
Using Tcl With Synopsys Tools

Version S-2021.06-SP4, December 2021

Copyright and Proprietary Information Notice
© 2022 Synopsys, Inc. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc.
and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All
other use, reproduction, modification, or distribution of the Synopsys software or the associated documentation is
strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
https://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Free and Open-Source Licensing Notices
If applicable, Free and Open-Source Software (FOSS) licensing notices are available in the product installation.

Third-Party Links
Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse
and is not responsible for such websites and their practices, including privacy practices, availability, and content.

www.synopsys.com

Using Tcl With Synopsys Tools
S-2021.06-SP4

2

https://www.synopsys.com/company/legal/trademarks-brands.html
https://www.synopsys.com/

Feedback

Contents
New in This Release .8

Related Products, Publications, and Trademarks .8

Conventions .9

Customer Support . 10

1. Introduction to the Tool Interfaces . 11

Tcl and Synopsys Tools . 11

Tool Interfaces . 12

Starting the Command-Line Interface . 13

Using Setup Files . 14

Including Tcl Scripts . 16

Using Command Log Files . 16

Using the Filename Log File .17

Interrupting Commands .18

Controlling Information, Warning, and Error Messages . 18

Running Linux Commands Within the Tool .19

Exiting the Tool . 21

2. Commands . 22

Command-Line Editor . 22

Application Command Syntax . 22
Special Characters . 23

Wildcard Character .24
Creating Comments . 24

Data Types . 24
Strings .25
Lists .26
Arrays . 27

Operators . 29
Abbreviating Command and Option Names .30
Using Aliases . 31

3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Multiple Line Commands and Multiple Commands per Line 32

Outputting Data to the Screen . 32

Command Parsing .33
Substitution . 34
Quoting . 35
Special Characters . 35
Bus Notation . 36

Redirecting and Appending Command Output . 37
Using the Redirection Operators . 37
Using the redirect Command . 37

Command Status .38
Successful Completion Example . 38
Unsuccessful Execution Examples .38

Listing and Rerunning Previously Entered Commands . 38

Getting Help on Commands . 39
Using the help Command .40
Using the man Command .40

Tcl Limitations Within the Command-Line Interface . 41

Basic Tcl Commands .41
cd and pwd . 42
file and glob . 42
open, close, and flush . 43
gets and puts . 44
Nonsequential File Access . 45

3. Variables . 46

Components of a Variable .46

Application Variables . 46

Considerations When Using Variables . 47

Manipulating Variables . 48
Listing Existing Variables . 48
Displaying Variable Values . 49
Assigning Variable Values . 49
Using Variables . 49
Numeric Variable Precision .50

4

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Removing Variables . 51

4. Control Flow .52

Condition Expressions .52

Conditional Command Execution . 53
if Statement .53
switch Statement .54

Loops . 55
while Statement . 55
for Statement . 56
foreach Statement .56
foreach_in_collection Statement .57
Loop Control and Termination . 57

continue Statement .58
break Statement . 58

5. Working With Procedures . 59

Creating Procedures . 59
Variable Scope . 60
Argument Defaults . 61
Variable Numbers of Arguments .62
Using Arrays With Procedures . 62
General Considerations for Using Procedures .63

Extending Procedures . 63
Using the define_proc_attributes Command . 64

define_proc_attributes Command Example . 66
Using the parse_proc_arguments Command .66
Considerations for Extending Procedures . 68

Displaying the Procedure Body and Arguments .69

6. Collections of Design Objects . 70

Why Use Collections? . 70

Working With Collections . 71
Creating Collections . 72
Saving Collections . 74

Accessing Collections .74

5

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Displaying Objects in a Collection . 75
Adding Objects to a Collection . 76
Removing Objects From a Collection .76
Comparing Collections . 77
Extracting Individual Objects From a Collection .78
Iterating Over a Collection . 78

Iteratively Adding Objects to a Collection . 79
Iteratively Removing Objects From a Collection . 79

Working With Attributes .80
Setting and Querying Attribute Values . 80
Filtering Collections by Attribute Values . 81

Using Filter Expressions . 81
Chained Attribute Access . 84
User-Defined Attributes .84
Derived User Attributes . 85

Using Name-Based Object Specifications . 87

Matching Names of Design Objects During Queries . 87

Reporting Collections . 89

Writing Collection Information to a File .91

7. Using Scripts . 93

Using Command Scripts . 93

Creating Scripts .94

Using the Output of the write_script Command . 94

Running Command Scripts . 95
Running Scripts From Within the Tool . 95
Running Scripts During Tool Invocation . 95

8. A Tcl Script Example . 97

rpt_cell Overview .97

rpt_cell Listing and Output Example .98

rpt_cell Details .102
Defining the Procedure .102
Suppressing Warning Messages . 103
Examining the Procedure Argument .103

6

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Initializing Variables . 105
Creating and Iterating Over a Collection . 106
Collecting the Report Data . 106
Formatting the Output .109

9. Command-Line Editor . 111

Changing the Settings of the Command-Line Editor . 111

Listing Key Mappings . 112

Setting the Key Bindings .112

Navigating the Command Line . 113

Completing Commands, Variables, and File Names . 113

Searching the Command History . 114

7

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

About This Manual
This manual describes how to use the open source scripting tool, Tcl (tool command
language), that has been integrated into Synopsys tools. This manual provides an
overview of Tcl, describes its relationship with Synopsys command shells, and explains
how to create scripts and procedures.

The audience for Using Tcl With Synopsys Tools is designers who are experienced with
using Synopsys tools such as Design Compiler and IC Compiler and who have a basic
understanding of programming concepts such as data types, control flow, procedures, and
scripting.

This preface includes the following sections:

• New in This Release

• Related Products, Publications, and Trademarks

• Conventions

• Customer Support

New in This Release
Information about new features, enhancements, and changes, known limitations, and
resolved Synopsys Technical Action Requests (STARs) is available in the Release Notes
on the SolvNetPlus site.

Related Products, Publications, and Trademarks
For additional information about Synopsys tools, see the documentation on the Synopsys
SolvNetPlus support site at the following address:

https://solvnetplus.synopsys.com

You might also want to see the documentation for the following Tcl-based Synopsys
products:

• Design Compiler®

• DC Explorer

• Design Vision™

• DFT Compiler and DFTMAX™

Using Tcl With Synopsys Tools
S-2021.06-SP4

8

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnetplus.synopsys.com

About This Manual
Conventions

Feedback

• Formality®

• HDL Compiler™

• IC Compiler™

• IC Compiler™ II

• Power Compiler™

• PrimeTime®

• TetraMAX®

Conventions
The following conventions are used in Synopsys documentation.

Convention Description

Courier Indicates syntax, such as write_file.

Courier italic Indicates a user-defined value in syntax, such as
write_file design_list

Courier bold Indicates user input—text you type verbatim—in examples, such
as
prompt> write_file top

Purple • Within an example, indicates information of special interest.
• Within a command-syntax section, indicates a default, such as

include_enclosing = true | false
[] Denotes optional arguments in syntax, such as

write_file [-format fmt]

... Indicates that arguments can be repeated as many times as
needed, such as
pin1 pin2 ... pinN.

| Indicates a choice among alternatives, such as
low | medium | high

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Bold Indicates a graphical user interface (GUI) element that has an
action associated with it.

Using Tcl With Synopsys Tools
S-2021.06-SP4

9

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

About This Manual
Customer Support

Feedback

Convention Description

Edit > Copy Indicates a path to a menu command, such as opening the Edit
menu and choosing Copy.

Ctrl+C Indicates a keyboard combination, such as holding down the Ctrl
key and pressing C.

Customer Support
Customer support is available through SolvNetPlus.

Accessing SolvNetPlus
The SolvNetPlus site includes a knowledge base of technical articles and answers to
frequently asked questions about Synopsys tools. The SolvNetPlus site also gives you
access to a wide range of Synopsys online services including software downloads,
documentation, and technical support.

To access the SolvNetPlus site, go to the following address:

https://solvnetplus.synopsys.com

If prompted, enter your user name and password. If you do not have a Synopsys user
name and password, follow the instructions to sign up for an account.

If you need help using the SolvNetPlus site, click REGISTRATION HELP in the top-right
menu bar.

Contacting Customer Support
To contact Customer Support, go to https://solvnetplus.synopsys.com.

Using Tcl With Synopsys Tools
S-2021.06-SP4

10

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnetplus.synopsys.com
https://solvnetplus.synopsys.com

Feedback

1
Introduction to the Tool Interfaces

This chapter provides the information you need to run a Synopsys Galaxy Platform tool.
This chapter consists of the following sections:

• Tcl and Synopsys Tools

• Tool Interfaces

• Starting the Command-Line Interface

• Using Setup Files

• Including Tcl Scripts

• Using Command Log Files

• Using the Filename Log File

• Interrupting Commands

• Controlling Information, Warning, and Error Messages

• Running Linux Commands Within the Tool

• Exiting the Tool

Tcl and Synopsys Tools
Tcl is a widely used scripting tool that was developed for controlling and extending
applications. Tcl was created by John K. Ousterhout at the University of California,
Berkeley, and is distributed as open source software. Tcl is used by many Synopsys
command shells as a scripting tool for automating the design processes.

Tcl provides the necessary programming constructs—variables, loops, procedures, and so
forth—for creating scripts with Synopsys commands.

Note that it is the scripting language, not the Tcl shell, that is integrated into the Synopsys
tools. This aspect of Tcl encompasses how variables, expressions, scripts, control flow,
and procedures work, as well as the syntax of commands, including Synopsys commands.

Using Tcl With Synopsys Tools
S-2021.06-SP4

11

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to the Tool Interfaces
Tool Interfaces

Feedback

The examples in this book use a mixture of Tcl and Synopsys commands, so when
necessary for clarity, a distinction is made between the Tcl and Synopsys commands.
Furthermore, the Tcl commands that differ from their base implementation are referred to
as Synopsys commands. These commands are exit, history, rename, and source. You
can refer to the Synopsys man pages for a description of how these commands have been
implemented.

If you try to execute the examples in this book, you must do so within a Synopsys
command shell because the Tcl shell does not support the Synopsys commands.

Note:
The Synopsys commands are distributed per license agreement for a particular
Synopsys tool or product. Because of this, your particular command shell
might not support some of the commands used in the examples. Also, some
Synopsys shells implement a special mode for handling Tcl commands that you
might have to consider. As for the Tcl commands, almost all are supported by
the Synopsys command shells.

Most Tcl commands supported by the Synopsys shells use a one-word form. The majority
of the Synopsys commands have a multiple-word form in which each word is separated by
an underscore, for example, foreach_in_collection or set_host_options. However,
there are also a number of one-word Synopsys commands.

The Tcl commands are referred to as built-in commands by the Synopsys help command
and as Tcl built-in commands by the Synopsys man pages. To see the list of Tcl built-in
commands, enter the following command:

prompt> help Builtins

Tool Interfaces
Most Synopsys tools offer two interfaces: a command-line interface (or shell) and a
graphical user interface (GUI).

• The command-line interface is a text-only environment in which you enter the
commands at the command-line prompt.

• The GUI provides tools for visualizing design data and analyzing results.

The command-line interface is based on Tcl. The tool command set includes both
Tcl built-in commands, which provide capabilities similar to Linux command shells,
including variables, conditional execution of commands, and control flow commands, and
application commands, which are command extensions needed to implement specific tool
functionality.

Using Tcl With Synopsys Tools
S-2021.06-SP4

12

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to the Tool Interfaces
Starting the Command-Line Interface

Feedback

You can execute commands within the tool in the following ways:

• By entering single commands interactively in the shell

• By running one or more command scripts, which are text files of commands

• By typing single commands interactively on the console command line in the GUI.

You can use this approach to supplement the subset of application commands
available through the menu interface. For more information about the Design Compiler
GUI, Design Vision, see the Design Vision User Guide and Design Vision online Help.
For more information about the IC Compiler GUI, see the IC Compiler online Help.

Starting the Command-Line Interface
Synopsys Tcl-based tools operate in the Linux environment. Before starting the tool, make
sure the path to the bin directory is included in your PATH environment variable.

To start the command-line interface for a tool, enter the name of its shell command at the
Linux system prompt. For example, to invoke Design Compiler,

linux% dc_shell
Note:

When you invoke a tool, it automatically executes the commands in the setup
files. Setup files can perform basic tasks, such as initializing options and
variables, declaring design libraries, and setting GUI options. For more details,
see Using Setup Files.

When you start the command-line interface, the tool’s shell prompt appears in the Linux
shell. If you need to use the GUI after starting the command-line interface, enter the
gui_start command at the shell prompt.

You can include other options on the command line when you start the command-line
interface. Each tool has its own set of available options. To see the list of available options,
use the -help option. For example,

linux% dc_shell -help
For a complete list of startup options, see the tool command man page (which you can
view inside the tool), or see the tool documentation.

At startup, the tool performs the following tasks:

1. Creates a command log file

2. Reads and executes the setup files

Using Tcl With Synopsys Tools
S-2021.06-SP4

13

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to the Tool Interfaces
Using Setup Files

Feedback

3. Executes any script files or commands specified by using the -f and -x options,
respectively, on the command line

4. Displays the program header and shell prompt in the shell in which you started the tool

The program header lists all tool features for which your site is licensed.

Using Setup Files
Setup files can contain commands that perform basic tasks, such as initializing options
and variables, declaring libraries, and setting GUI options. Linux environmental variables
(such as $SYNOPSYS) are accessed by using the getenv command or the $env() Tcl
array variable.

When you invoke a tool, it reads the setup files from three directories, which are searched
in the following order:

1. The Synopsys root directory.

These system-wide setup files reside in the $SYNOPSYS/admin/setup directory. They
contain general tool setup information for all users at your site. You should not edit
these files.

2. Your home directory.

This user-defined setup file contains your preferences for your working environment.

3. The directory from which you start the tool.

This design-specific setup file contains project-specific or design-specific variables.

If the setup files share commands or variables, values in the most recently read setup
file override values in previously read files. For example, the working directory’s settings
override any default settings in your home directory or the Synopsys root directory.

Table 1 shows the setup file names for several Synopsys tools.

Table 1 Setup File Names for Synopsys Tcl-Based Tools

Tool name Setup file name(s)

Design Compiler, Design
Compiler NXT

.synopsys_dc.setup

ESP .synopsys_esp.setup

Fusion Compiler .synopsys_fc.setup

IC Compiler .synopsys_dc.setup, then .synopsys_icc.tcl

Using Tcl With Synopsys Tools
S-2021.06-SP4

14

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to the Tool Interfaces
Using Setup Files

Feedback

Table 1 Setup File Names for Synopsys Tcl-Based Tools (Continued)

Tool name Setup file name(s)

IC Compiler II .synopsys_icc2.setup

PrimeTime .synopsys_pt.setup

Formality .synopsys_fm.setup

Library Compiler .synopsys_lc.setup

TetraMAX, TestMAX ATPG .tmaxrc1

If you want to prevent the tool from reading the setup files, use the -no_init option when
you invoke the tool.

The setup file in the Synopsys root directory must use the following subset of Tcl built-in
commands:

alias if setenv

annotate info sh

define_name_rules list source

define_design_lib quit string

exit redirect

getenv set

group_variable set_svf

The setup files in your home and project directories can include any tool commands, as
well as Tcl procedures.

Note:
Certain setup variables must be set before you start the tool. Changing these
variables after you have started the tool has no effect. An example of such
a variable is the sh_enable_line_editing variable, which enables the
command-line editor.

1. See “Setup Command Files” in TetraMAX Online Help for more details.

Using Tcl With Synopsys Tools
S-2021.06-SP4

15

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to the Tool Interfaces
Including Tcl Scripts

Feedback

Including Tcl Scripts
You can use Tcl scripts to accomplish routine, repetitive, or complex tasks. To run a script
from the command line, enter the source file_name command, where file_name is the
name of the script file.

You can create a script file by placing a sequence of commands in a text file. Any tool
command can be executed within a script file.

In Tcl, a “#” at the beginning of a line denotes a comment. For example,

This is a comment

For more information about writing scripts and script files, see Using Scripts.

You can also run scripts when you start the tool. For more information about using startup
scripts, see Starting the Command-Line Interface.

Using Command Log Files
The command log file records the commands processed by the tool, including the setup
file commands and variable assignments. By default, the tools write the command log to a
file in the directory from which you invoked the tool.

Table 2 shows the setup file names for several Synopsys tools.

Table 2 Command Log File Names for Synopsys Tcl-Based Tools

Tool name Command log file name

Design Compiler,
Design Compiler NXT

command.log

ESP esp_command.log

Fusion Compiler fc_command.log

IC Compiler command.log

IC Compiler II icc2_command.log

PrimeTime pt_shell_command.log

Formality fm_shell_command.log

Library Compiler lc_shell_command.log

TetraMAX log_file

Using Tcl With Synopsys Tools
S-2021.06-SP4

16

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to the Tool Interfaces
Using the Filename Log File

Feedback

You can change the name of the command log file by setting the sh_command_log_file
variable in your setup file. You should make any changes to this variable before you start
the tool. If your user-defined or project-specific setup file does not contain this variable, the
tool automatically creates the command.log file.

Each tool session overwrites the command log file. To save a command log file, move it or
rename it. You can use the command log file to

• Produce a script for a particular implementation strategy

• Record the implementation process

• Document any problems you are having

If you do not want the tool to create the command.log file, you can do one of the following:

• Set the sh_command_log_file variable to /dev/null.

• Use the -no_log option when you start the tool.

Using the Filename Log File
The Design Compiler and IC Compiler tools generate a filename log file that contains a list
of the files read by the tool. You can use this file to identify data files needed to reproduce
an error if the tool terminates abnormally.

By default, the filename log file is named filename.log and is written to the directory from
which you invoked the tool. You can change the name of the filename log file by setting
the filename_log_file variable in your setup file. You should make any changes to
this variable before you start the tool. If you started the tool with the -no_log option, it
appends the process ID of the application and date stamp to the name of the filename log
file.

You can have the tool append a process ID to all filename log files by including the
following settings in your setup file:

set _pid [pid]
set filename_log_file filename.log$_pid

By default, the tool automatically removes the filename log file when you exit. To save the
filename log file, set the exit_delete_filename_log_file variable to false.

Other tools do not have this feature.

Using Tcl With Synopsys Tools
S-2021.06-SP4

17

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to the Tool Interfaces
Interrupting Commands

Feedback

Interrupting Commands
If you enter the wrong options for a command or enter the wrong command, you can
interrupt command processing and remain in the shell. To interrupt a command, press Ctrl
+C.

The time it takes for the command to respond to an interrupt (to stop what it is doing and
continue with the next command) depends on the size of the design and the command
being interrupted.

Some commands cannot be interrupted. To stop such commands, you must terminate
the shell at the system level by using operating system commands such as the kill
command.

When you use Ctrl+C, keep the following points in mind:

• If a script file is being processed and you interrupt one of its commands, the script
processing is interrupted and no further commands in the script file are processed.

• In general, when you terminate a command, no data is saved.

For tool-specific details on Ctrl+C handling, see the tool documentation.

• If you press Ctrl+C three times before a command responds to your interrupt, the shell
itself is interrupted and exits with this message:

Information: Process terminated by interrupt.

