
Formality® User Guide

Version T-2022.03, March 2022

Copyright and Proprietary Information Notice
© 2022 Synopsys, Inc. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc.
and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All
other use, reproduction, modification, or distribution of the Synopsys software or the associated documentation is
strictly prohibited.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
https://www.synopsys.com/company/legal/trademarks-brands.html.
All other product or company names may be trademarks of their respective owners.

Free and Open-Source Licensing Notices
If applicable, Free and Open-Source Software (FOSS) licensing notices are available in the product installation.

Third-Party Links
Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse
and is not responsible for such websites and their practices, including privacy practices, availability, and content.

www.synopsys.com

Formality® User Guide
T-2022.03

2

https://www.synopsys.com/company/legal/trademarks-brands.html
https://www.synopsys.com/

Feedback

Contents
New in This Release .14

Related Products, Publications, and Trademarks .14

Conventions .15

Customer Support . 15

1. Introduction to Formality . 17

Formality Tool Overview . 17
An Introduction to Formal Verification . 17

General Verification Process .18
Individual Verification . 18
ASIC Verification Flow . 19

Verifying Designs by Equivalence Checking .21
Reading and Elaborating Designs . 21

Concept of Reference and Implementation Designs 21
Concept of Logic Cones . 22

Setting Up Designs to Preempt Differences .22
Concept of Guidance . 22
Concept of Black Boxes .23
Concept of Constraints .23

Matching . 23
Concept of Compare Points .24
Concept of Name-Based and Non Name-Based Matching 24
Concept of User Matches . 25

Verification .26
Concept of Consistency and Equality . 26

Interpreting Results . 26

2. The Formality Use Model . 27

Formality Verification Flow . 27

Start Formality . 29

Load Guidance . 29

Load Designs . 29

3

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Perform Setup . 30

Match Compare Points . 30

Verify and Interpret Results . 31

Debug . 31

3. Invoking Formality .32

Setting Up the Linux Environment . 34
Specifying the Executable File Location .34
Specifying the License Environment Variable . 34

Invoking the Shell and GUI Environments . 34
Invoking the Formality Shell . 35

Synopsys Setup File . 36
Redirecting Standard Output . 36

Invoking the Formality GUI .37
Viewing CPU Statistics . 37
Getting Help . 38

Using the Shell and GUI Environments . 40
Commands . 40

Entering Commands .40
Argument Lists . 41
Editing From the Command Line . 42
History .42
Aliasing . 44
Redirecting . 45
Command Log Files . 46

GUI Environment . 46
Windows . 46
Prompt . 47
Copying Text .47
Saving the Transcript . 48

Script Files . 48
Messages . 49

Controlling Message Types . 49
Set Thresholds . 51

Output Files .51
Control File Names Generated by Formality . 54

4. Tutorial . 56

4

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Before You Start . 56
Creating Tutorial Directories . 56
Tutorial Directory Contents . 57
Invoking the Formality Shell . 57

Verifying fifo.vg Against fifo.v . 58
Loading the SVF File . 58
Specifying the Reference Design . 59
Specifying the Implementation Design . 59
Setting Up the Design . 60
Matching Compare Points . 60
Verifying the Designs . 60
Debugging . 61

Graphical User Interface . 61

Verifying fifo_with_scan.v Against fifo_mod.vg . 67

Verifying fifo_jtag.v Against fifo_with_scan.v . 70
Debugging Using Diagnosis . 72

Reference Topics .74

5. Loading Guidance . 75

Guidance Overview . 75

Creating Guidance Files . 77
Creating an SVF File . 77
Using the Automated Setup Mode . 77
Reading the SVF File into Formality . 78
Generating Formality Verification Setup Scripts .79
Understanding the Guidance Summary . 82

Guidance File Details . 83
Guidance Directory and File Structure . 83
Guidance Reports . 84
SVF File Diagnostic Messages . 85
Reading in Multiple Guidance Files . 85
Checkpoint Guidance . 86

6. Loading Designs . 87

Setting Up the Designs . 88

Design Loading Steps .92

5

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Loading the Reference Design .92
Reading Technology Libraries . 92
Reading Designs . 93
Setting the Top-Level Design . 97

Loading the Implementation Design .97

Reading Technology Cell Libraries . 98
Using the 'celldefine Verilog Attribute .98
Reading SystemVerilog, Verilog, and VHDL Cell Definitions 98
Verilog Simulation Data . 99
Library Loading Order .100

Single-Source Packaging . 101
Multiple-Source Packaging .101

IEEE Std 1735-2014 Encryption of RTL Files . 101

Setting the Top-Level Design . 102
Setting Parameters on the Top-Level Design .103
Generating Simulation or Synthesis Mismatch Report104
Linking the Top-Level Design Automatically .104

Setting Up and Managing Containers .104

Variables Controlled by the SVF Guidance Flow . 106
Variables to Control Bus Names . 106
Variables to Control Parameter Names . 107
Variables to Control Case Behavior . 107

7. Performing Setup . 108

Common Operations . 110
Handling Black Boxes .110

Loading Design Interfaces . 112
Marking a Design as a Black Box for Verification 113
Reporting Black Boxes .113
Performing Identity Checks . 115
Setting Pin and Port Directions for Unresolved Black Boxes116

Specifying Constants . 116
Defining Constants . 117
Removing User-Defined Constants . 117
Listing User-Defined Constants . 118
Reporting Setup Status . 118

Specifying External Constraints . 119
Defining an External Constraint . 119
Creating a Constraint Type . 120

6

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Removing an External Constraint . 121
Removing a Constraint Type . 121
Reporting Constraint Information . 121
Reporting Information About Constraint Types . 122

Combinational Design Changes . 122
Disabling Scan Logic . 122
Disabling Boundary Scan in Your Designs . 123
Managing Clock Tree Buffering . 124

Sequential Design Changes . 126
Reverse Clock Gating . 126
Setting Clock Gating . 127
Other Clock-Gating Verification Solutions . 128
Enabling an Inversion Push . 131
Instance-Based Inversion Push . 132
Environmental Inversion Push . 132

Handling Retimed Designs . 133
Low-Power Designs . 133

Loading the UPF File . 134
Controlling the Interpretation of UPF Files .135
Verifying the Design With the UPF File . 135
Reporting Over-Constrained Supply Nets . 136
Merging Parallel Switch Cells . 137
Verifying Hierarchical Designs Using Power-Aware Black Boxes 137
Verifying Hierarchical Designs Using Power Models 137
Golden UPF Flow .139

Less Common Operations . 141
Asynchronous Bypass Logic .142
Asynchronous State-Holding Loops . 144
Re-Encoded Finite State Machines . 145

SVF file for FSM Re-Encoding .145
Reading a User-Supplied FSM State File . 146
Defining FSM States Individually . 146
Multiple Re-Encoded FSMs in a Single Module . 147
Listing State Encoding Information . 147
FSMs Re-Encoded in Design Compiler . 147

Hierarchical Designs . 148
Setting the Flattened Hierarchy Separator Character 148
Propagating Constants .149

Nets With Multiple Drivers . 150
Retention Registers Outside Low-Power Design Flow152
Register Initialization Mode .153
Single State Holding Elements .153

7

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Multiplier Architectures . 154
Setting the Multiplier Architecture . 155
Reporting Your Multiplier Architecture . 157

Multibit Library Cells . 157
Preverification . 157

8. Performing Compare Point Matching . 160

Matching and Reporting Compare Points .162
Matching Compare Points . 162
Reporting Unmatched Points . 163
Debugging Unmatched Points . 164
Undo Matched Points . 165
How Formality Matches Compare Points . 165

Exact-Name Matching . 166
Name Filtering . 167
Reversing the Bit Order in Multibit Registers .168
Topological Equivalence .168
Signature Analysis . 168
Compare Point Matching Based on Net Names . 170
Commands and Variables That Cannot be Changed in Match Mode 171

9. Verifying the Design and Interpreting Results . 172

Verifying a Design . 174

Reporting and Interpreting Results . 175

Interrupting Verification . 177

Saving the Session Information for Later Analysis . 177
Setting a Threshold to Save Session Files . 178

Additional Verification Methods . 179
Verification Using Multicore Processing . 179
Controlling Verification Runtimes . 180
Using Batch Jobs . 180

Starting Verification Using Batch Jobs .180
Controlling Verification During Batch Jobs .181
Verification Progress Reporting for Batch Jobs . 181

Removing Compare Points From the Verification Set 181
Performing Hierarchical Verification . 182

Verifying Feedthroughs in Hierarchical Subdesigns184
Verification Using Checkpoint Guidance . 188

8

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Controlling the Checkpoint Verification Flow . 188
Investigating a Checkpoint Verification . 188
Applying User Setup to Checkpoint Verifications .188
Known Limitations . 190

Verification Using Breakpoints . 190
Identifying Inferred Register Names With Register Mapping 190
Verifying a Single Compare Point . 192
Verifying ECO Designs . 192

Modifying the SVF File .193
Uninstantiated Designs in Verilog Libraries . 195

10. Debugging Verification . 196

Debugging a Failing Verification . 199
Finding Potential Cut Points . 200
Determining Unread Failing Compare Points .201
Determining Failure Causes . 201
Debugging Using Diagnosis . 203
Debugging Using Logic Cones .204
Eliminating Setup Possibilities . 205

Black Boxes . 206
Unmatched Points . 206
Design Transformations . 215

Design Objects . 215
Schematics . 226

Viewing Schematics . 226
Traversing Design Hierarchy . 230
Finding an Object . 230
Generating Lists . 231
Zooming In and Out of a View .232
Viewing RTL Source Files in the Design Browser 233

Hierarchical Design Browser . 233
Queuing Setup Commands . 235

Logic Cones . 235
Viewing Combinational Feedback Loops . 239
Pruning Logic . 240
Grouping Hierarchy in a Logic Cone . 241
Setting Probe Points . 241
Multicolor Highlighting . 242
Cell Coloring .243

Viewing, Editing, and Simulating Patterns . 243

9

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Debugging a Hard Verification . 246
Checking the Guidance Summary . 247
Creating a List of Hard Points . 248
Determining the Cause of Hard Points .249
Analyzing Fan-in Logic Cones of a Hard Compare Point250

Using Alternate Strategies to Resolve Hard Verifications .254
Verifying Designs Using Alternate Strategies .254

Verifying Designs Using an Alternate Strategy Manually255
Verifying Designs by Automated Parallel Deployment of Alternate
Strategies . 256

11. Using DPX . 261

The Formality DPX Flow .261

Configuring DPX . 266
Submissions to Farm or Local Machines . 266
Submission to Specific Machines .267
Testing and Reporting the DPX Setup . 269

Managing DPX Workers . 270

DPX Status Messages . 272

12. Creating and Verifying Logic ECOs Manually . 274

Manual Logic ECO Flow . 274

Analyzing Differences Between the RTL and the Netlist . 277
Generating a List of Failing Points . 277
Finding Equivalent Nets . 278

Using the GUI to Find Equivalent Nets . 279

Modifying the Implementation Design .279
Editing a Design in Match or Verify Modes . 281
Using High-Level Editing Commands .282

Disconnecting Pins Automatically . 284
Connecting Pins When Creating Cells .285
Using High-Level Commands With Hierarchical Designs 285
Default Names for Nets, Cells, and Ports . 287
High-Level Commands to Add an AND Gate . 287

Using Edit Files .287
Creating an Edit File . 288
Loading Edit Files .288

10

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Undoing Edits . 288
Committing the Edits to the Design . 289
Reporting the Edits .289

Displaying Modifications to the Design .289
Using the GUI to Display and Highlight Edits . 290
Reporting Connectivity Errors . 290

Verifying ECO Modifications . 291
Reporting Verify Points . 293
Removing Verify Points . 293

Exporting ECO Modifications . 294

Integration With Verdi nECO .297
Starting the Verdi nECO Tool From the Formality GUI297
Transferring Design Schematics From Formality to Verdi nECO 297
Highlighting Design Objects Across Tools . 298
Importing Edits to the Formality Tool . 298

Integration With the IC Compiler Tool .298
Connecting the Formality Tool With the IC Compiler Tool 299
Highlighting Design Objects Across Tools . 299

RTL Cross-Probing . 300

13. Verifying Technology Logic Libraries . 302

Library Verification Mode .304

Loading the Reference Library . 305

Loading the Implementation Library . 306

Listing the Cells .306

Specifying a Customized Cell List . 307

Elaborating Library Cells . 308

Performing Library Verification . 308

Reporting and Interpreting Verification Results .310

Debugging Failed Library Cells .311

A. Functional Safety Verification . 314

Fail-Safe Finite State Machine Support . 314

Triple Modular Redundancy . 314

11

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

B. Querying Design Objects and Collections . 317

Lifetime of a Collection . 317

Iteration . 318

Managing Collections Using Commands . 318

Filtering . 319

Sorting Collections . 321

Implicit Query of Collections . 321

The Collections Manager GUI .324
Creating Collections . 324
Filtering Collections .327
Operating on Collections . 328
Finding a Design Object in a Collection .330

C. Tcl Syntax as Applied to Formality Shell Commands . 331

Using Application Commands . 331
Summary of the Command Syntax . 332
Using Special Characters . 332
Using Return Types . 333

Quoting Values . 334

Using Built-In Commands . 334

Using Procedures . 334

Using Lists .335

Using Other Tcl Utilities .336

Using Environment Variables . 336

Nesting Commands .337

Evaluating Expressions . 338

Using Control Flow Commands . 338
Using the if Command . 338
Using while and for Loops . 339

Using while Loops . 339
Using for Loops . 339

Iterating Over a List: foreach . 340
Terminating a Loop: break and continue . 340
Using the switch Command . 340

12

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Contents

Feedback

Creating Procedures . 341
Setting Defaults for Arguments . 341
Specifying a Varying Number of Arguments .341

13

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

About This User Guide
The Formality User Guide provides information about the concepts, procedures, file
types, menu items, and methodologies with a hands-on tutorial to get you started with the
Synopsys Formality tool.

Additionally, you need to understand the following concepts:

• Logic design and timing principles

• Logic simulation tools

• Linux operating system

This preface includes the following sections:

• New in This Release

• Related Products, Publications, and Trademarks

• Conventions

• Customer Support

New in This Release
Information about new features, enhancements, and changes, known limitations, and
resolved Synopsys Technical Action Requests (STARs) is available in the Release Notes
on the SolvNetPlus site.

Related Products, Publications, and Trademarks
For additional information about the tool, see the documentation on the Synopsys
SolvNetPlus support site at the following address:

https://solvnetplus.synopsys.com

You might also want to see the documentation for the following related Synopsys products:

• Design Compiler®

• HDL Compiler™

• PrimeTime® Suite

• ESP

Formality® User Guide
T-2022.03

14

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnetplus.synopsys.com

About This User Guide
Conventions

Feedback

Conventions
The following conventions are used in Synopsys documentation.

Convention Description

Courier Indicates syntax, such as write_file.

Courier italic Indicates a user-defined value in syntax, such as
write_file design_list

Courier bold Indicates user input—text you type verbatim—in examples, such
as
prompt> write_file top

Purple • Within an example, indicates information of special interest.
• Within a command-syntax section, indicates a default, such as

include_enclosing = true | false
[] Denotes optional arguments in syntax, such as

write_file [-format fmt]

... Indicates that arguments can be repeated as many times as
needed, such as
pin1 pin2 ... pinN.

| Indicates a choice among alternatives, such as
low | medium | high

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Bold Indicates a graphical user interface (GUI) element that has an
action associated with it.

Edit > Copy Indicates a path to a menu command, such as opening the Edit
menu and choosing Copy.

Ctrl+C Indicates a keyboard combination, such as holding down the Ctrl
key and pressing C.

Customer Support
Customer support is available through SolvNetPlus.

Formality® User Guide
T-2022.03

15

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

About This User Guide
Customer Support

Feedback

Accessing SolvNetPlus
The SolvNetPlus site includes a knowledge base of technical articles and answers to
frequently asked questions about Synopsys tools. The SolvNetPlus site also gives you
access to a wide range of Synopsys online services including software downloads,
documentation, and technical support.

To access the SolvNetPlus site, go to the following address:

https://solvnetplus.synopsys.com

If prompted, enter your user name and password. If you do not have a Synopsys user
name and password, follow the instructions to sign up for an account.

If you need help using the SolvNetPlus site, click REGISTRATION HELP in the top-right
menu bar.

Contacting Customer Support
To contact Customer Support, go to https://solvnetplus.synopsys.com.

Formality® User Guide
T-2022.03

16

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnetplus.synopsys.com
https://solvnetplus.synopsys.com

Feedback

1
Introduction to Formality

This chapter introduces you to the Formality application. It includes the following sections:

• Formality Tool Overview

• General Verification Process

• Verifying Designs by Equivalence Checking

• Interpreting Results

Formality Tool Overview
The Formality tool uses a formal verification comparison engine to prove or disprove the
equivalence of two given designs and presents any differences for follow-on detailed
analysis.

An Introduction to Formal Verification
Formal verification is an alternative to verification through simulation. Verification through
simulation applies a large number of input vectors to the circuit and then compares the
resulting output vectors to expected values. As designs become larger and more complex
and require more simulation vectors, regression testing with traditional simulation tools
becomes a bottleneck in the design flow.

The bottleneck is caused by these factors:

• Large numbers of simulation vectors are needed to provide confidence that the design
meets the required specifications.

• Logic simulators must process more events for each stimulus vector because of
increased design size and complexity.

• More vectors and larger design sizes cause increased memory swapping, thereby
slowing down performance.

Formal verification uses mathematical techniques to compare the logic to be verified
against a logical specification or a reference design. Unlike verification through simulation,
formal verification does not require input vectors. As formal verification considers only

Formality® User Guide
T-2022.03

17

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to Formality
General Verification Process

Feedback

logical functions during comparison, it is independent of the physical properties of the
design, such as layout and timing.

The real strength of formal verification is its ability to reveal unexpected differences without
relying on vector sets, thus verifying large designs faster than simulation while providing
100 percent coverage.

Formal verification consists of two different basic tools: equivalence checkers and model
checkers. Equivalence checkers prove whether a design representation is logically
equivalent to another. That is, they are used to prove that two circuits exhibit the same
exact behavior under all conditions despite different representations. They do this using
formal methods and require no simulation vectors. Formality is an equivalence checker.

Model checkers prove whether a design adheres to a specified set of logical properties.

General Verification Process
The Formality tool elaborates and compares two sets of design files before and after some
design methodology process is carried out. Formality is used throughout the design flow
to ensure that the integrity of the design descriptions are logically equivalent as they go
through different representations.

Individual Verification
Figure 1 shows the basic verification flow of a single design process. The Formality
tool reads in the files representing the reference Design A, and does the same for the
implementation Design B. The tool determines which points in the design are candidates
to be compared, matches them between the two designs as appropriate, and performs the
formal equivalence check, reporting back any differences that are detected.ASIC verification flow diagram

Formality® User Guide
T-2022.03

18

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to Formality
General Verification Process

Feedback

Figure 1 Verification Flow Using Formality

ASIC Verification Flow
Each individual verification is just one of many that are performed during a general ASIC
verification flow. The following diagram shows how this verification chain parallels that of
the design process, originating from the initial RTL description.

Figure 2 shows the ASIC verification flow using Formality.ASIC verification flow diagram

Formality® User Guide
T-2022.03

19

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to Formality
General Verification Process

Feedback

Figure 2 ASIC Verification Flow Using Formality

As this design flow accumulates details, the verification chain ensures that each new
representation of the design is free of unexpected changes.

Formality® User Guide
T-2022.03

20

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to Formality
Verifying Designs by Equivalence Checking

Feedback

Verifying Designs by Equivalence Checking
Design verification using equivalence checking is a four-phase process:

1. Read and elaborate language descriptions into logical representations.

2. Set up to preempt differences.

3. Map corresponding signals between pairs of designs (Matching).

4. Compare the logic cones that drive the mapped signals (Verification).

Reading and Elaborating Designs
Formality begins a verification by reading a set of user-defined design and library files and
elaborates them into a format ready for equivalence checking that fully represents the logic
of the user-defined top-level model. During this phase, you establish the reference and
implementation designs, along with corresponding compare points and logic cones.

Concept of Reference and Implementation Designs
The tool tests the reference design and implementation design for equivalence.

Reference design conceptsreference designoverviewreference designreference designoverviewdesignsreferenceThis design is the golden designgolden design, the standard against
which Formality tests for equivalence.

Implementation design conceptsimplementation designoverviewimplementation designimplementation designoverviewdesignsimplementationThis design is the changed design. It is the design
whose correctness you want to prove. For example, a
newly synthesized design is an implementation of the
source RTL design.

designsimplementationdesignsreferencesettingreference designsettingimplementation designimplementation designestablishingreference designestablishingAfter Formality proves the equivalence of the implementation design to a known reference
design, you can establish the implementation design as the new reference design.
This technique keeps overall verificationCPU timeverification times to a minimum during regression testingregression testing.
Conversely, working through an entire design methodology and then verifying the sign-
off netlist against the original RTL can result in difficult verifications and longer overall
verification times.

In the Formality command-line interface, fm_shell, or GUI environment, you can
designate a design you have read into Formality as the implementation or reference
design. There are no special requirements to restrict your design. However, at any given
time, you can have only one implementation design and one reference design in the
Formality environment.

Formality® User Guide
T-2022.03

21

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to Formality
Verifying Designs by Equivalence Checking

Feedback

Concept of Logic Cones
conceptslogic conesoverviewlogic coneslogic conesoverviewtroubleshootinglogic cones, viewingA logic cone consists of combinational logic originating from a specific design object and
fanning backward to terminate at certain design object outputs. The design objects where
logic cones originate are those used by Formality to create compare points. Compare
points are primary outputs, internal logic conestermination pointslogic conesoriginating pointregisters, black box input pins, or nets driven by
multiple drivers where at least one driver is a port or black box. The design objects at
which logic cones terminate are primary inputs or compare points. Figure 3 illustrates the
logic cone concept.exampleslogic cone

Figure 3 Logic Cone

In Figure 3, the compare point is a primary output. Formality compares the logic function
of this primary output to the logic function of the matching primary output in another design
during verification. The shaded area of the figure represents the logic cone for the primary
output. The cone begins at the input net of the port and works back toward the termination
points. In this illustration, the termination points are nets connected to primary inputs.

Setting Up Designs to Preempt Differences
There can be intended functional differences in the two designs being compared. In these
cases, perform setup to account for these differences to avoid false-failures. An example
is adding scan logic to the implementation design. You can still check that the non scan
functionality of the implementation design matches that of the reference design by setting
a constant in the implementation design to disable the scan logic.

Concept of Guidance
Guidance helps an equivalence-checking tool to understand and process design changes
caused by other tools that were used in the design flow. Formality uses guidance

Formality® User Guide
T-2022.03

22

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to Formality
Verifying Designs by Equivalence Checking

Feedback

information to assist compare-point matching, set up verification correctly without user
intervention, and understand complex arithmetic transformations better.

Concept of Black Boxes
A black box is an instance of a design whose function is unknown. Black boxes are
commonly used for the non-synthesized components of a design. Examples of common
black boxes include RAMs, ROMS, analog circuits, and hard IP blocks. The inputs to black
boxes are treated as compare points and the outputs of black boxes are treated as input
points to other logic cones.

When black boxes are used in equivalence checking, it is important to make sure
that there is one-to-one mapping between the reference and implementation designs.
Otherwise, comparing points result in failures. You can specify how the tool handles black
boxes. These techniques are outlined in Handling Black Boxes.

Concept of Constraints
Setting external constraints helps to limit the number of input value combinations that are
considered during verification. Setting constraints reduces verification time and eliminates
potential false failures from verifications that consider unused or illegal combinations
of input values. By setting constraints on the allowed values and relationships between
primary inputs, registers, and black box outputs and providing this information to
the verification engine, the resulting verification is restricted to identifying only those
differences that result from the allowed states between the reference and implementation
designs.

For more information about constraints, see Specifying External Constraints.

Matching
compare pointsautomatic creation ofautomaticcreating compare pointsPrior to design verification, Formality tries to match each primary output, sequential
element, black box input pin, and qualified net in the implementation design with a
comparable design object in the reference design. For more information about how
compare points are matched, see Performing Compare Point Matching.

complete verificationverificationcompleteFor Formality to perform a complete verification, all compare points must be verifiable.
There must be one-to-one correspondence between the design objects in the reference
and implementation designs. There are cases, however, that do not require a one-to-
one correspondence to attain complete verification when you are testing for design
consistency.

Formality® User Guide
T-2022.03

23

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to Formality
Verifying Designs by Equivalence Checking

Feedback

For example,

• An implementation design that contains extra primary outputs.

• Either the implementation design or reference design contains extra registers, and no
compare points fail during verification.

Compare points are primarily matched by object names in the designs. If the object names
in the designs are different, Formality uses various methods to match up these compare
points automatically. You can also manually match these object names when all automatic
methods fail.

Concept of Compare Points
conceptscompare pointsoverviewcompare pointscompare pointsoverviewA compare point is a design object used as a combinational logic endpoint during
verification. compare pointsmapping names betweenmapping namescompare pointsA compare point can be an output port, register, latch, black box input pin, or
net driven by multiple drivers.

design objectsused in compare point creationcompare pointsobjects used to createFormality uses the following design objects to create compare points automatically:

• Primary outputs

• Sequential elements

• Black box input pins

• Nets driven by multiple drivers, where at least one driver is a port or black box

Formality verifies a compare point by comparing the logic cone from a compare point in
the implementation design against a logic cone for a matching compare point from the
reference design, as shown in Figure 4.

Concept of Name-Based and Non Name-Based Matching
compare pointsmatchingtechniquesCompare-point matching techniques in Formality can be broadly divided into two
categories:

• Name-based matching

• Non-name-based matching

design objectsunmatchedUnmatched design objects from the implementation or reference design are reported as
failing compare points, with a note indicating that there is no comparable design object in
the reference design.

compare pointsdefining your owndefiningcompare pointsuser-definedcompare pointsSometimes you might have to provide information so that Formality can match all design
objects before verification. For example, the implementation and reference designs
might contain design objects that differ in name but are otherwise comparable. However,
Formality is not able to match them by using its matching algorithms, including signature

Formality® User Guide
T-2022.03

24

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to Formality
Verifying Designs by Equivalence Checking

Feedback

analysis. compare pointsmapping names betweenmapping namescompare pointsIn such cases, you can map design object names yourself using several
methods. For more information about matching design objects with different names, see .

Figure 4 examplescompare point, creationcompare pointsexample shows an example of how the combination of automatic and user-defined
compare points results in complete verification. Automatically created compare points
result when Formality matches the name and type of two design objects using normal
matching techniques or signature analysis. User-defined compare points result when you
take steps to map names between design objects.

Figure 4 Constructing Compare Points

For compare point status messages, see .

Concept of User Matches
Formality automatically matches as many ports and components as possible between
the implementation design and reference design during verification. If these automatic
methods fail to determine a match, you can use commands to create these matches
manually.

For example, the implementation and reference designs might contain design objects that
differ in name but are otherwise comparable. However, Formality is not able to match them
by using its matching algorithms, including signature analysis. In such cases, you can map
design object names yourself using several methods.

For more information about matching design objects with different names, see Matching
With User-Supplied Names.

Formality® User Guide
T-2022.03

25

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 1: Introduction to Formality
Interpreting Results

Feedback

Verification
verificationoverviewVerification is the primary function of equivalence checking. By default, Formality checks
for design verificationconsistencyconsistency, definedconsistency when you verify a design or logic library.

Concept of Consistency and Equality
conceptsdesign equivalenceoverviewdesign equivalencedesign equivalenceoverviewThe term design equivalence refers to the verification test objective. Formality can test for
two types of design equivalence: verificationconsistencyverificationdesign equalitydesign consistency and design equality.

Design Consistency

For every input pattern for which the reference design defines a 1 or 0 response,
the implementation design gives the same response. If a don’t care informationverification modesdon’t care (X) condition
exists in the reference design, verification passes if there is a 0 or a 1 at the
equivalent point in the implementation design.

Design Equality

Includes design consistency with additional requirements. The functions of
the implementation and reference designs must be defined for exactly the
same set of input patterns. If a don’t care (X) condition exists in the reference
design, verification passes only when there is a X at the equivalent point in the
implementation design.

Interpreting Results
When Formality proves the functions defining the logic cones for a matched pair of
compare points (one from the reference design and one from the implementation design)
to be functionally equivalent, the result is that the compare points in both the reference
and implementation designs have a passing status. If all compare points in the reference
design pass verification, the final verification result for the entire design is a successful
verification.

Formality® User Guide
T-2022.03

26

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

2
The Formality Use Model

The Formality use model follows the same flow as the general verification process
discussed in Introduction to Formality.

This chapter includes the following quick-start tutorialsections:

• Formality Verification Flow

• Start Formality

• Load Guidance

• Load Designs

• Perform Setup

• Match Compare Points

• Verify and Interpret Results

• Debug

Formality Verification Flow
Figure 5 outlines the Formality design verification process flow. It represents specific steps
to perform an equivalence check using Formality. Each topic corresponds to one or more
steps in the flow. Click on a step to navigate to the corresponding topic.

Formality® User Guide
T-2022.03

27

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: The Formality Use Model
Formality Verification Flow

Feedback

Figure 5 Design Verification Process Flow

Formality® User Guide
T-2022.03

28

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: The Formality Use Model
Start Formality

Feedback

Start Formality
installationTo enter the Formality environment, type fm_shell at the Linux prompt. You can use the
quit or exit commands at any time to exit.

% fm_shell
...
fm_shell (setup)>

The setup indicates the mode that you are currently in. The available modes are guide,
setup, match, and verify. When you invoke Formality, you begin in the setup mode.

Note:
You can also invoke the GUI from the shell command prompt at this point using
the start_gui command.

You must first set up environment variables, paths, and licenses to do this. These topics,
along with other invocation options and basic shell features, are discussed in detail in
Invoking Formality.

Load Guidance
The load guidance step of the Formality process flow is the point at which you can opt to
provide setup information about design changes caused by other tools used in the design
flow.

% fm_shell
...
fm_shell (setup)> set_svf design.svf
Files containing this guidance information are known as SVF files, and they generally
have the .svf extension. An SVF file enables the tool to process the content and store data
for use during the matching step that follows. Guidance is recommended in a Synopsys
design implementation flow, while it is optional when verifying designs modified by third-
party tools.

For further information about guidance, see Loading Guidance.

Load Designs
To perform verification, you must first provide Formality with two designs. The golden
design, the one that is known to be functionally correct, is the reference design. The
second design is a modified version of the reference design and is known as the
implementation design. This is the design that you want to verify against the reference
design for functional equivalence.

Formality® User Guide
T-2022.03

29

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: The Formality Use Model
Perform Setup

Feedback

% fm_shell
...
fm_shell (setup)> read_verilog -r top.v
Formality can be used to verify two RTL designs against each other, two gate-level
designs against each other, or an RTL design against a gate-level design.

The design files that you load into Formality can use only synthesizable SystemVerilog,
Verilog, or VHDL constructs or can be in the Synopsys internal database format (.db, .ddc,
or Milkyway database).

After designs are loaded into Formality in this step of the process flow, you can control
certain aspects of the verification process, such as establishing environmental parameters.

For further information about loading and managing designs, see Loading Designs.

Perform Setup
The setup step involves supplying information to Formality to account for design-specific
issues that were not taken care of automatically during the guidance step.

