvm_callbacks #(T,CB)

	11. Container classes
	11.1 Overview
	11.2 uvm_pool #(KEY,T)
	11.2.1 Class declaration
	11.2.2 Methods

	11.3 uvm_queue #(T)
	11.3.1 Class declaration
	11.3.2 Methods

	12. UVM TLM interfaces
	12.1 Overview
	12.2 UVM TLM 1
	12.2.1 General
	12.2.2 Unidirectional interfaces and ports
	12.2.3 Bidirectional interfaces and ports
	12.2.4 uvm_tlm_if_base #(T1,T2)
	12.2.5 Port classes
	12.2.6 Export classes
	12.2.7 Implementation (imp) classes
	12.2.8 FIFO classes
	12.2.9 Channel classes
	12.2.10 Analysis ports

	12.3 UVM TLM 2
	12.3.1 General
	12.3.2 uvm_tlm_if: transport interfaces
	12.3.3 Enumerations
	12.3.4 Generic payload and extensions
	12.3.5 Sockets
	12.3.6 Port classes
	12.3.7 Export classes
	12.3.8 Implementation (imp) classes imps
	12.3.9 uvm_tlm_time

	13. Predefined component classes
	13.1 uvm_component
	13.1.1 Class declaration
	13.1.2 Common methods
	13.1.3 Hierarchy interface
	13.1.4 Phasing interface
	13.1.5 Configuration interface
	13.1.6 Recording interface
	13.1.7 Other interfaces

	13.2 uvm_test
	13.2.1 Class declaration
	13.2.2 Methods

	13.3 uvm_env
	13.3.1 Class declaration
	13.3.2 Methods

	13.4 uvm_agent
	13.4.1 Class declaration
	13.4.2 Methods

	13.5 uvm_monitor
	13.5.1 Class declaration
	13.5.2 Methods

	13.6 uvm_scoreboard
	13.6.1 Class declaration
	13.6.2 Methods

	13.7 uvm_driver #(REQ,RSP)
	13.7.1 Class declaration
	13.7.2 Ports
	13.7.3 Methods

	13.8 uvm_push_driver #(REQ,RSP)
	13.8.1 Class declaration
	13.8.2 Ports
	13.8.3 Methods

	13.9 uvm_subscriber
	13.9.1 Class declaration
	13.9.2 Ports
	13.9.3 Methods

	14. Sequences classes
	14.1 uvm_sequence_item
	14.1.1 Class declaration
	14.1.2 Common fields
	14.1.3 Reporting interface

	14.2 uvm_sequence_base
	14.2.1 Class declaration
	14.2.2 Common methods
	14.2.3 Sequence execution
	14.2.4 Run-time phasing
	14.2.5 Sequence control
	14.2.6 Sequence item execution
	14.2.7 Response API

	14.3 uvm_sequence #(REQ,RSP)
	14.3.1 Class declaration
	14.3.2 Variables
	14.3.3 Methods

	14.4 uvm_sequence_library
	14.4.1 Class declaration
	14.4.2 Example
	14.4.3 Common methods
	14.4.4 Sequence selection
	14.4.5 Sequence registration

	15. Sequencer classes
	15.1 Overview
	15.1.1 Sequencer variants
	15.1.2 Sequence item ports

	15.2 Sequencer interface
	15.2.1 uvm_sqr_if_base #(T1,T2)
	15.2.2 Sequence item pull ports

	15.3 uvm_sequencer_base
	15.3.1 Class declaration
	15.3.2 Methods
	15.3.3 Requests
	15.3.4 Responses
	15.3.5 Default sequence

	15.4 Common sequencer API
	15.4.1 Method
	15.4.2 Request
	15.4.3 Responses

	15.5 uvm_sequencer #(REQ,RSP)
	15.5.1 Class declaration
	15.5.2 Methods

	15.6 uvm_push_sequencer #(REQ,RSP)
	15.6.1 Class declaration
	15.6.2 Ports
	15.6.3 Methods

	16. Policy classes
	16.1 uvm_policy
	16.1.1 Class declaration
	16.1.2 Methods
	16.1.3 Active object
	16.1.4 recursion_state_e

	16.2 uvm_printer
	16.2.1 Class declaration
	16.2.2 Methods
	16.2.3 Methods for printer usage
	16.2.4 Methods for printer subtyping
	16.2.5 Methods for printer configuration
	16.2.6 Methods for object print control
	16.2.7 Element stack
	16.2.8 uvm_printer_element
	16.2.9 uvm_printer_element_proxy
	16.2.10 uvm_table_printer
	16.2.11 uvm_tree_printer
	16.2.12 uvm_line_printer

	16.3 uvm_comparer
	16.3.1 Class declaration
	16.3.2 Methods
	16.3.3 Methods for comparer usage
	16.3.4 Methods for comparer configuration
	16.3.5 Methods for comparer reporting control
	16.3.6 Methods for object compare control

	16.4 uvm_recorder
	16.4.1 Class declaration
	16.4.2 Methods for recorder configuration
	16.4.3 Introspection API
	16.4.4 Transaction recorder API
	16.4.5 Handles
	16.4.6 Attribute recording
	16.4.7 Implementation agnostic API