This behavior has a few exceptions, which are documented in the man pages for the
applicable commands.

Controlling Information, Warning, and Error Messages
By default, the tools display informational, warning, and error messages. To disable
printing of informational or warning messages, use the suppress_message command with
the list of message IDs you want to suppress.

For example, to suppress the CMD-029 message, use the following command:

prompt> suppress_message CMD-029
To display the currently suppressed message IDs, use the print_suppressed_messages
command.

To reenable printing of the suppressed messages, use the unsuppress_message
command.

Using Tcl With Synopsys Tools
S-2021.06-SP4

18

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to the Tool Interfaces
Running Linux Commands Within the Tool

Feedback

To disable printing of error messages, use the suppress_errors variable with a list of
error message IDs for which you want messages to be suppressed.

Running Linux Commands Within the Tool
The tools support some common Linux commands, as listed in Table 3.

Table 3 Common Tasks and Their System Commands

To do this Use this

List the current working directory. pwd

Change the working directory to a specified directory or, if
no directory is specified, to your home directory.

cd directory

List the specified files, or, if no arguments are specified, list
all files in the working directory.

ls directory_list

Search for a file, using the search path defined by the
search_path variable.

which filename

Return the value of an environment variable. getenv name
or
set env(name)

Set the value of an environment variable. Any changes to
environment variables apply only to the current process
and to any child processes launched by the current
process.

setenv name value
or
set env(name) value

Display the value of an environment variable (or all if no
variable specified).

printenv variable_name

Execute an operating system command. This Tcl built-in
command has some limitations. For example, no file name
expansion is performed.

exec command

Execute an operating system command. Unlike exec, this
command performs file name expansion.

sh command

Although you can use the sh command or exec command to execute operating system
commands, it is strongly recommended that you use native Tcl functions or procedures.
After you have loaded designs and libraries, the tool process might be quite large. In
such cases, using the sh or exec commands might be quite slow and on some operating
systems, might fail altogether due to insufficient virtual memory. You can use Tcl built-in
commands to avoid this problem.

Using Tcl With Synopsys Tools
S-2021.06-SP4

19

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to the Tool Interfaces
Running Linux Commands Within the Tool

Feedback

For example, to remove a file from within the tool under Linux, use the following command:

prompt> file delete filename
For better performance, replace common Linux commands with the Tcl equivalent listed in
Table 4.

Table 4 Tcl Equivalent of Linux Commands

Linux command Tcl equivalent

ls glob for patterns or various file subcommands

rm file delete

rm -rf file delete -force

mv file rename

date date

sleep after

It is often possible to replace common Linux commands with simple Tcl procedures. For
example, you can use the following procedure to replace the Linux touch command.

Example 1 Tcl Procedure to Replace Linux touch Command
proc touch {file_name} {
 if{[file exists $file_name]} {
 file mtime $file_name [clock seconds]
 } else {
 set fp [open $file_name "w"]
 close $fp
 }
}

You can write similar procedures to replace other external commands.

Using Tcl With Synopsys Tools
S-2021.06-SP4

20

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to the Tool Interfaces
Exiting the Tool

Feedback

Exiting the Tool
You can exit the tool at any time and return to the operating system. To exit the tool, use
the exit or quit command.

When you exit the tool, the default exit value is always 0. You can assign an exit code
value to the exit command, which can be useful when you run the tool within a makefile.
For example, to assign an exit code value of 8, use the following command:

prompt> exit 8

Memory usage for main task 26 Mbytes.
Memory usage for this session 26 Mbytes.
CPU usage for this session 2 seconds (0.00 hours).

Thank you ...
% echo $status
8

When you exit the tool by using the exit or quit command, it does not save the open
designs. You must explicitly save the designs before exiting the tool. For information about
saving the design, see the tool documentation.

Using Tcl With Synopsys Tools
S-2021.06-SP4

21

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

2
Commands

The command set in Synopsys Tcl-based tools includes both Tcl built-in commands and
application commands. This chapter describes the command syntax and how to use some
basic commands.

This chapter contains the following sections:

• Command-Line Editor

• Application Command Syntax

• Outputting Data to the Screen

• Command Parsing

• Redirecting and Appending Command Output

• Command Status

• Listing and Rerunning Previously Entered Commands

• Getting Help on Commands

• Tcl Limitations Within the Command-Line Interface

• Basic Tcl Commands

Command-Line Editor
The command-line editor allows you to work interactively with the tool by using key
sequences, much as you would work in a Linux shell. The command-line editor is enabled
by default. To disable this feature, set the sh_enable_line_editing variable to false in
the setup file. For more information, see Command-Line Editor.

Application Command Syntax
The syntax for an application command is

command_name [command_argument] [-option [argument]]

Using Tcl With Synopsys Tools
S-2021.06-SP4

22

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Commands
Application Command Syntax

Feedback

command_name

The name of the command.

command_argument

Some commands require values or arguments. Arguments that do not begin
with a hyphen (-) are called positional arguments. They must be entered in a
specific order relative to each other.

-option
Arguments that begin with a hyphen (-) are called options. Options modify the
command behavior and pass information to the tool. Options can be entered in
any order and can be intermingled with positional arguments.

argument

The argument to the option. Some options require values or arguments.

Note:
Command and option names are case-sensitive, as are other values, such as
file names, design object names, and strings.

Arguments and options can be required or optional. If you omit a required argument or
option, the tool issues an error message and a usage statement.

The following example shows an application command with a command argument, but no
options:

prompt> read_verilog example.v

Special Characters
The characters listed in Table 5 have special meaning in certain contexts.

Table 5 Tcl Special Characters

Character Meaning

$ References a variable.

() Used for grouping expressions.

[] Denotes a nested command.

\ Used for escape quoting and character substitution.

“ ” Denotes weak quoting. Nested commands and variable substitutions still
occur.

Using Tcl With Synopsys Tools
S-2021.06-SP4

23

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Commands
Application Command Syntax

Feedback

Table 5 Tcl Special Characters (Continued)

Character Meaning

{ } Denotes rigid quoting. No substitutions are allowed.

* Wildcard character. Matches zero or more characters.

? Wildcard character. Matches one character.

; Ends a command. (Needed only when you place more than one
command on a line.)

Begins a comment.

Wildcard Character
Tcl has two wildcard characters, the asterisk (*) and the question mark (?). The * wildcard
character matches zero or more characters in a name. For example, u* indicates all object
names that begin with the letter u, and u*z indicates all object names that begin with the
letter u and end in the letter z. The ? wildcard character matches a single character in a
name. For example, u? indicates all object names exactly two characters in length that
begin with the letter u.

Creating Comments
Comment lines are created by placing a pound sign (#) as the first nonblank character of a
line. You can create inline comments by placing a semicolon between a command and the
pound sign. For example,

echo abc ;# this is an inline comment

When the command continuation character (\) is placed at the end of a commented
command line, the subsequent line is also treated as a comment. In the following example,
none of the set commands are executed:

set CLK_NAME Sysclk; set CLK_PERIOD 10; \
set INPUT_DELAY 2

Data Types
You can use the following data types, which are described in the sections that follow:

• Strings

• Lists

• Arrays

Using Tcl With Synopsys Tools
S-2021.06-SP4

24

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Commands
Application Command Syntax

Feedback

Note:
Synopsys tools also support a collection data type, which is described in
Creating Collections.

Strings
A string is a sequence of characters. Tcl treats command arguments as strings and returns
command results as strings. The following are string examples:

sysclk
"FF3 FF4 FF5"
{FF6 FF7}

To include special characters, such as space, backslash, or new line, in a string, you must
use quoting to disable the interpretation of the special characters.

The Tcl string command performs many common string operations. The syntax is

string option arg ...

The arguments are as follows:

option

Specifies an option for the string command.

arg ...

Specifies the argument or arguments for the string command.

For example, to compare two strings, use the compare option as follows:

string compare string1 string2

To convert a string to all uppercase characters, use the toupper option as follows:

string toupper string

Table 6 lists Tcl commands you can use with strings. For more information about these
commands, see the Synopsys man pages.

Table 6 Tcl Commands to Use With Strings

Command Description

format Formats a string.

regexp Searches for a regular expression within a string.

regsub Performs substitutions based on a regular expression.

scan Assigns fields in the string to variables.

Using Tcl With Synopsys Tools
S-2021.06-SP4

25

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Commands
Application Command Syntax

Feedback

Table 6 Tcl Commands to Use With Strings (Continued)

Command Description

string Provides a set of string manipulation functions.

subst Performs substitutions.

Lists
A list is an ordered group of elements; each element can be a string or another list. You
use lists to group items such as a set of cell instance pins or a set of report file names. You
can then manipulate the grouping as a single entity.

You can create a simple list by enclosing the list elements in double quotation marks ("") or
braces ({}) or by using the Tcl list command. You must delimit list elements with spaces
—do not use commas.

For example, you could create a list of cell instance D-input pins, I1/FF3/D, I1/FF4/D, and
I1/FF5/D, in one of the following ways:

set D_pins "I1/FF3/D I1/FF4/D I1/FF5/D"
set D_pins {I1/FF3/D I1/FF4/D I1/FF5/D}
set D_pins [list I1/FF3/D I1/FF4/D I1/FF5/D]

You use the list command to create a compound (nested) list. For example, the following
command creates a list that contains three elements, each of which is also a list:

set compound_list [list {x y} {1 2.5 3.75 4} {red green blue}]

Because braces prevent substitutions, you must use double quotation marks or the
list command to create a list if the list elements include nested commands or variable
substitution.

For example, if variable a is set to 5, the following commands generate very different
results:

prompt> set a 5
5

prompt> set b {c d $a [list $a z]}
c d $a [list $a z]

prompt> set b [list c d $a [list $a z]]
c d 5 {5 z}

Using Tcl With Synopsys Tools
S-2021.06-SP4

26

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Commands
Application Command Syntax

Feedback

To access a specific element in a simple or compound list, you use the lindex command.
For example, the following commands print out the first element of the D_pins list and the
second element of the compound_list list:

prompt> lindex $D_pins 0
I1/FF3/D

prompt> lindex $compound_list 1
1 2.5 3.75 4

Note that lindex is zero based.

Table 7 lists Tcl commands you can use with lists. For more information about these
commands, see the Synopsys man pages.

Table 7 Tcl Commands to Use With Lists

Command Task

concat Concatenates lists and returns a new list.

join Joins elements of a list into a string.

lappend Appends elements to a list.

lindex Returns a specific element from a list.

linsert Inserts elements into a list.

list Returns a list formed from its arguments.

llength Returns the number of elements in a list.

lminus Removes one or more named elements from a list and returns a
new list.

lrange Extracts elements from a list.

lreplace Replaces a specified range of elements in a list.

lsearch Searches a list for a regular expression.

lsort Sorts a list.

split Splits a string into a list.

Arrays
Tcl supports associative arrays. This type of array uses arbitrary strings, which can include
numbers, as its indexes. The associative array is composed of a group of elements where

Using Tcl With Synopsys Tools
S-2021.06-SP4

27

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Commands
Application Command Syntax

Feedback

each element is a variable with its own name and value. To reference an array element,
you use the following form:

array_name (element_name)

For example, you can create an array of report file name extensions as follows:

prompt> set vio_rpt_ext(ir_drop) .volt
.volt
prompt> set vio_rpt_ext(curr_dens) .em
.em
prompt> set vio_rpt_ext(curr) .current
.current

The first set command creates the vio_rpt_ext array and sets its ir_drop element to
.volt. The subsequent commands create new array elements and assign values to them.
Table 8 illustrates how the vio_rpt_ext array is organized.

Table 8 Structure of vio_rpt _ext Array

Element names Element values

ir_drop .volt

curr_dens .em

curr .current

The following example prints out the curr_dens element:

prompt> echo $vio_rpt_ext(curr_dens)
.em

You can use the array command, along with one of its options, to get information about
the elements of an array. The following commands use the size and names options to
print the size and element names of the vio_rpt_ext array.

prompt> array size vio_rpt_ext
3
prompt> array names vio_rpt_ext
curr curr_dens ir_drop

For more information about array usage, see the array man page.

Using Tcl With Synopsys Tools
S-2021.06-SP4

28

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Commands
Application Command Syntax

Feedback

Operators
The Tcl language does not directly provide operators (such as arithmetic, and string and
list operators), but Tcl built-ins such as the expr command do support operators within
expressions.

For example,

prompt> set delay [expr .5 * $base_delay]
Use the expr command to evaluate an expression.

For example, if you want to multiply the value of a variable named p by 12 and place the
result into a variable named a, enter the following commands:

prompt> set p 5
5
prompt> set a [expr (12*$p)]
60

The following command does not perform the desired multiplication:

prompt> set a (12 * $p)
Where possible, expression operands are interpreted as integers. Integer values can
be decimal, octal, or hexadecimal. Operands not in an integer format are treated as
floating-point numbers, if possible. For more information, see Numeric Variable Precision.
Operands can also be one of the mathematical functions supported by Tcl.

Note:
The expr command is the simplest way to evaluate an expression. You also
find expressions in other commands, such as the control flow if command.
The rules for evaluating expressions are the same whether you use the expr
command or use the expression within the conditional statement of a control
flow command. For more information, see Control Flow.

Table 9 lists the Tcl operators in order of precedence. The operators at the top of the table
have precedence over operators lower in the table.

Table 9 Tcl Operators

Syntax Description Operand types

-a
!a
~a

Negative of a
Logical NOT: 1 if a is zero, 0 otherwise
Bitwise complement of a

int, real
int, real
int

Using Tcl With Synopsys Tools
S-2021.06-SP4

29

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Commands
Application Command Syntax

Feedback

Table 9 Tcl Operators (Continued)

Syntax Description Operand types

a*b
a/b
a%b

Multiply a and b
Divide a by b
Remainder after dividing a by b

int, real
int, real
int

a+b
a-b

Add a and b
Subtract b from a

int, real
int, real

a<<b
a>>b

Left-shift a by b bits
Right-shift a by b bits

int
int

a<b
a>b
a<=b
a>=b

1 if a is less than b, 0 otherwise
1 if a is greater than b, 0 otherwise
1 if a is less than or equal to b, 0 otherwise
1 if a is greater than or equal to b, 0 otherwise

int, real, string
int, real, string
int, real, string
int, real, string

a==b
a!=b

1 if a is equal to b, 0 otherwise
1 if a is not equal to b, 0 otherwise

int, real, string
int, real, string

a&b
a^b
a|b

Bitwise AND of a and b
Bitwise exclusive OR of a and b
Bitwise OR of a and b

int
int
int

a&&b
a||b

Logical AND of a and b
Logical OR of a and b

int, real
int, real

a?b:c If a is nonzero, then b, else c a: int, real
b, c: int, real, string

Abbreviating Command and Option Names
You can abbreviate application command names and options to the shortest unambiguous
(unique) string. For example, you can abbreviate the get_attribute command to
get_attr or the create_clock command’s -period option to -p. However, you cannot
abbreviate most built-in commands.

By default, you can use command abbreviations either interactively or in scripts. You can
control whether command abbreviation is enabled by using the sh_command_abbrev_mode
variable. The valid values are Anywhere, Command-Line-Only, and None. The default
is Anywhere. To specify that command abbreviation is enabled only interactively, set the
variable to Command-Line-Only. To disable command abbreviations completely, set the
variable to None.

To determine the current value of the sh_command_abbrev_mode variable, enter

Using Tcl With Synopsys Tools
S-2021.06-SP4

30

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Commands
Application Command Syntax

Feedback

prompt> get_app_var sh_command_abbrev_mode
Command abbreviation is meant as an interactive convenience. Do not use command or
option abbreviation in script files because script files are susceptible to command changes
in subsequent versions of the application. Such changes can cause abbreviations to
become ambiguous.

If you enter an ambiguous command, the tool attempts to help you find the correct
command.

For example, the set_min_ command as entered here is ambiguous:

prompt> set_min_
Error: ambiguous command 'set_min_' matched 4 commands:
(set_min_capacitance, set_min_delay, set_min_library ...) (CMD-006)

The tool lists up to three of the ambiguous commands in its error message. To list the
commands that match the ambiguous abbreviation, use the help command with a
wildcard pattern. For example,

prompt> help set_min_*
set_min_capacitance # set min_capacitance
set_min_delay # set min_delay
set_min_library # set min_library
set_min_pulse_width # set min pulse width

Using Aliases
You can use aliases to create short forms for the commands you commonly use. When
you use aliases, keep the following points in mind:

• Alias names can include letters, digits, underscores, and punctuation marks, but they
cannot begin with a digit.

• Alias names are case-sensitive.

• You cannot use an existing command name as an alias name; however, aliases can
refer to other aliases.

• The command-line interface recognizes aliases only when they are the first word of a
command.

• An alias definition takes effect immediately but lasts only until you exit the session. To
save commonly used alias definitions, store them in the setup file.

To create an alias, use the alias command. To create an alias for a multiword command,
you must format the command as a Tcl list (enclose it in curly braces or quotation marks).

Using Tcl With Synopsys Tools
S-2021.06-SP4

31

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Commands
Outputting Data to the Screen

Feedback

For example, the following command defines rt100 as an alias for the report_timing
-max_paths 100 command:

prompt> alias rt100 {report_timing -max_paths 100}
To list all aliases defined in the current session, use the alias command without an
argument.

To remove alias definitions created with the alias command, use the unalias command.
To remove all aliases, use the -all option; otherwise, specify the aliases you want to
remove.

For example, to remove all aliases beginning with f* and the rt100 alias, enter

prompt> unalias f* rt100

Multiple Line Commands and Multiple Commands per Line
If you enter a long command with many options and arguments, you can split it across
more than one line by using the continuation character, the backslash (\). There is no limit
to the number of characters in a command line.

Type only one command on a single line; if you want to put more than one command on a
line, separate the commands with a semicolon.

Outputting Data to the Screen
The echo and puts commands allow you to output data to the screen. The echo command
prints its argument to the console window.

Note:
The Synopsys implementation of the echo command varies from the Tcl
implementation. For usage information about the echo command, see the
Synopsys man pages.

The puts command, when used in its simplest form, prints its argument to the standard
output. Note that the console window might not be the same as the standard output.
The console window is an integral component of the Synopsys tool you are running, and
the standard output is, by default, the operating system command shell from which you
invoked your Synopsys tool.

The syntax for the echo command is

echo [-n] argument

Using Tcl With Synopsys Tools
S-2021.06-SP4

32

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Commands
Command Parsing

Feedback

The arguments are as follows:

-n
Suppresses output of the new-line character output.

argument

The item to output.

The following example prints a line of text and a new line to the console window:

prompt> echo "Have a good day."
Have a good day.

The syntax for the puts command is

puts [-nonewline file_id] arg

The arguments are as follows:

-nonewline
Suppresses output of the new-line character.

file_id

Specifies the file ID of the channel to which to send the output. If not specified,
the output is sent to the standard output.

arg

The item to output.

The following example shows how to use puts in its simplest form:

prompt> puts "Have a good day."
Have a good day.

Command Parsing
A Synopsys command shell parses commands (Tcl and Synopsys) and makes
substitutions in a single pass from left to right. At most, a single substitution occurs for
each character. The result of one substitution is not scanned for further substitutions.