% fm_shell
...
fm_shell (setup)> set_constant -type port r:/WORK/top/scanmode 0
The following design transformations require setup:

• internal scan

• boundary scan

• clock-gating

• finite state machine (FSM) re-encoding

• black boxes

• pipeline retiming

You can use the setup information to accurately verify the designs that have been
transformed in a way that would otherwise cause them to be reported as nonequivalent.

For more information about setup possibilities, see Performing Setup.

Match Compare Points
During this step, the Formality tool attempts to match each compare point in the reference
design with a corresponding compare point in the implementation design.

Formality® User Guide
T-2022.03

30

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 2: The Formality Use Model
Verify and Interpret Results

Feedback

% fm_shell
...
fm_shell (setup)> match
Accurate matching is required for accurate verification. Matching ensures that there are no
mismatched logic cones and verifies the implementation design for functionality.

For further information about matching compare points, see Performing Compare Point
Matching.

Verify and Interpret Results
The verification step follows the loading, setup, and compare point matching steps.

% fm_shell
...
fm_shell (setup)> verify
At the end of verification or at any point during the process, if you choose to interrupt
the process before completion, the verification results are reported as PASS (all
compare points are equivalent), FAIL (some compare points are not equivalent), or
INCONCLUSIVE (some compare points are either unverified or terminated).

For further information about running verification and interpreting the results, see Verifying
the Design and Interpreting Results.

Debug
The debug step is required if the design verification is not successful. During debugging,
you use the verification results to pinpoint failing or inconclusive results. This step helps to
determine where and possibly why the results were unsuccessful.

The design might have failed due to a setup problem or a logical difference between the
designs. Different causes of failure require different debugging solutions, so a number
of debugging strategies are available. These range from manually matching unmatched
compare points to debugging through GUI-based analysis. The same holds true for
inconclusive verifications.

For further information about debugging, see Debugging Verification.

Formality® User Guide
T-2022.03

31

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

3
Invoking Formality

Formality offers two working environments: the Formality shell (a command-line-based
user interface) and the Formality GUI (a graphical windows-based interface). This chapter
describes how to invoke these environments and use interface elements, such as the
command log file and the help facility.

verificationestablishing environmentThe chapter includes the following sections:

• Setting Up the Linux Environment

• Invoking the Shell and GUI Environments

• Using the Shell and GUI Environments

Figure 6 outlines how to invoke the Formality tool during the design verification process
flow.

Formality® User Guide
T-2022.03

32

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Invoking Formality

Feedback

Figure 6 Invoking Formality in the Design Verification Process Flow

Formality® User Guide
T-2022.03

33

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Invoking Formality
Setting Up the Linux Environment

Feedback

Setting Up the Linux Environment
All Formality descriptions and operations assume that Formality was properly installed and
licensed and that it meets computational requirements.

Prior to invoking the tool, you need to set up the user environment. To do this, specify the
location of the executable file and set the license environment variable.

For information about the Synopsys setup file, see the >Synopsys Synopsys Installation
Guide at http://www.synopsys.com/install.

Specifying the Executable File Location
To set up a new Formality tool user, add the Formality directory containing the executable
file to the PATH environment variable.

If you are using the C shell, add the following line to the .cshrc file:

set path=(install_dir/bin $path)
If you are using the Bourne, Korn, or Bash shell, add the following line to
the .profile, .kshrc, or .bashrc file:

PATH=install_dir/bin:$PATH
export PATH

Specifying the License Environment Variable
You must install the Synopsys Common Licensing (SCL) application and define the
SNPSLMD_LICENSE_FILE variable before you can verify the Formality installation. For
information about downloading SCL, installing SCL, or setting the license variable, see
Installing Synopsys Tools at http://www.synopsys.com/Support/Licensing/Installation/
Pages/default.aspx.

Invoking the Shell and GUI Environments
The Formality shell, fm_shell, is the command-line interface. The fm_shell commands
are made up of command names, arguments, and variable assignments. Formality
commands use the tool command language (Tcl), which is used in many applications in
the EDA industry.

The Formality GUI is the graphical, menu-driven interface, using which you can verify
designs. It also provides schematic and logic cone views to help you debug failed
verifications.

Formality® User Guide
T-2022.03

34

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
http://www.synopsys.com/install
http://www.synopsys.com/Support/Licensing/Installation/Pages/default.aspx
http://www.synopsys.com/Support/Licensing/Installation/Pages/default.aspx

Chapter 3: Invoking Formality
Invoking the Shell and GUI Environments

Feedback

Invoking the Formality Shell
fm_shellstartingstartingfm_shellinvokingfm_shellshell interface, startingcommandsfm_shellfm_shell commandTo start the Formality shell, enter the following command at the operating system prompt
(%):

% fm_shell
...
fm_shell (setup)>

The Formality copyright or license notice, program header, and fm_shell prompt appear
in the window where you started Formality.

Table 1 shows the command-line options you can use when starting fm_shell.

Table 1 The Formality Shell Command Options

variableshdlin_interface_onlyhdlin_interface_only variables-file filename Invokes Formality in a shell and runs a batch script.
For example,
% fm_shell -file my_init_script.fms

variableshdlin_interface_onlyhdlin_interface_only variables-x command_string Executes command_string (a string of one or more
fm_shell commands separated by semicolons)
before displaying the initial fm_shell prompt and
before executing a -file script. If the last statement
in command_string is quit, no prompt displays and the
command shell exits.

variableshdlin_interface_onlyhdlin_interface_only variables-no_init Prevents setup files from being automatically read upon
invocation. This is useful when you have a command log
or other script file that you want to use to reproduce a
previous Formality session.
For example,
% fm_shell -no_init -file
fm_shell_command.log.copy

variableshdlin_interface_onlyhdlin_interface_only variables-64bit | -32bit Invokes Formality using the 64-bit binary executable on
platforms that support it. The default is 64 bits.

variableshdlin_interface_onlyhdlin_interface_only variables-overwrite Overwrites existing FM_WORK, formality.log, and
fm_shell_command.log files.

variableshdlin_interface_onlyhdlin_interface_only variables-name_suffix filename_suffix Appends the suffix to the log files created by Formality.
For example,
% fm_shell -name_suffix tmp files
This command generates files named FM_WORK_tmp,
formality_tmp.log, and fm_shell_command_tmp.

variableshdlin_interface_onlyhdlin_interface_only variables-version Prints the version of Formality and then exits.

variableshdlin_interface_onlyhdlin_interface_only variables-session session_file_name Specifies a previously saved Formality session.

Formality® User Guide
T-2022.03

35

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Invoking Formality
Invoking the Shell and GUI Environments

Feedback

Table 1 The Formality Shell Command Options (Continued)

variableshdlin_interface_onlyhdlin_interface_only variables-gui Starts the Formality graphical user interface.

-work_path Specifies the location of FM_WORK and other temporary
directories. Using this option, you can specify a Linux
path where FM_WORK and other temporary directories
are created. If the Linux path you specify does not exist,
Formality creates the specified folder.

-create_unique_work_directory Creates a new FM_RUN work directory. It is created
in the current directory or if applicable, in the directory
specified by the work_path argument. All temporary files
and directories that the tool creates, such as formality.log,
fm_shell_command.log, FM_WORK/, and formality_svf/,
are stored under this FM_RUN directory. If applicable,
the FM_RUN directory has the name_suffix argument
appended to it, but the files inside the unique work
directory do not have the suffix.

Synopsys Setup File
Each time you invoke Formality, it executes the commands in the Formality setup files, all
named .synopsys_fm.setup. These setup files can reside in three directories that Formality
reads in a specific order. You can use these files to set variables automatically to your
preferred settings.

The following list shows the order in which Formality reads the files:

1. Synopsys root directory. For example, if the release tree root is

/usr/synopsys, the setup file is

/usr/synopsys/admin/setup/.synopsys_fm.setup

2. Your home directory. The .synopsys_fm.setup file in this directory applies to all
sessions that you start.

3. The directory where you have invoked Formality (current working directory). Customize
the .synopsys_fm.setup file in this directory for a specific design.

If a particular variable is set in more than one file, the last file read overwrites the previous
setting.

Redirecting Standard Output
Formality writes the full transcript of the verification run to stdout. Save this transcript
to a file when invoking the tool by piping the fm_shell command to the tee -i Linux

Formality® User Guide
T-2022.03

36

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Invoking Formality
Invoking the Shell and GUI Environments

Feedback

command. Use the -i option with the tee command to pass Ctrl+C or other interruptions
to fm_shell, for example,

fm_shell -file my_script.tcl |tee -i my_transcript.out

Invoking the Formality GUI
When you start Formality, you are provided with a transcript window containing the
Formality banner. Immediately after the banner is displayed, Formality lists two key
features for the current release.

GUIstartingstartingGUIinvokingGUITo invoke the Formality GUI from the fm_shell command, with the Formality shell
environment and command-line interface running, execute the following command:

% fm_shell (setup)> start_gui
Alternatively, you can start the GUI from the fm_shell command as follows:

% fm_shell -gui
If you use the Formality GUI, a pop-up window appears, listing all the key features for
the current release. You can hide this window for future releases. To access these key
features at any time, choose Help > Release Highlights.

You can choose to display or hide primary sections of the GUI session window. For
example, to hide or display the toolbar or status bar, use the View menu. In the menu,
select an option to display or hide the corresponding area of the session window. A check
mark is shown next to the menu item if that section is currently being displayed in the
window.

The lower area of the window contains the command console, Formality prompt, and
status bar. Use the Log, Errors, Warnings, History, and Last Command options above the
Formality prompt to display different types of information in the command console.

You can exit the GUI without exiting the Formality session by selecting File > Close GUI, or
issuing the stop_gui command from the command line in the Formality GUI window.

Viewing CPU Statistics
To view the CPU time used by the Formality shell, use the cputime command. The CPU
time is shown in seconds.

fm_shell (setup)> cputime
 3.73

To view the memory used by the Formality shell, use the memory -format -units
command. The default unit is kb (kilobyte).

Formality® User Guide
T-2022.03

37

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Invoking Formality
Invoking the Shell and GUI Environments

Feedback

fm_shell (setup)> memory
 4880

Note:
When you use the set_host_options -max_cores command for multicore
processing and specify two or more cores, the tool reports higher memory for
the specific Formality session, including child processes. This is because Linux
does not distinguish between the shared and private memory usage during
multi core processing. The memory reported might be more than the current
memory usage.

For information about multicore processing, see the Verification Using Multicore
Processing.

Getting Help
The helpfm_shell commandsfm_shellgetting helpFormality tool provides various forms of online help, such as the help and man
commands.

wildcard charactersYou can use a wildcard pattern as the argument for the help command.

The available wildcards are shown in the following table:

variableshdlin_interface_onlyhdlin_interface_only variables* Matches any number of characters.

variableshdlin_interface_onlyhdlin_interface_only variables? Matches exactly one character.

commandshelphelpcommandUsefm_shelllisting commandslistingfm_shell commands the help command to list all commands alphabetically:

fm_shell (setup)> help
wildcard charactersThe following command uses a wildcard character to display all commands that start with
the word find:

fm_shell > help find*

variableshdlin_interface_onlyhdlin_interface_only variablesfind_cells #Find the specified cells

variableshdlin_interface_onlyhdlin_interface_only variablesfind_nets #Find the specified nets

variableshdlin_interface_onlyhdlin_interface_only variablesfind_pins #Find the specified pins

variableshdlin_interface_onlyhdlin_interface_only variablesfind_ports #Find the specified ports

variableshdlin_interface_onlyhdlin_interface_only variablesfind_references #Find design references of the specified design

Formality® User Guide
T-2022.03

38

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Invoking Formality
Invoking the Shell and GUI Environments

Feedback

commandsgetting syntax informationcommands-help option-help, optionsYou can use the -help option to display syntax information for any command:

fm_shell (setup)> current_container -help
Usage: current_container # Set or get the current (default) container
 [containerID] (Container ID)

man page overviewoverviewman pagesMan pages are available for every Formality shell command and application variable. For
more information about a specific command or variable, use the man command followed by
a command name to see the man page, as follows:

commandsmanman commandfm_shell (setup)> man command_name
You can also see the man page for a command by selecting it in the transcript window and
then either clicking the man page viewer in the toolbar or choosing Man Pages from the
Help menu.

To display the current value of a variable, use the printvar command followed by the
variable name. For example,

commandsmanman commandfm_shell (setup)> printvar verification_auto_loop_break
verification_auto_loop_break = "true"

commandsgetting syntax informationcommands-help optionThe following command displays a detailed description of the cputime commandcommandscputimecputime command:

fm_shell (setup)> man cputime
2. Synopsys Commands Command Reference
 cputime

NAME
 cputime
 Returns the CPU time used by the tool's shell.

SYNTAX
 cputime

ARGUMENTS
 none

DESCRIPTION
 This command returns the CPU time used by the tool's shell. The
 time is rounded off to the nearest one hundredth of a second.

EXAMPLES

 The following example shows the output produced by the cputime
 command.
 fm_shell (setup)> cputime
 3.73
 fm_shell (setup)>

Formality® User Guide
T-2022.03

39

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Invoking Formality
Using the Shell and GUI Environments

Feedback

Using the Shell and GUI Environments
As you have seen above, there are essentially two approaches to invoking Formality
through the command line or through the GUI. Consequently, this section on invocation
details is broken into the following topics:

• Commands

• GUI Environment

• Script Files

• Messages

• Output Files

Commands
Working through the fm_shell command line is a powerful way to use the product. You can
enter and edit commands, options, and arguments; view and reuse previously-entered
commands; create and manipulate aliases; and even redirect the output to another file.
You can also keep track of your work in any Formality session by generating a log file.

Entering Commands
commandsentering commandsFormality commandscase-sensitivityconsiders case when it processes fm_shell commands. All command names,
option names, and arguments are case-sensitive. For example, the following two
commands are equivalent but specify two different containers, named r and R:

 fm_shell (setup)> read_verilog -container r top.v
 fm_shell (setup)> read_verilog -container R top.v

commandsreturning resultsEach Formality command returns a result that is always a string. The result can be passed
directly to another command, or it can be used in a conditional expression. For example,
the following command uses an expression to derive the right side of the resulting
equation:

fm_shell (setup)> echo 3+4=[expr 3+4]
3+4=7

commandsline breakscommandsmultiline shell commandsWhen you enter a long command with many options and arguments, you can extend the
command across more than one line by using the backslash (\) continuation character.
During a continuing command input, or in other incomplete input situations, Formality
displays a secondary prompt, the question mark (?). Here is an example:

fm_shell (setup)> read_verilog -r “top.v \
? bottom.v”
Loading Verilog file...
Current container set to ‘r’

Formality® User Guide
T-2022.03

40

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Invoking Formality
Using the Shell and GUI Environments

Feedback

1
fm_shell (setup)>

Argument Lists
When you supply more than one argument for a given Formality command, adhere to Tcl
rules. Most publications about Tcl contain extensive discussions about specifying lists of
arguments with commands. This section highlights some important concepts.

• Because command arguments and results are represented as strings, lists are also
represented as strings, but with a specific structure.

• Lists are typically entered by enclosing a string in braces, as shown in the following
example:

{file_1 file_2 file_3 file_4}
Tclseparating list itemsIn this example, however, the string inside the braces is equivalent to the following list:

[list file_1 file_2 file_3 file_4]

Note:
Do not use commas to separate list items.

If you are attempting to perform command or variable substitution, the form with braces
does not work. For example, the following command reads a single file that contains
designs in the Synopsys internal .db format. The file is located in a directory defined by the
DESIGNS variable.

fm_shell (setup)> read_db $DESIGN/my_file.db
Loading db file '/u/project/designs/my_file.db'
No target library specified, default is WORK
1
fm_shell (setup)>

Attempting to read two files with the following command fails because the variable is not
expanded within the braces:

fm_shell (setup)> read_db {$DESIGNS/f1.db $DESIGNS/f2.db}
Error: Can't open file $DESIGNS/f1.db.
0
fm_shell (setup)>

Using the list command expands the variables.

fm_shell (setup)> read_db [list $DESIGNS/f1.db $DESIGNS/f2.db]
Loading db file '/u/designs/f1.db'
No target library specified, default is WORK
Loading db file '/u/designs/f2.db'
No target library specified, default is WORK
1
fm_shell (setup)>

Formality® User Guide
T-2022.03

41

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Invoking Formality
Using the Shell and GUI Environments

Feedback

You can also enclose the design list in double quotation marks to expand the variables.

fm_shell (setup)> read_db “$DESIGNS/f1.db $DESIGNS/f2.db”
Loading db file '/u/designs/f1.db'
No target library specified, default is WORK
Loading db file '/u/designs/f2.db'
No target library specified, default is WORK
1
fm_shell (setup)>

Editing From the Command Line
You can use the command-line editing capabilities in the Formality tool to complete
commands, options, variables, and files that have a unique abbreviation. This line-editing
capability allows you to use the shortcuts and options available in the Emacs or vi editor.
Use the list_key_bindings command to display current key bindings and the current
edit mode. To change the edit mode, set the sh_line_editing_mode variable in either
the .synopsys_fm.setup file or directly in the shell. To disable this feature, you must set
the sh_enable_line_editing variable to false in your .synopsys_fm.setup file. It is set
to true by default. If you type a part of a command or variable and then press the Tab
key, the editor completes the words or file for you. A space is added to the end if one does
not already exist to speed typing and provide a visual indicator of successful completion.
Completed text pushes the rest of the line to the right. If there are multiple matches, all
matching commands and variables are automatically listed. If no match is found (for
example, if the partial command name you have typed is not unique), the terminal bell
rings.

History
listingpreviously entered commandsThe history command with a numeric argument (n) lists the last n commands that you
entered. By default, the history command without an argument lists the most recent 20
commands.

The following syntax is used for the history command:

commandshistoryhistory commandhistory [keep number_of_lines] [info number_of_entries]
 [-h] [-r]

The options and variables used for the history command are explained as follows:

variableshdlin_interface_onlyhdlin_interface_only variableskeep number_of_lines Changes the length of the history buffer to the
number of lines you specify.

variableshdlin_interface_onlyhdlin_interface_only variablesinfo number_of_entries Limits the number of lines displayed to the specified
number.

variableshdlin_interface_onlyhdlin_interface_only variables-h Shows the list of commands without loading
numbers.

variableshdlin_interface_onlyhdlin_interface_only variables-r Shows the history of commands in reverse order.

Formality® User Guide
T-2022.03

42

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Invoking Formality
Using the Shell and GUI Environments

Feedback

For example, use the following command to review the 20 most recent commands
entered:

fm_shell (setup)> history
 1 alias warning_only "set message_level_mode warning"
 2 include commands.pt
 3 warnings_only
 4 help set
 5 history -help
 6 alias warnings_only "set message_level_mode warning"
 7 warnings_only
 8 ls -al
 9 unalias warning_only
 10 unalias warnings_only
 11 history
fm_shell (setup)>

You can use the keep argument to change the length of the history buffer. To specify a
buffer length of 50 commands, enter the following command:

fm_shell (setup)> history keep 50
You can limit the number of entries displayed, regardless of the buffer length, by using the
info argument. For example, enter

fm_shell (setup)> history info 3
 10 unalias warnings_only
 11 history
 12 history info 3
fm_shell (setup)>

You can also redirect the output of the history command to create a file to use as the
basis for a command script. For example, the following command saves a history of
commands to the file my_script:

fm_shell (setup)> redirect my_script { history -h }
Recalling Commands

commandsrecallingcommand shortcutsUse these Linux-style shortcuts to recall and execute previously entered commands:

variableshdlin_interface_onlyhdlin_interface_only variables!! Recalls the last command.

variableshdlin_interface_onlyhdlin_interface_only variables!-n Recalls the nth command from the last.

variableshdlin_interface_onlyhdlin_interface_only variables!n Recalls the command numbered n (from a history list).

variableshdlin_interface_onlyhdlin_interface_only variables!text Recalls the most recent command that started with text; text
can begin with a letter or underscore (_) and can contain
numbers.

Formality® User Guide
T-2022.03

43

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Invoking Formality
Using the Shell and GUI Environments

Feedback

The Formality shell displays the mode that you are currently in when using a particular
command. The common modes that are available are guide, setup, match, and verify. The
following example recalls and runs the most recent verification command:

fm_shell (verify)> !ver
verify ref:/WORK/CORE impl:/WORK/CORE
 .
 .
 .

fm_shell (verify)>

This example recalls and starts the most recently run command:

fm_shell (setup)> !!
 1 unalias warnings_only
 2 read_verilog -r top.v
fm_shell (setup)>

Aliasing
command aliasaliasesYou can use aliases to create short forms for the commands you commonly use. For
example, the following command creates an alias called err_only that invokes the set
command:

fm_shell(setup)>alias err_only “set message_level_mode error”
After creating the alias, you can use it by entering err_only at the fm_shell prompt.

The following points apply to alias behavior and use:

• Aliases are recognized only when they are the first word of a command.

• Alias definitions take effect immediately and last only while the Formality session is
active.

• Formality reads the .synopsys_fm.setup file when you invoke it; therefore, define
commonly used aliases in the setup file.

• You cannot use an existing command name as an alias name. However, aliases can
specify other aliases.

• You can supply arguments when defining an alias by surrounding the entire definition
for the alias in quotation marks.

Using the alias Command
Use the following commandsaliasalias commandsyntax for the alias command:

alias [name [definition]]

Formality® User Guide
T-2022.03

44

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Invoking Formality
Using the Shell and GUI Environments

Feedback

variableshdlin_interface_onlyhdlin_interface_only variablesname Represents the name (short form) of the alias you are creating
(if a definition is supplied) or listing (if no definition is supplied).
The name can contain letters, digits, and the underscore
character (_). If no name is given, all aliases are listed.

variableshdlin_interface_onlyhdlin_interface_only variablesdefinition Represents the command and list of options for which you
are creating an alias. If an alias is already specified, definition
overwrites the existing definition. If no definition is specified,
the definition of the named alias is displayed.

When you create an alias for a command containing dash options, enclose the whole
command in quotation marks.

Using the unalias Command
commandsunaliasunalias commandThe unalias command removes alias definitions. The following syntax for the unalias
command applies:

unalias [pattern...]

variableshdlin_interface_onlyhdlin_interface_only variablespattern Lists one or more patterns that match existing aliases whose
definitions you want removed.

For example, use the following command to remove the set_identity_check alias:

fm_shell (setup)> unalias set_identity_check

Redirecting
outputredirectingredirectingoutput> operator>> operatorYou can cause Formality to redirect the output of a command or a script to a specified file
by using the Tcl redirect command or using the > and >> operators.

commandsredirectredirect command

Use the redirect command in the following form to redirect output to a file:

fm_shell(setup)> redirect file_name “command_string”
Use a command in the following form to redirect output to a file by using the > operator:

fm_shell(setup)> command > file

If the file does not exist, Formality creates it. If the file does exist, Formality overwrites it
with new output.

Use a command in the following form to append output to a file:

fm_shell (setup)> command >> file

Formality® User Guide
T-2022.03

45

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Invoking Formality
Using the Shell and GUI Environments

Feedback

If the file does not exist, Formality creates it. If the file does exist, Formality adds the
output to the end of the file.

Unlike Linux, Formality treats the > and >> operators as arguments to a command.
Consequently, you must use spaces to separate the operator from the command and from
the target file. In the following example, the first line is incorrect:

fm_shell (setup)> echo $my_variable>>file.out
fm_shell (setup)> echo $my_variable >> file.out
Note:

The Tcl built-in commandcommandsputsputs built-in command puts does not redirect output. Formality provides a
similar command, commandsechoecho commandecho, that enables output redirection.

Command Log Files
command log filefilescommand logThe Formality command log file is called fm_shell_commandn.log (where n is an integer
indicating more than one invocation of Formality from the same directory). This command
log file records the fm_shell commands in a Formality session, including setup file
commands and variable assignments.

You can use the command log file in the following situations:

• After a Formality session to keep a record of the design analysis

• sourcingprevious sessionsprevious session, sourcingBy sourcing it as a script to duplicate a Formality session

log filefilessession logIf you have problems using Formality, save this command log file for reference when you
contact Synopsys. Move the command log file to another file name to prevent it from being
overwritten by the next fm_shell session.

GUI Environment
GUIoverviewinterfacesGUIThis section includes the following topics that relate to using the Formality GUI:

• Windows

• Prompt

• Copying Text

• Saving the Transcript

Windows
The Formality GUI uses multiple windows to display different types of information, such as
schematics and logic cones. These windows are opened by certain menu commands in
the GUI.

Formality® User Guide
T-2022.03

46

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Invoking Formality
Using the Shell and GUI Environments

Feedback

The Window menu lists the GUI windows that are present and lets you manage those
windows. Selecting any window in the list activates that window (restores the window from
icon form, if necessary, and moves it to the front).

Prompt
You can use the Formality prompt to run fm_shell commands without closing the GUI.

To run the fm_shell command from within the GUI, follow these steps:fm_shell commandwithin GUI

1. Enter a command in the text area at the Formality prompt. You can use any of these
methods:

• Type the command directly.

• Click History, and then copy and paste commands into the text box.

2. Press the Enter key to execute the command.

After you perform these steps, Formality runs the command and adds it to the command
history list. The transcript area displays the command results.

You can use multiple lines at the prompt by pressing Shift-Enter to move to the next line.
Specify a “\” at the end of each line to indicate that the text continues on the next line.

Press the Shift-Up Arrow or Shift-Down Arrow key to cycle through the command history.

Copying Text
You can copy text to another application window by following these steps:

1. To display the transcript, click Log.

2. Select the text in the transcript area you want to copy.

3. Right-click and choose Copy.

4. Move the pointer to a shell window outside the Formality tool, or to another open
application, and execute the Paste command.

In addition, you can use the Linux-style method of selecting with the left-mouse button and
pasting with the middle-mouse button to transfer text into a shell window.

You can copy text from an application window to the Formality prompt by following these
steps:

1. Select the text you want to copy.

2. Use the Copy command to place the highlighted text on the clipboard.

3. Locate the pointer in the command bar where you want the text to appear, and execute
the Paste command.

Formality® User Guide
T-2022.03

47

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Invoking Formality
Using the Shell and GUI Environments

Feedback

In addition, you can use the Linux-style method of selecting with the left-mouse button and
pasting with the middle-mouse button to transfer text from a shell window to the prompt
line.

Saving the Transcript
To save the transcript area, follow these steps:

1. Choose File > Save Transcript to open the Save Transcript File dialog box.

2. Enter a file name or use the browser to select the file in which to save the transcript
text.

3. Click Save.

Script Files
script filesourcingsourcingscript filescommandssourcesource commandsyntaxYou can use the source command to run scripts in Formality. A script file, also called a
command script, is a sequence of fm_shell commands in a text file. The syntax of the
source command is:

fm_shell (setup)> source [-echo] [-verbose] script_file_name

variableshdlin_interface_onlyhdlin_interface_only variables-echo Displays each command in the script as it is run.

variableshdlin_interface_onlyhdlin_interface_only variables-verbose Displays the result of each command in the script.

variableshdlin_interface_onlyhdlin_interface_only variablesscript_file_name Represents the name of the script file to be run.

script filetasksTable 2 lists some of the tasks you can perform with script files.

Table 2 Script File Actions

Task Description Example

Add comments Add block comments by beginning
comment lines with the pound sign
(#).Add inline comments by using a
semicolon to end a command, and
then using a pound sign to begin the
comment.

Set the new string
#
set newstr "New"; # comment

Formality® User Guide
T-2022.03

48

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Invoking Formality
Using the Shell and GUI Environments

Feedback

Table 2 Script File Actions (Continued)

Task Description Example

Continue
processing after an
error

If an error occurs during the script
execution, by default Formality
discontinues processing the script.
To force Formality to continue
processing in this situation, set the
sh_continue_on_error variable to true.
(The results might be invalid if an error
has occurred.)

set_app_var sh_continue_on_error
true

Find scripts using
the search_path
variable

Set the sh_source_uses_search_path
variable to true.

set_app_var
sh_source_uses_search_path true

Messages
commandsinterruptinginterruptingfm_shell commandsControl-c interruptIn fm_shell, you can interrupt Formality by pressing Ctrl+C. The response depends on
what Formality is doing currently.

• If Formality is processing a script, script processing stops.

• diagnosisinterruptinginterruptingdiagnosisIf Formality is in the middle of a process, the following message appears:

Interrupt detected: Stopping current operation

Depending on the design, it can take Formality one or two minutes to respond to Ctrl
+C.

• If Formality is waiting for a command (not in the middle of a process), the following
message appears:

Interrupt detected: Application exits after three ^C interrupts

In this case, you can exit Formality and return to the Linux shell by pressing Ctrl+C two
more times within 20 seconds, with no more than 10 seconds between each press.

In the GUI, when you run a verification, a progress bar appears in the status bar. You can
interrupt the process by clicking Stop. Processing might not stop immediately.

Controlling Message Types
Formality issues messages in certain formats and during certain situations. You can
control the types of messages Formality displays.

Formality® User Guide
T-2022.03

49

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Invoking Formality
Using the Shell and GUI Environments

Feedback

messagessyntaxerror messagesmessageserrorFormality generates messages in one of two formats:

severity: message (code)
severity: message

variableshdlin_interface_onlyhdlin_interface_only variablesseverity: message (code) Represents the level of severity (note, warning, or error) as
described in Table 3.

variableshdlin_interface_onlyhdlin_interface_only variablesseverity: message The text of the message.

variableshdlin_interface_onlyhdlin_interface_only variablescode Helps identify the source of the message. The code is separated
into a prefix and a number. The prefix is two, three, or four letters,
such as INT-2. For information about a particular message code,
use the man command (for example, man INT-2).
Formality has three specific message prefixes, FM-, FMR-, and
FML-. The prefix indicates the type of Formality function involved:
a general Formality function, the Verilog RTL reader, or the Verilog
library reader, respectively.

In the following example, Formality displays an error-level message as a result of an
incorrectly entered read_db command:

fm_shell (setup)> read_db -myfile
Error: unknown option '-myfile' (CMD-010)
Error: Required argument 'file_names' was not found (CMD-007)
fm_shell (setup)>

error messagesTable 3 describes the different error message levels.

Table 3 Message Severities

Severity Description Example

Note Notifies you of an item of general
interest. No action is necessary.

^C Interrupt detected: Stopping current
operation.

Warning Appears when Formality encounters an
unexpected, but not necessarily serious,
condition.

Warning: License for “DW-IP-Consultant” has
expired. (SEC-6)

Error Appears when Formality encounters
an unexpected condition that is more
serious than a warning. Commands in
progress are not completed when an
error is detected. An error can cause a
script to terminate.

Error: Required argument “file_names” was not
found (CMD-007).

Each message is identified by a code, such as CMD-010. To obtain more information
about a message, see the man page for the code. For example, if Formality reports

Formality® User Guide
T-2022.03

50

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Invoking Formality
Using the Shell and GUI Environments

Feedback

Error: Can’t open file xxxx (FM-016), you can obtain more information by entering
man FM-016.