	16.5 uvm_packer
	16.5.1 Class declaration
	16.5.2 Methods
	16.5.3 Methods for packer subtyping
	16.5.4 Packing and unpacking

	16.6 uvm_copier
	16.6.1 Class declaration
	16.6.2 Methods
	16.6.3 Methods for object copy control
	16.6.4 Methods for copier usage

	17. Register layer
	17.1 Overview
	17.2 Global declarations
	17.2.1 Types
	17.2.2 Enumerations

	18. Register model
	18.1 uvm_reg_block
	18.1.1 Class declaration
	18.1.2 Methods
	18.1.3 Introspection
	18.1.4 Coverage
	18.1.5 Access
	18.1.6 Back door

	18.2 uvm_reg_map
	18.2.1 Class declaration
	18.2.2 Common methods
	18.2.3 Methods
	18.2.4 Introspection
	18.2.5 Bus access

	18.3 uvm_reg_file
	18.3.1 Class declaration
	18.3.2 Methods
	18.3.3 Introspection
	18.3.4 Back door

	18.4 uvm_reg
	18.4.1 Class declaration
	18.4.2 Methods
	18.4.3 Introspection
	18.4.4 Access
	18.4.5 Front door
	18.4.6 Back door
	18.4.7 Coverage
	18.4.8 Callbacks

	18.5 uvm_reg_field
	18.5.1 Class declaration
	18.5.2 Common methods
	18.5.3 Methods
	18.5.4 Introspection
	18.5.5 Access
	18.5.6 Callbacks

	18.6 uvm_mem
	18.6.1 Class declaration
	18.6.2 Variables
	18.6.3 Methods
	18.6.4 Introspection
	18.6.5 HDL access
	18.6.6 Front door
	18.6.7 Back door
	18.6.8 Coverage
	18.6.9 Callbacks

	18.7 uvm_reg_indirect_data
	18.7.1 Class declaration
	18.7.2 Methods

	18.8 uvm_reg_fifo
	18.8.1 Class declaration
	18.8.2 Common variables
	18.8.3 Methods
	18.8.4 Introspection
	18.8.5 Access

	18.9 uvm_vreg
	18.9.1 Class declaration
	18.9.2 uvm_vreg_cbs

	18.10 uvm_vreg_field
	18.10.1 Class declaration
	18.10.2 Methods
	18.10.3 Introspection
	18.10.4 HDL access
	18.10.5 Callbacks
	18.10.6 uvm_vreg_field_cbs

	18.11 uvm_reg_cbs
	18.11.1 Class declaration
	18.11.2 Methods
	18.11.3 Types
	18.11.4 uvm_reg_read_only_cbs
	18.11.5 uvm_reg_write_only_cbs

	18.12 uvm_mem_mam
	18.12.1 Class declaration
	18.12.2 Types
	18.12.3 Variables
	18.12.4 Methods
	18.12.5 Memory management
	18.12.6 Introspection
	18.12.7 uvm_mem_region
	18.12.8 uvm_mem_mam_policy
	18.12.9 uvm_mem_mam_cfg

	19. Register layer interaction with RTL design
	19.1 Generic register operation descriptors
	19.1.1 uvm_reg_item
	19.1.2 uvm_reg_bus_op

	19.2 Classes for adapting between register and bus operations
	19.2.1 uvm_reg_adapter
	19.2.2 uvm_reg_tlm_adapter

	19.3 uvm_reg_predictor
	19.3.1 Class declaration
	19.3.2 Variables
	19.3.3 Methods

	19.4 Register sequence classes
	19.4.1 uvm_reg_sequence
	19.4.2 uvm_reg_frontdoor

	19.5 uvm_reg_backdoor
	19.5.1 Class declaration
	19.5.2 Methods

	19.6 UVM HDL back-door access support routines
	19.6.1 Variables
	19.6.2 Methods

	Annex A (informative) Bibliography
	Annex B (normative) Macros and defines
	Annex C (normative) Configuration and resource classes
	C.1 Overview
	C.2 Resources
	C.3 UVM resource database
	C.4 UVM configuration database

	Annex D (normative) Convenience classes, interface, and methods
	D.1 uvm_callback_iter
	D.2 Component interfaces
	D.3 uvm_reg_block access methods
	D.4 Callback typedefs

	Annex E (normative) Test sequences
	E.1 uvm_reg_hw_reset_seq
	E.2 Bit bashing test sequences
	E.3 Register access test sequences
	E.4 Shared register and memory access test sequences
	E.5 Memory access test sequences
	E.6 Memory walking-ones test sequences
	E.7 uvm_reg_mem_hdl_paths_seq
	E.8 uvm_reg_mem_built_in_seq

	Annex F (normative) Package scope functionality
	F.1 Overview
	F.2 Types and enumerations
	F.3 Methods and types
	F.4 Core service
	F.5 Traversal
	F.6 uvm_run_test_callback
	F.7 uvm_root

	Annex G (normative) Command line arguments
	G.1 Command line processing
	G.2 Built-in UVM-aware command line arguments

	Back cover