Using Tcl With Synopsys Tools
S-2021.06-SP4

33

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Commands
Command Parsing

Feedback

Substitution
The substitution types are:

• Command substitution

You can use the result of a command in another command (nested commands) by
enclosing the nested command in square brackets ([]).

For example,

prompt> set a [expr 24 * 2]
You can use a nested command as a conditional statement in a control structure, as an
argument to a procedure, or as the value to which a variable is set. Tcl imposes a depth
limit of 1,000 for command nesting.

Synopsys tools make one exception to the use of square brackets to indicate command
nesting—you can use square brackets to indicate bus references. Synopsys tools
accept a string, such as data[63], as a name rather than as the word data followed by
the result of the command 63.

• Variable substitution

You can use variable values in commands by using the dollar sign character ($) to
reference the value of the variable. (For more information about Tcl variables, see
Variables.)

For example,

prompt> set a 24
24
prompt> set b [expr $a * 2]
48

• Backslash (\) substitution

You use backslash substitution to insert special characters, such as a new line, into
text. For example,

prompt> echo "This is line 1.\nThis is line 2."
This is line 1.
This is line 2.

You can also use backslash substitution to disable special characters when weak
quoting is used. See Quoting.

Using Tcl With Synopsys Tools
S-2021.06-SP4

34

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Commands
Command Parsing

Feedback

Quoting
You use quoting to disable the interpretation of special characters (for example, [], $,
and ;). You disable command substitution and variable substitution by enclosing the
arguments in braces ({}); you disable word and line separators by enclosing the arguments
in double quotation marks ("").

Braces specify rigid quoting. Rigid quoting disables all substitution, so that the characters
between the braces are treated literally. For example,

prompt> set a 5; set b 10
10
prompt> echo {[expr $b - $a]} evaluates to [expr $b - $a]
[expr $b - $a] evaluates to 5

Double quotation marks specify weak quoting. Weak quoting disables word and line
separators while allowing command, variable, and backslash substitution. For example,

prompt> set A 10; set B 4
4
prompt> echo "A is $A; B is $B.\nNet is [expr $A - $B]."
A is 10; B is 4.
Net is 6.

Special Characters
Table 10 lists the characters that have special meaning in Tcl. If you do not want these
characters treated specially, you can precede the special characters with a backslash (\).

For example,

prompt> set gp 1000; set ex 750
750
prompt> echo "Net is: \$[expr $gp - $ex]"
Net is: $250

Table 10 Tcl Special Characters

Character Meaning

$ Used to access the value of a variable.

() Used to group expressions.

[] Denotes a nested command. (For an exception, see
Substitution.)

\ Used for escape quoting and as a line continuation character.

Using Tcl With Synopsys Tools
S-2021.06-SP4

35

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Commands
Command Parsing

Feedback

Table 10 Tcl Special Characters (Continued)

Character Meaning

"" Denotes weak quoting. Nested commands and variable
substitutions still occur.

{ } Denotes rigid quoting. There are no substitutions.

; Ends a command.

Begins a comment.

Bus Notation
Normally, Tcl interprets anything in square brackets as a command. This includes the
index values in square brackets used for bus notation. However, as a convenience, the
tool allows common bus notations to be used without quoting or escaping the square
brackets.

Table 11 Supported Bus Notations for Unquoted Names

Bus notation type Example

Integer value prompt> get_ports A[3]
{A[3]}

Hexadecimal value prompt> get_ports B[0xff]
{B[0xff]}

Octal value prompt> get_ports C[040]
{C[040]}

Colon-separated value range prompt> get_cells my_multibit_reg[3:0]
{my_multibit_reg[3:0]}

Asterisk (*) wildcard prompt> get_nets my_bus[*]
{my_bus[1] my_bus[0]}

Bus notations not in this list must be quoted or escaped. For example,

prompt> get_cells REG_ARRAY[3_2] ;# '3_2' interpreted as command
Error: unknown command '3_2' (CMD-005)

prompt> get_cells REG_ARRAY\[3_2\] ;# escaped
{REG_ARRAY[3_2]}

Using Tcl With Synopsys Tools
S-2021.06-SP4

36

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Commands
Redirecting and Appending Command Output

Feedback

prompt> get_cells {REG_ARRAY[3_2]} ;# quoted
{REG_ARRAY[3_2]}

For details on how this feature is implemented, see SolvNetPlus article 000016885, “How
Do Synopsys Tcl Tools Handle Unquoted Bus Notation?”

Redirecting and Appending Command Output
If you run scripts overnight, you cannot see warnings or error messages echoed to the
command window while your scripts are running. You can direct the output of a command,
procedure, or script to a specified file in two ways:

• By using the traditional Linux redirection operators (> and >>)

• By using the redirect command

Using the Redirection Operators
You can use the Linux redirection operators (> and >>) in the following ways:

• Divert command output to a file by using the redirection operator (>).

• Append command output to a file by using the append operator (>>).

Note:
You cannot use the Linux style redirection operators with built-in (non-
Synopsys) Tcl commands. Always use the redirect command when using
such commands.

The Tcl built-in command puts does not respond to redirection of any kind.
Instead, use the echo command, which responds to redirection.

Because Tcl is a string-oriented language, traditional operators usually have no special
meaning unless a particular command (such as expr) imposes some meaning. Application
commands respond to > and >> but, unlike Linux, the command-line interface treats > and
>> as arguments to a command. Therefore, you must use white space to separate these
arguments from the command and the redirected file name. For example,

prompt> echo $my_variable >> file.out; # Right

prompt> echo $my_variable>>file.out; # Wrong!

Using the redirect Command
You can direct command output to a file by using the redirect command. The redirect
command performs the same function as the traditional Linux redirection operators (>

Using Tcl With Synopsys Tools
S-2021.06-SP4

37

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnetplus.synopsys.com/s/article/How-Do-Synopsys-Tcl-Tools-Handle-Unquoted-Bus-Notation-1576092464211
https://solvnetplus.synopsys.com/s/article/How-Do-Synopsys-Tcl-Tools-Handle-Unquoted-Bus-Notation-1576092464211

Chapter 2: Commands
Command Status

Feedback

and >>); however, the redirect command is more flexible. For example, you can direct
command output to the standard output device as well as a file by using the -tee option.

Also, the Linux redirection operators are not part of the Tcl language and cannot be used
with built-in commands. You must use the redirect command with built-in commands.

Command Status
Every application command returns a value, either a status code or design-specific
information.

Command status codes in the command-line interface are

• 1 for successful completion

• 0 or { } (null list) for unsuccessful execution

Successful Completion Example
The command status value returned for the alias command is 1, indicating successful
command completion.

prompt> alias zero_del "set_max_delay 0.0 all_outputs()"
prompt> zero_del
1

Unsuccessful Execution Examples
If a command cannot be executed properly, its return value is an error status code. The
error status value is 0 for most commands, a null list ({}) for commands that return a list,
and an empty string for commands that return a collection.

prompt> set_driving_cell -lib_cell IV {I1}
Error: Cannot find the specified driving cell in memory. (UID-993)
0

Listing and Rerunning Previously Entered Commands
You can use the history command to list and execute previously entered commands. If
you use the history command without options, a list of executed commands is printed; by
default, 20 commands are listed. The list of commands is printed as a formatted string that
shows the event number for each command.

Using Tcl With Synopsys Tools
S-2021.06-SP4

38

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Commands
Getting Help on Commands

Feedback

You use the info option of the history command to list a specific number of previously
entered commands. For example, the following command lists the last five executed
commands:

prompt> history info 5
You use the redo option of the history command to reexecute a specific command. You
can specify the command to reexecute by its event number or by a relative event number.

The following command executes the command whose event number is 54:

prompt> history redo 54
The following command reexecutes the second-to-the-last command:

prompt> history redo -2
If you do not specify an event number, the last command entered is reexecuted.

As a shortcut, you can also use the exclamation point operator (!) for reexecuting
commands. For example, to reexecute the last command, enter

prompt> !!
To reexecute the command whose event number is 6, enter

prompt> !6
Note:

The Synopsys implementation of history varies from the Tcl implementation.
For usage information about the history command, see the Synopsys man
pages.

Getting Help on Commands
To get help about a command or variable, use the help or man command. Additionally, you
can display a command’s options and arguments by using the -help option. For example,

prompt> create_clock -help
Usage: create_clock # create clock
[-name clock_name] (name for the clock)
[-period period_value] (period of the clock: Value >= 0)
[-waveform edge_list] (alternating rise, fall times for 1 period)
[-add] (add to the existing clock in port_pin_list)
[source_objects] (list of ports and/or pins)

Using Tcl With Synopsys Tools
S-2021.06-SP4

39

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Commands
Getting Help on Commands

Feedback

Note:
To distinguish between Tcl and Synopsys commands, the Synopsys help and
man commands categorize Tcl commands as built-in commands and Tcl built-in
commands, respectively.

Using the help Command
The syntax for the help command is:

help -verbose pattern

where the -verbose and pattern arguments, as follows, are optional:

-verbose
Displays a short description of the command arguments.

pattern

Specifies a command pattern to match.

Use the help command to get help on one or more commands. Use the -verbose option
to see a list of the command’s arguments and a brief description of each argument.

If you use the help command without arguments, a list of all commands arranged by
command group (for example, Procedures, Builtins, and Default) is displayed.

Specify a command pattern to view help on one or more commands. For example, the
following command shows help for all commands starting with for:

prompt> help for*
You can get a list of all commands for a particular command group by entering a command
group name as the argument to the help command. For example,

prompt> help Procedures

Using the man Command
To get help from the Synopsys man pages, use the man command, as shown:

prompt> man query_objects
The man pages provide detailed information about commands and variables.

The syntax for the man command is

man topic

Using Tcl With Synopsys Tools
S-2021.06-SP4

40

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Commands
Tcl Limitations Within the Command-Line Interface

Feedback

The topic argument can be a command or a topic. For example, you can get information
about a specific command, such as query_objects, or you can get information about a
topic, such as attributes.

The man pages are also available on SolvNet.

Tcl Limitations Within the Command-Line Interface
Generally, the command-line interface implements all the Tcl built-in commands. However,
the command-line interface adds semantics to some Tcl built-in commands and imposes
restrictions on some elements of the language. These differences are as follows:

• The Tcl rename command is not supported.

• The Tcl load command is not supported.

• You cannot create a command called unknown.

• The Tcl source command has additional options: -echo and -verbose.

• The history command has several options and forms not supported by Tcl: the -h and
-r options and the history # form.

• Because the command-line interface processes words that look like bus (array)
notation (words that have square brackets, such as a[0]), Tcl does not try to execute
the nested command 0. Without this processing, you would need to rigidly quote such
array references, as in {a[0]}.

Using braces ({ }) around all control structures, procedure argument lists, and so on
is recommended practice. Because of this extension, however, braces are not only
recommended but required. For example, the following code is valid Tcl but will be
misinterpreted:

if ![expr $a > 2]
{echo "hello world"}

Instead, quote the if condition as follows:

if {![expr $a > 2]}
{echo "hello world"}

Basic Tcl Commands
This section provides an overview of Tcl commands you can use when working with files.
You use these commands to work with directories, retrieve information about files, and
read from and write to files.

Using Tcl With Synopsys Tools
S-2021.06-SP4

41

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Commands
Basic Tcl Commands

Feedback

cd and pwd
The cd and pwd commands are equivalent to the operating system commands with the
same name. You use the cd command to change the current working directory and the
pwd command to print the full path name of the current working directory.

file and glob
To retrieve information about a file, use the file command. The file command has the
following syntax:

file option argument argument ...

Table 12 provides a list of file command options.

Table 12 File Command Options

File command and option Description

file dirname fname Returns the directory name part of a file name.

file exists fname Returns 1 if the file name exists, 0 otherwise.

file extension fname Returns the extension part of a file name.

file isdirectory fname Returns 1 if the file name is a directory, 0 otherwise.

file isfile fname Returns 1 if the file name is a file, 0 otherwise.

file readable fname Returns 1 if the file is readable, 0 otherwise.

file rootname fname Returns the name part of a file name.

file size fname Returns the size, in bytes, of a file.

file tail fname Returns the file name from a file path string.

file writable fname Returns 1 if the file is writable, 0 otherwise.

To generate a list of file names that match one or more patterns, use the glob command.
The glob command has the following syntax:

glob pattern1 pattern2 pattern3 ...

The following example generates a list of .em and .volt files located in the current
directory:

set flist [glob *.em *.volt]

Using Tcl With Synopsys Tools
S-2021.06-SP4

42

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Commands
Basic Tcl Commands

Feedback

open, close, and flush
You use the open, close, and flush commands to set up file access.

The open command syntax is as follows:

open fname access_mode

The access_mode argument specifies how you want the file opened; the default access
mode is read-only. Typical access modes include read-only, write only, read and write,
and append. For a complete list of all access modes, see the man page for the open
command. Table 13 lists some commonly used access modes.

Table 13 Commonly Used Access Modes

Access mode Description

r Opens the file for reading only; the file must already exist. This is the
default access mode.

r+ Opens the file for reading and writing; the file must already exist.

w Opens the file for writing only. If the file exists, truncates it. If the file does
not exit, creates it.

w+ Opens the file for reading and writing. If the file exists, truncates it. If the
file does not exit, creates it.

a Opens the file for writing only; new data is appended to the file. The file
must already exist.

a+ Opens the file for reading and writing. If the file does not exist, creates it.
New data is appended to the file.

The open command returns a string (a file ID) that is used to identify the file for further
interaction with it.

You use the close command to close a file; it has the following syntax:

close $fid

The $fid argument is the file ID of the file that was obtained from an open command.

The following example demonstrates the use of the open and close commands:

set f [open VDD.em w+]
close $f

You use the flush command to force buffered output to be written to a file. Data written
to a file does not always immediately appear in the file when a buffered output scheme is

Using Tcl With Synopsys Tools
S-2021.06-SP4

43

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Commands
Basic Tcl Commands

Feedback

used. Instead, the data is queued in memory by the system and is written to the file later;
the flush command overrides this behavior.

The flush command has the following syntax:

flush $fid

gets and puts
You use the gets command to read a single line from a file and the puts commands to
write a single line to a file.

The gets command has the following syntax:

gets $fid var

The $fid argument is the file ID of the file that was obtained from an open command; the
var argument is the variable that is to receive the line of data.

After the line is read, the file is positioned to its next line. The gets command returns a
count of the number of characters actually read. If no characters are read, gets returns -1
and places an empty string into var.

The puts command has the following syntax:

puts $fid var

The $fid argument is the file ID of the file that was obtained from an open command; the
var argument contains the data that is to be written. The puts command adds a new-line
character to the data before it is outputted.

If you leave out the file ID, the data is written to the standard output. For more information
about this use of the puts command, see Outputting Data to the Screen.

The following example demonstrates the use of the gets and puts commands:

Write out a line of text, then read it back and print it
set fname "mytext.txt"
Open file, then write to it
set fid [open $fname w+]
puts $fid "This is my line of text."
close $fid
#
Open file, then read from it
set fid [open $fname r]
set data_in [gets $fid]
close $fid
#
Print out data read
echo $data_in

Using Tcl With Synopsys Tools
S-2021.06-SP4

44

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: Commands
Basic Tcl Commands

Feedback

Nonsequential File Access
By default, the gets and puts commands access files sequentially. You can use the seek,
tell, and eof commands to manage nonsequential file access.

You use the seek command to move the access position of the file by a specified number
of bytes. The access position is the point where the next read or write occurs in the file. By
default, the access point is where the last read or write ended.

The simplest form of the seek command is

seek $fid offset

The $fid argument is the file ID of the file that was obtained from an open command; the
offset argument is the number of bytes to move the access position.

You use the tell command to obtain the current access position of a file.

The basic syntax of the command is

tell $fid

You use the eof command to test whether the access position of a file is at the end of the
file. The command returns 1 if true; otherwise, it returns a 0.

Using Tcl With Synopsys Tools
S-2021.06-SP4

45

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

3
Variables

This chapter describes the use of variables within the command-line interface. Variables
store values that commands use. The value of a variable can be a list of pin names, the
estimated load on a port, and the like. When you set a variable to a value, the change
takes place immediately, and commands use that variable value. This chapter includes the
following sections:

• Components of a Variable

• Application Variables

• Considerations When Using Variables

• Manipulating Variables

Components of a Variable
In Tcl, each variable has a name and a value. The name is a sequence of characters that
describe the variable. Values can be any of the supported data types. The data types are
described in Data Types. A valid value can be a file name or a list of file names, a number,
or a set of command options and arguments. Variable names are case-sensitive

You can store a list of values in a single variable name. For example, you can find the
designs in memory and store the list in a variable.

prompt> set active_design_list [query_objects [get_designs *]]

Application Variables
The Synopsys Tcl-based tools predefine some variable names that control tool-specific
features or provide tool-specific information. These predefined variables are called
application variables. You can also define new variables, which are called user-defined
variables. For example, the search_path variable tells the tool where to search for
referenced files.

Tcl also provides a few predefined variables, such as the env variable. The env variable
is an array that contains the environment variable names of the Linux shell in which the
Synopsys command shell is running. For more information about arrays, see Arrays.

Using Tcl With Synopsys Tools
S-2021.06-SP4

46

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Variables
Considerations When Using Variables

Feedback

You can view a list of the environment variables by using the array command with its
names option. For example,

prompt> array names env
The list that prints out contains element names that correspond to the names of
environment variables. To reference the value of an environment variable, use
$env(ENV_VAR_NAME). For example, you can view the value of the HOME environment
variable by entering

prompt> echo $env(HOME)
You can also use the getenv command to view the value of an environment variable. For
example,

prompt> getenv HOME
If you change the value of an env element, the change is reflected in the environment
variable of the process in which the command shell is running. The env element is
returned to its previous value after the command shell exits.

To list all the application variables, use the report_app_var command.

Considerations When Using Variables
Keep in mind these facts about variables when you use them:

• Variable names can include letters, digits, underscores, and punctuation marks.

• Variable names are case-sensitive.

• Variables defined within a procedure are local to that procedure.

• Variables are not saved in the design database. When a session ends, the variables
assigned in that session are lost.

• Type conversion is automatic.

• An unquoted string is considered to be a string value.

• You must put a dollar sign ($) before the variable name to access the variable value.
In cases where the variable name might be ambiguous, put braces ({}) around the
variable name.

Using Tcl With Synopsys Tools
S-2021.06-SP4

47

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Variables
Manipulating Variables

Feedback

Manipulating Variables
This section describes how to

• List existing variables

• Display variable values

• Assign variable values

• Initialize variables

• Create and change variables

• Use variables

• Remove variables

Listing Existing Variables
Use the printvar command to display all of the variables defined in your current
session, as well as their values. By default, the printvar command displays both
application variables and user-defined variables. To display only application variables,
use the report_app_var command or use the -application option with the printvar
command. To display only user-defined variables, use the -user_defined option.

The following example displays all the variables defined in the current session, along with
their current value:

prompt> printvar
...
compile_advanced_fix_multiple_port_nets = "false"
compile_allow_dw_hierarchical_inverter_opt = "false"
compile_assume_fully_decoded_three_state_busses = "false"
compile_auto_ungroup_area_num_cells = "30"
compile_auto_ungroup_count_leaf_cells = "false"
...