Set Thresholds
message thresholds, settingYou can establish a message-reporting threshold that remains effective during the
Formality session. This threshold can cause Formality to display error messages only,
warnings and error messages only, or notes, warnings, and error messages.

thresholds, message levelsettingmessage thresholdslimitingmessagesparametersmessage thresholdmessageslimitingseverity rating for messagesBy default, the Formality tool issues three levels of messages described in Table 3. messagestypesA
fourth message type, fatal error, occurs when the tool encounters a situation that causes
the tool to exit. Regardless of the threshold setting, Formality always issues a fatal error
message before it exits the tool and returns control to the shell.

black boxidentity checkidentity check, black boxesparametersidentity check, black boxesmessagessetting thresholdTo set the message threshold, use the Formality shell or the GUI as shown:

fm_shell GUI

Specify: commandscreate_containercreate_container commandset_app_var
message_level_mode threshold
Specify error, warning, info, or none for
threshold.

1. Choose Edit > Formality Tcl Variables. The
Formality Tcl Variables dialog box appears.

2. From Setup, select the message_level_mode
variable.

3. In the Choose a value text box, select error,
warning, info, or none.

4. Choose File > Close.

Output Files
filesoutputdataoutput file typesoutputfile typesFormality generates several types of output files, as illustrated in Figure 7.

Formality® User Guide
T-2022.03

51

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Invoking Formality
Using the Shell and GUI Environments

Feedback

Figure 7 Generated Output

Formality® User Guide
T-2022.03

52

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Invoking Formality
Using the Shell and GUI Environments

Feedback

The filesoutputdataoutput file typesoutputfile typesoutput files generated by Formality are described as follows:

Generated Output Description

Formality reportscommandscreate_containercreate_container command These are ASCII files produced by redirecting the output
from the Formality reporting feature. These reports contain
information about all aspects of the verification and diagnosis.

Saved sessioncommandscreate_containercreate_container command A file that contains the state of the verification session. You
create this file by saving the Formality session.

Saved containers The Formality internal representation of a container. You
create these files by saving individual containers.
For information about saving containers, see Setting Up and
Managing Containers.

Formality work directory The Formality tool creates the work directory named
FM_WORK upon invocation. It contains containers and
shared technology libraries.

Formality log files The Formality tool maintains the following log files:
formality.log, fm_shell_command.log, and formality_svf.log.
The formality.log file contains verbose information not
printed to the transcript. For example, during verification,
the transcript might print an information message indicating
that constants were propagated in the reference design and
directing you to the formality.log file for more information.
The fm_shell_command.log file contains a history of
Formality shell commands that have been run during the
session.
The formality_svf directory contains all guidance information
from any SVF files specified with the set_svf command.
If multiple sessions of Formality are running, the working
directory and log files are named using the following scheme,
where n is an integer value:
FM_WORKn
formalityn.log
fm_shell_commandn.log
formalityn.svf

Formality® User Guide
T-2022.03

53

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Invoking Formality
Using the Shell and GUI Environments

Feedback

Generated Output Description

Formality FM_INFO
information directory

By default, the Formality tool creates a FM_INFO
directory, which can be disabled using the
FORMALITY_DISABLE_INFO_DIRECTORY environment variable
as follows:
setenv FORMALITY_DISABLE_INFO_DIRECTORY
The following files are created in the FM_INFO directory:
• cmd: The command-line used to run the tool
• cpuinfo: Copy of /proc/cpuinfo
• disk: Available disk space when run starts
• env: All environment variables
• guidance.perf: The SVF performance summary. This file

is encrypted
• guidance.summary: The SVF accepted or rejected

summary
• host: Information about the host you are running on
• limits: Information about the limits imposed on the

Formality process
• meminfo: Copy of /proc/meminfo
• milestones: The milestone information. This file is

encrypted
• monitor: The load on the machine and the available disk

space sampled every 10 minutes or so
• vars.tcl: The Tcl variables with the non-defaults
Note:

The tool uses a Tcl variable here because the directory
is created before the Tcl interpreter starts. Like other
Formality generated files, the FM_INFO directory gets a
numerical suffix to make it unique. The FM_INFO work
directory works with the -work_path and -name_suffix
options of the fm_shell command. Use these options to
change the location and the name of the directory.

Note:
Exiting abnormally from Formality can clutter your file system with locked files
associated with Formality logs and with the Formality working directory. You can
safely delete these files when the Formality session associated with them is no
longer running.

Control File Names Generated by Formality
The output file names can be appended with a specified suffix for each invocation of the
tool. These names can be appended with a unique suffix for each verification run.

Specifying a unique name can be useful for correlating the Formality transcript with the
Formality log file when you run multiple verifications within the same directory.

Formality® User Guide
T-2022.03

54

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 3: Invoking Formality
Using the Shell and GUI Environments

Feedback

Use the fm_shell -name_suffix suffix command to specify unique file names.
Formality constructs the file names and directories as follows:

• formality_suffix.log

• fm_shell_command_suffix.log

• formality_suffix_svf

• FM_WORK_suffix

You can also use the -overwrite option to overwrite existing files. If you use the
-name_suffix option and a file with the same suffix already exists, Formality generates an
error message. If you want to overwrite any existing files, use the -overwrite option with
the fm_shell command.

You can access (read-only) the following two tool command language (Tcl) variables to
see the new file names for the formality.log file and the fm_shell_command.log file:

• formality_log_name

• sh_command_log_file

Formality® User Guide
T-2022.03

55

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

4
Tutorial

This tutorial explains first how to prepare for running Formality and then works through
three examples of using the tool.

This chapter includes the following quick-start tutorialsections:

• Before You Start

• Verifying fifo.vg Against fifo.v

• Verifying fifo_with_scan.v Against fifo_mod.vg

• Verifying fifo_jtag.v Against fifo_with_scan.v

• Reference Topics

Before You Start
installationBefore you begin this tutorial, ensure that Formality is properly installed on your system. path,

setting.cshrc[cshrc]install directoryYour .cshrc file should set the path to include the bin directory of the Formality installation.
For example, if your installation directory is /u/admin/formality and your platform type
is sparcOS5, specify the set path statement, where /u/admin/formality represents the
Formality installation location on your system:

set path = ($path /u/admin/formality/bin)

You do not need a separate executable path for each platform. The Formality invocation
script automatically determines which platform you are using and calls the correct binary.
To enable the tool to do this, however, you must make sure all platforms needed are
installed in one Formality tree. Install Formality in its own directory tree, separate from
other Synopsys tools such as Design Compiler.

Creating Tutorial Directories
After installing Formality, the files needed for the design examples are located in the
fm_install_path/doc/fm/tutorial directory. You must copy the necessary files to your home
directory.

Formality® User Guide
T-2022.03

56

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Tutorial
Before You Start

Feedback

To create a tutorial directory with all of its subdirectories, do the following:

1. Change to your home directory.

% cd $HOME
2. Use the following command to copy the tutorial data, where fm_install_path is the

location of the Formality application:

% cp -r fm_install_path/doc/fm/tutorial $HOME
3. Change to the new tutorial directory.

% cd tutorial

Tutorial Directory Contents
The tutorial directory contains the following subdirectories:

• GATE: Verilog gate-level netlist.

• GATE_WITH_JTAG: Verilog gate-level netlist with scan and Joint Test Action Group
(JTAG) insertions.

• GATE_WITH_SCAN: Verilog gate-level netlist with scan insertion.

• LIB: Logic library required for gate-level netlists.

• RTL: RTL source code.

Invoking the Formality Shell
To start Formality, enter the following command at the operating system prompt:

% fm_shell
...
fm_shell (setup)>

The fm_shell command starts the Formality shell environment and command-line
interface. From here, start the GUI as follows:

fm_shell (setup)> start_gui
The word (setup) indicates the mode that you are currently in when using commands.
The modes that are available are guide, setup, match, and verify. When you invoke
Formality, you begin in the setup mode.

For more information about fm_shell and GUI environments, see Invoking Formality.

Formality® User Guide
T-2022.03

57

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Tutorial
Verifying fifo.vg Against fifo.v

Feedback

Verifying fifo.vg Against fifo.v
In this portion of the tutorial you verify a synthesized design named fifo.vg, which is a pure
Verilog gate-level netlist, against the RTL reference design named fifo.v.

At any time, you can exit and save the current Formality session by executing the following
command:

fm_shell> save_session session_file_name
To invoke that session again, execute

fm_shell> restore_session session_file_name

Loading the SVF File
Before specifying the reference and implementation designs, you can optionally load an
automated setup file (.svf) into Formality. The SVF file helps Formality process design
changes caused by other tools used in the design flow. Formality uses this file to assist
the compare point matching and verification process. This information facilitates alignment
of compare points in the designs that you are verifying. For each SVF file that you load,
Formality processes the content and stores the information for use during the name-based
compare point matching period.

To load the SVF file, do the following:

fm_shell> set_svf svf_file_name.svf
Note:

If you want to pass additional constraint and nonconstraint information from
Design Compiler to Formality, set the automated setup mode before reading the
SVF file.

Note:
This tutorial does not use an SVF file, so this information is given here for
reference only.

Formality® User Guide
T-2022.03

58

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Tutorial
Verifying fifo.vg Against fifo.v

Feedback

Specifying the Reference Design
Specifying the reference design involves reading in of design files, optionally reading in
technology libraries, and setting the top-level design.

The reference design is the design against which you compare the transformed
(implementation) design. The reference design in this case is the RTL source file named
fifo.v.

It is necessary to specify that the DesignWare root directory for fifo.v contains a
DesignWare instantiated RAM block. As needed, enter getenv SYNOPSYS at the Formality
prompt to obtain the path name of the root directory.

Set the search path to the RTL and LIBS directories as follows,

fm_shell> set_app_var hdlin_dwroot path_to_DesignCompiler_install
Now load in all the reference Verilog files,

fm_shell> read_verilog -r { fifo.v gray2bin.v gray_counter.v
pop_ctrl.v push_ctrl.v rs_flop }
Note the reference does not need any specific technology file to which to map, so the top-
level design for the reference can now be defined.

Setting the top-level design starts the linking and elaboration process on all files and
reports if there are any missing files. Formality searches for the DesignWare RAM
automatically:

fm_shell> set_top fifo

Specifying the Implementation Design
The procedure for specifying the implementation design is identical to that for specifying
the reference design. In this case though, there is no need for a technology library to
which to map.

fm_shell> read_db -i lsi_10k.db
Use a Verilog gate-level design for the GATE directory to compare to the reference.

fm_shell> read_verilog -i GATE/fifo.vg
To define the top level of the implementation use this command:

fm_shell> set_top fifo

Formality® User Guide
T-2022.03

59

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Tutorial
Verifying fifo.vg Against fifo.v

Feedback

Setting Up the Design
You often need to specify additional setup information to account for designer knowledge
not contained in the design netlist or to achieve optimal performance.

This step involves supplying information to Formality. For example, you might need to set
constants if the design underwent transformations such as scan or JTAG insertion. In this
case, only fifo.vg was synthesized; therefore, you can move on to the next step, Match.

For more information about setup possibilities, see Performing Setup.

Matching Compare Points
Match compare points is the process by which Formality segments the reference and
implementation designs into logical units, called logic cones. Each logic cone feeds
a compare point, and each compare point in the implementation design must match
each compare point in the reference design or else verification fails. Matching ensures
that there are no mismatched logic cones and verifies the implementation design for
functionality.

For conceptual information about compare points, see Concept of Compare Points. For
more information about how Formality matches compare points, see Performing Compare
Point Matching.

To match compare points between fifo.v and fifo.vg, do the following:

fm_shell> match

Verifying the Designs
To verify the designs:

fm_shell> verify
In this case, verification fails. This test case includes a deliberate design error to introduce
you to the debug capabilities of Formality.

Formality® User Guide
T-2022.03

60

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Tutorial
Verifying fifo.vg Against fifo.v

Feedback

Debugging
The challenge for most users is debugging failed verifications. That is, you must find the
exact points in the designs that exhibit the difference in functionality and then fix them.

Using the GUI for debugging is much more intuitive. The following command invokes the
GUI:

fm_shell> start_gui
Before proceeding with debugging in this tutorial, the next section briefly goes over some
aspects of the GUI.

Graphical User Interface
This section explains how to use the graphical user interface in Formality in the following quick-start

tutorialsubsections:

• Main GUI Session Window

• Debugging Using the GUI

• Verifying fifo_with_scan.v Against fifo_mod.vg

• Verifying fifo_jtag.v Against fifo_with_scan.v

• Debugging Using Diagnosis

• Reference Topics

Main GUI Session Window
The main GUI session window contains the following window areas, as shown in Figure 8.

Formality® User Guide
T-2022.03

61

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Tutorial
Verifying fifo.vg Against fifo.v

Feedback

Figure 8 GUI Session Window

Table 4 Window Areas

Window area Description

Design bar Displays the path for the reference and implementation WORK libraries.

Menu bar GUI commands, some of which are duplicated in the toolbar and right-click
options.

Toolbar GUI commands. The toolbar changes depending on the view displayed in
the context pane. You can rearrange the icons on the toolbar and move the
toolbar to any edge of the window. Right-click on the toolbar and select or
deselect to view the desired toolbar menu.

Formality® User Guide
T-2022.03

62

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Tutorial
Verifying fifo.vg Against fifo.v

Feedback

Table 4 Window Areas (Continued)

Window area Description

Flow-based toolbar Options that indicate the correct flow to employ to perform formal verification.
The options are highlighted to indicate where you are in the flow. Each option
displays a new view in the context pane. By default, the GUI opens at the first
step, Guidance, with the guidance work area displayed in the context pane.
When you use fm_shell to perform steps and invoke the GUI, the GUI opens
with the option highlighted to indicate where you are in the flow. This also
occurs when you continue a previously saved Formality session.

Context pane The main working area. From here, you perform the actions necessary to
perform verification. You can also view reports here. You can resize and
detach the context or report pane to view larger reports.

Command console Displays transcripts and other information, depending on the command used
at the Formality prompt. You can resize and detach the command console to
view large command transcripts.

Formality prompt The text box where you can enter Formality commands and variables that
are not available through the GUI interface.

Status bar Current state of the tool.

Debugging Using the GUI
To debug the implementation design, fifo.vg,

1. Start the Formality tool and open the Formality GUI.

For information on how to start Formality, see Invoking the Formality Shell.

2. On the flow-based toolbar, click the Debug tab if it is not already selected.

The context pane displays the Failing Points report. Groups of failing points with
similar names might appear, except for the last elements. For example, you might see
*_[reg0], *_[reg1], *_[reg2], and *_[reg3]. Typically, a group of failing points is caused
by a single error.

3. To run diagnosis on the failing points, click Analyze.

During diagnosis, Formality analyzes a set of compare points and finds the error
candidates. Click on the error candidates. The Error Candidates window appears
displaying the error candidates found in your design.

Note:
While debugging, if you get an error stating there was a diagnosis failure
due to too many errors (and you know the error is not caused by setup
problems), select a group of failing points with similar names and right-click

Formality® User Guide
T-2022.03

63

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Tutorial
Verifying fifo.vg Against fifo.v

Feedback

and choose Diagnose Selected Points. This might help to direct diagnosis to
a specific section of the design.

4. From the Error Candidates Window, right-click the error U81 and select Show Logic
Cones.

The window displays a list of related failing points for that error, from which you can
select one of those points (for this example, use push_logic/pop_count_svd_reg[0])
and double-click it to view the logic cone.

The Cone Schematics window appears, displaying reference (top screen) and
implementation (bottom screen) schematics for the logic cone. It highlights and
zooms to the error candidate inverter, U81, in the implementation cone. The reference
schematic highlights the matching region corresponding to the error candidate in the
implementation design.

The error candidate is highlighted in orange. The corresponding matching region in the
reference design is highlighted in yellow. To view the error region in isolation,

• Right-click and choose Prune/Restore > Isolate Error Candidates

Or

• Choose Edit > Prune/Restore > Isolate Error Candidates

This prunes away all the logic and shows the error inverter.

You can view the cone inputs that have been pruned away in the Pattern window.

Colors in the schematics window have different meanings depending on the color
mode selected. The color modes are none (the default), constants, simulation values,
and error candidates.

• None: The default color mode.

• Constants: Nets with a constant logic value 0 are blue, nets with logic 1 are orange,
and the remaining nets are gray. The remaining objects are colored in the default
color mode.

• Simulation values: Nets with simulation logic 0 are blue, nets with simulation logic 1
are orange, and the remaining objects are colored in the default color mode.

• Error candidates: Error drivers corresponding to the error candidates are highlighted
in orange. The corresponding matching region is highlighted in yellow.

5. Observe the patterns annotated on the CLK net. The reference design shows logic 0,
while the implementation design shows logic 1.

Formality® User Guide
T-2022.03

64

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Tutorial
Verifying fifo.vg Against fifo.v

Feedback

To find the cause for this functional difference,

• Select the net in the implementation design.

• Right-click and choose Prune/Restore > Isolate Subcone.

• Select the net in the reference design.

• Right-click and choose Prune/Restore > Isolate Subcone.

The screens change to display only the net with errors. Note that the logic driving the
implementation CLK pin includes an inverter. During synthesis, an inverter might be
inserted to fix hold time problems.

You can

• Zoom in by clicking the Zoom In icon on the toolbar or by clicking on the schematic.
Deselect the option to return to the pointer.

• Copy selected objects in the design and cone schematics. From the context pane,
you can highlight the object, select Edit > Copy, and choose one of the following
menus: Instance Name, Library Name, or Design Name.

• Paste these names into the Formality prompt or any other editable text box by
pressing Ctrl+V or by right-clicking and choosing Paste.

6. Fix the error by editing the netlist or resynthesizing the design to generate a new netlist
free of errors in clock tree manipulations.

The fifo_mod.vg file in the GATE directory contains the corrected netlist. Execute the
following command at the Formality prompt to view the difference:

% diff fifo.v fifo.mod.vg
You can see that the modified netlist removes the inverter.

7. After closing the Cone Schematics window, verify the corrected implementation design,
fifo_mod.vg, against the reference design. Specify fifo_mod.vg again as the new
implementation design as follows:

• Click the Implementation tab.

By default, the Read Design Files and Verilog tabs are active.

• Click the Verilog tab.

• Click Yes to remove the current implementation design data.

Formality® User Guide
T-2022.03

65

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Tutorial
Verifying fifo.vg Against fifo.v

Feedback

Note:
Clicking Yes permanently removes the current implementation design
data. In practice, you must save the data before specifying a new
implementation (or reference) design.

• Navigate to the GATE subdirectory and select the fifo_mod.vg design file.

• Click Open and click Load Files .

Skip the Read DB Libraries tab because the technology library is shared.

• Click the Set Top Design tab and make sure that WORK and fifo are selected.

• Click Set Top.

8. Skip the Setup step. In this tutorial, you can also skip the Match step because you did
not change the setup that alters compare points, and you did not appreciably change
the implementation design by removing the inverter. In addition, you know that all the
compare points matched previously.

9. From the Verify tab, click Verify.

Formality performs automatic compare point matching before verification when you do
not perform the Match step beforehand. Verification is successful.

Now that you have completed this section of the tutorial, prepare the GUI as follows for the
next section:

1. From the Designs menu, choose Remove Reference and click Yes.

2. From the Designs menu, choose Remove Implementation and click Yes.

Note:Clicking Yes permanently removes the current reference and implementation
data. Always make sure to save (as required) before removing any design data.

3. At the Formality prompt, enter the following command:

remove_library -all

The transcript says “Removed shared technology library ‘LSI_10K’”.

You now have the equivalent of a fresh session with which to execute the next section
of the tutorial.

Formality® User Guide
T-2022.03

66

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Tutorial
Verifying fifo_with_scan.v Against fifo_mod.vg

Feedback

Verifying fifo_with_scan.v Against fifo_mod.vg
Note:

At any time, you can exit and save the current Formality session by choosing
File > Save Session. To invoke that session again, choose File > Restore
Session.

In this tutorial, the load reference and implementation steps are done using the GUI.
Though not typical, it is done this way here to show the GUI steps since it was done from
the shell in the first tutorial section. Doing it from the fm_shell is left as an exercise for the
user.

To perform the verification steps (reference, implementation, setup, match, verify, and
debug) in one continuous flow,

In the following tutorial, specify the successfully verified netlist, fifo_mod.vg, as
the reference design and the fifo_with_scan.v design that went through a design
transformation as the implementation design. The fifo_with_scan.v design includes a scan
logic.

1. On the flow-based toolbar, click the Reference tab.

By default, the Read Design File tab and Verilog tab are active.

2. Click Verilog.

The Add Verilog Files dialog box appears.

3. Navigate to the GATE directory and select the fifo_mod.vg design file.

4. Click Open and click Load Files .

5. Click the Read DB Libraries tab and select Read as a shared library.

Because this is a gate-to-gate verification, the logic library must be available for both
the fifo_mod.vg and fifo_with_scan.v designs. By default, DB logic libraries are shared.

If you use a Verilog or VHDL logic library, you must specify the read_verilog
-technology_library or read_vhdl -technology_library command at the
Formality prompt, because they are not shared libraries.

6. Click DB.

The Add DB Files dialog box appears.

7. Navigate to LIB directory and select the lsi_10k.db logic library file.

8. Click Open and click Load Files .

Formality® User Guide
T-2022.03

67

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Tutorial
Verifying fifo_with_scan.v Against fifo_mod.vg

Feedback

9. Click the Set Top Design tab and select the fifo design in the WORK library to set it as
the top-level design.

10. Click Set Top.

Next, you specify the implementation design, a procedure similar to the one described
in Specifying the Implementation Design.

11. Click the Implementation tab.

By default, the Read Design Files and Verilog tabs are selected.

12. Click Verilog.

The Add Verilog Files dialog box appears.

13. Navigate to the GATE_WITH_SCAN directory and select the fifo_with_scan.v design
file.

14. Click Open and click Load Files .

15. Click Set Top Design tab and select the fifo design in the WORK library to set it as the
top-level design.

16. Click Set Top.

Skip the Read DB Libraries step because you have already specified lsi_10k.db as a
shared logic library.

17. Click the Setup tab.

Unlike the verification you performed between fifo.vg and fifo.v, where you skipped the
setup phase, the implementation design you just specified must have its inserted scan
disabled before verification.

18. Click the Constants tab and click Set.

The Set Constant dialog box appears. It lists all the input, output, and bidirectional
ports within the fifo_with_scan.v design file.

19. Click the Implementation tab and select fifo, and see ports appears in the drop-down
box near the top of the display area.

20. Deselect the Inputs box under Hide Objects > Ports.

21. Scroll or search for the port named test_se and select it.

You can also use the Search text box to locate the signal that you want to change.

22. In the Constant Value area at the bottom of the dialog box, select 0 and click OK.

Formality® User Guide
T-2022.03

68

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Tutorial
Verifying fifo_with_scan.v Against fifo_mod.vg

Feedback

Setting the test signal, test_se, to a constant zero state disables the scan logic in the
fifo_with_scan.v design file. Note that test_se now appears in the Command console.

23. Click the Match tab and click Run Matching.

Matching yields one unmatched compare point that you need to analyze and fix if
necessary.

24. Click OK to remove the Information dialog box and click the Unmatched Points tab.

You see a report on the unmatched points, test_se, test_si1, and test_si2. These
are extra compare points in the implementation design, related to the inserted scan
that you previously disabled. In this case, extra compare points are expected in the
implementation design. Therefore, you can ignore them and continue to the verification
process.

Note:
Extra compare points in the reference design are not expected. Therefore,
you must debug them as outlined in Debugging on page 61.

25. Click the Verify tab and click Verify.

The verification is successful. The scan insertion did not alter the implementation
design features. However, if you had not disabled the test signal test_se in step 19,
verification would have failed.

Now that you have completed this section of the tutorial, prepare the GUI as follows for the
next section:

1. From the Designs menu, select Remove Reference and click Yes.

2. From the Designs menu, select Remove Implementation and click Yes.

Note:Clicking Yes permanently removes the current reference and implementation
data. Always make sure to save (as required) before removing any design data.

3. At the Formality prompt, enter the following command:

remove_library -all

The transcript says “Removed shared technology library ‘LSI_10K’.”

This is now the equivalent of a fresh session with which to execute the next section of
the tutorial.

Formality® User Guide
T-2022.03

69

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Tutorial
Verifying fifo_jtag.v Against fifo_with_scan.v

Feedback

Verifying fifo_jtag.v Against fifo_with_scan.v
To perform the following verification steps (reference, implementation, setup, match, verify,
and debug) in one continuous flow,

In this tutorial, specify the successfully verified scan-inserted netlist, fifo_with_scan.v, as
the reference design and the fifo_jtag.v design that went through a design transformation
as the implementation design. The fifo_jtag.v includes a JTAG insertion and a scan
insertion.

1. On the flow-based toolbar, click the Reference tab.

By default, the Read Design File tab and Verilog tab are active.

2. Click Verilog.

The Add Verilog Files dialog box appears.

3. Navigate to the GATE_WITH_SCAN and select the fifo_with_scan.v file design file.

4. Click Open and click Load Files .

5. Click the Read DB Libraries tab and select Read as a shared library.

Because this is a gate-to-gate verification, the logic library must be available for both
the fifo_with_scan.v and fifo_jtag.v designs.

6. Click DB

The ADD DB Files dialog box appears.

7. Navigate to the LIB directory and select the lsi_10k.db logic library file.

8. Click Open and click Load Files .

9. Click the Set Top Design tab and select the fifo design in the WORK library to set it as
the top-level design.

10. Click Set Top.

11. Click the Implementation tab.

By default, the Read Design Files tab and Verilog tab are active.

12. Click Verilog.

The Add Verilog Files dialog box appears.

13. Navigate to the GATE_WITH_JTAG directory and select the fifo_jtag.v design file.

14. Click Open and click Load Files .

Formality® User Guide
T-2022.03

70

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Tutorial
Verifying fifo_jtag.v Against fifo_with_scan.v

Feedback

15. Click the Set Top Design tab and select the fifo design in the WORK library to set it as
the top-level design.

16. Click Set Top.

You might have to scroll down to find the fifo design, because the inserted JTAG
modules are listed at the top of the choose-a-design pane.

Note:
If you set accidentally a wrong design as the top-level design, redefine the
implementation (or reference) design by first removing the reference and
implementation designs and starting again.

Skip the Read DB Libraries step because you have already specified lsi_10k.db as a
shared logic library in Step 7.

17. Click the Setup tab.

For this verification, you must disable the scan in fifo_with_scan.v in the reference
design and disable JTAG signals in the implementation design.

18. Click the Constants tab and click Set.

The Set Constant dialog box appears.

19. Click the Reference tab, select fifo, and see ports displayed in the drop-down box near
the top of the display area.

20. Deselect the Inputs box under Hide Objects > Ports.

21. Scroll or search for the test_se port and select it.

You can also use the Search text box to locate the signal that you want to change.

22. In the Constant Value area at the bottom of the dialog box, select 0 and click Apply.

23. Click the Implementation tab, select fifo, and see ports displayed in the drop down box
near the top of the display area.

24. Repeat Step 20-Step 22 to disable the test_se test signal for the implementation
design.

Similarly, disable the jtag_trst and jtag_tms JTAG signals by setting them to constant 0
and click Apply.

25. Close the Set Constant dialog box.

The Constants report lists the four disabled signals, one for the reference design and
three for the implementation design.

Formality® User Guide
T-2022.03

71

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Tutorial
Verifying fifo_jtag.v Against fifo_with_scan.v

Feedback

26. Click the Match tab and click Run Matching.

Matching yields 171 unmatched compare points that you must analyze and fix, if
necessary.

27. Click OK to close the Information dialog box and the Unmatched Points tab.

You see that the extra compare points are located in the implementation design and it
is related to the inserted JTAG that you previously disabled. Specifically, JTAG insertion
results in the addition of a large logic block called a tap controller. Therefore, extra
compare points are expected in the implementation design. You can ignore them and
move to verification.

28. Click the Verify tab and click Verify.

The verification is successful. The JTAG insertion did not alter the implementation
design features.

Debugging Using Diagnosis
In some designs, you can reach a point where you have fixed all setup problems in your
design or determined that no setup problems exist. Therefore, the failure must have
occurred because Formality found functional differences between the implementation and
reference designs.

Use the following steps to isolate the problem (assuming that you are working in the GUI).

1. On the flow-based toolbar, click the Debug tab.

2. Click the Failing Points tab to view the failing points.

During verification, Formality creates a set of failing patterns for each failing point.
These patterns show the differences between the implementation and reference
designs. Diagnosis is the process of analyzing these patterns and identifying error
candidates that might be responsible for the failure. Sometimes the design can have
multiple errors and, therefore, an error candidate can have multiple locations.

3. Select all failing points and click Analyze to run a diagnosis on all of the failing points
listed in this window.

Note:
After clicking Analyze, you might get a warning (FM-417) stating that too
many error locations caused the diagnosis to fail (if the error locations
exceed five). If this occurs and you have already verified that no setup
problems exist, select a group of failing points (such as a group of buses
with common names), and right-click and choose Diagnose Selected Points.
This can help the diagnosis by paring down the failing points to a specific

Formality® User Guide
T-2022.03

72

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Tutorial
Verifying fifo_jtag.v Against fifo_with_scan.v

Feedback

section in the design. Finally, if the group diagnosis fails, select a single
failing point and run the selected diagnosis.

When the diagnosis is complete, the Error Candidate window appears.

4. Click the Error Candidates tab to view the error candidates.

You see a list of error candidates in this window. An error candidate can have multiple
distinct errors associated with it. For each of the errors, the number of related failing
points is reported.

There can be alternate error candidates apart from those that are shown in this
window. You can inspect the alternate candidates by using Next and Previous. You
can reissue the error candidate report anytime after running the diagnosis by using the
report_error_candidates command.

5. Select an error with the maximum number of failing points. Right-click that error and
choose View Logic Cones.

If there are multiple failing points, a list appears, from which you can choose a
particular failing point to view. Errors are the drivers to the design whose function can
be changed to fix the failing compare point.

The schematic shows the error highlighted in the implementation design along with the
associated matching region of the reference design.

Note:
Changing the function of an error location can sometimes cause previously
passing input patterns to fail.

Examine the logic cone for the driver causing the failure. The problem driver
is highlighted in orange. To view the error region in isolation, click Isolate Error
Candidates Pruning Mode. You can also prune the associated matching region of the
reference design. You can undo this pruning mode by choosing the Undo option from
the Edit menu.

Note:
You can employ the previous diagnosis method by setting the
diagnosis_enable_error_isolation variable to false and then
rerunning the verification.

Formality® User Guide
T-2022.03

73

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 4: Tutorial
Reference Topics

Feedback

Reference Topics
For more information about each stage of the formal verification process demonstrated in
the tutorial, see the following chapters:

• Invoking Formality: This topic describes the user interfaces and describes how to
invoke the tool.

• Loading Designs: This topic describes how to read in designs and libraries, and how to
define the reference and implementation designs.

• Performing Setup: This topic describes how to set design-specific parameters to help
Formality perform verification and to optimize your design for verification.

• Performing Compare Point Matching: This topic describes how to match compare
points.

• Verifying the Design and Interpreting Results: This topic describes how to perform
verification.

• Debugging Verification: This topic describes diagnostic procedures that can help you
locate areas in the design that caused failure.

• Verifying Technology Logic Libraries: This topic describes how to compare two logic
libraries.

• Tcl Syntax as Applied to Formality Shell Commands: This topic describes Tcl syntax
as it relates to more advanced tasks run from the fm_shell. The subtopics include
application commands, built-in commands, procedures, control flow commands, and
variables.