The following example displays all the application variables, along with their current value,
data type, and default value:

prompt> report_app_var
Variable Value Type Default Constraints
----------------------- --------- ------- ---------- -------------------
abstraction_ignore_percentage 25 real 25
access_internal_pins false string false
...

Using Tcl With Synopsys Tools
S-2021.06-SP4

48

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Variables
Manipulating Variables

Feedback

Displaying Variable Values
To display the values of variables, use the printvar command. For application variables,
you can also use the report_app_var and get_app_var commands.

The following example shows the various methods of displaying the value of an application
variable:

prompt> printvar bus_naming_style
bus_naming_style = "%s[%d]"
prompt> get_app_var bus_naming_style
%s[%d]
prompt> report_app_var bus_naming_style
Variable Value Type Default Constraints
----------------------- --------- ------- ---------- -------------------
bus_naming_style %s[%d] string %s\[%d\]

Assigning Variable Values
To assign a value to an application variable, use the set_app_var command. The
set_app_var command ensures that the specified variable is in fact an application
variable and also performs data type checking.

For example, to set the search path, use the following command:

prompt> set_app_var search_path { ./usr/synopsys/libraries}
 ./usr/synopsys/libraries

To assign a new or initial value to a user-defined variable, use the set command. If the
variable does not already exist, the tool creates it and sets its initial value to the specified
value. If the variable already exists, its value is updated.

For example, to create a user-defined variable named my_design and set its value to
TOP_DESIGN, use the following command:

prompt> set my_design TOP_DESIGN
TOP_DESIGN

Using Variables
To use a variable’s value, you must precede the variable name with a dollar sign ($). If
the variable name might be ambiguous in the command line, put braces ({}) around the
variable name. For example,

prompt> set clk_period 20
prompt> create_clock -period $clk_period CLK
prompt> set log_dir "./log/"
prompt> report_constraint > "${log_dir}run.log"

Using Tcl With Synopsys Tools
S-2021.06-SP4

49

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Variables
Manipulating Variables

Feedback

The command-line editor allows you to press the Tab key to complete variable names
automatically on the command line. If the command-line editor cannot find a matching
string, it lists all closely matching strings. The command-line editor is enabled by default.
To disable this feature, set the sh_enable_line_editing variable to false in your setup
file. For more information, see Command-Line Editor.

Numeric Variable Precision
The precision of a numeric variable depends on how you assign a numeric value to it.
A numeric variable becomes a floating number if you use the decimal point; otherwise,
it becomes an integer. An integer variable can be treated as a decimal, octal, or
hexadecimal number when used in expressions.

To avoid unexpected results, you must be aware of the precision of a numeric variable
when using it in an expression. For example, in the following commands, the division
operator produces different results when used with integer and floating-point numbers:

prompt> set a 10; set b 4.0; set c 4
4
prompt> expr $a/$b ;# floating-point value returned
2.5
prompt> expr $a/$c ;# integer value returned
2

The first expr command performs floating-point division; the second expr command
performs integer division. Integer division does not yield the fractional portion of the result.
When integer and floating-point variables are used in the same expression, the operation
becomes a floating-point operation, and the result is represented as floating point.

To force floating-point operations for integer values, multiply one of the first values to be
evaluated in the expression by 1.0 to convert it to floating-point:

prompt> expr (1.0*$a)/$c ;# floating-point result returned
2.5

Take care that this floating-point conversion occurs before operations are performed on
the integer values, or the results might not be as expected:

prompt> expr 1.0*($a/$c) ;# ($a/$c) evaluated in integer context
2.0
prompt> expr 0.0+$a/$c ;# ($a/$c) evaluated in integer context
2.0

See Also

• SolvNetPlus article 000014175, “Why Does TCL Give Wrong Calculation Results?” for
more details on managing floating-point precision in Tcl expressions

Using Tcl With Synopsys Tools
S-2021.06-SP4

50

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnetplus.synopsys.com/s/article/Why-does-TCL-give-wrong-calculation-results-1576091376978

Chapter 3: Variables
Manipulating Variables

Feedback

Removing Variables
Use the unset command to remove a user-defined variable. You cannot remove
application variables; if you attempt to remove an application variable, the tool issues an
error.

Using Tcl With Synopsys Tools
S-2021.06-SP4

51

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

4
Control Flow

The Tcl control flow statement commands—if, while, for, foreach, break, continue,
and switch—determine the execution order of other commands. Control flow statements
are used primarily in command scripts, such as to check whether a previous command
executed successfully. Any command can be used within a control flow statement,
including additional nested control flow statements.

Control flow statements are described in the following sections:

• Condition Expressions

• Conditional Command Execution

• Loops

Condition Expressions
All control flow statements evaluate a conditional expression. The conditional expression
is enclosed in curly braces ({}) and is implicitly evaluated using the expr command. The
evaluation result is treated as Boolean true or false as described in Table 14.

Table 14 Boolean Equivalents of Non-Boolean Types

Evaluation result False True

Integer 0 Any value but 0

Float 0.0 Any value but 0.0

Boolean string false, no
(case-insensitive)

true, yes
(case-insensitive)

Values not listed in the table, such as lists or non-Boolean string values (including empty
strings) result in an error:

prompt> set string_to_build {}
prompt> while {! $string_to_build} {...}
Error: expected boolean value but got ""
 Use error_info for more info. (CMD-013)

Using Tcl With Synopsys Tools
S-2021.06-SP4

52

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Control Flow
Conditional Command Execution

Feedback

However, strings can be compared using the eq (equal) or ne (not equal) Tcl string
comparison operators:

prompt> set string_to_build {}
prompt> while {$string_to_build eq {}} {...}

Conditional Command Execution
The conditional command execution statements are

• if

• switch
The if and switch commands provide a way to select for execution one block of script
from several blocks.

if Statement
An if command requires two arguments; in addition, it can be extended to contain elseif
and else arguments. The required arguments are

• An expression to evaluate

• A script to conditionally execute based on the result of the expression

The basic syntax of the if command is

if {expression} {
 script
}

The if command evaluates the expression, and if the result is not zero, the script is
executed.

The if command can be extended to contain one or more elseif arguments and a final
else argument. An elseif argument requires two additional arguments: an expression
and a script. An else argument requires only a script.

The basic format is as follows:

if {expression1} {
 script1
} elseif {expression2} {
 script2
} else {
 script3
}

Using Tcl With Synopsys Tools
S-2021.06-SP4

53

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Control Flow
Conditional Command Execution

Feedback

The following example shows how to use the elseif and else arguments:

if {$x == 0} {
 echo "Equal"
} elseif {$x > 0} {
 echo "Greater"
} else {
 echo "Less"
}

The elseif and else arguments appear on the same line with the closing brace (}). This
syntax is required because a new line indicates a new command. If the elseif argument
is on a separate line, it is treated as a command, which it is not.

switch Statement
The switch command provides a more compact encoding alternative to using an if
command with many elseif arguments. The switch command tests a value against a
number of string patterns and executes the script corresponding to the first pattern that
matches.

The syntax of the switch statement is

switch test_value {
 pattern1 {script1}
 pattern2 {script2}
 ...
}

The expression test_value is the value to be tested. The test_value expression is
compared one by one to the patterns. Each pattern is paired with a statement, procedure,
or command script. If test_value matches a pattern, the script associated with the
matching pattern is run.

The switch statement supports three forms of pattern matching:

• The test_value expression and the pattern match exactly (-exact).

• The pattern uses wildcards (-glob).

• The pattern is a regular expression (-regexp).

Specify the form of pattern matching by adding an argument (-exact, -glob, or -regexp)
before the test_value option. If no pattern matching form is specified, the pattern matching
used is equivalent to -glob.

If the last pattern specified is default, it matches any value.

If the script in a pattern and script pair is (-), the script in the next pattern is used.

Using Tcl With Synopsys Tools
S-2021.06-SP4

54

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Control Flow
Loops

Feedback

The following example uses the value of the vendor_library variable to determine the
maximum delay value.

switch -exact $vendor_library {
 Xlib {set_max_delay 2.8 [all_outputs]}
 Ylib { - }
 Zlib {set_max_delay 3.1 [all_outputs]}
 default {set_max_delay 3.4 [all_outputs]}
}

Loops
The loop statements are

• while

• for

• foreach

• foreach_in_collection
The while, for, and foreach commands provide a way to repeat a block of script
(looping). The break and continue commands are used in conjunction with looping to
change the normal execution order of loops.

while Statement
The while statement repeatedly executes a single set of commands while a given
condition is true.

The syntax of the while statement is

while {expression} {while_command while_command ... }

As long as the expression is true, the set of commands specified by the while_command
arguments are repeatedly executed.

The expression becomes a Boolean variable.

If a continue statement is encountered in a while loop, the tool immediately starts over at
the top of the while loop and reevaluates the expression.

If a break statement is encountered, the tool terminates the loop and resumes execution
at the first command after the loop.

Using Tcl With Synopsys Tools
S-2021.06-SP4

55

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Control Flow
Loops

Feedback

For example, the following while command prints squared values from 0 to 10:

set p 0
while {$p <= 10} {
 echo "$p squared is: [expr $p * $p]"
 incr p
}

for Statement
The for command has four arguments:

• An initialization expression

• A loop-termination expression

• A reinitialization expression

• The script to execute for each iteration of the for loop

The syntax of the for statement is

for {init} {test} {reinit} {
 body
}

The for loop runs init as a Tcl script, then evaluates test as an expression. If test
evaluates to a nonzero value, body is run as a Tcl script, reinit is run as a Tcl script, and
test is reevaluated. As long as the reevaluation of test results in a nonzero value, the loop
continues. The for statement returns an empty string.

The following example prints the squared values from 0 to 10:

for {set p 0} {$p <= 10} {incr p} {
 echo "$p squared is: [expr $p * $p]"
}

foreach Statement
The foreach command iterates over the elements in a list. It has three arguments:

• A variable name

• A list

• A script to execute

The foreach statement runs a set of commands one time for each value assigned to the
specified variable.

Using Tcl With Synopsys Tools
S-2021.06-SP4

56

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Control Flow
Loops

Feedback

The syntax is

foreach variable_name list {
 foreach_command
 foreach_command
 ...
}

The foreach statement sets variable_name to each value represented by the
list expression and executes the identified set of commands for each value. The
variable_name variable retains its value when the foreach loop ends.

A carriage return or semicolon must precede the closing brace of the foreach statement.
The following example shows how you use a foreach statement.

set x {a b c}
foreach member $x {
 printvar member
}
member = "a"
member = "b"
member = "c"

Use the foreach_in_collection statement to traverse design objects, rather than the
foreach statement.

foreach_in_collection Statement
The foreach_in_collection statement is a specialized version of the foreach
statement that iterates over the elements in a specified collection. The syntax is

foreach_in_collection collection_item collection {
 body
}

where collection_item is set to the current member of the collection as the
foreach_in_collection command iterates over the members, collection is a collection,
and body is a Tcl script executed for each element in the collection.

For example, to print the load attribute for all ports in the design, enter

foreach_in_collection eachport [get_ports *] {
 set loadval [get_attribute [get_object_name $eachport] load]
 printvar loadval
}

Loop Control and Termination
The loop termination statements are continue and break.

Using Tcl With Synopsys Tools
S-2021.06-SP4

57

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Control Flow
Loops

Feedback

The difference between continue and break statements is that the continue statement
causes command execution to continue by evaluating the next loop iteration, whereas the
break statement causes command execution to break out of the loop entirely.

In the case of nested loops, only the innermost loop is affected.

continue Statement
Use the continue statement to skip the remainder of the current loop iteration and begin
evaluating the next iteration.

In the following example, the continue statement causes the printing of only the squares
of even numbers between 0 to 10:

set p 0
while {$p <= 10} {
 if {$p % 2} {
 incr p
 continue
 }
 echo "$p squared is: [expr $p * $p]"
 incr p
}

break Statement
Use the break statement to immediately terminate the loop and resume execution with the
first statement after the loop.

In the following example, a list of file names is scanned until the first file name that is a
directory is encountered. The break statement is used to terminate the foreach loop
when the first directory name is encountered.

foreach f [which {VDD.ave GND.tech p4mvn2mb.idm}] {
 echo -n "File $f is "
 if { [file isdirectory $f] == 0 } {
 echo "NOT a directory"
 } else {
 echo "a directory - breaking out of loop"
 break
 }
}

Using Tcl With Synopsys Tools
S-2021.06-SP4

58

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

5
Working With Procedures

A procedure is a named block of commands that performs a particular task or function.
With procedures, you create new commands by using existing Tcl and Synopsys
commands. This chapter shows you how to create procedures, and it describes how to
use Synopsys procedure extensions.

This chapter contains the following sections:

• Creating Procedures

• Extending Procedures

• Displaying the Procedure Body and Arguments

Creating Procedures
You use the proc command to create a procedure. The syntax of the proc command is

proc name args body

The name argument names your procedure. You cannot use the name of an existing Tcl
or Synopsys command. You can, however, use the name of an existing procedure, and
if a procedure with the name you specify exists, your procedure replaces the existing
procedure.

The arguments to a procedure are specified in the args argument, and the script that
makes up a procedure is contained in the body argument. You can create procedures
without arguments also. Arguments to a procedure must be scalar variables; consequently
you cannot use arrays as arguments to a procedure. (For a technique to overcome this
limitation, see Using Arrays With Procedures.)

The following is a procedure example:

procedure max
returns the greater of two values
proc max {a b} {
 if {$a > $b} {
 return $a
 }
 return $b
}

Using Tcl With Synopsys Tools
S-2021.06-SP4

59

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Working With Procedures
Creating Procedures

Feedback

You invoke this procedure as follows:

prompt> max 10 5
To save the result of the procedure, set a variable to its result. For example,

prompt> set bigger [max 10 5]
When a procedure terminates, the return value is the value specified in a return
command. If a procedure does not execute an explicit return command, the return value
is the value of the last command executed in the body of the procedure. If an error occurs
while the body of the procedure is being executed, the procedure returns that error.

The return command causes the procedure to return immediately; commands that come
after the return command are not executed.

Variable Scope
Variable scope determines the accessibility of a variable when it is used in scripts and
procedures. In Tcl, the scope of a variable can be either local or global. When working with
scripts and procedures, you must be aware of a variable’s scope to ensure that it is used
properly.

When a procedure is invoked, a local variable is created for each argument of the
procedure. Local variables are accessible only within the procedure from which they are
created, and they are deleted when the procedure terminates. A variable created within
the procedure body is also a local variable.

Variables created outside of procedures are called global variables. You can access
a global variable from within a procedure by using the global command. The global
command establishes a connection to the named global variable, and references are
directed to that global variable until the procedure terminates. (For more information, see
the global man page.)

You can also access variables that are outside the scope of a procedure by using the
upvar command. This command is useful for linking nonscalar variables (for example,
arrays) to a procedure because they cannot be used as arguments to a procedure. For
more information, see the man page for the upvar command.

It is possible to create a local variable with the same name as a global variable and to
create local variables with the same name in different procedures. In each case, these are
different variables, so changes to one do not affect the other.

For example,

Variable scope example
set ga 5
set gb clock_ext

Using Tcl With Synopsys Tools
S-2021.06-SP4

60

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Working With Procedures
Creating Procedures

Feedback

proc scope_ex1 {a b} {
 echo $a $b
 set gb 100
 echo $gb
}

proc scope_ex2 {a b} {
 echo $a $b
 set gb 4.25
 echo $gb
}

In this script example, ga and gb are global variables because they are created outside of
the scope_ex1 and scope_ex2 procedures. The variable name gb is also used within the
scope_ex1 and scope_ex2 procedures. Within these procedures, gb is a local variable.
The three instances of gb exist as three different variables. A change to one instance of gb
does not affect the others.

Argument Defaults
You can specify the default for one or more of the arguments of a procedure. To set up
a default for an argument, you place the arguments of the procedure in a sublist that
contains two elements: the name of the argument and its default. For example,

procedure max
returns the greater of two values
proc max {{a 0} {b 0}} {
 if {$a > $b} {
 return $a
 }
 return $b
}

In this example, you can invoke max with two or fewer arguments. If an argument is
missing, its value is set to the specified default, 0 in this case.

With this procedure, the following invocations are all valid:

max
max arg1
max arg1 arg2

You do not have to surround nondefault arguments within braces. For example,

procedure max
returns the greater of two values
proc max {a {b 0}} {
...

Using Tcl With Synopsys Tools
S-2021.06-SP4

61

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Working With Procedures
Creating Procedures

Feedback

You should also consider the following points when using default arguments:

• If you do not specify a particular argument with a default, you must supply that
argument when the procedure is invoked.

• If you use default arguments, you must place them after all nondefault arguments.

• If you specify a default for a particular argument, you must specify a default for all
arguments that follow.

• If you omit an argument, you must omit all arguments that follow.

Variable Numbers of Arguments
You can create procedures with variable numbers of arguments if you use the special
argument args. This argument must be positioned as the last argument in the argument
list; arguments preceding args are handled as described in the previous sections.

Additional arguments are placed into args as a list. The following example shows how to
use a varying number of arguments:

print the square of at least one number
proc squares {num args} {
 set nlist $num
 append nlist " "
 append nlist $args
 foreach n $nlist {
 echo "Square of $n is [expr $n*$n]"
 }
}

Using Arrays With Procedures
When using an array with a procedure, you can make the array a global variable, or
you can use the get and set options of the array command to manipulate the array
so that it can be used as an argument or as the return value of a procedure. Example 2
demonstrates the latter technique.

Example 2 Passing an Array to a Procedure
proc my_proc { bar_list } {
 # bar was an array in the main code
 array set bar_array $bar_list;
 # manipulate bar_array
 return [array get bar_array];
}
set orig_data(one) {two};
set orig_data(alpha) {green};
array set new_data [my_proc [array get orig_data]];

Using Tcl With Synopsys Tools
S-2021.06-SP4

62

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Working With Procedures
Extending Procedures

Feedback

General Considerations for Using Procedures
Keep in mind the following points when using procedures:

• Procedures can use Tcl and Synopsys commands.

• Procedures can use other procedures provided that they contain supported Tcl and
Synopsys commands.

• Procedures can be recursive.

• Procedures can contain local variables and can reference variables outside their scope
(see Variable Scope).

Extending Procedures
This section describes the define_proc_attributes and parse_proc_arguments
commands. These commands add extended functionality to the procedures you create.
With these commands, you can create procedures with the same help and semantic
attributes as Synopsys commands.

When you create a procedure, it has the following intrinsic attributes:

• The body of the procedure can be viewed with the info body command.

• The procedure can be modified.

• The procedure name can be abbreviated according to the value of the
sh_command_abbrev_mode variable.

• The procedure is placed in the Procedures command group.

Note:
The procedure does not have help text.

By using the define_proc_attributes command, you can

• Specify help text for the command

• Specify rules for argument validation

• Prevent procedure view and modification

• Prevent procedure name abbreviation

• Specify the command group in which to place the procedure

Using Tcl With Synopsys Tools
S-2021.06-SP4

63

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Working With Procedures
Extending Procedures

Feedback

You use the parse_proc_arguments command in conjunction with the
define_proc_attributes command to enable the -help option for a procedure and to
support procedure argument validation.

Using the define_proc_attributes Command
You use the define_proc_attributes command to define and change the attributes of a
procedure.

The syntax is

define_proc_attributes proc_name
 [-info info_text]
 [-define_args arg_defs]
 [-command_group group_name]
 [-hide_body]
 [-hidden]
 [-permanent]
 [-dont_abbrev]

The arguments are defined as follows:

proc_name

Specifies the name of the procedure to extend.

-info info_text
Specifies the quick-help text that is used in conjunction with the help command
and the procedure’s -help option. The text is limited to one line.

-define_args arg_defs
Specifies the help text for the procedure’s arguments and defines the procedure
arguments and their attributes.

For information about using the -define_args argument within a procedure,
see Using the parse_proc_arguments Command.

-command_group group_name
Specifies the command group of the procedure. The default command group is
Procedures. This attribute is used in conjunction with the help command.

For more information, see Getting Help on Commands.

-hide_body
Hides the body of the procedure. The procedure body cannot be viewed by
using the body option of the info command. This attribute does not affect the
info command when the args option is used.

Using Tcl With Synopsys Tools
S-2021.06-SP4

64

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Working With Procedures
Extending Procedures

Feedback

-hidden
Hides the procedure so the help command cannot access the help page, and
the info proc command cannot access the body of the procedure.

-permanent
Prevents modifications to the procedure.

-dont_abbrev
Prevents name abbreviation for the procedure, regardless of the value of the
sh_command_abbrev_mode variable.

You use the -define_args option to specify quick-help text for the procedure’s
arguments and to define the data type and attributes of the procedure’s arguments. The
-define_args argument is a list of lists. For more information, see Lists. Each list element
specifies the attributes for a procedure argument.

Each list element has the following format:

arg_name option_help value_help data_type attributes

arg_name

Specifies the name of the procedure argument.

option_help

Specifies a short description of the argument for use with the procedure’s -help
option.

value_help

For positional arguments, specifies the argument name; otherwise, is a one-
word description for the value of a dash option. This parameter has no meaning
for a Boolean option.

data_type

Specifies the data type of the argument; the data_type parameter can be
one of the following: string (the default), list, boolean, int, float, or
one_of_string. This parameter is optional.

attributes

Specifies additional attributes for an argument. This parameter is optional. The
additional attributes are described in Table 15.

Using Tcl With Synopsys Tools
S-2021.06-SP4

65

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Working With Procedures
Extending Procedures

Feedback

Table 15 Additional Argument Attributes

Attribute Description

required Specifies a required argument. You cannot use this attribute with the
optional attribute.

optional Specifies an optional argument. You cannot use this attribute with the
required attribute.

value_help Specifies that valid values for one_of_string arguments be shown when
the argument help is shown for a procedure. For data types other than
one_of_string, this attribute is ignored.

values Specifies the list of valid values for one_of_string arguments. This attribute
is required if the argument type is one_of_string. If you use this attribute
with other data types, an error is displayed.

define_proc_attributes Command Example
The following procedure adds two numbers and returns the sum:

prompt> proc plus {a b} {return [expr $a + $b]}
prompt> define_proc_attributes plus \
 -info "Add two numbers" \
 -define_args {
 {a "first addend" a string required} \
 {b "second addend" b string required} \
 {"-verbose" "issue a message" "" boolean optional} }
prompt> help -verbose plus
Usage: plus # Add two numbers
 [-verbose] (issue a message)
 a (first addend)
 b (second addend)
prompt> plus 5 6
11

Using the parse_proc_arguments Command
The parse_proc_arguments command parses the arguments passed to a procedure that
is defined with the define_proc_attributes command.

You use the parse_proc_arguments command within procedures to support argument
validation and to enable the -help option. Typically, parse_proc_arguments is the
first command called within a procedure. You cannot use the parse_proc_arguments
command outside a procedure.

Using Tcl With Synopsys Tools
S-2021.06-SP4

66

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Working With Procedures
Extending Procedures

Feedback

The syntax is

parse_proc_arguments -args arg_list result_array

-args arg_list
Specifies the list of arguments passed to the procedure.

result_array

Specifies the name of the array in which to store the parsed arguments.

When a procedure that uses the parse_proc_arguments command is invoked with the
-help option, parse_proc_arguments prints help information (in the same style as the
-verbose option of the help command) and then causes the calling procedure to return. If
any type of error exists with the arguments (missing required arguments, invalid value, and
so forth), parse_proc_arguments returns an error, and the procedure terminates.

If you do not specify the -help option and the specified arguments are valid, the
result_array array contains each of the argument values subscripted with the argument
name. The argument names are not the names of the arguments in the procedure
definition; the argument names are the names of the arguments as defined with the
define_proc_attributes command.

Example

In Example 3, the argHandler procedure shows how the parse_proc_arguments
command is used. The argHandler procedure accepts an optional argument of each type
supported by define_proc_attributes, then prints the options and values received.

Example 3 argHandler Procedure
proc argHandler {args} {
 parse_proc_arguments -args $args results
 foreach argname [array names results] {
 echo " $argname = $results($argname)"
 }
}

define_proc_attributes argHandler -info "argument processor" \
 -define_args {
 {-Oos "oos help" AnOos one_of_string {required value_help
 {values {a b}}}}
 {-Int "int help" AnInt int optional}
 {-Float "float help" AFloat float optional}
 {-Bool "bool help" "" boolean optional}
 {-String "string help" AString string optional}
 {-List "list help" AList list optional} }

Using Tcl With Synopsys Tools
S-2021.06-SP4

67

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Working With Procedures
Extending Procedures

Feedback

Invoking the argHandler procedure with the -help option generates the following output:

prompt> argHandler -help
Usage: argHandler # argument processor
 -Oos AnOos  (oos help:
 Values: a, b)
 [-Int AnInt] (int help)
 [-Float AFloat] (float help)
 [-Bool] (bool help)
 [-String AString] (string help)
 [-List AList] (list help)

Invoking the argHandler procedure with an invalid option generates the following output
and causes an error:

prompt> argHandler -Int z
Error: value 'z' for option '-Int' not of type 'integer' (CMD-009)
Error: Required argument '-Oos' was not found (CMD-007)

Invoking the argHandler procedure with valid arguments generates the following output:

prompt> argHandler -Int 6 -Oos a
 -Oos = a
 -Int = 6

Considerations for Extending Procedures
When using the extended procedure features, keep in mind the following points:

• The define_proc_attributes command does not validate the arguments you define
by using its -define_args option.

• Whenever possible, use the Tcl variable numbers of arguments feature to facilitate the
passing of arguments to the parse_proc_arguments command. For more information,
see Variable Numbers of Arguments.

• If you do not use the parse_proc_arguments command, procedures cannot respond
to the -help option. However, you can always use the help command. For example,

help procedure_name -verbose

Using Tcl With Synopsys Tools
S-2021.06-SP4

68

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Working With Procedures
Displaying the Procedure Body and Arguments

Feedback

Displaying the Procedure Body and Arguments
This section describes the commands you can use to display the body and the arguments
of a procedure: the info command and the proc_body and proc_args commands.

You use the body option of the info command to display the body of a procedure and the
args option to display the arguments.

You can use the proc_body command as an alternative to info body and proc_args as
an alternative to info args.

If you use the -hide_body option when you define a procedure, you cannot use the info
body or proc_body commands to view the contents of the procedure.

These commands have the following syntax:

info body procedure_name
info args procedure_name

proc_body procedure_name
proc_args procedure_name

Using Tcl With Synopsys Tools
S-2021.06-SP4

69

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

6
Collections of Design Objects

Synopsys Tcl-based tools provide commands that search for and manipulate information
in your design. These commands work with collections, which allow design objects to be
efficiently identified and specified.

This chapter includes the following sections:

• Why Use Collections?

• Working With Collections

• Working With Attributes

• Using Name-Based Object Specifications

• Matching Names of Design Objects During Queries

• Reporting Collections

• Writing Collection Information to a File

Why Use Collections?
Many tool commands accept and/or return a set of one or more design objects as part
of their operation. Sometimes the reference is a single design object, such as when you
create a clock on a port. Other times the reference is to many design objects, such as
when you obtain the set of all registers in the design.

Using Tcl With Synopsys Tools
S-2021.06-SP4

70

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Collections of Design Objects
Working With Collections

Feedback

The Tcl scripting language provides the list construct, which is simply a list of one or more
string values in a particular standard Tcl format. Lists can be used to reference design
objects, but there are disadvantages:

• Lists are memory-inefficient.

Every name is stored as a complete string. Hierarchy paths are stored repeatedly and
redundantly for multiple hierarchical objects.

• Lists are runtime-inefficient.

Each list item must be searched for in the design database using string comparisons.
Hierarchical object names require additional processing to identify each hierarchical
block, then the leaf object, during the search.

• List are type-ambiguous.

List items don’t inherently specify an object type. Does {CLK} refer to a port, or a net of
the same name?

• Lists cannot provide additional object information.

List items don’t provide any information about a design object except its name. You
cannot obtain the clock periods of a list of clocks or the area values of a list of cells.

To overcome these drawbacks, Tcl-based Synopsys tools provide collections as a method
for referencing design objects. A collection is a binary data structure that references a
set of one or more design objects. Each design object reference points directly to an
internal data structure, which makes collections very fast and memory-efficient, even when
working with many thousands of objects.

Every collection object has an object_class attribute that tells you what type of object it
is. Collections can contain one type of object (homogeneous) or a variety of object types
(heterogeneous).

Each object class provides additional attributes that you can use to find more information
about design objects of that class. For example, clock objects have a period attribute, cell
objects have an area attribute, and so on. These values are either retrieved directly from
the internal data structures or derived on-the-fly by the tool, so they are efficient to query.

Working With Collections
A collection is a set of design objects such as cells, nets, or libraries. You create, view,
and manipulate collections by using commands provided specifically for working with
collections. The following sections describe how to work with collections:

• Creating Collections

• Saving Collections

Using Tcl With Synopsys Tools
S-2021.06-SP4

71

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Collections of Design Objects
Working With Collections

Feedback

• Displaying Objects in a Collection

• Adding Objects to a Collection

• Removing Objects From a Collection

• Comparing Collections

• Extracting Individual Objects From a Collection

• Iterating Over a Collection

Creating Collections
Typically, you create collections with the get_* and all_* commands. For example, to
create a collection that contains the cells that begin with o and reference an FD2 library
cell, use the following command:

prompt> get_cells {o*} -filter {ref_name == FD2}
{o_reg1 o_reg2 o_reg3 o_reg4}

Although the returned result looks like a list, it is not. A collection is referenced by
a collection handle, which is simply a string value that the tool associates with the
collection’s internal data structure. When a collection is the returned result at an interactive
prompt, the tool shows the collection contents instead of the collection handle for
convenience. Collections returned by commands during script execution are not printed.

Most command arguments that accept design objects support collections.

Collections can be temporary or persistent throughout a session. If you use a nested
collection command as an argument, the collection created by the nested collection
command persists only within the scope of the command. For example, to set the
size_only attribute on cells i1 and i2, use the following command:

prompt> set_size_only [get_cells {i1 i2}] true
1

If you want the collection to persist in the current session, assign it to a variable. You can
then use the collection variable as the argument value. For example,

prompt> set my_pins [get_pins o*/CP]
{o_reg1/CP o_reg2/CP}
prompt> get_cells -of_objects $my_pins
{o_reg1 o_reg2}

The collection persists as long as the variable references its handle. If you unset the
variable, the collection is freed. For more information, see Saving Collections.

Collection commands often have options that provide fine control over object acquisition.
For example, the get_pins command provides a -leaf option that controls whether

Using Tcl With Synopsys Tools
S-2021.06-SP4

72

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Collections of Design Objects
Working With Collections

Feedback

the tool considers only the current net segment or the entire net when getting pins of a
hierarchical net:

prompt> get_pins -of_objects [get_nets NET1] ;# only connected to NET1
{i2/a reg1/QN}

prompt> get_pins -leaf -of_objects [get_nets NET1] ;# entire hier network
{i2/U1/A i2/U2/A reg1/QN}

The get_nets command also contains options that control how net segments are returned
for hierarchical nets.

mid1

mid_i mid_n mid_0top_i top_nU1 U2

mid2

mid_i mid_n mid_0U1 U2 top_o

top

prompt> get_nets -top_net_of_hierarchical_group
{top_itop_otop_n}

prompt> get_nets -top_net_of_hierarchical_group -segments
{top_itop_otop_n}

prompt> get_nets -segments
{top_itop_otop_nmid1/mid_imid2/mid_omid1/mid_o mid2/mid_i}

prompt> get_nets -hierarchical
{top_ntop_itop_omid2/mid_nmid2/mid_imid2/mid_o
mid1/mid_nmid1/mid_imid1/mid_o}

prompt> get_nets -top_net_of_hierarchical_group -segments top_n
{top_n}

prompt> get_nets -segments top_n
{top_nmid2/mid_imid1/mid_o}

prompt> get_nets -hierarchical top_n
{top_n}

prompt> get_nets -top_net_of_hierarchical_group top_n
{top_n}

Using Tcl With Synopsys Tools
S-2021.06-SP4

73

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Collections of Design Objects
Working With Collections

Feedback

Saving Collections
To save a collection, store the result of the command that creates the collection in a
variable. For example, to create a collection variable named RX_ports that contains all bits
of a bused port RX, use the following command:

prompt> set RX_ports [get_ports RX[*]]
You can pass the variable directly to a command that operates on the collection, as shown
in the following example:

prompt> set_input_delay -clock myclock 2.0 $RX_ports
1

If you save a collection in a variable and then later remove the variable definition by
using the unset command, you also remove the collection. For example, to remove the
RX_ports variable and the associated collection, use the following command:

prompt> unset RX_ports

Accessing Collections
For tools that use a “current design” concept, changing the current design with the
current_design command might invalidate existing collections. In this case, you can
access the collections only within the design context in which they were created.

Some tools, such as Design Compiler, automatically re-create the deleted collections
when you change the current design back to the design in which you originally defined
the collections. To reduce the runtime for the current_design command, use the unset
command to delete the collections that you no longer need.

For example,

dc_shell> set my_pins [get_pins ...]
do things with $my_pins
dc_shell> unset my_pins
The Design Compiler tool does not re-create collections that contain the following design
objects:

• Clusters

• Scan paths

• Timing paths

Other tools, such as the IC Compiler II tool, do not delete collections when changing
design focus.

Using Tcl With Synopsys Tools
S-2021.06-SP4

74

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Collections of Design Objects
Working With Collections

Feedback

Displaying Objects in a Collection
All commands that return collections implicitly display the collection contents when the
collection is returned at the command prompt. However, for more flexibility, you can use
the query_objects command to display objects in a collection.

The query_objects command generates output that is similar to the interactive output
of a collection command. The query results are formatted as a Tcl list (for example, {a b c
d ...}), so that you can directly examine the results.

For example, to display all of the ports that start with the string "in", use the following
command:

prompt> query_objects [get_ports in*]
{in0 in1 in2}

The query_objects command also allows you to search the design database directly.
For example, the following command returns the same information as the previous
query_objects command:

prompt> query_objects -class port in*
{in0 in1 in2}

If the display is truncated, you see an ellipsis (...) as the last element:

prompt> query_objects $all_cells
{U129 U130 U131 U132 U133 U134 U135 U136 U137 U138 U139 U140 U141 U142
U143 U144 U145 U146 U147 U148 U149 U150 U151 U152 U153 U154 U155 U156
U157 U158 U159 U160 U161 U162 U163 U164 U165 U166 U167 U168 ...}

To control the number of elements displayed, use the -truncate option.

You can change the default truncation limit (for both interactive collection reporting and the
query_objects command) by setting the collection_result_display_limit variable
to a different value; the default is 100. For more information, see the man page.

To report the number of objects in a collection (instead of the object names), use the
sizeof_collection command:

prompt> sizeof_collection $all_cells
23856

For more detailed collection reports, including customizable reports, you can use the
report_collection command. See Reporting Collections.

Using Tcl With Synopsys Tools
S-2021.06-SP4

75

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Collections of Design Objects
Working With Collections

Feedback

Adding Objects to a Collection
There are two ways to add objects to a collection, each suited to a particular purpose:

• Adding objects to an existing collection

You can use the append_to_collection command to add objects to an existing
collection. Provide the name of the collection variable, then the objects to be added:

prompt> append_to_collection all_my_ports $this_port
Because the new objects are added directly to the existing named collection at the data
structure level, this operation is very fast. Reference the existing collection by its name
(without "$" to reference its value).

• Creating a new collection from existing collections

You can use the add_to_collection command to combine two collections together
and return the resulting collection as a new collection. For example,

prompt> set possible_sources \
 [add_to_collection $clock_sources $reset_sources]
Note that both collection references use "$" to reference the collection values, not
their names. The object references in the input collections are duplicated to create the
returned collection.

Note:
Use add_to_collection only when combining two collections to form a
third. To add items to an existing collection, use the append_to_collection
command instead.

You can also create list variables that contain references to several collections. For
example,

prompt> set a [get_ports P*]
{PORT0 PORT1}
prompt> set b [get_cells reg*]
{reg0 reg1}
prompt> set c "$a $b"
_sel27 _sel28

However, this method of combining collections is not recommended.

Removing Objects From a Collection
You use the remove_from_collection command to remove objects from a collection.
The remove_from_collection command creates a new collection that includes the

Using Tcl With Synopsys Tools
S-2021.06-SP4

76

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Collections of Design Objects
Working With Collections

Feedback

objects in the original collection minus the specified objects. If the operation results in zero
elements, the command returns an empty string. The original collection is not modified.

For example, you can use the following command to create a collection containing all input
ports except CLOCK:

prompt> set data_ports [remove_from_collection [all_inputs] {CLOCK}]
{in1 in2}

You can specify a list of objects or collections to remove. The object class of each element
to be removed must be the same as the original collection objects. For example, you
cannot remove a port collection from a cell collection.

You can also remove objects from a collection by using a filter expression that limits
the objects in the collection. For more information, see Filtering Collections by Attribute
Values.

Comparing Collections
You use the compare_collections command to compare the contents of two collections.
If the two collections contain the same set of objects, with no unmatched objects in either
one, the compare_collections command returns zero; otherwise it returns a nonzero
value.

For example,

prompt> compare_collections [get_cells *] [get_cells *]
0

By default, the order of the objects in each collection does not matter. You can make the
comparison order-dependent by using the -order_dependent option.

To determine if a collection is empty, compare it against an empty string using Tcl string
comparison:

prompt> if {$my_cells eq {}} { # ...it is empty... }

prompt> if {$my_cells ne {}} { # ...it is not empty... }
To determine if all objects in one collection (the "needle") exist in another (the "haystack"),
use the remove_from_collection command as follows:

prompt> if {[remove_from_collection $needle $haystack] eq {}} {
 # all objects in $needle exist in $haystack
 }
To determine what objects are common between two collections, if any, use the
remove_from_collection -intersect command.

prompt> remove_from_collection -intersect $fanin_pins $fanout_pins

Using Tcl With Synopsys Tools
S-2021.06-SP4

77

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Collections of Design Objects
Working With Collections

Feedback

If there are no common objects, the command returns an empty collection.