Formality® User Guide
T-2022.03

74

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

5
Loading Guidance

Guidance is the process by which an implementation tool, such as Design Compiler,
provides setup information for formal verification. This chapter describes how to setup
designs for verification.

verificationestablishing environmentThe chapter includes the following sections:

• Guidance Overview

• Creating Guidance Files

• Guidance File Details

Guidance Overview
Guidance is the process by which an implementation tool, such as Design Compiler,
provides setup information for formal verification. This is supplied in the form of an
automated setup file (.svf).

Guidance helps Formality understand and process design changes made by other
tools that are in the design flow. Formality uses this information to assist compare point
matching and correctly set up verification without user intervention. It eliminates the need
to enter setup information manually, a task that is time consuming and error prone. For
example, during synthesis, the phase of a register might be inverted. This change is
recorded in the SVF file. When the SVF file is read into Formality, the tool can account for
the phase inversion during compare point matching and verification.

Figure 9 outlines the load guidance step in the Formality design verification process flow.

Formality® User Guide
T-2022.03

75

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Loading Guidance
Guidance Overview

Feedback

Figure 9 Loading Guidance in the Design Verification Process Flow

Formality® User Guide
T-2022.03

76

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Loading Guidance
Creating Guidance Files

Feedback

Creating Guidance Files
To generate guidance, create an SVF file during synthesis. This SVF guidance file can
then be used to generate a Formality verification script template, that is used to simplify
the tool setup.

This section on guidance basics is broken into the following topics:

• Creating an SVF File

• Using the Automated Setup Mode

• Reading the SVF File into Formality

• Generating Formality Verification Setup Scripts

• Understanding the Guidance Summary

Creating an SVF File
The first step in the automated setup flow is to create the SVF file. The Synopsys
synthesis tools record data in the SVF file that Formality can use. Formality reads this file
at the start of the verification process.

Synopsys synthesis tools generate an SVF file that describes the design changes.

Before reading any other file for synthesis, use the set_svf command to specify the name
of the SVF file:

dc_shell> set_svf myfile.svf
When Synopsys synthesis tools perform optimization, they add the relevant Formality
guidance commands to the SVF file.

To append the setup information to an existing SVF file, use the following command:

dc_shell> set_svf -append myfile2.svf
If you want to keep all the setup information in a single file rather than using a separate
SVF file for each invocation, use the set_svf -append command.

Using the Automated Setup Mode
To use the automated setup mode, set the synopsys_auto_setup Tcl variable to
true before reading in the SVF file. This sets a group of Formality variables to values
compatible with the Synopsys synthesis tools, thus improving the overall tool setup
performance using SVF guidance files.

Formality® User Guide
T-2022.03

77

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Loading Guidance
Creating Guidance Files

Feedback

To preserve the defaults of the variables that the tool changes during the automated
setup mode, use the synopsys_auto_setup_filter variable before you set the
synopsys_auto_setup variable to true.

Setting the synopsys_auto_setup variable to true modifies the behavior of clock gating
and checkpoint auto setup.

When you enable the synopsys_auto_setup variable, the tool selects a different clock-
gating algorithm based on the SVF clock-gating guidance. For latch-free clock gates, the
tool uses the appropriate clock-gate hold-mode algorithm. For latch-based clock gates, the
tool uses the reverse clock-gating algorithm. If guidance reports both latch-free and latch-
based clock gates, the tool uses the appropriate clock-gate hold-mode algorithm.

Clock-gating variables set explicitly continue to override the selection made by the tool
when using the synopsys_auto_setup variable.

Note:
You can manually turn off the selected algorithm with the
synopsys_auto_setup variable enabled. For example, if the tool initially
decides to use the reverse clock-gating algorithm, but you manually set the
verification_clock_gate_reverse_gating variable to false, no clock-
gating algorithm is used.

Setting the synopsys_auto_setup variable to true enables utilization of significant user
setups (specified before the preverify stage) during checkpoint verifications.

The synopsys_auto_setup variable changes the value of the
svf_checkpoint_auto_setup_commands variable as follows:

svf_checkpoint_auto_setup_commands all

For more information about the synopsys_auto_setup, synopsys_auto_setup_filter,
and svf_checkpoint_auto_setup_commands variables, see the corresponding variable
man pages.

Reading the SVF File into Formality
To automated setup filereadingfilesreading automated setupread an SVF file, use the set_svf command. The SVF file must be read in before
the design. Formality uses the information in the setup file during matching as well as
verification. It creates a directory named formality_svf, which contains the file, svf.txt
representing all the SVF files read in and the subdirectories of the netlists.

The following example reads in the SVF file, myfile.svf.

fm_shell> set_svf myfile.svf
SVF set to '/home/my/designs/myfile.svf'.
1

Formality® User Guide
T-2022.03

78

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Loading Guidance
Creating Guidance Files

Feedback

If you use the set_svf command without specifying the automated setup file (.svf) to use,
Formality resets the SVF file. However, the appropriate method for removing the stored
setup data is to use the remove_guidance command.

You can also invoke the set_svf command from the Guidance tab in the GUI.

Generating Formality Verification Setup Scripts
You can generate Formality scripts for verification setup from the SVF files that Design
Compiler generates when synthesizing the design. The generated script simplifies the
verification setup by passing the design file, the library, and the verification information to
the tool. The script generation supports a typical Design Compiler synthesis flow defined
by the reference methodology.

The script also contains information about the path to design files, file formats, the design
read parameters, and SVF guidance flow variable values for reading and elaborating both
reference and implementation designs.

To generate a Formality script for verification setup, use the following command at the
Linux shell prompt:

prompt> fm_mk_script svf_file [-output script_file]
The svf_file argument specifies the name of the source SVF file.

The -output option specifies the name of the generated script. If you do not specify the
-output option, the tool writes the generated script to a file named fm_mk_script.tcl.

Using the Generated Formality Script

Before using the generated script, review, and modify it as applicable.

• The generated script lists design and library information. If multiple versions of
the implementation design are created during synthesis, the design information is
commented out.

• By default, the script runs in a directory structure similar to where synthesis is run.
The search_path variable in the generated script stores the directory structure. If the
directory structure is not found, the search_path variable in the script is commented
out. Edit the search_path variable to specify the correct path, and uncomment the
search_path variable in the script.

Formality® User Guide
T-2022.03

79

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Loading Guidance
Creating Guidance Files

Feedback

After you have reviewed and modified the generated script, you can use it in one of the
following ways:

• At the Linux shell prompt,

prompt> fm_shell -file script_file
This command starts Formality and runs the specified script to setup the designs for
verification.

• At the fm_shell prompt,

fm_shell>source -echo -verbose script_file

Example 1 Example Script Generated by the fm_mk_script Command
##
Formality Verification Script generated by:
fm_mk_script -output setup.fms "default.svf"
Formality (R) Version E-2010.12 -- Oct 19, 2010
Copyright (C) 2007-2010 Synopsys, Inc. All rights reserved.
##

##
Synopsys Auto Setup Mode
##

set_app_var synopsys_auto_setup true

Note: The Synopsys Auto Setup mode is less conservative than the
Formality default mode, and is more likely to result in a successful
verification out-of-the-box.
#
Setting synopsys_auto_setup changes the values of the variables
listed here below. You may change any of these variables back to
their default settings to be more conservative. Uncomment the
appropriate lines below to revert back to their default settings:
 # set_app_var hdlin_ignore_parallel_case true
 # set_app_var hdlin_ignore_full_case true
 # set_app_var verification_verify_directly_undriven_output true
 # set_app_var hdlin_ignore_embedded_configuration false
 # set_app_var svf_ignore_unqualified_fsm_information true

##
Setup for instantiated or function-inferred DesignWare components
##

set_app_var hdlin_dwroot /sw/synth/D-2010.03-SP5

##
Search path
#
set search_path " /users/test/ . /users/libraries/ /users/rtl/ "

Formality® User Guide
T-2022.03

80

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Loading Guidance
Creating Guidance Files

Feedback

##

##
Read in the SVF file(s)
##

set_svf default.svf

##
Define design libs
##

define_design_lib -r -path ./work work

##
Read in the libraries
##

read_db -technology_library lsi_10k.db

##

##

set_app_var link_library * lsi_10k.db dw_foundation.sldb

###
Read in the Reference Design as Verilog or VHDL source code
##

read_vhdl -r -libname work test.vhd
set_top r:/WORK/top

##
Read in the Implementation Design created from Design Compiler
#
Choose the file that you want to verify
##

#read_ddc -i example.ddc
#read_ddc -i postscan.ddc
set_top i:/WORK/top

##
Verify and Report
#
If the verification is not successful, the session is saved and reports
are generated to help debug the failed or inconclusive verification.
##

if { ![verify] } {
 set DESIGN_NAME "top" ;# The name of the top-level design

Formality® User Guide
T-2022.03

81

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Loading Guidance
Creating Guidance Files

Feedback

 set FMRM_FAILING_SESSION_NAME ${DESIGN_NAME}
 set FMRM_FAILING_POINTS_REPORT ${DESIGN_NAME}.fmv_failing_points.rpt
 set FMRM_ABORTED_POINTS_REPORT ${DESIGN_NAME}.fmv_aborted_points.rpt
 set REPORTS_DIR "reports"
 file mkdir ${REPORTS_DIR}
 save_session -replace ${REPORTS_DIR}/${FMRM_FAILING_SESSION_NAME}
 report_failing_points > ${REPORTS_DIR}/${FMRM_FAILING_POINTS_REPORT}
 report_aborted_points > ${REPORTS_DIR}/${FMRM_ABORTED_POINTS_REPORT}
}

For information about the SVF guidance flow variables, see Variables Controlled by the
SVF Guidance Flow.

Understanding the Guidance Summary
The SVF file guidance summaryguidance summary table lists all the guide commands in the SVF file. A table
similar to the one following is generated at the end of SVF file processing:

Figure 10 SVF file Guidance Summary Table

Note: If verification succeeds you can safely ignore unaccepted guidance
commands.
SVF files read:
/very/long/path/name/file1.svf
/very/long/path/name/file3.svf
SVF files produced:
formality_svf/
svf.txt
This table is generated using the report_guidance -summary command.

Formality® User Guide
T-2022.03

82

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Loading Guidance
Guidance File Details

Feedback

The results of the status fields are

• Accepted – Formality validated and applied the guide command to the reference
design.

• Rejected – Formality either could not validate or could not apply the guide command to
the reference design.

• Unsupported – Formality does not currently support the guide command.

• Unprocessed – Formality has not processed the guide commands yet. This usually
happens when a checkpoint verification has paused the processing.

Guidance File Details
This section on guidance details is broken into the following topics:

• Guidance Directory and File Structure

• Guidance Reports

• SVF File Diagnostic Messages

• Reading in Multiple Guidance Files

• Checkpoint Guidance

Guidance Directory and File Structure
Regardless of the number of SVF files read in, Formality creates a single decrypted SVF
file (svf.txt), which represents the ordered automated setup guide commands that are
read. All messages related to the guide commands reference this file. This file, along
with the decrypted netlists, is placed under a single directory (formality_svf) in the current
working directory.

The name of the formality_svf directory matches the name of the log file and follows the
same numbering suffix as shown:

set_svf mylog1.svf mylog2.svf mylog3.svf
Formality creates:

 formality.log
 formality_svf/
 svf.txt
 netlists/…
 …

Formality® User Guide
T-2022.03

83

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Loading Guidance
Guidance File Details

Feedback

The formality_svf directory is self-contained and can be moved elsewhere without need of
modification.

Guidance Reports
Several commands in Formality aid in reporting SVF file information.

report_guidance

There are two main uses of the report_guidance command.

1) It produces a summary table.

This is the same as what is produced automatically after SVF file processing.

report_guidance -summary
2) It produces a user-defined text version of the SVF file.

report_guidance -to ascii.svf.txt
This version is very similar to the automatically generated formality_svf/svf.txt file but
not formatted exactly the same way. For this reason using this file is not a reliable way
to correlate error messages for the current run, but it could be used as input for any
subsequent runs.

report_svf_operation

The report_svf_operation command reports detailed information about a specific SVF
operations, or operations in the logic cone of a specified compare point.

Usage:

report_svf_operation #Report information about specified operations
[-command] #List of guide_* commands to search for
[-status] #List of ID numbers of commands that have the specified status
[-guide] #Report only the guide command
[-message] #Report only the messages associated with the operation
[-summary] #Report a summary table of the specified operations
operationID_list #List of operation ID numbers

find_svf_operation

The find_svf_operation command takes guidance command names and SVF file
processing status as arguments and returns a list of operation IDs.

Formality® User Guide
T-2022.03

84

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Loading Guidance
Guidance File Details

Feedback

Usage:

find_svf_operation #Get a list of SVF file operation IDs
[-command] #Find operations of the specified command types
[-status] #Find operations with the specified statuses

For command arguments, use what is found in the SVF file summary table. Note that you
do not include the guide_ prefix. When specifying transformation types, simply use the
values map, tree, share, or merge.

For status arguments, use one of the following values: unprocessed, accepted, rejected,
unsupported, or unaccepted.

guide_divider_netlist

The guide_divider_netlist SVF command enables improved verification completion
for designs with dividers.

Usage:

fm_shell (guide)> guide_divider_netlist \
 -design { test } \
 -instance { div_12 } \
 -verilog { netlists/dw-1/DW_div_uns_a_width12_b_width8.d.v }

SVF File Diagnostic Messages
The Formality tool places detailed SVF file diagnostic messages in the formality.log file.
The tool issues only messages pertaining to unaccepted guidance. The line numbers
of these messages correspond to the line numbers in the formality_svf/svf.txt file. The
following example is a formality.log file message:

 SVF Operation 4 (line 47) - fsm
 Info: Cannot find reference cell 'in_cur_reg[3]'.

Reading in Multiple Guidance Files
The commands in the SVF files describe transformations in an incremental way. The
transformations occur in the order in which the commands were applied as the RTL design
was processed through design implementation or optimization. Therefore, the ability to
read in multiple SVF files is important because no command in the file can be viewed
completely independently. It describes the incremental transformation and relies on the
context in which it is applied.

You can read automated setup filereading multiplereadingmultiple automated setup filesmultiple SVF files into Formality using the set_svf command. To read
multiple SVF files, use the following syntax:

fm_shell> set_svf mysvf1.svf mysvf2.svf mysvf3.svf

Formality® User Guide
T-2022.03

85

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 5: Loading Guidance
Guidance File Details

Feedback

By default, Formality reads the files in order of the file timestamps. Use the -ordered
option to indicate that the list of SVF files you specify is already ordered and that the list
should not be ordered according to the timestamp. If you use the -ordered option and
list a directory or directories where the setup files are located, Formality can order the
directory files in any order.

The following example sets the order of two SVF files, bot.svf and top.svf, for Formality to
process:

set_svf -ordered bot.svf top.svf

Checkpoint Guidance
Checkpoint guidance provides a mechanism for the Formality and Design Compiler tools
to synchronize on an intermediate netlist to simplify the verification flow.

The Design Compiler tool creates an intermediate netlist and writes the
guide_checkpoint guidance command to the SVF file while

• Retiming a design using the set_optimize_registers command before running the
compiler_ultra command

• Performing placement-aware multibit mapping of replicated registers using the
create_register_bank command

Note:
The Formality tool supports placement-aware multibit banking of non-replicated
registers without requiring checkpoint guidance.

The Formality tool verifies, then uses the checkpoint guidance from the SVF file generated
by the Design Compiler tool. Using the checkpoint guidance to verify designs removes
the need for a manual two-pass verification using commands to generate and verify the
intermediate netlists. It also results in higher completion rates, and enables better QoR.

For more information, see Verification Using Checkpoint Guidance.

Formality® User Guide
T-2022.03

86

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

6
Loading Designs

To run Formality, you must read in both a reference and an implementation design and any
related technology libraries. This chapter describes loading designs into Formality.

This chapter contains the following sections:

• Setting Up the Designs

• Design Loading Steps

• Reading Technology Cell Libraries

• Setting the Top-Level Design

• Setting Up and Managing Containers

• Variables Controlled by the SVF Guidance Flow

Figure 11 illustrates loading reference and implementation designs in the Formality design
verification process flow.

Formality® User Guide
T-2022.03

87

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Loading Designs
Setting Up the Designs

Feedback

Figure 11 Loading Designs in the Design Verification Process Flow

Setting Up the Designs
datacontainersconceptscontainersoverviewcontainerscontainersoverviewA container is a complete, self-contained space into which Formality reads designs.
It is typical for one container to hold the reference design while another holds the

Formality® User Guide
T-2022.03

88

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Loading Designs
Setting Up the Designs

Feedback

implementation design. In general, you do not need to concern yourself with containers.
You simply load designs in as either reference or implementation. This is described in
Loading the Reference Design.

containerscontentsA container typically includes a set of related technology libraries and design libraries that
fully describe a design that is to be compared against another design. A technology library
is a collection of parts associated with a particular vendor and design technology. A design
library is a collection of designs associated with a single design effort. conceptsdesign objectsoverviewdesign objectsdesign objectsoverviewDesigns contain
design objects such as cells, ports, nets, and pins. celldefinedA cell can be a primitive or an instance
of another design.

Figure 12 and Figure 13 illustrate the concept of containers.

Figure 12 Containers in a Hierarchical Design

In general, to perform a design comparison, you should load all of the information about
one design into a container (the reference), and all the information about the other design
into another container (the implementation).

creatingcontainerscontainerscreatingYou can create, name, reuse, delete, open, and close containers. In some cases, automaticcreating

containerscontainersautomatic creationFormality automatically creates a container when you read data into the Formality
environment.

Each container can hold many design and technology libraries, and each library can hold
many designs and cells. Components of a hierarchical designsstoringhierarchical design must reside in the same
container. Figure 13 illustrates this concept.

Formality® User Guide
T-2022.03

89

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Loading Designs
Setting Up the Designs

Feedback

Figure 13 Containers

containerscurrentcurrentcontainerIn Formality, one container is always considered the current container. Unless you
specifically set the current container, containersreading data intoFormality uses the last container into which a design
is read. That container remains the current container until you specifically change it or you
create a new container. Many Formality commands operate on the current container by
default (when you do not specify a specific container).

For more information about containers, see Setting Up and Managing Containers.

Figure 14 describes the steps to load the reference and implementation designs.

Formality® User Guide
T-2022.03

90

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Loading Designs
Setting Up the Designs

Feedback

Figure 14 Formality Read Design Process Flow

To run Formality, you must read in both the reference and implementation designs and
any related technology libraries. Optionally, you can first pass additional setup information
from the Synopsys synthesis tools to the Formality tool by using SVF file information with
the set_svf command or by setting the automated setup mode as described in Loading
Guidance.

As shown in Figure 14, you first read in the libraries and designs that are needed for the
reference, and then immediately specify the top-level design. You must set the top-level

Formality® User Guide
T-2022.03

91

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Loading Designs
Design Loading Steps

Feedback

design for the reference design before proceeding to the implementation design. Next, you
read in the libraries and designs that you need for the implementation design, and then
immediately specify the top-level design.

linking designsdesignslinking (with set_top)top-level designsSpecifying the top-level design causes Formality to resolve named references, which is
crucial for proper verification. This linking process appears in the transcript window. If
Formality cannot resolve references, the tool issues a link error by default. When Formality
resolves all references, linking is completed successfully. If the design is an RTL (VHDL or
Verilog) design, Formality then performs elaboration.

You can use the hdlin_unresolved_modules variable to cause Formality to create black
boxes when it encounters unresolved or empty designs during linking.

Design Loading Steps
Loading designs into Formality consists of three main steps:

• Load the technology libraries (optional, as needed)

• Load the design files

• Set the top-level block to compare

These three steps are done for both the reference and implementation designs and
are nearly identical in process. This section is, therefore, broken into the following two
subsections, with most of the details captured solely in the load reference design section.

• Loading the Reference Design

• Loading the Implementation Design

Loading the Reference Design
This topic describes in detail the steps required for loading the reference design, as shown
in Figure . These steps include reading the technology libraries, reading the reference
designs, and setting the top-level design.

Reading Technology Libraries
As needed, read in the technology libraries that support your reference design. If you
do not specify a technology library name with the commands described in the following
section, Formality uses the default name, TECH_WORK.TECH_WORK librarytechnology librariesdefault name

Reading Synopsys (.db) Format
Synopsys internal database (.db) library files are shared by default. If you read in a file
without specifying whether it applies to the reference or implementation design, it applies
to both.

Formality® User Guide
T-2022.03

92

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Loading Designs
Design Loading Steps

Feedback

To read cell definition information contained in .db format files,

fm_shell

read_db commandcommandsread_dbread_db file_list
[-libname library_name]
[-merge]
[-replace_black_box]

Formality can read in other formats as technology libraries, see Reading SystemVerilog,
Verilog, and VHDL Cell Definitions for details.

Reading Designs
Read a reference design into Formality based on the language that represents it. At its
most basic, (where the -r option indicates the reference design.) Specify one of the
following, depending on the design type:

fm_shell

read_verilog -r files
read_sverilog -r files
read_vhdl -r files
read_ddc -r files
read_milkyway -r files
read_db -r files

For more information about the fm_shell command options, see the man pages.

In the Formality shell, hierarchical designsGUI representationyou represent the design hierarchy by using the designID
argument. The designID, argumentdesignsdesignIDargumentsdesignIDdesignID argument is a path name whose elements indicate the container
(by default, r or i), library, and design name.

Reading Verilog and SystemVerilog Designs
Verilog and SystemVerilog descriptions information must be in the form of synthesizable
RTL or a structural netlist.

Formality® User Guide
T-2022.03

93

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Loading Designs
Design Loading Steps

Feedback

fm_shell

Specify:
read_milkyway commandcommandsread_milkywayread_verilog
[-r | -i | -container containerID]
[-libname library_name]
[-netlist]
[-95 | -01 | -05] file_list

or

read_milkyway commandcommandsread_milkywayread_sverilog
[-r | -i | -container containerID]
[-technology_library]
[-libname library_name]
[-3.1a | -05 | -09 | -12] file_list

When reading in Verilog designs, set the hdlin_auto_netlist variable to true to
automatically use the Verilog netlist reader instead of the default reader. Using the
Verilog netlist reader might improve the design loading time. If the Verilog netlist reader is
unsuccessful, Formality uses the default reader.

If you have Verilog simulation libraries or design modules that you want to link to the
reference or implementation designs, use the -v and -y options from VCS. These options
specify the library or file for the module references. They do not support Verilog technology
library cells with mixed user-defined primitives and synthesizable constructs.

Note:
The SystemVerilog standard specified by using the read_sverilog command
overrides the standard specified using the hdlin_sverilog_std variable.

To ignore SystemVerilog module names while reading Verilog designs, specify the module
name with the hdlin_sv_blackbox_modules variable. The tool ignores the specified
modules when reading the RTL file. Therefore, if another design with the same name
exists in the container (for example, a .db file), the tool links to that design.

Reading VHDL Designs
VHDL cell definition information must be in the form of synthesizable RTL or a structural
netlist.

Formality® User Guide
T-2022.03

94

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Loading Designs
Design Loading Steps

Feedback

fm_shell

Specify:
read_milkyway commandcommandsread_milkywayread_vhdl
[-r | -i | -container containerID]
[-libname library_name]
[-87 | -93 | -2008]
file_list

The default is 2008. When you specify more than one VHDL file to be read with a single
read_vhdl command, Formality automatically attempts to read your files in the correct
order. If the list of files includes VHDL configurations, this feature does not work. Disable
it by setting the hdlin_vhdl_strict_libs variable to false before using the read_vhdl
command. If you are using multiple read_vhdl commands, you must issue them in the
correct compilation order.

Note:
The VHDL standard specified by using the read_vhdl command overrides the
standard specified using the hdlin_vhdl_std variable.

Reading .ddc Format Designs
To read design netlists and technology libraries from Milkyway databasesreading.ddc databasesdesigns fromfiles.ddc.ddc filesreading.ddc databases.ddc format databases, use the
read_ddc command. This command reads design information, including netlists and
technology libraries, from .ddc databases produced by Design Compiler.

.ddc databasesreading designsTo read designs from a .ddc format database into a container,

fm_shell

Specify:
read_ddc commandcommandsread_ddcread_ddc
[-r | -i | -container containerID][-libname library_name]
[-technology_library] file_list

Formality reads in files formatted as Synopsys .ddc format database designs. Formality
returns a 1 if the design is successfully read; it returns a 0 if the design is not successfully
read into the destination container. Existing designs in the destination container are
overwritten with the designs that are read.

Reading Milkyway Designs
To read design netlists and technology libraries from Milkyway databasesreadingMilkyway .ddc databasesdesigns fromfiles.ddc.ddc filesreading.ddc databases, use the read_milkyway
command. This command reads design information, including netlists and technology
libraries, from Milkyway databases.

Formality® User Guide
T-2022.03

95

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Loading Designs
Design Loading Steps

Feedback

fm_shell

Specify:
read_milkyway commandcommandsread_milkywayread_milkyway
[-r | -i | -container containerID]
[-libname library_name][-technology_library]
[-version version_number]
-cell_name mw_cell_namemw_db_path

Use the mw_logic0_net variablevariablesmw_logic0_netmw_logic0_net and mw_logic1_net variablevariablesmw_logic1_netmw_logic1_net variables to specify the name of the
Milkyway ground and power net, respectively.

Reading Block Abstractions
Block abstractions improve verification of blocks that use optimizations where the
boundary logic of the block has changed. To use a block abstraction during the verification
of gate-level designs, read the block abstraction as a subblock design into the reference
container and the modified or optimized block abstraction into the implementation
container. You can read block abstractions of designs that are optimized using Design
Compiler.

To read a block abstraction, use the read_ddc -block_abstraction or read_milkyway
-block_abstraction command.

Example 2 The Block Abstraction Flow
fm_shell> read_verilog -r top.v
fm_shell> read_ddc -r -block_abstraction sub_compile1_bam.ddc
fm_shell> set_top r:/WORK/top
fm_shell> read_verilog -i top.v
fm_shell> read_ddc -i -block_abstraction sub_compile2_bam.ddc
Block abstractions are not useful when verifying an RTL netlist against a gate-level netlist
because the boundary points of the abstracted block cannot be matched with the RTL
netlist.

Reading .db Format Designs
See Reading Synopsys (.db) Format for information about reading in .db design files.

Reading NDM Design Libraries
Use the read_ndm command to read in NDM design libraries created by the Fusion
Compiler tool. The syntax of the read_ndm command is as follows:

read_ndm
 [-container container_name | -r | -i]
 [-libname libname]
 [-format netlist_format]

Formality® User Guide
T-2022.03

96

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Loading Designs
Design Loading Steps

Feedback

 [-preserve_supply_constants]
 [-no_upf]
 -block block_name
 library_name

Use the -libname <libname> option to specify the target library name to which the
designs in NDM format are read.

The read_ndm command currently reads NDM design libraries only. The command does
not read NDM cell libraries. To read in technology libraries, use the read_db command.

For more information, see the read_ndm command man page.

Setting the Top-Level Design
To set the top-level design for the reference design,

fm_shell

Specify:
set_top
[-vhdl_arch name]
[moduleName | designID | -auto]
[-parameter value]

If you are elaborating VHDL and you have more than one architecture, use the
-vhdl_arch option.

set_top commandconditionsThe set_top command tells Formality to set and link the top-level design. If you are
using the default r and i containers, this command also sets the top-level design as the
reference or implementation design.

For additional information about setting parameters, see Setting the Top-Level Design.

Loading the Implementation Design
This section provides an overview of the read-design process flow for the implementation
design. The process for loading the implementation design is broadly similar to that
described in Loading the Reference Design.

Note:
If you already specified a .db library for the reference design, it is automatically
shared with the implementation design.

Many Formality shell commands can operate on either the reference or implementation
design. These commands all have a switch to indicate which design container is used
for that command. The -r switch refers to the reference design or container. The -i

Formality® User Guide
T-2022.03

97

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Loading Designs
Reading Technology Cell Libraries

Feedback

switch refers to the implementation design or container. Use the -i option to specify the
implementation container or use the -container container_name option to provide
a specific container name. From within the GUI, use the Implementation tab to read an
implementation design.

For information about the fm_shell commands and their options, see the man pages. For
information about special Verilog considerations, see Verilog Simulation Data. Otherwise,
if you have Verilog simulation data, use the -vcs options with the read_verilog
command.

Reading Technology Cell Libraries
There is a range of optional functionality available to you through use of the containers
into which the Formality designs are read. You can use the SVF guidance flow to control
specific variables.

SystemVerilog, Verilog, and VHDL cell definition information must be in the form of
synthesizable RTL or a structural netlist. In general, Formality cannot use behavioral
constructs or simulation models, such as VHDL VITAL models.

Using the 'celldefine Verilog Attribute
While reading libraries, you use the ‘celldefine Verilog attribute to indicate a logic
description as a library cell. This attribute is necessary to take advantage of the extra
processing required to build appropriate logical behavior. However, because Verilog does
not require the ‘celldefine attribute, many libraries do not include it in their source file.
Using the ‘celldefine attribute might require modifications to your source file, which is
not always possible.

Reading SystemVerilog, Verilog, and VHDL Cell Definitions
To read cell definition information contained in SystemVerilog, Verilog, or VHDL RTL files,
do the following:

fm_shell

Specify:
hdlin_library_file variablevariableshdlin_library_filehdlin_library_directory variablevariableshdlin_library_directoryset_app_var hdlin_library_file file

set_app_var hdlin_library_directory
directory

Formality® User Guide
T-2022.03

98

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Loading Designs
Reading Technology Cell Libraries

Feedback

fm_shell

read_verilog commandcommandsread_verilogread_vhdl commandcommandsread_vhdlread_verilog
[-r | -i | -container containerID]
[-technology_library]
[-libname library_name]
[-95 | -01 | -05] file_list

or

read_verilog commandcommandsread_verilogread_vhdl commandcommandsread_vhdlread_sverilog
[-r | -i | -container containerID]
[-technology_library]
[-libname library_name]
[-3.1a | -05 | -09 | -12] file_list

or

read_vhdl commandcommandsread_vhdlread_vhdl
[-r | -i | -container containerID]
[-technology_library]
[-libname library_name]
[-87 | -93]
file_list

The hdlin_library_file variable designates all designs contained within a file or set of
files as technology libraries. The value you set for this variable is a space-delimited list of
files.

The hdlin_library_directory variable designates all designs contained within
directories as technology libraries. The value you set for this variable is a space-delimited
list of directories. After you mark a design for library processing, any subdesign would also
go through that processing.

The fm_shell commands are not listed with all their options. The options listed in this
table pertain to reading in technology library data only.

Use the -technology_library option to specify that the data goes into a technology
library rather than a design library. This option does not support mixed Verilog and VHDL
technology libraries.

Verilog Simulation Data
You generally read in Verilog simulation libraries by specifying VCS options with the
read_verilog command when you read in designs, as discussed in Reading Designs.

Formality® User Guide
T-2022.03

99

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Loading Designs
Reading Technology Cell Libraries

Feedback

Verilog simulation, library fileslibrariesVerilog simulationTo read cell definition information contained in Verilog simulation library files,

fm_shell

Specify:
read_verilog -technology_library
-vcs VCS options

The reader extracts the pertinent information from the Verilog library to determine the gate-
level behavior of the design and generates a functional description of the Verilog library
cells.

To generate the gate-level models, the reader parses the Verilog modules and user-
defined primitive descriptions. With this information it creates efficient gate-level models
that can be used for verification.

A Verilog simulation library is intended for simulation, not synthesis. Therefore, the reader
might make certain assumptions about the intended gate-level functions of the user-
defined primitives in the simulation model. The reader generates comprehensive warning
messages about these primitives to help you eliminate errors and write a more accurate
model.