Extracting Individual Objects From a Collection
Collections are ordered. The objects in a collection are numbered 0 through n-1, where n
is the size of the collection.

You can use the index_collection command to return individual objects by index
number:

• To extract single objects, specify a single index value:

prompt> index_collection $my_ports 3
{A[12]}

(This corresponds to the Tcl lindex command for lists.)

• To extract a range of objects, specify the lower and upper index values of a range:

prompt> index_collection $my_ports 3 5
{A[12] A[11] A[10]}

(This corresponds to the Tcl lrange command for lists.)

Just as with the corresponding Tcl commands, you can specify end or end-value for the
index values:

prompt> index_collection $my_ports end
{test_se}
prompt> index_collection $my_ports end-2 end
{test_si6 test_si7 test_se}

Note:
Although commands such as get_cells might not document how their
collections are ordered, they do create them in a deterministic order. In other
words, the same command executed multiple times (such as get_cells *)
creates the same collection each time.

Iterating Over a Collection
You use the foreach_in_collection command to iterate over each element in a
collection. The foreach_in_collection command can be nested within other control
structures, including another foreach_in_collection command.

During each iteration, the iteration variable is set to a collection of exactly one object. For
example,

prompt> foreach_in_collection this_cell [get_cells *] { ... }

Using Tcl With Synopsys Tools
S-2021.06-SP4

78

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Collections of Design Objects
Working With Collections

Feedback

You cannot use the foreach command to iterate over a collection.

Iteratively Adding Objects to a Collection
To iteratively add objects to a collection, use the append_to_collection command to
directly add objects in-place to that collection. For example,

start with an empty collection for object accumulation
set qualifying_cells {}

loop through a collection and conditionally add
qualifying objects
foreach_in_collection this_cell $all_cells {
 if {...some criteria...} {
 append_to_collection qualifying_cells $this_cell
 }
}

Never use the add_to_collection command to iteratively add objects to a collection,
as there is a significant performance penalty for continually creating and destroying
temporary collections within a loop.

Iteratively Removing Objects From a Collection
To iteratively remove objects from a collection, use the append_to_collection command
to create the set of objects to remove from that collection, then remove them after the
loop. For example,

start with an empty collection for object accumulation
set cells_to_remove {}

loop through a collection and conditionally
accumulate qualifying objects to remove
foreach_in_collection this_cell $all_cells {
 if {...some criteria...} {
 append_to_collection cells_to_remove $this_cell
 }
}

now remove the accumulated objects from the full collection
set all_cells [remove_from_collection $all_cells $cells_to_remove]

Never use the remove_from_collection command to iteratively remove objects from
a collection, as there is a significant performance penalty for continually creating and
destroying temporary collections within a loop.

Using Tcl With Synopsys Tools
S-2021.06-SP4

79

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Collections of Design Objects
Working With Attributes

Feedback

Working With Attributes
Collection objects have attributes that provide additional information. Collection attributes
are described in the following sections:

• Setting and Querying Attribute Values

• Filtering Collections by Attribute Values

• Chained Attribute Access

• User-Defined Attributes

• Derived User Attributes

Setting and Querying Attribute Values
Collection objects have attributes that you can query by name for additional information.
Each object type (cells, pins, and so on) provides its own set of attributes. Each attribute
returns data of a particular type: Boolean, integer, float, string, or collection.

For example, every collection object has an object_class attribute that returns a string
indicating what type of object it is:

prompt> get_attribute [get_cells {U123}] object_class
cell

Most named design objects have a full_name attribute that returns the name string:

prompt> get_attribute [get_cells {U123}] full_name
U123

For collections of multiple objects, attribute values are returned in the same order as the
collection objects:

prompt> get_attribute [get_cells {U123 U124 Z_reg}] is_sequential
false false true

Attributes can be defined or undefined on objects (depending on the tool and the attribute):

prompt> get_attribute [get_pins U123/Z] function
!(A B)
prompt> get_attribute [get_pins U123/A] function
Warning: Attribute 'function' does not exist on pin 'U123/A'. (UID-101)

Some attributes return their data as a collection:

prompt> set path [get_timing_paths ...]
_sel28
prompt> sizeof_collection [get_attribute $p startpoint]

Using Tcl With Synopsys Tools
S-2021.06-SP4

80

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Collections of Design Objects
Working With Attributes

Feedback

1
prompt> sizeof_collection [get_attribute $p points]
7

Some tools have additional attribute-related commands, such as for setting attributes and
defining and setting user attributes. To see the list of commands in your tool, type:

prompt> help *attribute*

Filtering Collections by Attribute Values
You can select specific objects from a collection by attribute filtering. You can perform
comparisons on attribute values, check for the existence or absence of attributes, and
even create complex filtering expressions using Boolean operators.

There are two ways to filter collection objects by attribute:

• filter_collection collection filter_expression
Use this method to create a new filtered collection from an existing collection.

• get_* ... -filter filter_expression
Many get_* commands have a -filter option that filter on-the-fly while obtaining the
design objects. This method is much more efficient than obtaining all unfiltered design
objects, and then filtering that full collection with filter_collection.

Attribute filtering allows you to filter collection objects more quickly and efficiently than
using the foreach_in_collection command for object-by-object comparison.

Using Filter Expressions
A filter expression is a set of logical expressions describing the constraints you want
to place on the collection objects. A filter expression compares the value of a named
attribute (such as area or pin_direction) with a value (such as 43 or input) by means of
a relational operator in the following format:

left_side relational_operator right_side

For example, the following filter expression selects all hierarchical objects whose area
attribute is less than 12 units:

{is_hierarchical == true && area < 12}

Table 16 shows the relational operators that you can use in filter expressions.

Using Tcl With Synopsys Tools
S-2021.06-SP4

81

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Collections of Design Objects
Working With Attributes

Feedback

Table 16 Relational Operators

Syntax Operator description Supported types

a<b 1 if a is less than b, 0 otherwise float, integer, string

a>b 1 if a is greater than b, 0 otherwise float, integer, string

a<=b 1 if a is less than or equal to b, 0 otherwise float, integer, string

a>=b 1 if a is greater than or equal to b, 0 otherwise float, integer, string

a==b 1 if a is equal to b, 0 otherwise float, integer, string, Boolean

a!=b 1 if a is not equal to b, 0 otherwise float, integer, string, Boolean

a=~b 1 if a pattern-matches b, 0 otherwise2 string

a!~b 1 if a does not pattern-match b, 0 otherwise2 string

Filter expressions also provide functions that return information about attributes. These
functions are supported in left_side arguments.

Table 17 shows the available attribute functions.

Table 17 Attribute Functions

Function syntax Result description Return type

defined(attribute) true if attribute is defined, false otherwise Boolean

undefined(attribute) true if attribute is not defined, false otherwise Boolean

sizeof(attribute) The number of objects in the collection returned by
attribute (requires that attribute returns a collection)

integer

For an attribute that returns a collection, you can evaluate the attribute using the functions
in Table 17, but you cannot compare its contents using the relational operators in Table 16.
For single-item collections, use nested attributes (see Setting and Querying Attribute
Values) to access the item name. For multiple-item collections, look for a name-based
equivalent to the attribute, then compare using pattern matching.

You can combine relational expressions by using logical AND (AND or &&) or logical OR
(OR or ||) operators. You can group logical expressions with parentheses to enforce order;
otherwise the order is left to right.

2. Pattern is anchored at both ends of "a". Glob-style pattern matching is used by default; use the -regexp option
of the command to use regular-expression pattern matching instead.

Using Tcl With Synopsys Tools
S-2021.06-SP4

82

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Collections of Design Objects
Working With Attributes

Feedback

When using a filter expression as an argument to a command, you must enclose the entire
filter expression in quotation marks or braces:

filter_collection $cells \
 {is_hierarchical == true && dont_touch == true} ;# static expression

filter_collection $cells \
 "is_hierarchical == true && ref_name == $my_design" ;# var substitution

However, if you use a string variable to pass the filter expression, you do not need to
enclose the string in quotation marks:

set my_filter "is_hierarchical == true && ref_name == $my_design"
filter_collection $cells $my_filter

Collection filtering accepts an attribute preceded by the at (@) symbol in the right_side
expression, allowing you to filter a collection of objects based on attribute comparison
within each object.

For example,

prompt> filter_collection $my_pins \
 "actual_rise_transition_max > @constraining_max_transition"
or

prompt> get_pins -hierarchical * -filter \
 "actual_rise_transition_max > @constraining_max_transition"
Note:

Preceding the attribute name with the at (@) symbol is

• Mandatory in the right_side expression

• Optional in the left_side expression

When filtering by string value, if the right_side string value begins with an at (@) symbol,
use quotation marks around the string value so it is not treated as an attribute name.

A filter expression can fail to parse because of the following reasons:

• Invalid syntax

• Invalid attribute name

• A type mismatch between an attribute and its comparison value

To determine the valid attributes for an object type, use the list_attributes
-application -class object_type command. This command generates a list of all
application attributes that apply to the specified object type. For the list of supported object

Using Tcl With Synopsys Tools
S-2021.06-SP4

83

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Collections of Design Objects
Working With Attributes

Feedback

types, see the man page.one of the following object types: design, port, cell, clock, pin,
net, or lib.

Chained Attribute Access
For attributes that return collection objects, you can use chained attribute access to
perform subsequent attribute queries of those objects. This allows you to “chain together”
a series of attributes for short yet powerful queries.

To do this, specify multiple attribute names separated by a period (”.”) character:

prompt> get_attribute $path points.object.full_name
DATA_IN U1/A U1/Z U2/A U2/Z FF1/D

All attributes specified in the chain must return collection objects, except for the last
attribute (which can return any type of data).

If any attribute query in the chain returns multiple objects, then the next query in the chain
operates on each object in the set, with the results concatenated in that order:

prompt> get_attribute $clock_path points.object.full_name
CLK3 UCLKMUX/C UCLKMUX/Z FF1/CP
prompt> get_attribute $clock_path points.object.clocks
CLK3 CLK3 CLK1 CLK2 CLK3 CLK1 CLK2 CLK3
prompt> get_attribute $clock_path points.object.clocks.period
30 30 10 20 30 10 20 30

The sort_collection and filter_collection commands also support chained
attribute access:

prompt> set matching_point \
 [filter_collection $timing_path_points \
 "object.full_name == $saved_name"]
prompt> set path_points_sorted_by_capacitance \
 [sort_collection $timing_path_points \
 object.net.total_capacitance_max]
Note:

In the Design Compiler tool, the sort_collection and filter_collection
commands support chained attribute access, but the get_attribute command
does not.

User-Defined Attributes
User-defined attributes allow you to define your own attributes that store values on
collection objects.

Using Tcl With Synopsys Tools
S-2021.06-SP4

84

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Collections of Design Objects
Working With Attributes

Feedback

The define_user_attribute command allows you to define a user-defined attribute for
particular object classes and of a particular data type:

prompt> define_user_attribute \
 frequency \
 -classes {clock} \
 -type double
Depending on the tool, you then use the set_attribute (most tools) or
set_user_attribute (PrimeTime) command to set attribute values on collection objects:

prompt> set_attribute [get_clocks slow_clk] frequency 62.5
prompt> set_attribute [get_clocks system_clk] frequency 100
prompt> set_attribute [get_clocks rx_clk] frequency 125
prompt> set_attribute [get_clocks tx_clk] frequency 125
User-defined attributes can be queried and filtered with, just like regular application
attributes:

prompt> get_attribute [all_clocks] frequency
62.5 100 125 125
prompt> get_clocks * -filter {frequency > 100}
rx_clk tx_clk

Note:
Not all tools support user-defined attributes. To check if your tool does, use the
following command to check if the define_user_attribute command exists:

prompt> define_user_attribute -help

Derived User Attributes
Sometimes, existing application attributes might not provide exactly the information
that you want. In this case, you can use derived user attributes to implement your own
attributes in Tcl.

The define_derived_user_attribute command allows you to define an attribute whose
value is computed by evaluating a Tcl script fragment containing one or more commands:

prompt> define_derived_user_attribute \
 -name frequency \
 -classes {clock} \
 -type double \
 -get_command {expr {1000 / [get_attribute %object period]}}
In the Tcl script fragment, the special %object key value allows you to access the
collection object being queried.

Using Tcl With Synopsys Tools
S-2021.06-SP4

85

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Collections of Design Objects
Working With Attributes

Feedback

Once defined, the derived user attribute can be queried and filtered with, just like regular
application attributes:

prompt> get_attribute [all_clocks] frequency
62.5 100 125 125
prompt> get_clocks * -filter {frequency > 100}
rx_clk tx_clk

The Tcl script fragment can contain multiple lines. If execution reaches the end of the
fragment, the return value of the last command becomes the attribute value. If execution
reaches a return command, that explicit return value becomes the attribute value:

prompt> define_derived_user_attribute \
 -name frequency \
 -classes {clock} \
 -type double \
 -get_command {
 set clock_name [get_attribute %object full_name]
 if {[string match {debug*} $clock_name]} {
 return inf
 }
 expr {1e3 / [get_attribute %object period]}
 }
The tool attempts to convert the return value to the data type specified by the -type
option. An error occurs if the return value is incompatible with the type. Empty-string
return values are treated as undefined attribute values, which can be tested for in filter
expressions using the defined() and undefined() attribute functions.

The script fragment is executed in an anonymous namespace. To access variables
defined in the calling scope, define them with variable. To access global variables
(such as application variables), define them with global or reference them using the
$::varName syntax.

The define_derived_user_attribute command also provides the following features:

• The -set_command and -remove_command options allow you to define your own
set_attribute and remove_attribute behaviors, respectively. This allows you
to implement custom constructor and destructor behaviors for the attribute, such as
storing and removing values in a database.

• The -subscript_command option allows you to define your own subscripted
attribute behaviors. This allows you to define attributes that are queried in
attribute(subscript) form.

For more information on these features, see the define_derived_user_attribute man
page.

Using Tcl With Synopsys Tools
S-2021.06-SP4

86

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Collections of Design Objects
Using Name-Based Object Specifications

Feedback

To undefine a derived user attribute, use the undefine_derived_user_attribute
command. This can be useful for temporarily defining a derived user attribute within a Tcl
script or procedure.

Using Name-Based Object Specifications
You can reference a design object simply by using the object name. When you invoke
a command that operates on objects of different types, the tool searches the design
database for an object that matches the specified name.

To explicitly control the types of objects searched, you must use an object search
command (get_*).

The first command uses implicit object specification; the next command uses explicit
object specification.

prompt> set_drive 1.0 clk
prompt> set_drive 1.0 [get_ports clk]
To avoid object type ambiguity, collection references are recommended over name-based
references for commands that accept multiple object types. To determine if this is true for a
command, see its man page.

Matching Names of Design Objects During Queries
In synthesis tools, when you query an object, either implicitly or explicitly, you can specify
that the tool use a rule-based name matching algorithm to match object names in the
netlist with those in memory.

For example, automatic ungrouping by the compile_ultra command followed by
change_names might result in the forward slash (/) separator being replaced with an
underscore (_) character. If you enable the rule-based name matching capability, the tool
resolves these differences: it can match a cell named a_b_c/d_e with the string a/b_c/d/e.

To enable the rule-based name matching capability, set the enable_rule_based_query
variable to true. (The default is false.) When you enable the variable, the Design
Compiler tool uses the rule-based name matching capability with a set of default query
rules when it does not find an exact match. Use the set_query_rules -show command to
display the default query rules.

To customize the query rules, use the set_query_rules command. You can do the
following:

• Define a list of equivalent hierarchical separators in object names

• Define a list of equivalent bus notation characters

Using Tcl With Synopsys Tools
S-2021.06-SP4

87

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Collections of Design Objects
Matching Names of Design Objects During Queries

Feedback

• Specify the object class to which the rule-based name matching rules are applied

• Enable wildcard support

This might match more objects than intended after ungrouping and after the
change_names command is run.

• Enable the suffix name rule

• Enable case-insensitive rule-based matching

• Report the current rule-based name matching rules

• Display the default query rules

• Report messages indicating that the object is matched using query rules

• Reset the query rules to the program default

Runtime might be much slower when you use rule-based name matching. You should
disable it when it is no longer needed.

In the following example, case-insensitive rule-based name matching rules are applied to
the cell, port, and pin object classes for the b.in_a/c.in_b cells:

prompt> set_app_var enable_rule_based_query true
Information: Rule-based matching enabled. Please turn it off once
rule-based matching is no longer needed. (UID-1056)
true
prompt> set_query_rules -class {cell pin port} -nocase -show

Query Rules (Enabled)

 Rule Type Rule Value
 ------------------- --------------------
 Hierarchy-Separator {/ _ .}
 Bus-Notation {[] __ ()}
 Object-Class {cell port pin}
 Nocase true
 Wildcard false
 Verbose false
1
prompt> get_cells b_In/a_C/iN.b
{b.in_a/c.in_b}
prompt> set_app_var enable_rule_based_query false
false

For details about the available options, see the set_query_rules man page.

Using Tcl With Synopsys Tools
S-2021.06-SP4

88

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Collections of Design Objects
Reporting Collections

Feedback

Reporting Collections
The report_collection command allows you to create detailed, customized reports for
the contents of a collection.

By default, the command reports the name and object type for each item in the collection.
For example,

prompt> set my_fanin [all_fanin -flat -startpoints_only -to ...]
...
prompt> report_collection $my_fanin
...
name object_class

CLK port
Uclkdiv1_reg/Q pin
Uclkdiv2_reg/Q pin
Uclkdiv3_reg/Q pin
sel[0] port
sel[1] port

To customize the report, you can specify the list of attributes to display in the report by
using the -columns option. Nested attributes are permitted. For example,

prompt> set my_points [get_attribute $my_path points]
...
prompt> report_collection $my_points \
 -columns {object object.cell.ref_name arrival transition}
...
object object.cell.ref_name arrival transition
--
my_reg1/CLK fd1a1 0.000000 0.060002
my_reg1/Q fd1a1 0.773803 0.043376
U1/A buf1a1 0.792937 0.058122
U1/Y buf1a1 1.039227 0.035672
Q 1.039227 0.035672

Undefined attribute values result in blank entries with no warnings.