Each warning message is identified by a code. To obtain more information, look at the man
page for the code. For example, if Formality reports ‘Error: Can’t open file xxxx (FM-016),’
use the man FM-016 command for information.

The library reader supports the following features:

• Sequential cells (each master-slave element pair is merged into a single sequential
element)

• Advanced net types: wand, wor, tri0, tri1, and trireg

• Unidirectional transistor primitives: pmos, nmos, cmos, rpmos, rnmos, and rcmos

• Pull primitives (a pull-up or pull-down element is modeled as an assign statement with
a value of 1 or 0)

Library Loading Order
Formality has the ability to load and manage multiple definitions of a cell, such as
synthesis .db format files, simulation .db format files, and Verilog or VHDL netlists. The
order in which the library files are loaded determines which library model is used by
Formality. If the libraries are not loaded in the correct sequence, it can lead to inconsistent
or incorrect verification results.

Formality® User Guide
T-2022.03

100

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Loading Designs
Reading Technology Cell Libraries

Feedback

If you are a library provider, you should deliver explicit Formality loading instructions for
multiple libraries. One way to do this is to provide a Formality script that loads the library
files (such as .db, .v, and .vhd) in the correct order.

Single-Source Packaging
It is better to provide all the required functionality in a single source, either a synthesis
(.db) or simulation (.v) file. Using a single source reduces support costs and maintenance
requirements. However, you might choose to use multiple sources of functional
information.

Multiple-Source Packaging
If you are a silicon vendor who wants to use multiple library sources or augment your
synthesis libraries with simulation or RTL descriptions, you should specify the order in
which the libraries are to be loaded.

IEEE Std 1735-2014 Encryption of RTL Files
The Formality tool supports IEEE Std 1735-2014 encryption for SystemVerilog and Verilog
files. This provides an industry-standard method to encrypt a file against one or more
public keys, such that only those key owners can decrypt the file.

To enable this feature, set the following application variable before reading or analyzing
your RTL:

prompt> set_app_var hdlin_enable_ieee_1735_support true
The following tool behaviors apply to encrypted RTL:

• Elaboration errors are reported with protected names instead of a generic message, for
example

Error: You are using an identifier '<protected>' which is not declared
 in that scope. (File: include_pkg_er2.vp Line: 1) (FMR_VLOG-606)

• The Formality tool suppresses encrypted objects from the following report and find
commands only:

◦ report_black_boxes

◦ report_clocks

◦ report_designs

◦ report_parameters

◦ report_fsm

◦ report_libraries

Formality® User Guide
T-2022.03

101

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Loading Designs
Setting the Top-Level Design

Feedback

◦ report_truth_table

◦ report_source_path

◦ report_hierarchy

◦ find_designs

◦ find_cells

◦ find_nets

◦ find_pins

◦ find_ports

• You cannot cross examine the synthesized logic to the encrypted RTL.

Currently, only encryption provided by the synenc utility is available for VHDL files. For
details on synenc encryption, see “Encrypting RTL IP for Use with Synopsys Tools Before
Releasing to Customers”.

There is a range of optional functionalities available through the containers into which the
Formality designs are read. You can use SVF guidance to control specific variables. The
functionalities associated with these options are discussed in the following sectionslibrary verificationsupported formats:

• Setting the Top-Level Design

• Setting Up and Managing Containers

• Variables Controlled by the SVF Guidance Flow

Setting the Top-Level Design
When setting the top-level design, be aware of the following factors:

• The tool must read the reference or implementation design before you run the set_top
command. Do not read in the implementation design until you have specified the
set_top command for the reference design.

• The set_top command always applies to the design data previously read into
Formality (whether it is the implementation or reference design). An error is issued if
the design is not loaded.

• You cannot save, restore, or verify a design until you have specified the set_top
command.

Formality® User Guide
T-2022.03

102

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A
https://solvnetplus.synopsys.com/s/article/Encrypting-RTL-IP-for-Use-with-Synopsys-Tools-Before-Releasing-to-Customers-1576091117324
https://solvnetplus.synopsys.com/s/article/Encrypting-RTL-IP-for-Use-with-Synopsys-Tools-Before-Releasing-to-Customers-1576091117324

Chapter 6: Loading Designs
Setting the Top-Level Design

Feedback

• Be sure that the module or design you specify is your top design. If not, you must
remove the reference design and start over. This also holds true when you are loading
the implementation design.

• Use the -auto option if the top-level design is unambiguous. You generally specify a
module or design by name in cases where you do not want the actual top-level design
to be considered the top for the current session or when you have multiple modules
that could be considered at the top level.

• Set the top-level design to the highest level you plan to work with in the current
session.

• After you set the top-level design, you cannot change it, whereas you can change the
reference or implementation design to be verified using the set_reference_design,
set_implementation_design, or verify command. The design you specify must
reside within the top-level design.

Setting Parameters on the Top-Level Design
To set parameters in your top-level design, use the set_top -parameter command. Use
the -parameter option to specify a new value for your design parameters. You can set the
parameter only on the top-level design. Parameters must be Verilog or VHDL generics.
The parameter values can either be integers or specified in the format param_name
hexadecimal value format base ’h value.

For VHDL designs, the generics might have the following data types for the parameter
value:

• integer

• bit

• bit_vector

• std_ulogic

• std_ulogic_vector

• std_logic

• std_logic_vector

• signed (std_logic_arith and numeric_std)

• unsigned (std_logic_arith and numeric_std)

For additional information about setting parameters, see the set_top man page.

Formality® User Guide
T-2022.03

103

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Loading Designs
Setting Up and Managing Containers

Feedback

Generating Simulation or Synthesis Mismatch Report
You can generate a report on any simulation or synthesis mismatches in your design
after setting the top level of your design. The Formality tool automatically generates an
RTL report summary describing any simulation or synthesis mismatches when you run
the set_top (or read_container) command. Running the report_hdlin_mismatches
command after the set_top (or read_container) command generates a verbose report
detailing the various constructs encountered and their state.

Linking the Top-Level Design Automatically
If you have straightforward designs, such as Verilog designs, you can use the
hdlin_auto_top variable rather than the set_top command to specify and link the top-
level module, but only when you specify one read_verilog command for the container.

To set the top-level design with the hdlin_auto_top variable, do the following:

fm_shell

Specify:
commandscreate_containercreate_container commandset_app_var hdlin_auto_top true

The hdlin_auto_top variable causes Formality to determine the top-level module and
automatically link to it. This variable applies only when you are reading in a Verilog design.
If you are reading in technology libraries, Formality ignores this variable. Formality issues
an error message if it cannot determine the top-level design. In this case, you must
explicitly specify the top design with the set_top command. If there are multiple VHDL
configurations or architectures that could be considered the top level, Formality issues a
warning and sets the top-level design to the default architecture.

The hdlin_auto_top variable requires you to use a single read command to load the
design. You cannot use it for mixed-language designs or for designs that use multiple
design libraries or multiple architectures or configurations.

Setting Up and Managing Containers
A container is a complete, self-contained space into which Formality reads designs. Each
design to be verified must be stored in its own container. If you follow the steps described
in Reading Technology Libraries on page 92, Formality uses default containers named
r and i.

Formality® User Guide
T-2022.03

104

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Loading Designs
Setting Up and Managing Containers

Feedback

You can work with containers directly in the following situations:

• To change the name of the reference and implementation containers from the default r
and i

• For backward compatibility with existing Formality scripts

• When you apply user-defined external constraints on your designs

Note:
The r and i containers exist by default, even if empty. When you specify them
as the container ID with the create_container command, Formality issues a
warning that the container already exists.

containerscreatingcreatingcontainersTo create a container, do the following:

fm_shell

Specify:
commandscreate_containercreate_container commandcreate_container
[containerID]

containersnamingFormality uses the containerID string as the name of the new container. If using this
command, you must do so before reading in your libraries and designs.

Alternatively, you can specify a container with the -container containerID option to
the read_db, read_ddc, read_milkyway, read_sverilog, read_verilog, or read_vhdl
command. If you specify a container ID in which to place a technology library, the library
can be seen only in that container. This is called an unshared technology library. If you
do not specify a container, the technology library can be seen in all current and future
containers. This is called a shared technology library.technology librariessharedtechnology librariesunshared

When you create a new container, Formality automatically puts the generic technology
(GTECH) library into the container. The GTECH library contains the cell primitives that
Formality uses internally to represent RTL designs.

designscurrentcurrentdesignIn fm_shell, Formality considers one design to be the current design. containerscurrentcontainerslistingcurrentcontainerreportscontainersWhen you create or
read into a container, it becomes the current container.

After the current container is set, you cannot operate on any other container until you
either:

• Set the top-level design using the set_top command

• Remove the container and its contents using the remove_container command. For
the default r and i containers, this command removes only the contents

Formality® User Guide
T-2022.03

105

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Loading Designs
Variables Controlled by the SVF Guidance Flow

Feedback

GUIcurrent containerIn the GUI, the concept of a conceptscurrent containercurrent container does not apply directly. You simply work on
the reference and implementation designs. You can execute Formality shell commands
that rely on the current container concept. However, the GUI recognizes only the
containers that store the reference and implementation designs. To view a third design in
the GUI, you must choose it as a reference or implementation design.

Note:
When you create a new container, Formality automatically adds any shared technology

librariessharedtechnology libraries. If you do not want a particular shared technology library in
the new container, you must specifically remove it.

The save_session command is not executed if you have not already linked the top-level
design using the set_top command.

In the GUI, you can view the reference and implementation containers by choosing
Designs > Show Reference and Designs > Show Implementation. To save the design,
choose File > Save.

Variables Controlled by the SVF Guidance Flow
The following topics describe the SVF guidance flow and the variables that the flow
controlslibrary verificationsupported formats:

• Variables to Control Bus Names

• Variables to Control Parameter Names

• Variables to Control Case Behavior

Variables to Control Bus Names
The guide_environment command uses the values specified using the following
variables in the SVF file irrespective of whether the synopsys_auto_setup variable is set
to true or false:

• bus_dimension_separator_style

• bus_extraction_style

• bus_range_separator_style

Formality® User Guide
T-2022.03

106

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 6: Loading Designs
Variables Controlled by the SVF Guidance Flow

Feedback

Variables to Control Parameter Names
The guide_environment command uses the values specified library verificationsupported formatsusing the following
variables in the SVF file irrespective of whether the synopsys_auto_setup variable is set
to true or false:

• hdlin_naming_threshold

• template_naming_style

• template_parameter_style

• template_separator_style

Variables to Control Case Behavior
The following variables are set to false when the synopsys_auto_setup variable is set to
true:library verificationsupported formats

• hdlin_ignore_parallel_case

• hdlin_ignore_full_case

• svf_ignore_unqualified_fsm_information

Formality® User Guide
T-2022.03

107

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

7
Performing Setup

designssetting upparametersdesignAfter reading designs into the Formality environment and linking them, set the design-
specific options for Formality to perform verification. For example, if you are aware of
certain areas in a design that Formality cannot verify, you can prevent the tool from
verifying the areas. Or, to improve the performance of verification, you can declare blocks
in two separate designs black boxes.

verificationestablishing environmentThis chapter describes how to setup designs for verification in the following sections:

• Common Operations

• Less Common Operations

Figure 15 outlines the timing of performing setup within the design verification process
flow.

Formality® User Guide
T-2022.03

108

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup

Feedback

Figure 15 Performing Setup in the Design Verification Process Flow

Formality® User Guide
T-2022.03

109

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

Common Operations
Tasks and procedures that are performed often to setup a design for verification are
described in the following subsections:

• Handling Black Boxes

• Specifying Constants

• Specifying External Constraints

• Combinational Design Changes

• Sequential Design Changes

• Handling Retimed Designs

• Low-Power Designs

Handling Black Boxes
overviewblack boxesblack boxoverviewconceptsblack boxesA black box represents logic whose function is unknown. Black boxes can cause
verification failures because input pins become compare points in the design. If black
boxes in the reference design do not match those in the implementation design, the
compare points are not matched. In addition, compare point mismatches can occur when
black box buses are not normalized in the same manner. When Formality encounters a
missing design, it normalizes the bus on the black box to the form WIDTH-1:0. However,
when it encounters an empty design, it does not normalize black box buses, and bus
indexes are preserved. Therefore, you must either not include a design or use an empty
design for both the implementation and the reference design so that buses are normalized
in a like manner.

verifyingblack box behaviorblack boxverifyingverifyingblack boxesWhen Formality verifies a design, its default action is to consider a black box in the
implementation design equivalent to its counterpart in the reference design. This behavior
can be misleading in cases where designs contain many unintentional black boxes, such
as in an implementation design that uses black boxes as bus holders to capture the last
state placed on a bus. Figure 16 shows an example.

Formality® User Guide
T-2022.03

110

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

Figure 16 Black Boxes

bus holdersexamplesbus holderIn this example a bidirectional pin is used to connect to the bus. Because this pin is
bidirectional, the bus has an extraneous driver. If the reference design does not use similar
bus holders, the implementation design fails verification. troubleshootingextraneous bus driversTo solve this problem, you can
declare the direction “in.” Assigning the pin a single direction removes the extraneous
driver.

By default, Formality stops processing and issues an error message if it encounters
unresolved designs (those that cannot be found during the linking process) and empty
designs (those with an interface only). For example, suppose a VHDL design has three
instances of designs whose logic is defined through associated architectures. If the
architectures are not in the container, portsdirection, black boxesFormality halts.

You can use the hdlin_unresolved_modules variable to cause Formality to create black
boxes when it encounters unresolved or empty designs during linking.

Note:
Setting the hdlin_unresolved_modules variable to black box can cause
verification problems.

The verification_ignore_unmatched_implementation_blackbox_input variable can
be used to make the Formality tool to successful verify unmatched input pins on matched
black boxes in the implementation design.

controllingblack boxesblack boxcontrollingmanaging, black boxesBecause of the uncertainty that black boxes introduce to verification, in Formality you can
control how the tool handles them. You can,

• Load only the design interface (ports and directions) even though the model exists

• Mark a design as a black box for verification even though its model exists and the
design is linked

• Report a list of black boxes

• black boxidentity checkidentity check, black boxesPerform an identity check between comparable black boxes

• Set the port and pin directions

Formality® User Guide
T-2022.03

111

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

Loading Design Interfaces
To mark an object as a black box, specify the hdlin_interface_only variable. Formality
benefits from having the pin names and directions supplied by this variable.

Note:
Specify the hdlin_interface_only variable before reading in your designs.

black boxloading design interfacesloading design interfaces, black boxesTo load only the pin names and directions for designs, use the Formality shell or the GUI
as shown:

fm_shell GUI

Specify:
variableshdlin_interface_onlyhdlin_interface_only variablesset_app_var hdlin_interface_only
"designs"

1. Click Reference or Implementation.
2. Click Options.
3. Click the Variables tab.
4. In the Read interface only designs

(hdlin_interface_only) box, enter the list of
designs.

5. Click OK.

The hdlin_interface_only variable enables you to load the specified designs
as black boxes, even when their models exist. This capability is useful for loading
in RAM, intellectual property (IP), and other special models. When you specify
report_black_boxes, these designs are attributed with an “I” (interface only) to indicate
that you specified this variable.

This variable supports wildcard characters. It ignores syntax violations within specified
designs. However, if Formality cannot create an interface-only model due to syntax
violations in the pin declarations, it treats the specified design as missing.

Modules names must be simple design names. For example, to mark all RAMs named
SRAM01, SRAM02, and so on in a library as black boxes, use the following command:

fm_shell (setup)> set_app_var hdlin_interface_only ”SRAM*”
This variable is not cumulative. Subsequent specifications cause Formality to override
prior specifications. Therefore, if you want to mark all RAMs with names starting with
DRAM* and SRAM* as black boxes, for example, specify both on one line.

fm_shell (setup)> set_app_var hdlin_interface_only ”DRAM* SRAM*”

Formality® User Guide
T-2022.03

112

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

Marking a Design as a Black Box for Verification
black boxmarking designsmarking designs as black boxesdesignsmarking as black boxesverifyingmarking design as black boxTo mark a design as a black box for verification, use the Formality shell or the GUI as
shown:

fm_shell GUI

Specify:
commandsset_black_boxset_black_box commandset_black_box designID

At the Formality prompt, specify:
set_black_box designID

You specify this command for a loaded design. When you specify report_black_boxes,
these designs are attributed with an “S” to indicate that you specified this command. To
remove this attribute, use the remove_black_box command.

Use the set_black_box command to specify the designs that you want to mark as
black boxes. The designs that you specify with the hdlin_interface_only variable on
unresolved references always retain their black box attribute.

Note:
It is also possible to mark a design as a black box through the hierarchy
browser. Search the hierarchy browser to locate and select the design that is to
made a black box. Then set the block as a black box from the GUI by clicking
on the appropriate symbol (shaped like a black chip) on the same hierarchy
browser.

Reporting Black Boxes
black boxreportingreporting black boxesTo report black boxes, use the report_black_boxes command as follows:

fm_shell GUI

Specify:
commandsreport_black_boxesreport_black_boxes commandreport_black_boxes
[design_list | -r | -i |
-container containerID] [-all]
[-unresolved] [-empty]
[-interface_only]
[-set_black_box]
[-unread_tech_cell_pins]

At the Formality prompt, specify:
report_black_boxes
[design_list | -r | -i |
-container containerID] [-all]
[-unresolved] [-empty]
[-interface_only]
[-set_black_box]
[-unread_tech_cell_pins]

By default, this command lists the black boxes in both the reference and implementation
designs. The Formality tool issues an error message if these are not set. You can restrict
the report to only the implementation or reference design, or to a container or design that
you specify.

Formality® User Guide
T-2022.03

113

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

black boxattributesattributes, black boxIn addition, the report lists a reason or attribute code for each black box, as follows:

• U: Unresolved design.

• E: Empty design. An asterisk (*) next to this code indicates that the design is not linked
with the set_top command. After it is linked, the design appears as a black box if it is
not empty.

• I: Interface only, as specified by the hdlin_interface_only variable.

• S: Set with the set_black_box command.

You can report only black boxes of a certain attribute type by using the -unresolved,
-empty, -interface_only, and -set_black_box options. The default -all option reports
all four black box types.

The report output during set_top processing also lists black boxes.

The report_black_boxes command reports black-box attributes of cells that are specific
sources of black boxes using the following options:

• -f: Use this option to report Formality power models (FPM)

• -m: Use this option to report technology macro cells (.db)

Note:
The tool places black boxes created due to unresolved designs in the
FM_BBOX library.

Use the -summary option of the report_black_boxes command to print a summary of
the comparison of black-box designs with a tabular listing of the instances that exist in the
reference and implementation designs. The Mismatch column indicates whether the type
of black boxes in the reference and implementation designs are different. This is helpful to
determine if there are read or setup issues that cause black-box differences between two
designs.

An example of the report_black_boxes command report is as follows:

fm_shell (setup)> report_black_boxes -summary
**
Report : black_boxes
 -summary
Reference : r:/WORK/top
Implementation : i:/WORK/top
Version : P-2019.03-VAL-20190403
Date : Wed Apr 3 05:19:39 2019
**

| |
| Legend: |
| Black Box Attributes |

Formality® User Guide
T-2022.03

114

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

| s = Set with set_black_box command |
| i = Module read with -interface_only |
| u = Unresolved design module |
| e = Empty design module |
| * = Unlinked design module |
| ut = Unread tech cells pins |
| L = Linked to non-black box design |
| f = Formality Power Model |
| m = Technology Macro cell (.db) |

Design Name Ref. Inst. Impl.
 Inst. Mismatch Type
 Count Type Count (Yes/No)

bot1 e 1 e
 1 N
bot2 e 1 e
 2 Y
bot3 e 1 s
 1 Y
1

Performing Identity Checks
black boxidentity checkidentity check, black boxesparametersidentity check, black boxesTo perform an identity check between two comparable black boxes,

fm_shell GUI

Specify:
commandscreate_containercreate_container commandset_app_var
verification_blackbox_match_mode
identity

1. Choose Edit > Formality Tcl Variables. The
Formality Tcl Variables dialog box appears.

2. From Matching, select the
verification_blackbox_match_mode
variable.

3. Select Identity.
4. Choose File > Close.

By default, the verification_blackbox_match_mode variable is set to any, and
Formality compares the two black boxes regardless of the library or design names.

When you set the verification_blackbox_match_mode variable to identity, the
Formality tool matches the two black boxes only if they have the same library and design
names. If the black boxes are identical, they are considered equivalent during verification.

To specify user-defined matches on black boxes with different names, use the
set_user_match command.

Formality® User Guide
T-2022.03

115

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

Setting Pin and Port Directions for Unresolved Black Boxes
By definition, you do not know the function of a black box. For black boxunresolvedunresolved black boxes,
Formality attempts to define pin direction from the connectivity and local geometries.
If the tool cannot determine the direction, it assumes that the pin is bidirectional. This
assumption could result in an extra driver on a net in one design that does not exist
in the other. To avoid this failure, you can create a wrapper for the block with the pin
directions defined. You can use a Verilog module or VHDL entity declaration. This takes
the guesswork out of determining pin direction. You can also use the set_direction
command to define pin direction.

black boxredefiningblack boxsetting pins and port directionsredefiningblack boxessettingpins and port directionspinsdefining directionportsdefining directionTo redefine a black box pin or port direction, use either the Formality shell or the GUI as
shown:

fm_shell GUI

Specify:
commandscreate_containercreate_container commandset_direction
objectID direction

At the Formality prompt, specify:
set_direction
objectID direction

For objectID, supply the object ID for an unlinked port or pin. (You cannot set the direction
of a linked port or pin.) For direction, specify either in, out, or inout.

Specifying Constants
conceptsconstantsoverviewconstantsconstantsoverviewFormality recognizes two types of constantstypesnetsconstant valuedesignsconstantsuser-definedconstantsportsconstant valueconstantsuser-definedconstants: design and user-defined. Design constants
are nets in your design that are tied to a logic 1 or 0 value. User-defined constants are
ports or nets to which you attach a logic 1 or 0 value, using Formality commands.

troubleshootinglocating problemsuser-definedconstantslocatingproblemsUser-defined constants are especially helpful when several problem areas exist in a circuit
and you want to isolate a particular trouble spot by disabling an area of logic. For example,
suppose your implementation design has scan logic and you do not want to consider it in
the verification process. You can assign a constant to the scan-enable input port to disable
the scan logic and take it out of the verification process.

definingconstantsconstantsdefiningYou can apply a user-defined constant to a port or net. However, if you assign a constant
to a net with a driver, Formality displays a warning message.

Formality tracks all user-defined constants and generates reports. verificationconstant propagationconstantspropagatingYou can specify how
Formality constantspropagatingdesignspropagating constantspropagating constantspropagates constants through different levels of the design hierarchy.

You can manage user-defined constants by performing the tasks in the following sections.

Formality® User Guide
T-2022.03

116

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

Defining Constants
netssetting to a constantportssetting to a constantTo set a net, port, cell, or pin to a constant state of 0 or 1, use the Formality shell or the
GUI as shown:

fm_shell GUI

Specify:
commandsset_constantset_constant commandset_constant [-type type]
instance_path constant_value

1. Click Setup > Constants.
2. Click Set and click the Reference or

Implementation tab.
3. Navigate through the instance tree view and

select the instance.
4. Set a Constant value for the selected

instance.
5. Click Apply.

For constant_value, specify either 0 or 1. If more than one design object shares the
same name as that of the specified object, use the set_constant command-type option-type option and specify the object
type (either port or net). You can specify an object ID or instance-based path name for
instance_path. Use the latter to apply a constant to a single instance of an object instead
of all instances. In addition, you can use wildcards to specify objects to be set constant.

Removing User-Defined Constants
constantsremovinguser-definedconstantsremovingTo remove a user-defined constant, use the Formality shell or the GUI as shown:

fm_shell GUI

Specify:
remove_constant -all
or
remove_constant
[-type ID_type] object_ID ...

1. Click Setup > Constants.
2. Select a constant.
3. Click Remove.

If more than one design object shares the same name as that of the specified object, use
the remove_constant command-type option-type option and specify port or net (whichever applies) for the type. You can specify
an object ID or instance-based path name for object_ID. Use the latter if you want to
remove a constant on a single instance of an object instead of all instances.

Formality® User Guide
T-2022.03

117

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

Listing User-Defined Constants
constantslistinglistingconstantsreportsconstants, user-defineduser-definedconstantsreportingTo list user-defined constants, use the Formality shell or the GUI as shown:

fm_shell GUI

Specify:
commandsreport_constantsreport_constants command

report_constants
[instance_path ...]

Click Setup > Constants.

If you omit instance_path, Formality returns a list of all user-defined constants. You
can specify an object ID or instance-based path name for instance_path. Each line of
the report shows the constant value, design object type, and design object name. For
information about this command, see the man page.

Reporting Setup Status
constantslistinglistingconstantsreportsconstants, user-defineduser-definedconstantsreportingTo report design statistics, design read warning messages and user specified setup, use
the report_setup_status command in the Formality shell or the GUI as shown:

fm_shell GUI

Specify:
commandsreport_constantsreport_constants command

report_setup_status
[-design_info]
[-hdl_read_messages]
[-commands]

At the Formality prompt, specify:
report_setup_status
[-design_info]
[-hdl_read_messages]
[-commands]

By default, the report_setup_status command lists the critical design setup before
running the match and verify commands. You can run this command after reading and
linking both the reference and implementation designs.

Use the report_setup_status -design_info command to report design specific
settings that are set using the set command and statistics.

Use the report_setup_status -hdl_read_messages command to report the warning
information messages that are issued by Formality during design read and linking.

Use the report_setup_status -commands command to report the user-specified setup.

When you do not use any of the available options with the report_setup_status
command, a consolidated report with all the information is generated.

Formality® User Guide
T-2022.03

118

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

Specifying External Constraints
Sometimes, you might want to restrict the inputs used for verification by setting an conceptsexternal

constraintsoverviewexternal constraintsexternal constraintsoverviewverificationsetting external constraintsexternal constraint. By setting an external constraint, you can limit the potential
differences between two designs by eliminating unused combinations of input values from
consideration, thereby reducing verification time and eliminating potential false failures that
can result from verification with the unconstrained values.

When you define the allowed values of, and relationships between, primary inputs,
registers, and black box outputs, and allow the verification engine to use this information,
the resulting verification is restricted to identify only those differences between the
reference and implementation designs that result from the allowed states.

external constraintstypesTypical constraint types that you can set are

• One-hot: One control point at logic 1; others at logic 0.

• One-cold: One control point at logic 0; others at logic 1.

• Coupled: Related control points always at the same state.

• Mutually exclusive: Two control points always at opposite states.

• User-defined: You define the legal state of the control points.

The following paragraphs describe three cases where setting external constraints within
verification is important.

In the most common case, your designs are part of a larger design, and the larger design
defines the operating environment for the designs under verification. You want to verify the
equivalence of the two designs only within the context of this operating environment. By
using external constraints to limit the verification to the restricted operating conditions, you
can eliminate the false negatives that can arise out of the functions not exercised.

In the second case, one of the designs you want to verify was optimized under the
assumption that some control point conditions cannot occur. The states outside the
assumed legal values can be true don’t care conditions during optimization. If the
equivalent behavior does not occur under these invalid stimulus conditions, false
negatives can arise during verification. Setting the external constraints prevents Formality
from marking these control points as false negatives under these conditions.

In the third case, you want to constrain the allowed output states for a black box
component within the designs being verified. Using external constraints eliminates the
false negatives that can arise if the black box component is not constrained to a subset of
output state combinations.

You can set and remove external constraints, create and remove constraint types, and
report information about the constraints you have set.

Formality® User Guide
T-2022.03

119

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

Defining an External Constraint
To define an external constraint, use the Formality shell or the GUI as shown:

fm_shell GUI

Specify:
commandsset_constraintset_constraint commandset_constraint type_name
[-name constraint_name
[-map map_list1 map_list2]
constraint_type
control_point_list [designID]

At the Formality prompt, specify:
set_constraint type_name
[-name constraint_name
[-map map_list1 map_list2]
constraint_type
control_point_list [designID]]

For type_name, supply the type of external constraint you want to use. For
control_point_list, specify the list of con trol points (primary inputs, registers, and
black box outputs) to which the constraint applies. Use the designID argument to specify
a particular design; the default is the current design.

Creating a Constraint Type
To create a user-defined constraint type and establish the mapping between the ports
of a design that define the constraint and control points in the constrained design, in the
Formality shell or the GUI as shown:

fm_shell GUI

Specify:
commandscreate_constraint_typecreate_constraint_type commandcreate_constraint_type
type_name
[designID]

At the Formality prompt, specify:
create_constraint_type
type_name
[designID]

For type_name, specify the type of constraint. For designID, specify a particular design;
otherwise, the default is the current design.

external constraintsuser-definedUser-defined constraints allow you to define the allowable states of the control points
by specifying a constraint moduleconstraint module. The constraint module is a design you create that
determines whether the inputs are legal (care) or illegal (don’t care) states. When
the output of the constraint module evaluates to 1, the inputs are in a legal state. For
information about don’t care cells, see Concept of Consistency and Equality.

When you later reference the user-defined constraint from the set_constraint
command, Formality automatically hooks the constraint module design into the target of
the set_constraint command and uses the output of the module to force the verification
to consider only the legal states for control points.

Formality® User Guide
T-2022.03

120

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

A constraint module has the following characteristics:

• One or more inputs and exactly one output

• Outputs in logic 1 for a legal state; otherwise logic 0

• No inouts (bidirectional ports)

• No sequential logic

• No three-state logic

• No black boxes

Removing an External Constraint
To remove an external constraint from the control points of a design, use either the
Formality shell or the GUI as shown:

fm_shell GUI

Specify:
commandsremove_constraintremove_constraint commandremove_constraint
constraint_name

At the Formality prompt, specify:
commandsremove_constraintremove_constraint commandremove_constraint
constraint_name

For constraint_name, specify the name of the constraint to remove.

Removing a Constraint Type
To remove external constraint types, use either the Formality shell or the GUI as shown:

fm_shell GUI

Specify:
commandsremove_constraint_typeremove_constraint_type commandremove_constraint_type type_name

At the Formality prompt,
specify:remove_constraint_type
type_name

For type_name, specify the type of user-defined constraint to remove.

Formality® User Guide
T-2022.03

121

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

Reporting Constraint Information
To report information about the constraints set in your design, use either the Formality
shell or the GUI as shown:

fm_shell GUI

Specify:
commandsreport_constraintreport_constraint commandreport_constraint
[-long] constraint_name

At the Formality prompt, specify:
report_constraint
[-long] constraint_name

For constraint_name, specify the name of the constraint you want to obtain a report.

Reporting Information About Constraint Types
To report information about constraint types set in your design, use either the Formality
shell or the GUI as shown:

fm_shell GUI

Specify:
commandsreport_constraint_typereport_constraint_type commandreport_constraint_type
[-long] type_name

At the Formality prompt, specify:
report_constraint_type
[-long] type_name

For more information about report_constraint_type command, see the man page.

Combinational Design Changes
verificationtransformed designscombinational design changesThis section describes how to prepare designs with combinational design changes, such
as

• Internal scan insertions

• Boundary-scan insertions

• Clock tree buffers

Your design can also include sequential design changes. For more information, see
Sequential Design Changes.