You can include attributes that return collection values. Single-item values return that
object’s name, while multiple-item values return a summary of the objects. For example,

prompt> report_collection [all_registers -clock_pins] \
 -columns {full_name clocks}
...
full_name clocks

Uclkdiv1_reg/CLK CLK
Uclkdiv2_reg/CLK CLK_div2
Uclkdiv3_reg/CLK CLK_div4

Using Tcl With Synopsys Tools
S-2021.06-SP4

89

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Collections of Design Objects
Reporting Collections

Feedback

my_reg1/CLK clock:4
my_reg2/CLK clock:4
The -type option of the report_collection command allows you to specify what type of
information to report within each attribute column. You can specify a list of one or more of
the following types:

• values: Report the set of attribute values by collection item (default)

• statistics: Report statistical information across values for numerical attributes

• distribution: Report information about the distribution of attribute values

For example, to show statistical information about the clock pins in a design,

prompt> report_collection [all_registers -clock_pins] \
 -columns {actual_transition_max net.number_of_leaf_loads} \
 -type {statistics}
...
 actual_transition_max net.number_of_leaf_loads
--
Minimum : 0.091904 11.000000
Lower Quartile(25%): 0.121821 19.000000
Median (50%): 0.125916 20.000000
Upper Quartile(75%): 0.129933 21.000000
Maximum : 0.176954 30.000000

Mean : 0.127152 19.952200
Standard Deviation : 0.010409 2.121478

Null Value Count : 0 0
Valid Value Count : 10502 10502
Unique Value Count : 211 18

To show distribution information for the types of register cells in a design,

prompt> report_collection [all_registers] \
 -columns {ref_name} \
 -type {distribution}
...
 ref_name

Null Value Count : 0
Valid Value Count : 10502
Unique Value Count : 21

Value Distribution : EDFFX1 (8820)
 DFFRX1 (918)
 EDFFX4 (329)
 DFFRHQX1 (137)
 EDFFXL (79)
 DFFSHQX1 (61)
 SDFFRHQX1 (39)

Using Tcl With Synopsys Tools
S-2021.06-SP4

90

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Collections of Design Objects
Writing Collection Information to a File

Feedback

 DFFSX1 (38)
 DFFRX2 (36)
 DFFHQX1 (9)
 DFFRHQX4 (9)
 DFFRX4 (9)
 DFFRXL (6)
 DFFSHQXL (3)
 EDFFX2 (2)
 JKFFRXL (2)
 DFFRHQX2 (1)
 DFFTRX1 (1)
 DFFX1 (1)
 SDFFRHQXL (1)
 SDFFSHQX1 (1)

You can use the Tcl alias command to create aliases for your favorite reports. Place them
in your tool’s setup file to make them available in every tool session.

The report_collection command provides many more features to control the
processing and formatting used for the report. For more information, see the man page.

Writing Collection Information to a File
The write_collection command allows you to write comma-separated or tab-separated
attribute value information about a collection to a file.

By default, the command writes the name and object type of each collection item, in the
order of the input collection, to a comma-separated value (CSV) file. For example,

prompt> set my_fanin [all_fanin -flat -startpoints_only -to ...]
...
prompt> write_collection $my_fanin -file out.txt
prompt> sh cat out.txt
name,object_class
CLK,port
Uff1/Q,pin
Uff2/Q,pin
Uff3/Q,pin
sel[0],port
sel[1],port

To write the information in tab-separated value (TSV) format instead, use the -format
tsv option:

prompt> write_collection $my_fanin -file out.txt -format tsv
prompt> sh cat out.txt
name object_class
CLK port
Uff1/Q pin
Uff2/Q pin

Using Tcl With Synopsys Tools
S-2021.06-SP4

91

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Collections of Design Objects
Writing Collection Information to a File

Feedback

Uff3/Q pin
sel[0] port
sel[1] port

To customize the output, you can specify the list of attributes to display in the report by
using the -columns option. Nested attributes are permitted. For example,

prompt> set my_points [get_attribute $my_path points]
...
prompt> write $my_points -file out.txt \
 -columns {object object.cell.ref_name arrival transition}
prompt> sh cat out.txt
object,object.cell.ref_name,arrival,transition
D,,0.000000,0.000000
U1/A,buf1a1,0.000000,0.000000
U1/Y,buf1a1,0.238213,0.028706
Ufoo_reg/D,fd1a1,0.238213,0.028706

Undefined attribute values result in blank entries with no warnings.

You can include attributes that return collection values. Single-item values return that
object’s name, while multiple-item values return a summary of the objects. For example,

prompt> write_collection [all_registers -clock_pins] -file out.txt \
 -columns {full_name clocks}
prompt> sh cat out.txt
full_name,clocks
Uff1/CLK,CLK
Uff2/CLK,CLK_div2
Uff3/CLK,CLK_div4
Ufoo_reg/CLK,clock:4
The write_collection command provides additional options to control the output file
format. For more information, see the man page.

Using Tcl With Synopsys Tools
S-2021.06-SP4

92

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

7
Using Scripts

A command script (script file) is a sequence of commands in a text file. Command
scripts enable you to execute commands automatically. A command script can start the
command-line interface, perform various processes on your design, save the changes
by writing them to a file, and exit the session. You can use scripts interactively from the
command line or call scripts from within other scripts.

You can create and modify scripts by using a text editor. You can also use the
write_script command to create new scripts from existing scripts.

This chapter includes the following sections:

• Using Command Scripts

• Creating Scripts

• Using the Output of the write_script Command

• Running Command Scripts

Using Command Scripts
Command scripts help you in several ways. Using command scripts, you can

• Manage your design database more easily

• Save the attributes and constraints used during the design process in a script file and
use the script file to restart the design flow

• Create script files with the defaults you want to use and use these within other scripts

• Include constraint files in scripts (constraint files contain the commands used to
constrain the modules to meet your design goals)

Additionally, Synopsys provides checkers for checking scripts for syntax and context
errors.

You can keep a frequently used set of commands in a script file and reuse them in a later
session.

Using Tcl With Synopsys Tools
S-2021.06-SP4

93

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Using Scripts
Creating Scripts

Feedback

You can write comments in your script file. Start the comment line with the pound sign
(#). You can create inline comments by placing a semicolon between a command and the
pound sign. For example,

echo abc; # this is an inline comment

When the command continuation character (\) is placed at the end of a commented
command line, the subsequent line is also treated as a comment.

For an example script, see A Tcl Script Example.

Creating Scripts
You can create a script in several ways:

• Write a command history

For more information, see Running Linux Commands Within the Tool.

• Write scripts manually

• Edit the command log file

You can customize the name of this log file by setting the command_log_file variable.

Using the Output of the write_script Command
Use the write_script command to build new scripts from existing scripts.

To build new scripts from existing scripts,

1. Use the redirection operator (>) to redirect the output of write_script to a file.

2. Edit the file as needed.

3. Rerun the script to see new results.

For example, to save constraints on the design to the test.tcl file, use the following
command:

prompt> write_script > test.tcl

Using Tcl With Synopsys Tools
S-2021.06-SP4

94

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Using Scripts
Running Command Scripts

Feedback

Running Command Scripts
Run a command script in one of two ways:

• From within the tool, use the source command to execute the script file

• When you invoke the tool, use the -f option to execute the script file

Running Scripts From Within the Tool
The source command executes a command script from within the tool. Use the source
command on the command line or within a script file. Use the file argument to specify
the name of the script file. If file is a relative path name, the tool scans for the file in the
directories listed in the search_path variable and reads the file from the first directory in
which it exists.

By default, the tool does not display commands in the script file as they execute. To
display the commands as they are processed, use the -echo and -verbose options to the
source command.

For example, to execute the commands contained in the my_script file in your home
directory, use the following command:

prompt> source -echo -verbose ~/my_script
command
comment
command
...

You can also save the execution results to an output file by using the redirection operator
(>). For example,

prompt> source -echo -verbose myrun.tcl > myrun.out
The execution output of a script file can be changed in various ways. For example, you
can change how variable initializations and error and warning messages are displayed.
For more information about controlling execution output, see the man pages for the
sh_new_variable_message and suppress_message commands.

Note:
The Synopsys implementation of the source command varies from the Tcl
implementation. For source usage information, see the Synopsys man pages.

Running Scripts During Tool Invocation
The tool invocation command with the -f option executes a script file before displaying the
initial prompt.

Using Tcl With Synopsys Tools
S-2021.06-SP4

95

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Using Scripts
Running Command Scripts

Feedback

The syntax is

tool_invocation_cmd -f script_file

If the last statement in the script file is quit, no prompt appears and the command shell
exits.

For example, to run the common.tcl script file when you start dc_shell and redirect the
commands and error messages to a file named output_file, use the following command:

% dc_shell -f common.tcl >& output_file

Using Tcl With Synopsys Tools
S-2021.06-SP4

96

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

8
A Tcl Script Example

This chapter contains an example script that demonstrates how to use many of the
commands and topics covered in previous chapters. The various aspects of the example
script are described in detail.

The example script contains the rpt_cell procedure and the define_proc_attributes
command, which is used to extend the attributes of the rpt_cell procedure.

This chapter contains the following sections:

• rpt_cell Overview

• rpt_cell Listing and Output Example

• rpt_cell Details

rpt_cell Overview
The rpt_cell script has two components. The first is the rpt_cell procedure; the second
is the define_proc_attributes command. The define_proc_attributes command
extends the attributes of the rpt_cell procedure.

The rpt_cell procedure lists all cells in a design and reports if a cell has the following
properties:

• Is a black box (unknown)

• Has a don’t touch attribute

• Is hierarchical

• Is combinational

• Is a test cell

Using Tcl With Synopsys Tools
S-2021.06-SP4

97

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: A Tcl Script Example
rpt_cell Listing and Output Example

Feedback

The rpt_cell procedure takes one argument. The argument is treated as an option that
specifies a desired report type. The options are,

• -all_cells – Reports one line per cell, and it generates a summary of the cell count.

• -hier_only – Reports only the hierarchical blocks, and it generates a summary of the
cell count.

• -total_only – Displays only a summary of the cell count.

The define_proc_attributes command is placed after the rpt_cell procedure in the
rpt_cell script file. This command is used to provide help information about the rpt_cell
procedure. The help information is used in conjunction with the help command and
includes a short description of the rpt_cell procedure and its options.

A full listing of the rpt_cell script and an example of the output from the rpt_cell script are
shown in rpt_cell Listing and Output Example.

To use the rpt_cell script, enter or copy it into a text file named rpt_cell.tcl, load it into the
Synopsys shell by using the source command, and then load a design database. The
syntax for the rpt_cell procedure is

rpt_cell arg

For example,

prompt> source rpt_cell.tcl
prompt> read_file -format ddc TLE_mapped.ddc
prompt> rpt_cell -total_only

rpt_cell Listing and Output Example
Example 4 shows the full listing of the rpt_cell example script file.

Example 4 rpt_cell.tcl Listing
#Title: rpt_cell.tcl
#
#Description: This Tcl procedure generates a cell
report of a design.
It reports all cells and the following attributes:
b - black box (unknown)
d - has dont_touch attribute
h - hierarchy
n - noncombinational
t - test cell
#
#Options: -all_cells one line per cell plus summary
-hier_only every hierarchy cell and summary
-total_only generate summary only
#
#Usage: prompt> source rpt_cell.tcl

Using Tcl With Synopsys Tools
S-2021.06-SP4

98

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: A Tcl Script Example
rpt_cell Listing and Output Example

Feedback

prompt> rpt_cell -t
#
proc rpt_cell args {
 suppress_message UID-101

 set option [lindex $args 0]
 if {[string match -a* $option]} {
 echo " "
 echo "Attributes:"
 echo " b - black-box (unknown)"
 echo " d - dont_touch"
 echo " h - hier"
 echo " n - noncombo"
 echo " t - test cell"
 echo " "
 echo [format "%-32s %-14s %5s %11s" "Cell" "Reference" "Area" "Attribut
es"]
 echo "---"
 } elseif {[string match -t* $option]} {
 set option "-total_only"
 echo ""
 set cd [current_design]
 echo "Performing cell count on [get_object_name $cd] ..."
 echo " "
 } elseif {[string match -h* $option]} {
 set option "h"; # hierarchical only
 echo ""
 set cd [current_design]
 echo "Performing hierarchical cell report on [get_object_name $cd] .
.."
 echo " "
 echo [format "%-36s %-14s %11s" "Cell" "Reference" "Attributes"]
 echo "--
---"
 } else {
 echo " "
 echo " Message: Option Required"
 echo " Usage: rpt_cell \[-all_cells\] \[-hier_only\]
 \[-total_only\]"
 echo " "
 return
 }

 # initialize summary vars
 set total_cells 0
 set dt_cells 0
 set hier_cells 0
 set hier_dt_cells 0
 set seq_cells 0
 set seq_dt_cells 0
 set test_cells 0
 set total_area 0

 # initialize other vars
 set hdt ""
 set tc_atr ""
 set xcell_area 0

 # create a collection of all cell objects
 set all_cells [get_cells -hierarchical *]

Using Tcl With Synopsys Tools
S-2021.06-SP4

99

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: A Tcl Script Example
rpt_cell Listing and Output Example

Feedback

 foreach_in_collection cell $all_cells {
 incr total_cells

 set cell_name [get_attribute $cell full_name]
 set dt [get_attribute $cell dont_touch]

 if {$dt=="true"} {
 set dt_atr "d"
 incr dt_cells
 } else {
 set dt_atr ""
 }

 set ref_name [get_attribute $cell ref_name]
 set cell_area [get_attribute $cell area]

 if {$cell_area > 0} {
 set xcell_area $cell_area
 } else {
 set cell_area 0
 }

 set t_cell [get_attribute $cell is_a_test_cell]
 if {$t_cell=="true"} {
 set tc_atr "t"
 incr test_cells
 } else {
 set tc_atr ""
 }
 set hier [get_attribute $cell is_hierarchical]
 set combo [get_attribute $cell is_combinational]
 set seq [get_attribute $cell is_sequential]

 if {$hier} {
 set attribute "h"
 incr hier_cells
 set hdt [concat $option $hier]
 if {$dt_atr=="d"} {
 incr hier_dt_cells
 }
 } elseif {$seq} {
 set attribute "n"
 incr seq_cells
 if {$dt_atr=="d"} {
 incr seq_dt_cells
 }
 set total_area [expr $total_area + $xcell_area]
 } elseif {$combo} {
 set attribute ""
 set total_area [expr $total_area + $xcell_area]
 } else {
 set attribute "b"
 }

 if {[string match -a* $option]} {
 echo [format "%-32s %-14s %5.2f %2s %1s %1s" $cell_name $ref_name \
 $cell_area $attribute $dt_atr $tc_atr]
 } elseif {$hdt=="h true"} {
 echo [format "%-36s %-14s %2s" $cell_name $ref_name $attribute \
 $dt_atr]
 set hdt ""

Using Tcl With Synopsys Tools
S-2021.06-SP4

100

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: A Tcl Script Example
rpt_cell Listing and Output Example

Feedback

 }
 } ; # close foreach_in_collection

 echo "---"
 echo [format "%10s Total Cells" $total_cells]
 echo [format "%10s Cells with dont_touch" $dt_cells]
 echo ""
 echo [format "%10s Hierarchical Cells" $hier_cells]
 echo [format "%10s Hierarchical Cells with dont_touch" $hier_dt_cells]
 echo ""
 echo [format "%10s Sequential Cells (incl Test Cells)" $seq_cells]
 echo [format "%10s Sequential Cells with dont_touch" $seq_dt_cells]
 echo ""
 echo [format "%10s Test Cells" $test_cells]
 echo ""
 echo [format "%10.2f Total Cell Area" $total_area]
 echo "---"
 echo ""
 }

 define_proc_attributes rpt_cell \
 -info "Procedure to report all cells in the design" \
 -define_args {
 {-a "report every cell and the summary"}
 {-h "report only hierarchical cells and the summary"}
 {-t "report the summary only"} }

Example 5 shows an output example from the rpt_cell procedure, using the -h
(-hier_only) option.

Example 5 rpt_cell Output Example
Current design is 'TLE'.
Performing hierarchical cell report on TLE ...

Cell Reference Attributes

datapath fast_add8 h
Multiplicand_reg reg8 h
control_unit control h
Op_register super_reg17 h
datapath/CLA_0 CLA_4bit_1 h
datapath/CLA_1 CLA_4bit_0 h
datapath/CLA_0/FA_0 full_adder_7 h
datapath/CLA_0/FA_1 full_adder_6 h
datapath/CLA_0/FA_2 full_adder_5 h
datapath/CLA_0/FA_3 full_adder_4 h
datapath/CLA_1/FA_0 full_adder_3 h
datapath/CLA_1/FA_1 full_adder_2 h
datapath/CLA_1/FA_2 full_adder_1 h
datapath/CLA_1/FA_3 full_adder_0 h

 247 Total Cells
 0 Cells with dont_touch
 14 Hierarchical Cells

Using Tcl With Synopsys Tools
S-2021.06-SP4

101

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: A Tcl Script Example
rpt_cell Details

Feedback

 0 Hierarchical Cells with dont_touch
 32 Sequential Cells (incl Test Cells)
 0 Sequential Cells with dont_touch
 0 Test Cells
 663.00 Total Cell Area

rpt_cell Details
The rpt_cell script is described sequentially in the following sections:

• Defining the Procedure

• Suppressing Warning Messages

• Examining the Procedure Argument

• Initializing Variables

• Creating and Iterating Over a Collection

• Collecting the Report Data

• Formatting the Output

Defining the Procedure
The rpt_cell procedure requires only one argument, so its definition is simple.
Example 6 shows how rpt_cell is defined.

Example 6 rpt_cell proc Definition
proc rpt_cell args {

 procedure body ...

}

You use the proc command to define the procedure; rpt_cell is the name of the
procedure, and args is the variable that receives all command line arguments when the
procedure is invoked. The value of args is used later within the body of the procedure, as
described in Examining the Procedure Argument.

The define_proc_attributes command provides additional (extended) information
about a procedure, which is used in conjunction with the help command. See Using the
define_proc_attributes Command. Example 7 shows how the define_proc_attributes
command is used with the rpt_cell procedure.

Using Tcl With Synopsys Tools
S-2021.06-SP4

102

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: A Tcl Script Example
rpt_cell Details

Feedback

Example 7 define_proc_attributes Command
 define_proc_attributes rpt_cell \
 -info "Procedure to report all cells in the design" \
 -define_args {
 {-a "report every cell and the summary"}
 {-h "report only hierarchical cells and the summary"}
 {-t "report the summary only"} }

The additional information consists of a one-line description of the rpt_cell procedure
and descriptions of the options it expects. Example 8 shows an example of the help
command displayed for the rpt_cell procedure. To see argument information with the
help command, use the -verbose option.

Example 8 rpt_cell Help Usage
prompt> help -verbose rpt_cell
rpt_cell # Procedure to report all cells in the design)
 -a (report every cell and the summary)
 -h (report only hierarchical cells and the summary)
 -t (report the summary only)

Suppressing Warning Messages
The first line within the body of the rpt_cell procedure, shown in Example 9, is used to
suppress UID-101 warning messages that occur when an attribute-related command does
not find a given attribute.

Example 9 suppress_message Command
proc rpt_cell args {
 suppress_message UID-101
 ...

The rpt_cell procedure reports information about specific cell attributes; however, some
of the cells within the design might not have one of these specific attributes. If this situation
occurs repeatedly, a large number of warning messages is generated and output to the
screen, or if you redirect the output to a log file, the log file might become undesirably
large. Because a UID-101 warning message does not affect the meaning of the report and
is likely to occur frequently within the rpt_cell procedure, it is suppressed.

You use the suppress_message command to disable the printing of a specific warning or
informational message. For more information, see the suppress_message man page.

Examining the Procedure Argument
The section of script shown in Example 10 extracts the report type option from the
procedure argument and uses this value to determine what the report header looks like;
furthermore, this section is used to handle the entry of invalid options.

Using Tcl With Synopsys Tools
S-2021.06-SP4

103

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: A Tcl Script Example
rpt_cell Details

Feedback

Example 10 Examining the Procedure Argument
...
set option [lindex $args 0]
if {[string match -a* $option]} {
 ...
 } elseif {[string match -t* $option]} {
 ...
 } elseif {[string match -h* $option]} {
 ...
 } else {
 ...
 }
...