Disabling Scan Logic
Insert internal scan to set and observe the state of the registers internal to a design.
During scan insertion, the scan flops replace flip-flops. The scan flops are then connected

Formality® User Guide
T-2022.03

122

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

into a long shift register. The additional logic added during scan insertion means that the
combinational function has changed, as shown in Figure 17.

Figure 17 Internal Scan Insertion

After determining which pins disable the scan circuitry, disable the inserted scan logic by
specifying the disabling value (either 0 or 1) with the set_constant command. For more
information, see the procedure in Defining Constants.

Disabling Boundary Scan in Your Designs
combinational design changesboundary scanboundary scanverificationboundary scanBoundary scan is similar to internal scan in that it involves the addition of logic to a design.
This added logic makes it possible to set and observe the logic values at the primary
inputs and outputs (the boundaries) of a chip, as shown in Figure 18. Boundary scan is
also referred to as the IEEE 1149.1 Std. specification.

Formality® User Guide
T-2022.03

123

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

Figure 18 Boundary-Scan Insertion

Designs with boundary-scan registers inserted require setup attention because

• The logic cones at the primary outputs differ

• The boundary-scan design has extra state-holding elements

Boundary scan must be disabled in your design in the following cases:

• If the design contains an optional asynchronous TAP reset pin (such as TRSTZ or
TRSTN), use set_constant on the pin to disable the scan cells.

• If the design contains only the four mandatory TAP inputs (TAS, TCK, TDI, and TDO),
force an internal net of the design with the set_constant command. For example,

 fm_shell (setup)> set_constant gates:/WORK/TSRTS 0
 fm_shell (setup)> set_constant gates:/WORK/alu/somenet 0

Specify 0 for the set_constant command, as described in the procedure in Defining
Constants.

Managing Clock Tree Buffering
combinational design changesclock tree bufferingclock tree bufferingverificationclock tree bufferingClock tree buffering is the addition of buffers in the clock path to allow the clock signal to
drive large loads, as shown in Figure 19.

Formality® User Guide
T-2022.03

124

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

Figure 19 Clock Tree Buffer

Without the correct setup, verification of block_a fails. However, it would succeed with
top-down verification. As shown in the figure, before buffering, the clock pin of ff3 is clk.
After buffering, the clock pin of ff3 is clk3. The logic cones for ff3 are different, resulting in a
failing point.

To manage the clock tree buffering, you must use the commandsset_user_matchset_user_match commandset_user_match command to
specify that the buffered clock pins are equivalent. With the set_user_match command
you can match one object in the reference design to multiple objects in the implementation
design (1-to-n matching). For example, if you want to match a clock port, clk, in the
reference design to three clock ports in the implementation design, clk, clk1, and clk2, you
can use

 set_user_match r: /WORK/design/clk i:/WORK/design/clk i:/WORK/
design/ clk1 i:/WORK/design/clk2

Alternatively, you can issue multiple commands for each port in the implementation:

 set_user_match r: /WORK/design/clk i:/WORK/design/clk
 set_user_match r: /WORK/design/clk i:/WORK/design/clk1
 set_user_match r: /WORK/design/clk i:/WORK/design/clk2

If you know a clock port is inverted, use the -inverted option to the set_user_match
command. Therefore, if your reference design had a clock port, clk, and your
implementation design had a clk port and an inverted clock port, clk_inv, you would use
the following command:

 set_user_match r:/WORK/design/clk i:/WORK/design/clk
 set_user_match -inverted r:/WORK/design/clk i:/WORK/design/clk_inv

For more information about the set_user_match command, see the man page.

Formality® User Guide
T-2022.03

125

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

Sequential Design Changes
verificationsequential design changessequential design changesSimilar to the combinational design changes described in Combinational Design Changes,
sequential design changes also require setup before verification. Sequential design
changes include:

• Clock gating

• Automatic clock gating

• Pushing inversions across registers

• Retiming

FSM re-encoding and module retiming are also considered sequential design changes.
For more information, see Re-Encoded Finite State Machines and Handling Retimed
Designs.

Reverse Clock Gating
The Formality tool processes both reference and implementation designs by searching for
clock-gating latches. At the beginning of the verification stage, the tool transforms these
latches into synchronous load control logic and clock signals on the downstream flip-flops.

In the simplest form, the enable pin on the clock gating latch becomes the synchronous
load (SL) function of the flip-flop, and the clock-gating latch clock signal is connected to
the clock pin on the flip-flop. This reverses any clock gates inserted so that it looks like a
design without clock gating for verification purposes as shown in Figure 20:

Figure 20 Reverse Clock Gating

Complex clock gating arrangements with multiple stages of clock gating latches are
handled similarly. The reversal does not change the next state function of the design; it
merely reverses the clock gating for verification purposes. You cannot see any changes to
the design or verification results in existing designs.

When the verification_clock_gate_reverse_gating variable
is set to true, the reverse clock-gating algorithm takes precedence

Formality® User Guide
T-2022.03

126

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

over both the verification_clock_gate_hold_mode and
verification_clock_gate_edge_analysis variables.

Setting Clock Gating
Clock gating applies to synchronous load-enable registers, which are groups of flip-flops
that share the same clock and synchronous control signals. Clock gating saves power
by eliminating the unnecessary activity associated with reloading register banks. In its
simplest form, clock gating is the addition of logic at the register's clock input path that
disables the clock when the register output is not changing, as shown in Figure 21.

Figure 21 Clock Gating

The correct operation of such a circuit imposes timing restrictions, which can be relaxed if
clock gating uses latches or flip-flops to eliminate hazards.

The two clock-gating styles that are widely used in designs are combinational clock gating
and latch-based clock gating. They are described later in this section. Both techniques
often use a single AND or a single OR gate to eliminate unwanted transitions on the clock
signal.

The Formality clock-gating support covers clock gating inserted by Power Compiler.
Formality verifies the clock gating inserted by other tools or manually. In general,
verification of a design without clock gating against a design with clock gating results in
a failure because of the extra logic in the gated design. This possibility exists for both
RTL2gate and Gate2Gate verifications.

Formality® User Guide
T-2022.03

127

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

Clock gating results in the following two failing points:

• A compare point is created for the clock-gating latch. This compare point does not have
a matching point in the other design, causing it to fail.

• The logic that feeds the clock input of the register bank changes. Thus, the compare
points created at the register bank fail.

To verify designs with clock gating in the tool, use the Formality shell or the GUI as shown:

fm_shell GUI

Specify:
variablesverification_clock_gate_hold_modeverification_clock_gate_hold_mode variableset_app_var
verification_clock_gate_hold_mode
[none | low | high | any |
collapse_all_cg_cells]

1. Choose Edit > Formality Tcl Variables.
The Formality Tcl Variables dialog box appears.
2. From Verification, select the
verification_clock_gate_hold_mode
variable.
3. From the Choose a value list, select the
required level.
4. Choose File > Close.

The verification_clock_gate_hold_mode variableverification_clock_gate_hold_mode variable has the following values:

• none (off) is the default.

• low to specify clock gating that holds the clock low when inactive.

• high to specify clock gating that holds the clock high when inactive.

• any to specify both the high and low styles of clock gating within the same design.

• collapse_all_cg_cells valuecollapse_all_cg_cells has the same effect as the low value. In addition, if the
clock-gating cell is in the fan-in of a register and in the fan-in of a primary output port or
black-box input pin, the cell is treated as a clock-gating cell in all of those logic cones.

The verification_clock_gate_hold_mode variable affects the entire design. It cannot
be placed on a single instance and enabling it causes slower runtime.

When you use combinational logic to gate a clock, the Formality tool cannot detect
glitches. You must use a static timing tool such as the PrimeTime tool to detect glitches.

Other Clock-Gating Verification Solutions
The tool inserts clock edges to the registers of the next state. Using these clock edges,
the tool identifies clock-gating latches and different styles of clock-gating circuitry during
verification.

To enable automatic verification of the clock-gate designs,

fm_shell > set_app_var verification_clock_gate_edge_analysis true

Formality® User Guide
T-2022.03

128

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

When you set the verification_clock_gate_edge_analysis variable to true, the
tool ignores any occurrence of the verification_clock_gate_hold_mode variable that
might exist in the Formality Tcl scripts. You do not need to edit the scripts to remove the
verification_clock_gate_hold_mode variable.

When using this feature, the tool adds annotations to the clock signals indicating their
present state and next state values. These annotations are visible in the pattern viewer
and logic cone schematics. You can see the following annotations when analyzing failing
compare points:

Annotation Present State Next State
---------- ------------- ----------
r (rising edge) 0 1
f (falling edge) 1 0
0->X 0 X
1->X 1 X
X->0 X 0
X->1 X 1

Combinational Gate Clocking
Assume the reference design in Figure 22.

Figure 22 Reference Design

Figure 23 shows the typical combinational clock-gating circuitry. The gate has two
inputs, enable (en) and clock (clk) the output feeds a register clock. The corresponding
waveforms are also shown.

Formality® User Guide
T-2022.03

129

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

Figure 23 Combinational Clock Gating Using AND Gate

If glitches occur on the signal (load_en), invalid data is loaded into the register. Therefore,
this circuit is functionally nonequivalent to that in Figure 22. In the default mode, the tool
considers this glitch a possible input pattern and produces a failing point. The Formality
tool ignores nonequivalence if you set the verification_clock_gate_hold_mode
variable to low.

Latch-Based Clock Gating
The typical latch-based clock-gating circuitry, such as that used by the Power Compiler
tool, is presented in Figure 24. The latch has two inputs, en and clk, and one output, q.
The clock (clk) is gated with the output of the latch and then feeds the register clock. You
can also see the corresponding waveforms.

Figure 24 Latch-Based Clock Gating Using AND Gate

During verification, when the variablesverification_clock_gate_hold_modeverification_clock_gate_hold_mode variableverification_clock_gate_hold_mode variable is set, the
tool recognizes clock-gating latches and takes into account their role in the design under
verification.

Formality® User Guide
T-2022.03

130

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

The timing diagram shows when the load_en signal goes low, the gated clock (clk) signal
also goes low. Data from the register transitions and continues to remain there until the
load_en signal goes high. When you set the verification_clock_gate_hold_mode
variable to low, the tool determines the setup is the same as a design that has no clock
gating, as shown in Figure 22.

Enabling an Inversion Push
sequential design changesinversion pushinversion pushInversion pushing means moving an inversion across register boundaries, as shown in
Figure 25.

Figure 25 Inversion Push

Inversion pushing causes two failing points, as shown in Figure 26.

Figure 26 Inversion Push Failing Points

Formality® User Guide
T-2022.03

131

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

Two techniques are available for handling inversion pushing in Formality: instance-based
and environmental. The way you solve the resulting failing points differs depending on the
type of inversion push.

Instance-Based Inversion Push
inversion pushinstance-basedInstance-based inversion push specifies that a specific register has an inversion pushed
across it. Formality must push an inversion across the register. This is useful when you
know which register has an inverter pushed across it. This method can be applied to
library cells. Apply the instance-based inversion push before verification begins. Then the
next state and Q or QN pins are inverted.

To remedy the resulting failing points, use the Formality shell or the GUI as shown:

fm_shell GUI

Specify:
commandsset_inv_pushset_inv_push commandset_inv_push
[-shared_lib]
objectID_list

At the Formality prompt, specify:
commandsset_inv_pushset_inv_push commandset_inv_push
[-shared_lib]
objectID_list

For example,

 fm_shell (setup)> set_inv_push ref:/WORK/alu/z_reg
To indicate an inversion push, you might prefer to use the set_user_match command
with the -inverted or -noninverted option. This command with either option handles
inverted polarity. Polarity conflicts between the set_inv_push and set_user_match
commands applied to the same point are resolved using the polarity specified using the
set_user_match command.

For more information about the set_inv_push and set_user_match commands, see the
respective man pages.

Environmental Inversion Push
inversion pushenvironmentalEach compare point matched pair has a compare polarity that is either inverted or
noninverted. Inverted polarities can occur due to the style of vendor libraries, design
optimizations by synthesis, or manually generated designs. If environmental inversion
pushing is not enabled, Formality matches all compare points with a noninverted compare
polarity unless you specify otherwise using the set_user_match -inverted command.

Environmental inversion pushing matches all state points automatically with the correct
polarity. Environmental inversion pushing is off by default. Enable it only after you resolve
all setup issues and ensure that differences in the designs are due to inverted state
points. If there are failing compare points and environmental inversion pushing is enabled,
the tool can spend a long time attempting to find a set of inverted matches to solve the

Formality® User Guide
T-2022.03

132

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

verification, but this can be impossible because the compare points are not equivalent.
Use this variable only if you know an inversion push was used during creation of the
implementation design.

Formality can automatically use environmental inversion pushing to match state points
with the correct polarity, as shown:

fm_shell GUI

Specify:
variablesverification_inversion_pushverification_inversion_push variableset_app_var
verification_inversion_push true

1. Choose Edit > Formality Tcl Variables.
The Formality Tcl Variables dialog box
appears.
2. From Verification, select the
verification_inversion_push variable.
3. Select Enable inversion push.
4. Choose File > Close.

In the GUI, compare polarity is indicated by “+” for noninverted, “-” for inverted, and “?” for
unspecified. In addition, match-related reports now have a column to indicate polarity. The
“-” indicates inverted polarity, a space, “ ”, indicates noninverted polarity. For user match
reports a “?” indicates unspecified polarity.

Handling Retimed Designs
retimed designs, working withdesignsretimingRetiming a design moves registers across combinational logic to meet timing or area
requirements. Retiming can occur during synthesis or it can be a result of “hand editing” a
design. Retiming can change the number of registers in a design and the logic driving the
registers.

If the implementation design has been retimed but the reference design has not been
retimed, the register compare points cannot be matched. In this case, setup is required
to prepare Formality to match and verify the design. If the design has been retimed in
any of the Synopsys synthesis tools, you can use the SVF file in Formality to handle
retiming automatically. If the design has been retimed with another method, you can set
a parameter to instruct Formality to take into account the design changes caused by
retiming.

Low-Power Designs
Formality verifies and supports designs that use the UPFIEEE 1801 (UPF)IEEE 1801, also known as the Unified
Power Format (UPF) standard.

Formality reads UPF files that are created at each stage of the design process, allowing
verification of the intermediate netlists produced by Design Compiler and IC Compiler.

Formality® User Guide
T-2022.03

133

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

In UPF verification flow, the tool verifies designs consisting of

• A design source file with the UPF file

• A Design Compiler netlist with the generated UPF file

• An IC Compiler netlist with the generated UPF file

• An IC Compiler power and ground connected netlist

Special steps might be required to handle designs that contain retention registers.

Loading the UPF File
To load and use the UPF information file into Formality, set the top design in the container
and issue the following command in the setup mode:

load_upf [-container container_name | -r | -i]
 [-scope instance_path] [-version version_string] filename

with the options explained as follows:

Option Description

commandsset_parametersset_parameters command-container container_name Applies the UPF to the named container.

commandsset_parametersset_parameters command-r Applies the UPF to the reference container.

commandsset_parametersset_parameters command-i Applies the UPF to the implementation
container.

commandsset_parametersset_parameters command-scope instance_path Sets the initial scope for the UPF to the
named instance.

commandsset_parametersset_parameters command-version version_string Specifies the version string for the UPF file.
If the upf_version command is in the UPF
file, and it does not match version_string,
a warning is issued.

commandsset_parametersset_parameters commandfilename Specifies the name of the UPF file to load.

When loading the UPF file, the tool checks and reports the low power libraries for
cells that have incorrectly modeled power behavior. To report these errors, use
the report_libraries -defects command. You must correct the errors before
you proceed with the verification. To automatically fix some of the errors, set the
hdlin_library_auto_correct variable to true. By default, this variable is set to false.

To report information about the cells that are implemented after the UPF file is loaded, use
the report_upf command.

For more information about these commands, see the command man pages.

Formality® User Guide
T-2022.03

134

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

Controlling the Interpretation of UPF Files
You can specify how the Formality tool interprets UPF files to match your custom flow.
By defining how the UPF files are interpreted, you provide information on how UPF files
are implemented in the exact combinations that match your design flow. The UPF file
implementations are from file headers or constructs.

To specify the UPF constructs that are implemented, set the
upf_implementation_based_on_file_headers variable to false and specify the
upf_implemented_constructs {isolation retention power_switching} variable.

The Formality tool interprets the UPF file as defined by the UPF file headers if you do not
specify any arguments for the upf_implemented_constructs variable.

Note:
When the upf_implementation_based_on_file_headers variable is set to
true (default), the tool interprets UPF constructs based on the UPF file header
and ignores the upf_implemented_constructs variable.

When the upf_implementation_based_on_file_headers variable is set to true, the
Formality tool ignores the list specified using the upf_implemented_constructs variable.

If the upf_implementation_based_on_file_headers variable is set to false, the tool
checks for the list specified by the upf_implemented_constructs variable, if it is set in
the UPF file. The tool reports an error if the list contains invalid values.

For more information about the upf_implementation_based_on_file_headers variable,
see the man page.

You can also set the upf_implementation_based_on_file_headers and the
upf_implemented_constructs variables in the Formality GUI using the variable editor.
You can access the variable editor by choosing Edit > Formality Tcl Variables.

To map instantiated technology cells (that are not retention cells) to retention cells, use the
upf_infer_complex_retention_cells UPF-related variable as follows:

upf_infer_complex_retention_cells = "false" (default)

To use the upf_infer_complex_retention_cells variable in the Formality tool, enable
the upf_use_library_cells_for_retention variable as follows:

upf_use_library_cells_for_retention == true

Verifying the Design With the UPF File
The Formality tool uses information from the UPF file to identify the supply nets in the
design and verify the design using the UPF power state table information. By default, the
verification_force_upf_supplies_on variable is set to true, and the tool verifies
the state where all the UPF supplies are on by holding the supplies constant during

Formality® User Guide
T-2022.03

135

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

verification. All other UPF power state table information are ignored. This allows you to
find non-power related not equivalent compare points. However, this is not a complete
verification of all the power states in the design, and if the power state table does not
have a state where all the supplies are enabled, the verification results might include
unexpected failing compare points.

For a complete verification of your design in all power states, you must run verification with
the verification_force_upf_supplies_on variable set to false. The Formality tool
then uses the power state table information in the UPF file to verify the design using all
legal combinations of power states.

Reporting Over-Constrained Supply Nets
In a UPF verification flow, some power supplies might never switch on because of
overconstrained power supplies. A power supply can be overconstrained due to incorrect
power states, corruption, or feedback. By default, the tool runs the analyze_upf
command before pre verification, and if there are overconstrained supplies, the
analyze_upf command issues errors and prevents verification from proceeding. You can
control this with the upf_auto_analyze variable.

To manually report about UPF supplies, use the analyze_upf command after loading the
UPF files.

The command issues a message if there are any overconstrained supply nets. Example 3
shows an error message, which also reports a single-point verification command to aid in
debugging the faulty supply net.

Example 3 Error Message Issued by the analyze_upf Command
Formality (verify) > analyze_upf
Container: ref

Found 1 Supply Net(s) that can never be turned ON

Supply Net ref:/WORK/top/VDDA can never be 1 (ON value)
Set verification_force_upf_supplies_on to false
Use "verify -constant1 ref:/WORK/top/VDDA" to see a failing logic cone
 for the supply net.

The UPF file defines power states and port states, which are usually applied as
constraints. The analyze_upf command performs the following checks for the constraints:

• Power states that cannot be switched on. The following example shows a message
that the command issues if there are constraints that can never be switched on.

Formality (verify) > analyze_upf
Found 1 PST Constraint Net(s) that can never be true

Legal power state i:/WORK/CHIPIO/PST_1_UPF_PST in Design
 i:/WORK/CHIPIO is unreachable. It can never be true.

Formality® User Guide
T-2022.03

136

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

Set verification_force_upf_supplies_on to false
Use "verify -constant1 i:/WORK/CHIPIO/PST_1_UPF_PST " to see a failing
 logic cone for the constraint net (power state).

• Power states that are mutually exclusive. The following example shows a message that
the command issues if each state is reachable but are mutually exclusive.

Formality (verify) > analyze_upf
Found 1 Design with mutually exclusive power-states

All power states in Design i:/WORK/CHIPIO cannot be turned on at the
 same time.

For more information about the analyze_upf command, see the command man page.

Merging Parallel Switch Cells
During power network synthesis, implementation tools might expand a single UPF
power switch into many coarse-grained switch cells in a variety of functionally equivalent
configurations. Many switches driving the same supply net affects performance during
verification and makes debugging difficult.

To avoid this problem, merge parallel switch cells to reduce redundant switches, and
improve matching and verification performance. When parallel switch cell merging is
enabled, the tool merges equivalent switch cells in nets that are driven by multiple coarse-
grained switch cells. The tool merges switch cells in the .db file format libraries, but not the
Verilog switch models. After the equivalent switch cells are merged, the tool reports the
affected supply nets and the number of eliminated driving switch cells in the log file.

The hdlin_merge_parallel_switches variable is set to true by default. To retain the
netlist in its unmerged form, set this variable to false.

Verifying Hierarchical Designs Using Power-Aware Black Boxes
A power-aware black box contains UPF information. Power-aware black boxes enable the
verification of a hierarchical design with UPF, in which the power information is incomplete.
Use power-aware black boxes to verify a hierarchical design when the subblocks are
incomplete and must be black boxed.

When you read the UPF file into a hierarchical design that has black boxes, Formality
creates power-aware black boxes by implementing the UPF file in the black boxes. Power-
aware black boxes have additional logic for the power behavior of the subdesign ports that
are required for accurate verification of the top-level design.

• Read a design using the hdlin_interface_only variable to create black boxes of the
subdesigns.

• Load the UPF file into the design. Formality implements the port related supply
information and creates power-aware black boxes of the subdesigns.

Formality® User Guide
T-2022.03

137

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

Verifying Hierarchical Designs Using Power Models
Using Formality power models, you can perform bottom-up verification of designs,
including low-power designs. The verification of low-power designs using black boxes is
inaccurate when power information is not included in the black box.

To verify a low-power design using power models, synthesize and verify the subblocks
independently. The subblocks must contain UPF constructs, so they do not reference
or create objects outside the hierarchy level being synthesized and verified. After the
subblocks are verified, create Formality power models of both the reference and the
implementation designs using the write_power_model command. Formality power
models of the verified subblocks are used when the blocks in the next hierarchical level
are verified, which improves the performance and accuracy of verification.

Example 4 shows how to create Formality power models.

Example 4 Creating Formality Power Models
fm_shell > read_verilog –r sub.v
fm_shell > set_top –auto
fm_shell > load_upf –r sub.upf
fm_shell > read_ddc –i sub.ddc
fm_shell > set_top –auto
fm_shell > load_upf –i sub.mapped.upf
fm_shell > verify
fm_shell > write_power_model –r sub.ref
fm_shell > write_power_model –i sub.impl
The write_power_model command saves the Formality power model in the .fpm file
format, which are used instead of the verified subblock modules when verifying the blocks
at the higher hierarchy level.

To read in the power models, use the read_power_model command.

To determine when to load the UPF subblock:

• If the top-level UPF power state table references switches in the subblock that are
in the Formality power model to add power states, you might need to load this UPF
subblock, which was used to create the Formality power model at the block level, into
the scope of the Formality power model during the top-level verification.

• If the top-level UPF does not reference any internal switch objects in the Formality
power model, you do not need to load the UPF subblock into the Formality power
model, because it already contains all related supply information for all the subblock
ports.

Formality® User Guide
T-2022.03

138

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

Example 5 shows how to read Formality power models.

Example 5 Reading Formality Power Models
fm_shell > read_verilog –r top.v
fm_shell > read_power_model –r sub.ref.fpm
fm_shell > set_top –auto
fm_shell > load_upf –r top.upf
fm_shell > read_ddc –i top.ddc
fm_shell > read_power_model –i sub.impl.fpm
fm_shell > set_top –auto
fm_shell > load_upf –i top.mapped.upf
fm_shell > verify
The read_power_model command reads the power models into a library, named
FM_MLIB_0 by default. You can specify a new library or an existing library using the
read_power_model command. To ensure successful linking of the power models when
you set the top-level design, remove the verified subblocks from the container using the
remove_design command.

For information about the write_power_model and read_power_model commands, see
their respective man pages.

Golden UPF Flow
The golden UPF flow is an optional method of maintaining the UPF multivoltage power
intent of the design. It uses the original “golden” UPF file throughout the synthesis,
physical implementation, and verification steps, along with supplemental UPF files
generated by the Design Compiler and IC Compiler tools.

Figure 27 compares the traditional UPF flow with the golden UPF flow.

Formality® User Guide
T-2022.03

139

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Common Operations

Feedback

Figure 27 UPF-Prime (Traditional) and Golden UPF Flows

The golden UPF flow maintains and uses the same, original “golden” UPF file throughout
the flow. The Design Compiler and IC Compiler tools write power intent changes into
a separate “supplemental” UPF file. Downstream tools and verification tools use a
combination of the golden UPF file and the supplemental UPF file, instead of a single UPF’
or UPF’’ file.

Formality® User Guide
T-2022.03

140

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Less Common Operations

Feedback

The golden UPF flow offers the following advantages:

• The golden UPF file remains unchanged throughout the flow, which keeps the form,
structure, comment lines, and wildcard naming used in the UPF file as originally
written.

• You can use tool-specific conditional statements to perform different tasks in different
tools. Such statements are lost in the traditional UPF-prime flow.

• Changes to the power intent are easily tracked in the supplemental UPF file.

• You can optionally use the Verilog netlist to store all PG connectivity information,
making connect_supply_net commands unnecessary in the UPF files. This can
significantly simplify and reduce the overall size of the UPF files.

For more information about using the golden UPF mode, see SolvNet article 1412864,
“Golden UPF Flow Application Note.”

Less Common Operations
The are a number of operations that are less commonly carried out as part of the setting
up of the tool.

This section includes the following subsections:

• Asynchronous Bypass Logic

• Asynchronous State-Holding Loops

• Re-Encoded Finite State Machines

• Hierarchical Designs

• Nets With Multiple Drivers

• Retention Registers Outside Low-Power Design Flow

• Register Initialization Mode

• Single State Holding Elements

• Multiplier Architectures

• Multibit Library Cells

• Preverification

Formality® User Guide
T-2022.03

141

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Less Common Operations

Feedback

Asynchronous Bypass Logic
sequential design changesasynchronous bypass logicasynchronous bypass logicA sequential cell where some of the asynchronous inputs have combinational paths
to the outputs, bypassing the generic sequential element SEQGEN, is said to have an
asynchronous bypass, as shown in Figure 28.

Figure 28 Asynchronous Bypass Logic

Asynchronous bypass logic can result from

• Mapping from one technology library to another.

• Verilog simulation libraries. The Verilog module instantiates logic, creating a
combinational path that directly affects the output of a sequential user-defined primitive
(UDP).

• Modeling a flip-flop with RTL code. The RTL has an explicit asynchronous path defined
or the RTL specifies that both Q and QN have the same value when Clear and Preset
are both active.

Asynchronous bypass logic cannot come from a .lib file that was converted to a .db file.
Library Compiler uses a sequential element to model asynchronous behavior to avoid
creating explicit bypass paths.

Formality® User Guide
T-2022.03

142

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Less Common Operations

Feedback

Asynchronous bypass logic results in a failing point, as shown in Figure 29.

Figure 29 Asynchronous Bypass Failing Point

To prevent terminating verification due to the downstream failing point, use the Formality
shell or the GUI as shown:

fm_shell GUI

Specify:
variablesverification_asynch_bypassverification_asynch_bypass variableset_app_var
verification_asynch_bypass true

1. Choose Edit > Formality Tcl Variables. The
Formality Tcl Variables dialog box appears.

2. From Verification, select the
verification_asynch_bypass variable.

3. Select Enable asynchronous bypass to set the
variable to true.

4. Choose File > Close.

This procedure creates asynchronous bypass logic around every register in the design.
Setting verification_asynch_bypass to true can cause the following:

• Longer verification runtimes

• Introduction of loops into the design

• Terminated verification due to design complexity

Asynchronous bypass affects the entire design and cannot be placed on a single instance.
In addition, asynchronous bypass is automatically enabled when you verify cells in a
technology library; because of the relative simplicity of library cells, no negative effects
occur.

Formality® User Guide
T-2022.03

143

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Less Common Operations

Feedback

Asynchronous State-Holding Loops
troubleshootingasynchronous state-holding loopsasynchronous state-holding loopsThe Formality tool verifies synchronous designs. Therefore your design should not contain
asynchronous state-holding loops implemented as combinational logic. Asynchronous-
state-holding loops can cause some compare points to be terminated, providing
inconclusive results.

Asynchronous state-holding loops affect Formality in the following ways:

• If the tool establishes that an asynchronous-state-holding loop affects a compare
point, it terminates that compare point, and that point is not proven equivalent or
nonequivalent.

• If the tool establishes that an asynchronous state-holding loop has a path that does not
affect a compare point, it proves that point equivalent or nonequivalent.

• If the tool cannot establish that an asynchronous state-holding loop has a path that
does not affect a compare point, it terminates that compare point, and that point is not
proven equivalent or nonequivalent.

Formality automatically breaks loops during verification if they are identical. To change this
behavior, set the verification_auto_loop_break variable to false. For information
about this variable, see the man page.

Note:
You can also specify the report_loops command after verification. In this
case, Formality reports the original loops even if they were automatically broken
during verification.

To report asynchronous state-holding loops, use the Formality shell or the GUI as shown:

fm_shell GUI

Specify:
commandsreport_loopsreport_loops commandreport_loops [-ref] [-impl]
[-limit N] [-unfold]

At the Formality prompt, specify:
report_loops [-ref] [-impl]
[-limit N] [-unfold]

By default, the report_loops command returns a list of nets and pins for loops in both
the reference and implementation designs. It reports 10 loops per design and 100 design
objects per loop unless you specify otherwise with the -limit option. Objects are reported
using instance-based path names.

Use the -unfold option to report subloops embedded within a loop individually. Otherwise,
they are reported together.

If a loop is completely contained in a technology library cell, this command lists all the
nets and pins associated with it. If only part of a loop belongs to a technology library cell,

Formality® User Guide
T-2022.03

144

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Less Common Operations

Feedback

the cell name does not appear in the list. In addition, the report displays the hierarchical
structure if a loop crosses boundaries.

For more information about the report_loops command, see the man page.

verificationinserting cutpointsAfter you determine the locations of any asynchronous state-holding loops, ensure that
Formality successfully verifies the loop circuit by inserting cutpoints.

Re-Encoded Finite State Machines
conceptsFSMsoverviewfinite state machines (FSMs)finite state machines (FSMs)overviewThe architecture for a FSM consists of a set of flip-flops for holding the state vector and a
combinational logic network that produces the next state vector and the output vector. For
more information about finite state machines, see the Design Compiler documentation.

finite state machines (FSMs)preparing for verificationverificationfinite state machinesdefiningFSM statesBefore verifying a re-encoded FSM in the implementation design against its counterpart in
the reference design, you must take steps that allow the Formality tool to make verification
possible. These steps define the FSM state vectors and establish state names with their
respective encoding.

Without the proper setup, Formality is unable to verify two FSMs that have different
encoding, even if they have the same sequence of states and output vectors.

Formality provides several methods to name flip-flops and define encoding. User-defined
encoding is not verified by Formality, so take care to specify the encoding correctly. The
easiest method is to use the SVF file generated by Design Compiler. You can also use a
single fm_shell command to read a user-supplied file that contains all the information
simultaneously, or you can use two commands to first name state vector flip-flops and then
define the state names and their encoding. These methods are described in the following
sections.