The argument to the rpt_cell procedure is used to specify what type of report to
generate. The lindex command is used to extract the option from the args variable, and
the result is placed into the option variable. The string command with its match option is
then used to conditionally determine what the report header looks like.

The report options are -all_cells, -hier_only, or -total_only; however, the values
-a, -h, and -t are all that are required because the wildcard character (*) is used in the
string match command. (For more information, see the string man page.)

The echo command is used to output information, and the format command is used in
conjunction with the echo command to generate formatted output. See Example 11.

Example 11 echo and format Commands
 ...
 echo "Performing hierarchical cell report on [get_object_name
 $cd] ..."
 echo " "
 echo [format "%-36s %-14s %11s" "Cell" "Reference" "Attributes"]
 ...

You use the format command to format lines of output in the same manner as the C
sprintf procedure. The use of the format command within the rpt_cell procedure is
described in more detail in Formatting the Output.

The current_design and get_object_name commands are used to display the name of
the current design. See Example 12.

Example 12 current_design and get_object_name Commands
 ...
 } elseif {[string match -t* $option]} {
 set option "-total_only"
 ...
 set cd [current_design]
 echo "Performing cell count on [get_object_name $cd] ..."
 ...
 } elseif {[string match -h* $option]} {
 set option "h"; # hierarchical only
 echo ""

Using Tcl With Synopsys Tools
S-2021.06-SP4

104

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: A Tcl Script Example
rpt_cell Details

Feedback

 set cd [current_design]
 echo "Performing hierarchical cell report on [get_object_name $cd] .
.."
 ...

You use the current_design command to set the working design; however, if used
without arguments, it returns a collection containing the current working design. This
collection is then passed to the get_object_name command to obtain the name of the
current design.

Note how the following line of the script (from Example 12) is constructed:

set option "h"; # hierarchical only

In Tcl, you can place multiple commands on one line by using a semicolon to separate the
commands. You can use this feature as a way to form inline comments.

The else block (see Example 13) handles an invalid option condition. If no option or an
invalid option is specified, the procedure prints out a message that shows proper argument
usage and then exits.

Example 13 Invalid Option Message
 ...
 } else {
 echo " "
 echo " Message: Option Required"
 echo " Usage: rpt_cell \[-all_cells\] \[-hier_only\] \[-total_only\]"
 echo " "
 return
 }
 ...

Initializing Variables
The section of the script shown in Example 14 uses the set command to initialize some of
the variables used by the rpt_cell procedure.

Example 14 Variable Initialization
 ...
 # initialize summary vars
 set total_cells 0
 set dt_cells 0
 set hier_cells 0
 set hier_dt_cells 0
 set seq_cells 0
 set seq_dt_cells 0
 set test_cells 0
 set total_area 0

 # initialize other vars
 set hdt ""

Using Tcl With Synopsys Tools
S-2021.06-SP4

105

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: A Tcl Script Example
rpt_cell Details

Feedback

 set tc_atr ""
 set xcell_area 0
 ...

The values for these particular variables are expected to change within the
foreach_in_collection loop and within if blocks that might not be executed, so these
variables are set to 0 here to prevent a “no such variable error” should the loop or if
blocks not be executed.

Creating and Iterating Over a Collection
A collection is used to hold the list of all cells in the design. Then, a
foreach_in_collection loop is used to obtain the attribute information about each cell
and to cumulate results for the summary section of the report. Example 15 shows the
command used to create the collection and the foreach_in_collection loop.

Example 15 Collection Iteration
...
set all_cells [get_cells -hierarchical *]
foreach_in_collection cell $all_cells {
 ...
 }; # close foreach_in_collection
...

The get_cells command creates a collection of cells from the current design. The
-hierarchical option tells get_cells to search for cells level by level. The wildcard
character (*) is used as the pattern name to match—in this case, all cell names.

The result of the get_cells command is saved in the all_cells variable. This variable
is then used by the foreach_in_collection command to iterate over all the objects in
the collection. For each iteration, an object is placed in the cell, which is used in the body
of the foreach_in_collection block to derive information about that object (cell name,
reference name, cell area, and cell attributes).

Collecting the Report Data
The report data is collected into a set of variables by the foreach_in_collection loop
shown in Example 15. Cell information is obtained from the design database by the
get_attribute command, and the summary data is cumulated inside of if blocks at
various locations within the foreach_in_collection loop. Table 18 lists the variables
used for the report.

Using Tcl With Synopsys Tools
S-2021.06-SP4

106

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: A Tcl Script Example
rpt_cell Details

Feedback

Table 18 rpt_cell Report Variables

Variable Description

Variables used in the main body of the report

cell_name Cell name

ref_name Reference name

cell_area Cell area

attribute Cell’s attribute

dt_atr Don’t touch attribute

tc_atr Test cell attribute

Variables used in the summary section of the report

total_cell Total number of cells

dont_touch Number of cells with don’t touch attribute

hier_cells Number of hierarchical cells

hier_dt_cells Number of hierarchical cells with don’t touch attribute

seq_cells Number of sequential cells (includes test cells)

seq_dt_cells Number of sequential cells with don’t touch attribute

test_cells Number of test cells

total_area Total cell area

The body of the foreach_in_collection loop looks complex, but the pseudocode shown
in Example 16 shows how straightforward it really is.

Example 16 Body of foreach_in_collection Loop
...
foreach_in_collection cell $all_cells {
 - Cumulate total cell count
 - Get cell name
 - Collect don't touch attribute information
 - Get reference name of cell
 - Get cell area
 - Collect test cell attribute information
 - Collect hierarchical attribute information
 - Collect combinational attribute information
 - Collect sequential attribute information

Using Tcl With Synopsys Tools
S-2021.06-SP4

107

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: A Tcl Script Example
rpt_cell Details

Feedback

 - Cumulate total area
 - Output one line of cell information
 - Return to top of loop and process next cell object
}; # close foreach_in_collection
...

You obtain cell attributes from the design database by using the get_attribute
command, as shown in Example 17.

Example 17 Obtaining Cell Attributes
...
set dt [get_attribute $cell dont_touch]
...
set ref_name [get_attribute $cell ref_name]
set cell_area [get_attribute $cell area]
...
set t_cell [get_attribute $cell is_a_test_cell]
...
set hier [get_attribute $cell is_hierarchical]
set combo [get_attribute $cell is_combinational]
set seq [get_attribute $cell is_sequential]
...

Attributes are properties assigned to design objects, and they range in values. Some are
predefined values, like dont_touch; others are user-defined, while still others can be
logical in nature and have values such as true or false. You can find detailed information
about object properties in the attributes man pages.

The if blocks are used to determine whether the cell has one or more of the properties:
don’t touch, test cell, hierarchical, sequential, or combinational. Along the way, the totals
for the summary section of the report are cumulated. Example 18 shows an example if
block.

Example 18 if Block Example
...
set dt [get_attribute $cell dont_touch]

if {$dt=="true"} {
 set dt_atr "d"
 incr dt_cells
} else {
 set dt_atr ""
}
...

This if block determines whether the cell has the dont_touch attribute, and if so, it sets
the don’t touch attribute variable dt_atr to d and increments the count of don’t touch cells
(dt_cells). If the cell does not have the dont_touch attribute, the dt_atr variable is set

Using Tcl With Synopsys Tools
S-2021.06-SP4

108

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: A Tcl Script Example
rpt_cell Details

Feedback

to null. The other if blocks in the body of the foreach_in_collection loop work in a
similar way.

One line of cell information is printed at the end of the foreach_in_collection loop. The
script that handles this step is shown in Example 19.

Example 19 Cell Information Output
if {[string match -a* $option]} {
 echo [format "%-32s %-14s %5.2f %2s %1s %1s" \
 $cell_name $ref_name $cell_area $attribute $dt_atr $tc_atr]
} elseif {$hdt=="h true"} {
 echo [format "%-36s %-14s %2s" \
 $cell_name $ref_name $attribute $dt_atr]
 ...
}

There are two possible formats for the line of output; an if block is used to handle the
two possibilities. The line of output is formatted by the format command. How the format
command is used by the rpt_cell procedure is explained in the next section.

After a line of cell information is output, the next cell object is processed.

Formatting the Output
This section provides an overview of the format command as it is used by the rpt_cell
procedure. The options of the format command are extensive; see the format man page
for a complete description.

Example 20 shows an output example from the rpt_cell procedure.

Example 20 rpt_cell Output Example
Current design is 'TLE'.
Performing hierarchical cell report on TLE ...

Cell Reference Attributes
--
datapath fast_add8 h
Multiplicand_reg reg8 h

...

datapath/CLA_1/FA_2 full_adder_1 h
--
 247 Total Cells
 0 Cells with dont_touch

...

Using Tcl With Synopsys Tools
S-2021.06-SP4

109

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: A Tcl Script Example
rpt_cell Details

Feedback

 663.00 Total Cell Area
--

Each line of output is generated by the echo command. Formatted output is handled by
the format command in conjunction with the echo command.

The basic form of the format command is

format format_string arg_list

The format_string argument contains text and conversion specifiers. The arg_list
argument contains one or more variables that are to be substituted into the conversion
specifiers. For example, the following command is used in the summary section of the
rpt_cell report:

echo [format "%10s Total Cells" $total_cells]

In this example, the value of the total_cells variable is substituted into the conversion
specifier, %10s, and is formatted according to the conversion specifier. In this case, the
total_cells value is converted into a text string that is 10 characters wide.

There is a one-to-one correspondence between conversion specifiers and the variables
placed in the argument list. For example,

echo [format "%-32s %-14s %5.2f %2s %1s %1s" \
 $cell_name $ref_name $cell_area $attribute $dt_atr $tc_atr]

In this example, the list of variables is paired with each of the format specifiers.

The components of the conversion specifier can be used to specify conversion properties
such as data type, minimum field width, precision, and field justification. For example,
%5.2f specifies conversion of a floating point number to a text string that has five
characters to left of the decimal point and two characters to the right.

Using Tcl With Synopsys Tools
S-2021.06-SP4

110

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

9
Command-Line Editor

The command-line editor allows you to use common keyboard shortcuts found in Linux
terminals and the VI or Emacs editor to simply the editing of command-line text and
quickly recall previous commands.

Note:
This product includes software developed by the University of California,
Berkeley and its contributors.

To learn how to use the command-line editor, see

• Changing the Settings of the Command-Line Editor

• Listing Key Mappings

• Setting the Key Bindings

• Navigating the Command Line

• Completing Commands, Variables, and File Names

• Searching the Command History

Changing the Settings of the Command-Line Editor
The command-line editor is enabled by default. You can disable the command-line feature
by setting the sh_enable_line_editing variable to false in your setup file. You can
use the set_cle_options command to change the default settings, as described in the
following table:

To do this Use this

Set the key bindings (default is emacs editing mode) -mode vi | emacs

Set the terminal beep (default is off) -beep on | off

Specify default settings -default

If you enter set_cle_options without any options, the current settings are displayed.

Using Tcl With Synopsys Tools
S-2021.06-SP4

111

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Command-Line Editor
Listing Key Mappings

Feedback

Listing Key Mappings
The command-line editor allows you to access any of the last 1000 commands by using a
combination of keys. In addition, you can manipulate text on the command line and kill and
yank text. Killing (or cutting) text is the process by which text is deleted from the current
line but saved for later use. Yanking (or pasting) text is the process by which the deleted
text is reinserted into the line.

These features are available in both vi and emacs mode. For a complete list of key
mappings, use the sh_list_key_bindings command.

Note:
In the key mappings displayed when you use the sh_list_key_bindings
command, the text Ctrl+K is the character that results when you press the Ctrl
key together with the K key.

Meta+K is the character that results when you press the Meta key together with
the K key. On many keyboards, the Meta key is labeled Alt. On keyboards with
two Alt keys, the one on the left of the Space bar is generally set as the Meta
key. The Alt key on the right of the Space bar might also be configured as the
Meta key or some other modifier, such as Compose, which is used to enter
accented characters.

If your keyboard does not have a Meta or Alt key or any other key configured
as a Meta key, press Esc followed by the K key (for Meta+K). This is known as
“metafying” the K key.

Setting the Key Bindings
By default, the key bindings are set to emacs editing mode. To change the key bindings to
vi mode, use the -mode option of the set_cle_options command. You can also use the
sh_line_editing_mode variable to change the key bindings to vi mode. You can set this
variable in either the setup file or at the shell prompt.

The following commands show various methods of setting the editing mode.

prompt> set_cle_options -mode emacs
Information: Command line editor mode is set to emacs
successfully. (CLE-01)

prompt> set sh_line_editing_mode vi
Information: Command line editor mode is set to vi
successfully. (CLE-01)
vi

prompt> set sh_line_editing_mode abc
Error: Command line editor mode cannot be set to 'abc'.

Using Tcl With Synopsys Tools
S-2021.06-SP4

112

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Command-Line Editor
Navigating the Command Line

Feedback

Proceeding with vi mode. (CLE-02)
vi

Navigating the Command Line
Use the keys listed in Table 19 to navigate the command line in both vi and emacs mode.

Table 19 Command-Line Navigation Keys

Key Action

Down Moves the cursor down to the next command.

Up Moves the cursor up to the previous command.

Left Moves the cursor to the previous character.

Right Moves the cursor to the next character.

Home Moves the cursor to the start of the current line.

End Moves the cursor to the end of the line.

Completing Commands, Variables, and File Names
You can press the Tab key to complete commands automatically (including nested
commands) and their options, variables, and file names. Additionally, you can use the Tab
key to automatically complete aliases (short forms for the commands you commonly use,
defined with the alias command). When removing alias definitions by using the unalias
command, you can use the command completion feature to list alias definitions.

In all these cases, the results are sorted alphabetically; if the command-line editor cannot
find a matching string, it lists all closely matching strings.

Table 20 lists the results of pressing the Tab key within different contexts.

Table 20 Result of Pressing the Tab Key Within Different Contexts

Context Action taken by the command-line editor

Command is not entered fully Completes the command.

Command is followed by a hyphen (-) Completes the command argument.

After a > or | command Completes the file name.

After a set, unset, or printvar command Completes the variable.

Using Tcl With Synopsys Tools
S-2021.06-SP4

113

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Command-Line Editor
Searching the Command History

Feedback

Table 20 Result of Pressing the Tab Key Within Different Contexts (Continued)

Context Action taken by the command-line editor

After a dollar sign ($) Completes the variable.

After the help command Completes the command.

After the man command Completes the command or variable.

In all other contexts Completes file names.

Searching the Command History
The command-line editor provides an incremental search capability. You can search the
command history in both vi and emacs mode by pressing Ctrl+R. A secondary prompt
appears below the command prompt. The command-line editor searches the history as
you enter each character of the search string and displays the first matching command.
You can continue to add characters to the search string if the matching command is not
the one you are searching for. As long as the search string is valid, a colon (:) appears in
the secondary search prompt; otherwise a question mark (?) appears in the secondary
search prompt and the command-line editor retains the last successful match on the
prompt. After you find the command that you are searching for, you can press the Return
key to execute the command.

Using Tcl With Synopsys Tools
S-2021.06-SP4

114

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Using%20Tcl%20With%20Synopsys%20Tools&body=Version%20information:%20S-2021.06-SP4,%20December%202021%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

	Contents
	About This Manual
	New in This Release
	Related Products, Publications, and Trademarks
	Conventions
	Customer Support
	Accessing SolvNetPlus
	Contacting Customer Support

	1 Introduction to the Tool Interfaces
	Tcl and Synopsys Tools
	Tool Interfaces
	Starting the Command-Line Interface
	Using Setup Files
	Including Tcl Scripts
	Using Command Log Files
	Using the Filename Log File
	Interrupting Commands
	Controlling Information, Warning, and Error Messages
	Running Linux Commands Within the Tool
	Exiting the Tool

	2 Commands
	Command-Line Editor
	Application Command Syntax
	Special Characters
	Wildcard Character
	Creating Comments

	Data Types
	Strings
	Lists
	Arrays

	Operators
	Abbreviating Command and Option Names
	Using Aliases
	Multiple Line Commands and Multiple Commands per Line

	Outputting Data to the Screen
	Command Parsing
	Substitution
	Quoting
	Special Characters
	Bus Notation

	Redirecting and Appending Command Output
	Using the Redirection Operators
	Using the redirect Command

	Command Status
	Successful Completion Example
	Unsuccessful Execution Examples

	Listing and Rerunning Previously Entered Commands
	Getting Help on Commands
	Using the help Command
	Using the man Command

	Tcl Limitations Within the Command-Line Interface
	Basic Tcl Commands
	cd and pwd
	file and glob
	open, close, and flush
	gets and puts
	Nonsequential File Access

	3 Variables
	Components of a Variable
	Application Variables
	Considerations When Using Variables
	Manipulating Variables
	Listing Existing Variables
	Displaying Variable Values
	Assigning Variable Values
	Using Variables
	Numeric Variable Precision
	Removing Variables

	4 Control Flow
	Condition Expressions
	Conditional Command Execution
	if Statement
	switch Statement

	Loops
	while Statement
	for Statement
	foreach Statement
	foreach_in_collection Statement
	Loop Control and Termination
	continue Statement
	break Statement

	5 Working With Procedures
	Creating Procedures
	Variable Scope
	Argument Defaults
	Variable Numbers of Arguments
	Using Arrays With Procedures
	General Considerations for Using Procedures

	Extending Procedures
	Using the define_proc_attributes Command
	define_proc_attributes Command Example

	Using the parse_proc_arguments Command
	Considerations for Extending Procedures

	Displaying the Procedure Body and Arguments

	6 Collections of Design Objects
	Why Use Collections?
	Working With Collections
	Creating Collections
	Saving Collections
	Accessing Collections

	Displaying Objects in a Collection
	Adding Objects to a Collection
	Removing Objects From a Collection
	Comparing Collections
	Extracting Individual Objects From a Collection
	Iterating Over a Collection
	Iteratively Adding Objects to a Collection
	Iteratively Removing Objects From a Collection

	Working With Attributes
	Setting and Querying Attribute Values
	Filtering Collections by Attribute Values
	Using Filter Expressions

	Chained Attribute Access
	User-Defined Attributes
	Derived User Attributes

	Using Name-Based Object Specifications
	Matching Names of Design Objects During Queries
	Reporting Collections
	Writing Collection Information to a File

	7 Using Scripts
	Using Command Scripts
	Creating Scripts
	Using the Output of the write_script Command
	Running Command Scripts
	Running Scripts From Within the Tool
	Running Scripts During Tool Invocation

	8 A Tcl Script Example
	rpt_cell Overview
	rpt_cell Listing and Output Example
	rpt_cell Details
	Defining the Procedure
	Suppressing Warning Messages
	Examining the Procedure Argument
	Initializing Variables
	Creating and Iterating Over a Collection
	Collecting the Report Data
	Formatting the Output

	9 Command-Line Editor
	Changing the Settings of the Command-Line Editor
	Listing Key Mappings
	Setting the Key Bindings
	Navigating the Command Line
	Completing Commands, Variables, and File Names
	Searching the Command History