SVF file for FSM Re-Encoding
finite state machines (FSMs)defining states individuallyFSM re-encodingvariablessvf_ignore_unqualified_fsm_informationsvf_ignore_unqualified_fsm_information variableThe SVF file generated by Design Compiler contains FSM state vector encoding. This
encoding is in the form of guide_fsm_reencoding commands. Use the following variable
to tell Formality to use the FSM guidance in the Design Compiler SVF file:

 set_app_var svf_ignore_unqualified_fsm_information false

Set this variable before reading the SVF file. For more information, see Creating an SVF
File. You can also manually perform the guide_fsm_reencoding commands.

Formality® User Guide
T-2022.03

145

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Less Common Operations

Feedback

Reading a User-Supplied FSM State File
readingFSM statesfinite state machines (FSMs)state filesfilesstate files for FSMsstate files for FSMsTo name the FSM state vector flip-flops and provide state names with their encoding
simultaneously,

fm_shell GUI

Specify:
commandsread_fsm_statesread_fsm_states commandread_fsm_states filename
[designID]

At the Formality prompt, specify:
commandsread_fsm_statesread_fsm_states commandread_fsm_states filename
[designID]

Use this method when your FSM has many states. If your FSM has only a few states,
consider the method described in the following section.

Note:
You must supply FSM information for both the reference and implementation
designs for verification to succeed.

The file you supply must conform to certain syntax rules. You can generate a suitable file
by using the report_fsm command in Design Compiler and redirecting the report output
to a file. For information about the file format and the read_fsm_states command, see
the man page.

Defining FSM States Individually
finite state machines (FSMs)defining states individuallyTo name a FSM state vector flip-flop first and then define the state name and its
respective encoding,

fm_shell GUI

Specify:
commandsset_fsm_state_vectorset_fsm_state_vector commandset_fsm_state_vector flip-flop_list
[designID]
Then specify:
commandsset_fsm_encodingset_fsm_encoding commandset_fsm_encoding encoding_list
[designID]

At the Formality prompt, specify:
set_fsm_state_vector flip-flop_list
[designID]
Then specify:
set_fsm_encoding encoding_list
[designID]

Using these commands can be convenient when you have just a few flip-flops in the FSMs
that store states. You must use the commands in the order shown.

Note:
You must supply FSM information for both the reference and implementation
designs for verification to succeed.

Formality® User Guide
T-2022.03

146

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Less Common Operations

Feedback

The first command names the flip-flops, and the second command defines the state
names with their encoding.

Multiple Re-Encoded FSMs in a Single Module
The Formality tool supports multiple re-encoded FSMs in a single module. FSM re-
encoding occurs during synthesis, different state registers exist due to different state-
encoded machines in the implementation and reference designs. Formality supports these
re-encoded FSMs if you provide both the FSM state vector and the state encoding either
by using the -name option with the set_fsm_state_vector and set_fsm_encoding
commands, or by using the read_fsm_states command with the FSM information
provided in a file you specify.

Consider the following example:

set_fsm_state_vector {ff1 ff2} -name fsm1
set_fsm_encoding {s1=2#01 s2=2#10} -name fsm1
set_fsm_state_vector {ff3 ff4} -name fsm2
set_fsm_encoding {s1=2#01 s2=2#10 s3=2#11} -name fsm2

When verifying FSM re-encoded designs, the Formality tool performs the following tasks:

• Modifies the reference design by replacing the original state registers with the new
state registers

• Synthesizes the logic around the new state registers to keep the new reference design
functionally equivalent to its original

Formality verifies the FSM re-encoded designs because the new reference and
implementation designs have the same state registers.

Listing State Encoding Information
finite state machines (FSMs)listing state encoding informationreportsfinite state machine (FSMs) informationTo list FSM state information for a particular design, use either the Formality shell or the
GUI as shown:

fm_shell GUI

Specify:
commandsreport_fsmreport_fsm commandreport_fsm [designID]

At the Formality prompt, specify:
report_fsm [designID]

Formality produces a list of FSM state vector flip-flops and their encoding.

FSMs Re-Encoded in Design Compiler
If you are verifying a design with a FSM that has been re-encoded in Design Compiler,
supply the state register mapping and state encoding to Formality first, before matching.

Formality® User Guide
T-2022.03

147

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Less Common Operations

Feedback

If the FSMs are present but the encoding has not been changed, setup information is not
required.

Several methods are available for addressing FSM setup in Formality if you used Design
Compiler to do the re-encoding. These methods are listed in order of preference.

• Write an SVF file (.svf) from Design Compiler, then read the file into Formality.

• Use the fsm_export_formality_state_info command in Design Compiler to write
out the module_name.ref and module_name.impl files, then read these files back into
Formality using the read_fsm_states command.

• Use the report_fsm command in Design Compiler for both the reference and
implementation designs, then read these reports back into Formality using the
read_fsm_states command.

Alternatively, if you manually re-encode your design, or if the re-encoding is
completed by a tool other than Design Compiler, use the set_fsm_encoding
and set_fsm_state_vector commands in Formality for both the reference and
implementation designs to specify the state encoding and register state mapping.

Hierarchical Designs
hierarchical designsverificationhierarchical designsYou can control the following two features of hierarchical design verification: the separator
character used to create flattened path names and the operating mode for propagating
constants throughout hierarchical levels.

Setting the Flattened Hierarchy Separator Character
designsflattenedverificationflattened designsflattening designsduring verificationparametersautomatically flattening designsverificationhierarchical designsFormality uses hierarchical information to simplify the verification process, but it verifies
designs in a flat context. By default, Formality uses the slash (/) character as the separator
in flattened design path names. If this separator character is not consistent with your
naming scheme, you can change it.

hierarchical designshierarchy separator styledesignshierarchy separator styleflattening designsseparator styleparametershierarchical separator stylehierarchical separator character, definingTo establish a character as the flattened path name separator, use the Formality shell or
the GUI as shown:

fm_shell GUI

Specify:
variablesname_matched_flattened_hierarchy_separator_stylename_matched_flattened_hierarchy_separator_style variablesset_app_var
name_match_flattened_hierarchy
_separator_style character

1. Choose Edit > Formality Tcl Variables.
The Formality Tcl Variables dialog box appears.
2. From Matching, select the
name_match_flattened_hierarchy_separator_style
variable.
3. In the Enter a single character box, enter the
character separator used in path names when designs
are flattened and press Enter.
4. Choose File > Close.

Formality® User Guide
T-2022.03

148

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Less Common Operations

Feedback

The name_match_flattened_hierarchy_separator_style variable reads in the design
hierarchy, and the character separator specifies the hierarchical boundaries.

Propagating Constants
constantspropagatingpropagating constantsverificationconstant propagationparametersconstant propagationhierarchical designspropagating constantsflattening designsconstant propagationWhen Formality verifies a design that contains hierarchy, the default behavior is to
propagate all constants throughout the hierarchy. For a description of constant types as
they apply to Formality, see Specifying Constants.

In some cases, you might not want to propagate all constants during hierarchical
verification. To determine how Formality propagates constants, use the Formality shell or
the GUI as shown:

fm_shell GUI

Specify:
variablesverification_constant_prop_modeverification_constant_prop_mode variableset_app_var
verification_constant_prop_mode
mode

At the Formality prompt, specify:
set_app_var
verification_constant_prop_mode mode

You can use the verification_constant_prop_mode variable to specify where Formality
is to start propagation during verification. In auto mode, the default, Formality traverses
up the reference and implementation hierarchy in lockstep to identify automatically the
top design from which to propagate constants. Therefore, correspondence between the
hierarchy of the two designs affects this mode. Specify top to tell Formality to propagate
from the design you set as top with the set_top command. Specify target to instruct
Formality to propagate constants from the currently set reference and implementation
designs.

Set the verification_constant_prop_mode variable to top or target only if your
reference and implementation designs do not have matching hierarchy. Setting the mode
to auto when you have different levels of hierarchy can cause Formality to propagate from
an incorrect top-level design.

For more information about this variable, see the man page.

Formality® User Guide
T-2022.03

149

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Less Common Operations

Feedback

Nets With Multiple Drivers
resolvingnets with multiple driversnetswith multiple driversDuring verification, Formality ensures that each net with more than one driver is resolved
to the correct function. At the design level, you can use resolution functions to resolve
these types of nets. To define net resolution, use the Formality shell or the GUI as shown:

fm_shell GUI

Specify:
commandscreate_containercreate_container command

set_parameters
[-resolution function]
designID

1. Click Setup > Design Parameters.
2. Click the Reference or Implementation tab.
3. Select a library and a design.
4. Select Consensus, Black Box, Wired AND, or Wired OR.

conceptsresolution functionsoverviewresolution functionsresolution functionsoverviewresolution functionsmultiply-driven netsresolvingmultiply-driven netsThe -resolution function option defines the behavior of nets that have more than
one driver. consensus, resolution functionAND resolution functionOR resolution functionblack boxresolution functionFormality provides a choice of four resolution functions: consensus, black box,
AND, and OR. Not all options of the set_parameters command are shown.

With the consensus resolution function, Formality resolves each net in the same
manner as a four-state simulator. Each driver can have any of four output values: 0, 1, X
(unknown), or Z (high-impedance state). Formality uses this function by default.

Table 5 shows the net resolution results for a net with two drivers. The top row and left
column show the possible driver values, and the table entries show the resulting net
resolution results.

Table 5 Consensus Resolution for a Net With Two
Drivers

0 1 X Z

0 0 X X 0

1 X 1 X 1

X X X X X

Z 0 1 X Z

The consensus resolution function works similarly for nets with more than two drivers. If all
drivers on the net have the same output value, the result is the common value. If any two
active (non Z) drivers are in conflict, the result is X.

Formality® User Guide
T-2022.03

150

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Less Common Operations

Feedback

AND resolution functionOR resolution functionWith the AND resolution function, the result is the logical AND of all active (non Z) drivers
on the net. Similarly, with the OR resolution function, the result is the logical OR of all
active drivers on the net.

Note:
If you want to use AND or OR resolution types, your designs must support
wired AND and wired OR functionality. Do not use these resolution types with
CMOS technology.

black boxresolution functionWith the black box resolution function, Formality creates a black box for each net with
multiple drivers. It connects the net to the output of the black box, connects the net drivers
to the inputs of the black box, and makes the net a compare point. The inputs to the black
box are treated just like the inputs to any other compare point. In other words, to pass
verification, the inputs need to be matched between the two designs and the logic cones
feeding these inputs need to be equivalent.

parametersmultiply-driven net resolutionIf you do not specify how to resolve nets having more than one driver, Formality looks
at the types of drivers on the net. If none of the drivers are primary input ports or black
box outputs, Formality uses the consensus resolution function. However, if any driver is
a primary input port or the output of a black box, Formality cannot determine the value of
that driver. In that case, Formality inserts a black box function at that point, driven by the
primary input port or by the existing black box, and uses the consensus resolution function
to combine the output of the inserted black box function with any other drivers on the net.

Using the consensus function causes Formality to resolve the value of the net according to
a set of consensus rules. For information about these rules, see the set_parameters man
page.

examplesmultiply-driven netsIn Figure 30, a examplesresolution function single net is driven by two three-state devices, an inverter, and a black box
component. By default, Formality attempts to use the consensus resolution function to
resolve the net at the shaded area. In this case, one of the drivers comes from a black box
component. Because Formality cannot determine the state of a driver that originates from
a black box component or an input port, it cannot use the consensus resolution.

Formality® User Guide
T-2022.03

151

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Less Common Operations

Feedback

Figure 30 Default Resolution Function: Part One

Figure 31 shows how Formality resolves the net in this case. The three drivers at the
bottom of the circuit can be resolved by the consensus function. That function in turn
drives a black box resolution function that ultimately drives the register.

Figure 31 Default Resolution Function: Part Two

Retention Registers Outside Low-Power Design Flow
Formality supports the verification of designs with retention registers. For information
about retention registers, see the Power Compiler User Guide. To verify a netlist with
retention registers against RTL code without retention registers, you must disable all

Formality® User Guide
T-2022.03

152

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Less Common Operations

Feedback

retention registers’ sleep modes. To disable their sleep mode, set a constant on the sleep
pins on the retention registers.

Formality reads design information describing retention registers from RTL, technology
libraries, and implementation netlists produced by Power Compiler. During compare point
matching, Formality checks retention registers in the reference design against matching
registers in the implementation design for the power_gating_style attribute.

Register Initialization Mode
The verification_assume_reg_init variable includes the automatched hybrid mode. In this
mode, you can specify the toggle state of implementation signals to control initialization
events for potentially constant registers.

To control the assumptions used in this mode, use the following commands:

• report_init_toggle_objects

• set_init_toggle_assumption

• remove_init_toggle_assumption

• report_init_toggle_assumption
The following information message indicates that the register initialization is in
automatched mode:

Info: Object(s) are assumed to not toggle for register initialization
 because variable verification_assume_reg_init == automatched

Single State Holding Elements
LSSD cell, definedconceptsLSSD cellsingle-state holding elementsverificationLSSD cellsA level-sensitive scan design (LSSD) cell is a single-state holding element that consists of
two latches arranged in a master-slave configuration. LSSD cells occur frequently when
you use IBM libraries.

LSSD cells result in two compare points in the gate-level design, as shown in Figure 32.
The RTL design contains a SEQGEN that results in one compare point. The dotted line
separates the reference design from the implementation design.

Formality® User Guide
T-2022.03

153

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Less Common Operations

Feedback

Figure 32 LSSD Cells

Two criteria must be met in order for Formality to determine that a latch is part of an LSSD
cell:

• The latch pair must reside within a single technology library cell.

• The latches must be matched to a flip-flop using a name-based solution, such as the
exact name, fuzzy name match, rename_object, or compare rule. Signature analysis
cannot be used.

The two latches can be verified against a single sequential element if they meet the LSSD
cell criteria.

Multiplier Architectures
Formality uses the arithmetic generator feature automatically to improve the performance
and ability to solve designs where multipliers have been flattened into gate-level netlists.
Use of the arithmetic generator in Formality creates multipliers of a specific type so that
the synthesized representation of the reference RTL more closely matches the gate
implementation. Therefore, assisting in the verification of difficult datapath problems.

creatingmultiplier architecturesarithmetic generatorcreating multiplier architecturesThe arithmetic generator can create the following multiplier architectures:

• Carry-save array (csa)

• Non-Booth Wallace tree (nbw)

• Booth-encoded Wallace tree (wall)

Formality® User Guide
T-2022.03

154

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Less Common Operations

Feedback

Setting the Multiplier Architecture
You can set the multiplier architecture either for your entire design or on particular
instances of cells in your design. The following sections describe both methods for setting
the multiplier architecture.

Setting the Multiplier Architecture on an Entire Design
You can manually instruct Formality to use a specific multiplier architecture for your entire
design file by using your RTL source and the variableshdlin_multiplier architecturehdlin_multiplier_architecture variablehdlin_multiplier_architecture and
enable_multiplier_architecture Tcl variables.

To instruct Formality to use a specific multiplier architecture for a specific design file, use
the Formality shell or the GUI as shown:

fm_shell GUI

Specify:
set_app_var
hdlin_multiplier_architecture csa
set_app_var
enable_multiplier_generation true
read_verilog myfile.v

At the Formality prompt, specify:
set_app_var
hdlin_multiplier_architecture csa
set_app_var
enable_multiplier_generation true
read_verilog myfile.v

By default, the hdlin_multiplier_architecture variable is set to none. The
arithmetic generator attempts to duplicate the architecture Design Compiler used
in determining which architecture is appropriate. Formality uses the value defined
in the dw_foundation_threshold Tcl variable to help select the architecture.
If you do not want Formality to determine the architecture, set the value of the
hdlin_multiplier_architecture variable to your preferred architecture.

For more information about the hdlin_multiplier_architecture and
dw_foundation_threshold variables, see the man pages.

Note:
You also have the choice of setting the multiplier architecture by using the
architecture_selection_precedence Tcl variable. With this variable you can
define which mechanism takes precedence.

Setting the Multiplier Architecture on a Specific Cell Instance
You can replace the architecture for a specific multiplier ObjectID. While you are in setup
mode and after elaboration, use the variablesenable_multiplier_generationenable_multiplier_generation variableenable_multiplier_generation variable and the commandsset_architectureset_architecture

commandset_architecture command with the specific cell ObjectID and specific architecture to
set the required multiplier architecture.

Formality® User Guide
T-2022.03

155

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Less Common Operations

Feedback

To instruct Formality to use a specific multiplier architecture for a specific ObjectID, use the
Formality shell or the GUI as shown:

fm_shell GUI

Specify:
set_app_var
enable_multiplier_generation true
set_architecture ObjectID [csa | nbw
| wall]

At the Formality prompt, specify:
set_app_var
enable_multiplier_generation true
set_architecture ObjectID [csa | nbw |
wall]

For more information about the enable_multiplier_generation variable and the
set_architecture command, see the man pages.

An alternative to setting the multiplier architecture while in setup mode is to set a compiler
directive in your VHDL or Verilog source code that sets the multiplier architecture for a
specific cell instance. The following section explains how to do this.

Setting the Multiplier Architecture by Using Compiler Directives
You can use a compiler directive to set the multiplier architecture by annotating your RTL
source code with the architecture required for a given instance. This compiler directive is a
constant in the RTL source that appears immediately before the multiplier instance when
you set

 formality multiplier [csa | nbw | wall]

When present in a comment, the compiler directive causes Formality to use the specified
architecture to synthesize the next multiplier instance in the RTL source. If multiple
compiler directives are present before a single multiplier instance, the arithmetic generator
builds the architecture with the compiler directive preceding it.

The compiler directive can be in Verilog or VHDL source. The following shows an example
of each type:

Verilog

 // formality multiplier nbw
 z <= a*b;

VHDL

 -- formality multiplier nbw
 z <= a*b;

In both instances, this compiler directive informs the arithmetic generator to use a non
Booth Wallace tree architecture (nbw) for the “a * b” multiplier instance.

Formality® User Guide
T-2022.03

156

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Less Common Operations

Feedback

Reporting Your Multiplier Architecture
To report the architecture used to implement a specific ObjectID, use the commandsreport_architecturereport_architecture

commandreport_architecture command.

To report on the multiplier architecture used in your design, use the Formality shell or the
GUI as shown:

fm_shell GUI

Specify:
report_architecture -all

At the Formality prompt, specify:
report_architecture -all

For more information about the report_architecture command and its options, see the
man page.

Multibit Library Cells
Formality supports the use of multibit library cells. You can control multibit component
inference in Design Compiler by using the variableshdlin_infer_multibithdlin_infer_multibit variablehdlin_infer_multibit variable. For more
information, see the man page on the hdlin_infer_multibit variable in Design
Compiler. If you choose not to use this capability in Design Compiler, and you manually
group register bits into library cells instead, then you need to follow certain naming rules.
Otherwise, Formality can encounter difficulties in matching compare points where the
multibit components are used.

The following naming rules apply for manually grouping register bits into library cells:

• When you group registers into multibit cells, use the syntax name_number to number
to name the grouped cell. For example, the name my_reg_7to0 maps to the eight
registers named my_reg_0, my_reg_1, ... my_reg_7 in the other design.

• If the grouped register contains multiple elements that are not in sequential order,
you can use syntax in the form of name_number to number,number,number...
For example, the name treg_6to4,2 maps to the four registers named treg_6, treg_5,
treg_4, and treg_2 in the other design. In this syntax, a comma separates the individual
elements of the multibit cell.

Preverification
Setup commands are inherently instance-based. In preverify mode, you can access the
final instance objects during setup. The final instance objects are the instance objects
of a design on which modifications such as UPF, SVF, and ECO are applied. Only setup
operations that do not modify the design database can be performed in preverify mode.

Formality® User Guide
T-2022.03

157

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Less Common Operations

Feedback

Commands that change the design database are not allowed and the tool issues an error
message if these commands are used.

In preverify mode, you can

• Process the UPF and SVF files

• Apply setup commands on post SVF and post UPF object names

• Use design object query commands both before and after running the preverify
command

When the tool starts, it starts in setup mode in which you can load SVF files, load design
files, elaborate designs using the set_top command, load and execute UPF files, remove
containers, and perform ECO edits.

To enter the preverify mode, use the preverify command. The tool enters the preverify
mode and discards existing match and verify results. In preverify mode, you can run
setup commands that do not modify the design database such as setup operations on
post SVF modified design objects. In setup mode, the match and verify commands
automatically run the preverify command. In preverify, match, or verify modes, the
preverify command removes views, reprocesses the SVF file, and creates new views.

The following commands are not available in preverify mode. The other setup commands
are available in the preverify mode.

change_link1 read_ddc remove_parameters

commit_edits read_fsm_states remove_port1

connect_pin1 read_milkyway remove_resistive_drivers

connect_net1 read_power_model rename_object

create_cell1 read_sverilog rewire_connection

create_container read_verilog set_architecture

create_cutpoint_blackbox read_vhdl set_clock

create_net1 remove_cell1 set_direction

create_port1 remove_clock set_equivalence

create_primitive1 remove_constraint set_fsm_encoding

define_design_lib remove_constraint_type set_fsm_state_vector

define_primitive_pg_pins remove_container set_implementation_design

1. The edit commands are available in the preverify, match, and verify modes only for designs created with the
edit_design command.

Formality® User Guide
T-2022.03

158

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 7: Performing Setup
Less Common Operations

Feedback

disconnect_net1 remove_design set_inv_push

elaborate_library_cells remove_design_library set_parameters

group remove_equivalence set_power_gating_style

insert_inversion remove_inv_push set_reference_design

invert_pin remove_inversion set_svf

load_upf remove_library set_svf_retiming

read_container remove_net1 set_top

read_db remove_object set_vsdc

Formality® User Guide
T-2022.03

159

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

8
Performing Compare Point Matching

verificationperformingAfter you have prepared your verification environment and set up your design, you are
ready to match compare points.

This chapter includes the following sections:

• Matching and Reporting Compare Points

Figure 33 outlines the placing of compare point matching in the Formality design
verification process flow. This chapter focuses on matching compare points in Formality.

Formality® User Guide
T-2022.03

160

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Compare Point Matching

Feedback

Figure 33 Compare Point Matching in the Design Verification Process Flow

Prior to verification, Formality must match compare points in the designs as described in
Matching. This matching occurs automatically when you specify the verify command. If
automatic matching results in unmatched points, you must then view and troubleshoot the
results. Unmatched compare points can result in non-equivalence of the two designs.

Formality® User Guide
T-2022.03

161

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Compare Point Matching
Matching and Reporting Compare Points

Feedback

You can match compare points in a separate step before verification by running the
match command. Consequently, you can iteratively debug unmatched compare points, as
follows:compare pointsmatchingflowcompare pointsmatchingflow

1. Perform compare point matching.

2. Report unmatched points.

3. Modify or undo results of the match, as needed.

4. Debug the unmatched compare points.

5. Repeat these steps incrementally, as needed, until all compare points are matched.

compare pointsmatched statematched verification statusPerforming compare point matching changes the operational mode from setup to match
even if matching was incomplete. Ensure that you have properly set up your design as
specified (see Performing Setup).

You can return to setup mode by using the setup command, but this causes all points
matched during match mode to become unmatched.

Matching and Reporting Compare Points
At its most basic, the steps involved in compare point matching are as follows:

• Matching Compare Points

• Reporting Unmatched Points

• Debugging Unmatched Points

• Undo Matched Points

• How Formality Matches Compare Points

Matching Compare Points
compare pointsmatchingmatching compare pointsTo match compare points, use the Formality shell or the GUI as shown:

fm_shell GUI

Specify:
commandsmatchmatch commandmatch

1. Click the Match tab.
2. Click Run Matching.

This command matches only unmatched points. Previously matched points are not
processed again. Prior to compare point matching, you can create compare rules. For
more information, see Matching With Compare Rules.

Formality® User Guide
T-2022.03

162

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Compare Point Matching
Matching and Reporting Compare Points

Feedback

The matching results from incremental matching can differ from those you receive when
you run the match command after fixing all setup problems. For example, suppose
your last setup change implements a compare rule that helps match the last remaining
unmatched points. This same rule can force incorrect matches or prevent matches if you
had implemented it at the beginning of the matching process.

You can interrupt matching by pressing Ctrl+C. All matched points from the interrupted run
remain matched.

commandssetupsetup commandTo return to setup mode, specify the setup command in the Formality shell or at the
Formality prompt within the GUI. You can use commands and variables disabled in the
matched state. This command does not remove any compare rules or user matches. Use
the commandsremove_compare_rulesremove_compare_rules commandremove_compare_rules command and the commandsremove_user_matchremove_user_match commandremove_user_match command to get rid
of those previously set values. Existing compare rules and user matches are used again
during the next match.

Reporting Unmatched Points
compare pointsunmatched, reportingunmatched compare pointsAn unmatched point is a compare point in one design that was not matched to a
corresponding point in the other design. You must match all compare points before a
verification succeeds unless the unmatched compare points do not affect downstream
logic. After each match iteration, examine the results to see which compare points remain
unmatched.

compare pointsunmatched, reportingTo report unmatched points, use the Formality shell or the GUI as shown:

fm_shell GUI

Specify:
commandsreport_unmatched_pointsreport_unmatched_points commandreport_unmatched_points
[-compare_rule] [-datapath]
[-substring string]
[-point_type point_type]
[-status status]
[-except_status status]
[-method matching_method]
[-last]
[[-type ID_type] compare_point...]

Click Match > Unmatched Points

This command reports compare points, input points, and higher-level matchable objects
that are unmatched. Use the options to filter the report as required.

Note that the same can be done for matched points by executing the
report_matched_points command or (in the GUI) clicking Match > Matched. This report
shows matched design objects (such as inputs) as well as matched compare points. You

Formality® User Guide
T-2022.03

163

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Compare Point Matching
Matching and Reporting Compare Points

Feedback

can specify a filter to report only the matched compare points or (in the GUI) click Match >
Summary.

Debugging Unmatched Points
Unmatched compare points are often caused by design changes during Design Compiler
optimization. The intent of these changes is to optimize the design for speed or by area, or
to prepare the design for back-end tools. Unfortunately, such design changes might cause
compare point matching problems because the object names often change significantly.

Common design changes include moving features up and down the design hierarchy,
explicitly applying name rules to objects in the design, and eliminating constant registers.

Note:
In Verilog and VHDL files, unmatched compare points can be caused by
a difference between the bus naming scheme and the default naming
conventions.

debuggingunmatched compare pointstroubleshootingunmatched compare pointscompare pointsdebugging unmatchedIf the number of unmatched points in the reference and implementation designs is the
same, the likely cause is an object name change.

If the number of unmatched points in the reference and implementation designs is
different, you might need to perform additional setup steps. For example,

• You might have a black box in one design but not in the other.

• An extra compare point in the implementation design can be caused by a design
transformation that created extra logic.

• An extra compare point in the reference design can be a result of ignoring a full_case
directive in the RTL code.

Table 6 shows the actions you can take for unmatched compare points.

Table 6 Unmatched Compare Points Action

Symptom Possible cause Action

Same number of unmatched
points in reference and
implementation designs

Names have undergone a
transformation

Use set_user_match command
Write and test compare rule
Modify name match variables
Turn on signature analysis
For all, see Reporting Unmatched Points

More unmatched points
in reference than in
implementation design

Unused cells No action necessary

Formality® User Guide
T-2022.03

164

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Compare Point Matching
Matching and Reporting Compare Points

Feedback

Table 6 Unmatched Compare Points Action (Continued)

Symptom Possible cause Action

full_case directive in RTL
code ignored

Set hdlin_ignore_full_case to false

Black box created for missing
cells

Reread reference design, including the
missing cells
Make black box in implementation design

More unmatched points in the
implementation design than in
the reference design

Design transformation
created extra logic

Account for design transformation;
see Design Transformations

Black box created for missing
cells

Reread reference design, including the
missing cells
Make black box in reference design

Undo Matched Points
compare pointsundoing match commandTo undo the results of the match command, use the Formality shell or the GUI as shown:

fm_shell GUI

Specify:
commandsundo_matchundo_match commandundo_match [-all]

At the Formality prompt, specify:
undo_match [-all]

This command is especially useful when you already made changes that did not achieve
the results you wanted for compare point matching. The tool returns all points matched
during the most recent match command back to their unmatched state. Use the -all
option to undo all matches. The tool remains in the matched state even if you undo the
first match command or specify the -all option. To return to the setup state, specify the
setup command in fm_shell or choose the Setup button in the GUI .

How Formality Matches Compare Points
verificationcompare point matchingcompare pointsmatchingtechniquesAs described in Concept of Name-Based and Non Name-Based Matching, compare point
matching is either named-based or otherwise.

The following matching techniques occur by default when you match compare points, and
they are executed in this given order:

1. (n compare pointsname-based matchingame-based matching)

2. compare pointsname-based matching(ncompare pointsname-based matchingame-based matching)

Formality® User Guide
T-2022.03

165

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Compare Point Matching
Matching and Reporting Compare Points

Feedback

3. compare pointsnon-name-based matching(non-name-based matching)

4. (ncompare pointsnon-name-based matchingon-name-based matching)

5. (ncompare pointsname-based matchingame-based matching)

After a technique succeeds in matching a compare point in one design to a compare
point in the other design, that compare point becomes exempt from processing by other
matching techniques.

Table 7 lists variables that control matching. Some are described in the following sections.

Table 7 Variables for Compare Point Matching

Variable Name Default

variablesname_matchname_match variablename_match all

variablesname_match_allow_subset_matchname_match_allow_subset_match variablename_match_allow_subset_match strict

variablesname_match_based_on_netsname_match_based_on_nets variablename_match_based_on_nets true

variablesname_match_filter_charsname_match_filter_chars variablename_match_filter_chars ‘~!@#$%^&*()_+=|\{}[]”:;<>?,./

variablesname_match_flattened_hierarchy_separator_stylename_match_flattened_hierarchy_separator_style variablename_match_flattened_hierarchy_separator_style /

variablesname_match_multibit_register_reverse_ordername_match_multibit_register_reverse_order variablename_match_multibit_register_reverse_order false

variablesname_match_use_filter variablename_match_use_filter true

variablessignature_analysis_match_primary_inputsignature_analysis_match_primary_input variablesignature_analysis_match_primary_input true

variablessignature_analysis_match_primary_outputsignature_analysis_match_primary_output variablesignature_analysis_match_primary_output false

variablessignature_analysis_matchingsignature_analysis_matching variablesignature_analysis_match_compare_points true

variablesverification_blackbox_match_modeverification_blackbox_match_mode variableverification_blackbox_match_mode any

Exact-Name Matching
compare pointsexact-name matchingexact-name compare point matchingFormality matches unmatched compare points by exact case-sensitive name matching,
and then by exact case-insensitive name matching. The exact-name matching technique
is used by default in every verification. With this algorithm, Formality matches all compare
points that have the same name both in reference and implementation designs.

For example, the following design objects are matched automatically by the Formality
exact-name matching technique:

Reference: /WORK/top/memreg(56)
Implementation: /WORK/top/MemReg(56)

Formality® User Guide
T-2022.03

166

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Compare Point Matching
Matching and Reporting Compare Points

Feedback

To control whether compare point matching uses object names or relies solely on function
and topology to match compare points, specify the name_match variable as shown:

fm_shell GUI

Specify:
name_match variablevariablesname_matchset_app_var name_match
[all | none | port | cell]

1. Click Match.
2. Choose Edit > Formality Tcl Variables. The Formality

Tcl Variables dialog box appears.
3. From Matching, select the name_match variable.
4. In the Choose a value list, select all, none, port, or

cell.
5. Choose File > Close.

The default all, performs all types of name-based matching. Use none, to disable all
name-based matching except for the primary inputs. Use port, to enable name-based
matching of top-level output ports. Use cell, to enable name-based matching of registers
and other cells, including black box input and output pins.

Name Filtering
compare pointsname filteringname filtering compare point matchingvariablesname_match_use_filtername_match_use_filter variableAfter exact-name matching, Formality attempts filtered case-insensitive name matching.
Compare points are matched by filtering out some characters in the object names.

To turn off the default filtered-name matching behavior, use the Formality shell or the GUI
as shown:

fm_shell GUI

Specify:
set_app_var name_match_use_filter
false

1. Click Match.
2. Choose Edit > Formality Tcl Variables. The Formality

Tcl Variables dialog box appears.
3. From Matching, select the name_match_use_filter

variable.
4. Deselect Use name matching filter.
5. Choose File > Close.

The name_match_use_filter variable is supported by the name_match_filter_chars variablevariablesname_match_filter_charsname_match_filter_chars
variable that lists all the characters that are replaced by an underscore (_) character
during the name-matching process.

Filtered name matching requires that any non-terminating sequence of one or more filtered
characters in a name must be matched by a sequence of one or more filtered characters
in the matched name.

Formality® User Guide
T-2022.03

167

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Compare Point Matching
Matching and Reporting Compare Points

Feedback

For example, the following design object pairs are matched automatically by the Formality
name-filtering algorithms:

 Reference: /WORK/top/memreg__[56][1]
 Implementation: /WORK/top/MemReg_56_1

 Reference: /WORK/top/BUS/A[0]
 Implementation: /WORK/top/bus__a_0

The following design objects are not matched by the Formality name-filtering algorithms:

 Reference: /WORK/top/BUS/A[0]
 Implementation: /WORK/top/busa_0

You can remove or append characters in the name_match_filter_chars variable. The
default character list is:

`~!@#$%^&*()_-+=|\[]{}”':;<>?,./

For example, the following command resets the filter characters list to include V:

fm_shell (match)> set_app_var name_match_filter_chars \
 {~!@#$%^&*()_-+=|\[]{}"':;<>?,./V}

Reversing the Bit Order in Multibit Registers
name_match_multibit_register_reverse_order variablevariablesname_match_multibit_register_reverse_orderYou can use the name_match_multibit_register_reverse_order variable to reverse
the bit order of the bits of multibit registers during compare point matching. The default
is false, meaning that the order of the bits of multibit registers is not reversed. Formality
automatically matches multibit registers to their corresponding single-bit counterparts,
based on their name and bit order. If the bit order has been changed after synthesis, you
must set this variable to true, so that the order of the bits of multibit registers is reversed.
For more information about Formality multibit support, see Multibit Library Cells. In the
GUI, you can access this variable from the Formality Tcl Variable Editor dialog box by
choosing Edit > Formality Tcl Variables, and then from Matching, select the variable.

Topological Equivalence
compare pointstopological equivalencetopological equivalenceFormality attempts to match the remaining unmatched compare points by topological
equivalence — that is, if the cones of logic driving two unmatched compare points are
topologically equivalent, those compare points are matched.

Signature Analysis
compare pointssignature analysissignature analysisconceptssignature analysisSignature analysis is an iterative analysis of the compare points’ functional and topological
signatures. Functional signatures are derived from random pattern simulation; topological
signatures are derived from fan-in cone topology.

Formality® User Guide
T-2022.03

168

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Compare Point Matching
Matching and Reporting Compare Points

Feedback

The signature analysis algorithm uses simulation to produce output data patterns, or
signatures, of output values at registers. The simulation process in signature analysis is
used to identify uniquely a controlled node.

For example, if a vector makes a register pair go to a 1 and all other controlled registers
go to a 0 in both designs, signature analysis has completed one match.

For signature analysis to work, the primary input ports from both designs must have
matching names or you must have manually matched them by using the set_user_match,
set_compare_rule, or rename_object commands.

During signature analysis, the Formality tool automatically attempts to match previously
unmatched datapath and hierarchical blocks and their pins. To turn off automatic
matching of datapath blocks and pins, set the signature_analysis_match_datapath
variable to false. To turn off automatic matching of hierarchical blocks and pins, set the
signature_analysis_match_hierarchy variable to false. For the latter case, if you
notice a performance decrease when running hierarchical verification, you can change the
setting of signature_analysis_match_hierarchy to false.

To disable all signature analysis matching and ignore the other signature_analysis*
variables, set the signature_analysis variable to false. The default is true.

Signature analysis in Formality works well if the number of unmatched objects is limited,
but the algorithm is less likely to work if there are thousands of compare point mismatches.
To save time in such a case, you can turn off the algorithm in the Formality shell or the
GUI, as shown in the following table.

fm_shell GUI

Specify:
variablessignature_analysis_matchingsignature_analysis_matching variableset_app_var
signature_analysis_match_compa
re_points false

1. Click Match.
2. Choose Edit > Formality Tcl Variables. The

Formality Tcl Variables dialog box appears.
3. From Matching, select the

signature_analysis_match_compare_points
variable.

4. Deselect Use signature analysis.
5. Choose File > Close.

By default, signature analysis does not try to match primary output ports.
However, you can specify the matching of primary outputs by setting the variablessignature_analysis_match_primary_outputsignature_analysis_match_primary_output

variablesignature_analysis_match_primary_output variable to true.

It is possible to reduce matching runtimes by writing a compare rule rather than disabling
signature analysis. For example, compare rules work well if there are extra registers in
both the reference and implementation designs.

For more information, see Matching With Compare Rules.

Formality® User Guide
T-2022.03

169

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Compare Point Matching
Matching and Reporting Compare Points

Feedback

Note:
The tool uses signature analysis to match black boxes with different names.
After the black boxes are matched, the tool first attempts to match the black
box pins by name. If the black box pin names are similar, the pins are matched.
If the pin names are different, then the tool uses signature analysis again to
match the pins functionally.

Compare Point Matching Based on Net Names
compare pointsnet-name matchingnet-name compare point matchingFormality matches any remaining unmatched compare points by exact and filtered
matching on their attached nets. Matches can be made through either directly attached
driven or driving nets.

variablesname_match_based_on_netsname_match_based_on_nets variableTo turn off net name-based compare point matching, use the Formality shell or the GUI as
shown:

fm_shell GUI

Specify:
variablesname_match_based_on_netsname_match_based_on_nets variableset_app_var
name_match_based_on_nets false

1. Click Match.
2. Choose Edit > Formality Tcl Variables. The

Formality Tcl Variables dialog box appears.
3. From Matching, select the

name_match_based_on_nets variable.
4. Deselect Use net names.
5. Choose File > Close.

For example, the following design objects have different names.

 Reference: /WORK/top/memreg(56)
 Implementation: /WORK/top/MR(56)

Formality cannot match them by using the exact-name matching technique. If nets
driven by output of these registers have the same name, Formality matches the registers
successfully.

Formality® User Guide
T-2022.03

170

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 8: Performing Compare Point Matching
Matching and Reporting Compare Points

Feedback

Commands and Variables That Cannot be Changed in Match
Mode
The following commands and variables cannot be changed in the matched state:

set_cutpoint set_fsm_encoding

remove_black_box set_fsm_state_vector

remove_constant set_inv_push

remove_cutpoint set_parameters -resolution -retimed

remove_design ungroup

remove_inv_push uniquify

remove_object verification_assume_reg_init

remove_parameters -resolution
-retimed -all_parameters

verification_auto_loop_break

remove_resistive_drivers verification_clock_gate_hold_mode

rename_object verification_constant_prop_mode

set_black_box verification_inversion_push

set_constant verification_merge_duplicated_registers

set_direction verification_set_undriven_signals

Formality® User Guide
T-2022.03

171

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

9
Verifying the Design and Interpreting Results

verificationperformingAfter you have matched your compare points, you are ready to verify the design and
interpret the results. This chapter describes how to verify one design against another. It
also offers some tips for batch verifications, interpreting results, and saving data.

Figure 34 outlines the placing of run verification and interpretation of results in the
Formality design verification process flow. This chapter focuses on running the verification
and interpreting the results in Formality.

Formality® User Guide
T-2022.03

172

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Verifying the Design and Interpreting Results

Feedback

Figure 34 Run Verify and Interpret Results in the Design Verification Process Flow

overviewverificationverificationoverviewconceptsverificationWhen you issue the verify command, the Formality tool attempts to prove design
equivalence between an implementation design and a reference design. verificationsingle compare pointcompare pointsverifying singleThis section
describes how to verify a design or a single compare point, as well as how to perform
traditional hierarchical verification and batch verifications.

Formality® User Guide
T-2022.03

173

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Verifying the Design and Interpreting Results
Verifying a Design

Feedback

Verifying a Design
verificationstartingverifyingdesignsTo verify the implementation design against the reference design, use the Formality shell
or the GUI as shown:

fm_shell GUI

Specify:
commandsverifyverify commandverify
[reference_designID]
[implementation_designID]

Click Verify.

If you omit the reference and implementation design IDs from the command, Formality
uses the reference and implementation designs that you specified when you read in your
designs. For more information, see Reading Designs.

If you did not match compare points before verification as described in Performing
Compare Point Matching, the verify command first matches compare points and then
checks equivalence. If all compare points are matched and no setup changes have been
made, verification moves directly to equivalence checking without rematching.

If matching was performed but there are unmatched points or the setup was altered,
Formality attempts to match remaining unmatched points before equivalence checking.
The verify command does not rematch already matched compare points.

To force the verify command to rematch everything, specify the undo_match -all
command beforehand.

Formality makes an initial low-effort verification attempt on all compare points before
proceeding to the remaining compare points with matching hierarchy by signature analysis
and high-effort verification. This initial attempt can significantly improve performance by
quickly verifying the easy-to-solve compare points located throughout your designs. It
also quickly finds most points that are not equivalent. Afterwards, Formality proceeds
with verifying the remaining compare points by partitioning (grouping) related points and
verifying each partition in turn.

Verification automatically runs in incremental mode, controlled by the variablesverification_incremental_modeverification_incremental_mode

variableverification_incremental_mode variable (true by default). Each verify command
attempts to verify only compare points in the unverified state. This means that after
the verification is complete or has stopped, upon reissue of the verify command, the
status of previously passing and failing points is retained and verification continues for
unverified points. If matching setup has changed through the use of set_user_match or
set_compare_rule, Formality determines the compare points that are affected, moves
them to the unverified state, and reverifies them. In addition, if the verification effort level is

Formality® User Guide
T-2022.03

174

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Verifying the Design and Interpreting Results
Reporting and Interpreting Results

Feedback

raised, points that were terminated due to complexity are also verified again. To force the
verify command to reverify all compare points, use the -restart option.

The following is an example of a verification results summary:
--
--
Matched Compare Points BBPin Loop BBNet Cut Port DFF LAT TOT
AL
--
--
Passing (equivalent) 336 0 144 0 1946 43832 390 466
48
Failing (not equivalent) 0 0 0 0 15 0 0 15
Aborted
 Hard (too complex) 0 0 0 0 0 2 0 2
Not Compared
 Constant reg 1113 212 132
5
 Don't verify 0 0 0 0 29 0 0 29
 Unread 1 0 0 0 0 899 0 900
**
**

Reporting and Interpreting Results
As part of your troubleshooting efforts, you can report passing, failing, unverified, and
terminated compare points as shown:

fm_shell GUI

Specify any of the following commands:
commandsverifyverify commandreport_passing_points
[-point_type point_type]
commandsreport_failing_pointsreport_failing_points commandreport_failing_points commandsreport_failing_pointsreport_failing_points command

commandsreport_failing_pointsreport_failing_points command[-point_type point_type]
commandsreport_failing_pointsreport_failing_points command

report_aborted_points
[-point_type point_type]
report_failing_unverified
[-point_type point_type]
commandsreport_aborted_pointsreport_aborted_points commandreport_not_verified
commandsreport_aborted_pointsreport_aborted_points command[-point_type point_type]

1. Click Debug.
2. Click the Passing Points, Failing Points,

Aborted Points, Unverified Points, Probe
Points, Analyzes, or Loops tab.

Use the -point_type option to filter the reports for specific object types, such as ports
and black box cells. For a complete list of objects that you can specify, see the man pages.

Formality® User Guide
T-2022.03

175

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Verifying the Design and Interpreting Results
Reporting and Interpreting Results

Feedback

In the GUI, by clicking the display name, you can display compare points with either their
original names or the names that they were mapped to due to the compare rules.

From the command line, this can be achieved by using the report_* -mapped command.

From the Formality shell, Formality displays information to standard output. This
information is updated as the verification proceeds. From the transcript, you can see
which design is being processed and observe the results of the verification. In the GUI, the
transcript is displayed in the transcript area. In addition, a progress bar shows the status of
verification.

compare pointsstatus messagesverificationstatus messagesverificationviewing resultsDuring verification, Formality assigns one of five types of status messages for each
compare point it identifies:

Status Message Description

Passing compare pointspassingpassing compare pointsA passing point represents a compare point match that
passes verification. Passing verification means that Formality
determined that the functions that define the values of the two
compare point design objects are functionally equivalent.

Failing compare pointsfailingfailing compare points, definedA failing point represents a compare point match that does
not pass verification or does not consist of two design objects.
Failing verification means that Formality determined that the
two design objects that constitute the compare point are not
functionally equivalent.

Aborted compare pointsabortedaborted compare pointsdefinedAn aborted point represents a compare point that Formality
did not determine to be either passing or failing. The cause
can be either a combinational loop that Formality cannot break
automatically or a compare point that is too difficult to verify.

Unverified compare pointsunverifiedunverified compare points, definedAn unverified point represents a compare point that has not yet
been verified. Unverified points occur during the verification
process when the failing point limit has been reached or a
wall clock time limit is exceeded. Formality normally stops
verification after 20 failing points have been found.

Not Verified A compare pointsnot verifiednot verified compare pointsNot Verified, or Not Run, point appears if there was some
error that prevented verification from running.

verificationstatus messagesresultsBased on the preceding categories, Formality classifies final verification results in one of
the following ways:

Classification Description

Succeeded verificationsucceeded statussucceeded verificationThe implementation design was determined to be functionally
equivalent to the reference design. All compare points passed
verification.

Formality® User Guide
T-2022.03

176

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Verifying the Design and Interpreting Results
Interrupting Verification

Feedback

Classification Description

Failed The implementation design was determined to be not
functionally equivalent to the reference design. Formality found
at least one compare point object in the implementation design
that was determined as being nonequivalent to its comparable
object in the reference design. These points are called failing
compare points.
If verification is interrupted, either because you press
Ctrl+C or a user-defined time-out occurs, such as the
verification_timeout_limit variable, and if at least one
failing point was detected before the interrupt, Formality reports
a verification result of failed.

Inconclusive Formality could not determine whether the reference and
implementation designs are equivalent. This situation occurs in
the following cases:
- A aborted compare pointsduring verificationcompare pointsabortedmatched pair of compare points was too difficult to verify,
causing an “aborted” compare point, and no failing points were
found elsewhere in the design.
- The verification was interrupted, either because you pressed
Ctrl+C or a user-defined time-out occurred, and no failing
compare points were detected before the interrupt. This results
in “unverified” compare points.

For information about failing or inconclusive verification due to aborted points, see
Determining Failure Causes, and for information about how to handle aborted points due
to loops, see Asynchronous State-Holding Loops.

If a verification is inconclusive because it was interrupted, you might get partial verification
results. You can create reports on the partial verification results.

Interrupting Verification
verificationinterruptinginterruptingverificationControl-c interruptTo interrupt verification, press Ctrl+C. Formality preserves the state of the verification at
the point you interrupted processing, and you can report the results. You also can interrupt
Formality during automatic compare-point matching.

Saving the Session Information for Later Analysis
You can save the session information at various intermediate states of verification and
restore it later. When the session is restored, verification resumes from the state at which
the session file was saved.

To save the session information, use the verification_auto_session variable. The
syntax of the variable is

Formality® User Guide
T-2022.03

177

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Verifying the Design and Interpreting Results
Saving the Session Information for Later Analysis

Feedback

set verification_auto_session on | off | timeout | verify | match

The default is on. You can set different values to specify when the tool saves session files.

• on
The tool saves session files when the verification terminates with a result other than
succeeded and when it reaches the verification timeout threshold that is set using the
verification_timeout_limit variable.

• off
The tool does not save session files.

• timeout
The tool saves session files only when it reaches the verification timeout threshold that
is set using the verification_timeout_limit variable.

• verify
In addition to the session files that are saved when the variable is set to on, the tool
saves a session file after each effort level of the verify command.

• match
In addition to the session files that are saved when the variable is set to verify, the
tool saves a session file after running the match command.

The Formality tool saves the session information in the formalityn_auto.fss file, where n is
an incremental integer, in the directory where the generated files are stored. To restore the
session, use the restore_session command.

Setting a Threshold to Save Session Files
To specify a time threshold after which the verification_auto_session variable saves
session files automatically, use the verification_auto_session_threshold variable.
After the specified time, the tool saves session files automatically when there is a user-
specified interrupt or if verification is not successful. The syntax to specify the threshold is

set verification_auto_session_threshold hh:mm:ss

Where hh is an integer that specifies the duration in hours, mm is an integer that specifies
the duration in minutes, and ss is an integer that specifies the duration in seconds. The
default is 12:00:00, which specifies 12 hours.

Formality® User Guide
T-2022.03

178

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Verifying the Design and Interpreting Results
Additional Verification Methods

Feedback

Additional Verification Methods
The additional verification methods are as follows:

• Verification Using Multicore Processing

• Controlling Verification Runtimes

• Using Batch Jobs

• Removing Compare Points From the Verification Set

• Performing Hierarchical Verification

• Verification Using Checkpoint Guidance

• Verification Using Breakpoints

• Identifying Inferred Register Names With Register Mapping

• Verifying a Single Compare Point

• Verifying ECO Designs

Verification Using Multicore Processing
Multicore processing during verification improves the runtime by dividing large tasks into
smaller tasks for processing.

To enable multicore processing, use the set_host_options command. For example, to
enable the use of four cores to run your processes,

fm_shell> set_host_options -max_cores 4
The maximum number of cores you can specify is eight. Each Formality license supports
eight cores.

For a multicore run, the limit is the sum of all the physical memory used by all the
processes. Shared memory is only counted one time. The Formality tool periodically
checks the amount of memory it is using against this limit. If the limit is reached, the tool
stops the current command and returns to the prompt.

fm_shell> set_host_options -max_cores 4 -max_memory 200

Use the report_host_options command to identify the number of cores specified.

For more information about the set_host_options and report_host_options
commands, see the command man pages.

Formality® User Guide
T-2022.03

179

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Verifying the Design and Interpreting Results
Additional Verification Methods

Feedback

Controlling Verification Runtimes
To control the total verification runtime, you can specify how long Formality is allowed to
run the verification process by doing the following:

fm_shell GUI

Specify:
variablesverification_timeout_limitverification_timeout_limit variableset_app_var
verification_timeout_limit value

1. Click Verify.
2. Choose Edit > Formality Tcl Variables. The

Formality Tcl Variables dialog box appears.
3. From Verification, select the

verification_timeout_limit variable.
4. In the Enter a time (hh:mm:ss) box, enter

none for no limit or specify a time in the
hh:mm:ss format.

5. Choose File > Close.

The verification_timeout_limit variable sets a maximum wall clock time (not CPU
time) limit on the verification run. Be careful when using this variable, because Formality
halts the verification when it reaches the limit regardless of the state of the verification.

Using Batch Jobs
batch modeoverviewRunning batch modepreparing forverificationbatch modescript filebatch jobsbatch modescriptsFormality shell commands in a batch job can save you time in situations where
you have to verify the same design more than one time. You can assemble a filesbatch scriptstream of
commands, or script, that sets up the environment, loads the appropriate designs and
libraries, performs the verification, and tests for a successful verification. Any time you
want to control verification through automatic processing, you can run a batch job.

Starting Verification Using Batch Jobs
For a sequence of fm_shell commands, you can start the batch job in several different
ways:

• Enter fm_shell commands one at a time as redirected input. For example, from the
shell, use commands in the following form:

 % fm_shell << !
 ? shell_command
 ? shell_command
 ? shell_command
 ...
 ? shell_command
 ? !

Formality® User Guide
T-2022.03

180

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Verifying the Design and Interpreting Results
Additional Verification Methods

Feedback

• sourcingscript filesscript filesourcingsource commandbatch jobsStore the sequence of commands in a file and source the file using the Tcl source
command. For example, from the shell, use a command in the following form and
supply a .csh file that contains your sequence of fm_shell commands:

 % source file
Note:

Be sure your .csh file starts by invoking Formality and includes the
appropriate controls to redirect input.

• fm_shell command-f optionSubmit the file as an argument to the -file option when you invoke Formality from the
shell. For example, from the shell, use a command in the following form and supply a
text file that contains your sequence of fm_shell commands:

 % fm_shell -file my_commands.fms
verificationresultsinterpreting verification resultsThe output Formality produces during a batch job is identical to that of a verification
performed from the shell or GUI. For information about interpreting results, see Reporting
and Interpreting Results.

Controlling Verification During Batch Jobs
verificationcontrollingcontrol statementsbatch modecontrolling verificationIn your script, you can provide control statements that are useful in concluding verification.
In particular, you can take advantage of the fact that fm_shell commands return a 1 for
success and a 0 for failure. Given this, the following set of commands at the end of your
script can direct Formality to perform diagnosis, report the failing compare points, and
save the session, should verification fail:

 if {[verify]!=1} {
 diagnose
 report_failing_points
 cd ..
 save_session ./saved_state
 }

Verification Progress Reporting for Batch Jobs
verificationreporting progressYou can specify how much time is allowed to elapse between each progress report by
using the verification_progress_report_interval variable. During long verifications,
Formality issues a progress report every 30 minutes, by default. For updates at different
intervals, you can set the value of this variable to n minutes.

Removing Compare Points From the Verification Set
You can elect to remove any matched compare points from the verification set. This is
useful when you know that certain compare points are not equivalent, but want the rest of
the verification to proceed and ignore those points.

Formality® User Guide
T-2022.03

181

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Verifying the Design and Interpreting Results
Additional Verification Methods

Feedback

To prevent Formality from checking for design equivalence between two objects that
constitute a matched compare point, use the Formality shell or the GUI as shown:

fm_shell GUI

Specify:
commandsset_dont_verify_pointsset_dont_verify_points commandset_dont_verify_points
[-type ID_type]
[object_1 [object_2] ...]

At the Formality prompt, specify:
set_dont_verify_points
[-type ID_type]
[object_1 [object_2] ...]

When you specify an object belonging to a matched compare point set, the second object
is automatically disabled. Sometimes design objects of different types share the same
name. If this is the case, change the -type option to the unique object type.

Specify instance-based path names or object IDs for compare points in the reference and
implementation designs. Although black boxes and hierarchical blocks are not compare
points, black box input pins are compare points.

Specify the commandsremove_dont_verify_pointsremove_dont_verify_points commandremove_dont_verify_points command to undo the effect of the
set_dont_verify_points command on specified objects; that is, to add them to the
verification set again.

Specify the commandsreport_dont_verify_pointsreport_dont_verify_points commandreport_dont_verify_points command to view a list of points disabled by
the set_dont_verify_points command.

These commands accept instance-based path names or object IDs.

Performing Hierarchical Verification
By default, Formality incorporates a hybrid verification methodology that combines the
setup associated with flat verification along with the benefits of hierarchical verification.

The write_hierarchical_verification_script command generates a Tcl script
that you can edit and run to perform hierarchical verification. The script uses accurate
block-level port constraints to reduce the number of blocks that fail verification and reduce
the incidence of false failures. The blocks that fail verification are reverified during the
verification of higher-level hierarchical blocks.

The script performs verification on comparable lower hierarchical blocks, one at a time,
regardless of the number of instantiations. Verification starts at the lowest levels of the
hierarchy and works upward. Explicit setup commands are generated to capture the top-
level context.

Formality® User Guide
T-2022.03

182

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Verifying the Design and Interpreting Results
Additional Verification Methods

Feedback

By default, for each matched block of the current top-level implementation and reference
designs, the Tcl script:

• Generates black boxes for subdesigns that are successfully verified. If the
-dont_resolve_failures option is used, black boxes of subdesigns are created
irrespective of the verification results.

• Removes unused compare points.

• Sets port matches for ports matched by means other than their names.

• Sets input port constants.

To override this behavior, use the -noconstant option.

• Sets input port equivalences for unmatched input ports known to be equivalent to other
matched ports.

To override this behavior, use the -noequivalence option.

• Ignores inconsistent setup information for port matches, constants, and equivalencies.
The generated script contains a comment to indicate that inconsistent setup
information is ignored.

The script runs in the current session. If you run the hierarchical verification script in
a different session, you must insert commands that read and link the reference and
implementation designs.

To generate a script to perform hierarchical verification, see the following table:

fm_shell GUI

Specify:
commandswrite_hierarchical_verification_scriptwrite_hierarchical_verification_script commandwrite_hierarchical_verification_script
[-replace]
[-noconstant]
[-noequivalence]
[-match type]
[-save_mode mode]
[-save_directory path]
[-save_file_limit integer]
[-save_time_limit integer]
[-level integer]
[-path instance_specific_pathnames]
[-block instance_specific_pathnames]
[-dont_resolve_failures]
[-top_level_only]
filename

• Choose File > Write Hierarchical Script.
• Select the level at which to verify blocks in

isolation.
• Select the appropriate Setup Preferences.
• Selected the type of Matching.
• Enter the directory in which to save the

session files.
• Enter the file name in which to write the

script.
• Select how many failing verification session

files to save.
• Select the minimum amount of CPU

seconds for a verification to use to save the
session file.

Formality® User Guide
T-2022.03

183

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Verifying the Design and Interpreting Results
Additional Verification Methods

Feedback

You can customize this script to verify specific blocks and to constrain context information
about the instantiated blocks.

The script reports the verification result for each block in a text file that is concatenated to
the transcript. To save the verification session files specific to a verification status,

fm_shell> write_hierarchical_verification_script -save_mode mode
Specify one of the following modes:

• auto: Saves the session files for all verification results, except for those that fail
because it attempts to resolve failing subblock. This is the default.

• not_passed: Saves the session files for the blocks that did not pass verification.

• failed: Saves the session files for those blocks that fail verification.

• inconclusive: Saves session files for inconclusive verifications. If the
-dont_resolve_failures option is specified, the command saves session files for
both failing and inconclusive verifications.

To view the verification result for each block in the GUI, if you run hierarchical verification
in the GUI, select Open Hierarchical Results from the File menu.

Traditional hierarchical verification, by creating black boxes of subdesigns irrespective of
the verification results, is useful when you want to verify and view explicit, block-by-block
hierarchical results. To generate a script to perform the traditional hierarchical verification,
without eliminating false failures, use the -dont_resolve_failures option.

For more information about the write_hierarchical_verification_script command,
see the man page.

Verifying Feedthroughs in Hierarchical Subdesigns
Feedthroughs help to reduce congestion in hierarchical designs. A feedthrough can
be a buffer, an inverter, or a constant. You need to create a Tcl script that contains
set_feedthrough_points commands to specify feedthrough behaviors for each

• hierarchical subdesign

• black box created by hierarchical subdesigns

Formality® User Guide
T-2022.03

184

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Verifying the Design and Interpreting Results
Additional Verification Methods

Feedback

The set_feedthrough_points command can be used only in the setup mode after
specifying the reference and implementation design. The tool issues an error message in
the following situations:

• Specified reference or implementation design does not exist

• Specified input or output port name does not belong to the specified designs

• Output port name is used previously with the set_feedthrough_points command for
the same design

The feedthrough verification result is displayed as part of the Formality tool verification
result in the Formality log file. To report the status of feedthrough points, use the
report_feedthrough_status command.

Example 6 Status of Feedthrough Points
fm_shell (verify)> report_feedthrough_status
**
Report : feedthrough_status
Reference : r:/WORK/dp
Implementation : i:/WORK/dp
Version : O-2018.06
Date : Thu May 17 14:07:09 2018
**
Input Output Status
---------------------- --------------------------- ------
i:/WORK/dp/dp/m1/in1 i:/WORK/dp/dp/m1/out PASS
i:/WORK/dp/dp/m1/bbin1 i:/WORK/dp/dp/m1/bbout PASS
[0] i:/WORK/dp/dp/m1/no_bb1/out FAIL
[1] i:/WORK/dp/dp/m1/bb1/bbout UNKN

For more information about feedthrough verification and report of verification result, see
the set_feedthrough_points and report_feedthrough_status man pages.

Subdesigns
The tool checks whether each feedthrough specification is present by traversing the
design hierarchy to confirm topological equivalence. While verifying feedthrough
specifications in hierarchical subdesigns,

• The tool verifies that the output port specified with the -output option is driven by
the input port specified with the -input option, and the ports are present in the
feedthrough specification. The feedthrough paths from input ports to output ports can
only have buffers or inverters.

Formality® User Guide
T-2022.03

185

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Verifying the Design and Interpreting Results
Additional Verification Methods

Feedback

• Ports appearing in the feedthrough specification are not considered during matching
and verifying because they are verified as compare points to avoid verification failure.

• The same port name that exists in both the reference and implementation designs must
be specified in the feedthrough specifications for both designs (the designs do not need
to have the same functions).

The Tcl script in Example 7 includes feedthrough specifications for verification. While
verifying, the tool applies the feedthrough specification found in reference design A.
However, the tool does not apply the feedthrough specification in design B because it
cannot find implementation design B. The verification result is shown in Example 8.

Example 7 Feedthrough Specifications
set_feedthrough -design r:/WORK/A -output o2 -input i1

set_feedthrough -design i:/WORK/B -output o1 -tie_low
set_feedthrough -design i:/WORK/B -output o3 -input i1 -invert

Example 8 Verifying the Feedthrough Specification for a Subdesign
read… <RTL source for "A">
set_top r:/WORK/A
set_reference r:/WORK/A

read… <netlist for "A">
set_top i:/WORK/A
set_implementation i:/WORK/A

source <tcl file with feedthrough specification>
Warning (FM-XXX): ignoring feedthrough specification for design
 "i:/WORK/B"

<other setup>

verify
…
************************ Verification Results ************************
Verification SUCCEEDED
--
 Reference design: r:/WORK/A
 Implementation design: i:/WORK/A
 115 Passing compare points
 0 Failing compare points
 0 Aborted compare points
 0 Unverified compare points
 0 Failing feedthrough points
 1 Passing feedthrough points

Formality® User Guide
T-2022.03

186

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Verifying the Design and Interpreting Results
Additional Verification Methods

Feedback

Black Box of Subdesign
While verifying top-level designs, the tool creates a black box for each of the lower-level
hierarchical subdesigns (incomplete subdesigns or any hierarchical subdesigns are black
boxed)

While verifying the feedthrough specification for the black box of hierarchical subdesigns,

• The tool links each black box of hierarchical subdesigns with a feedthrough
specification to a new design. The new design forms a wrapper around the black box
that converts the feedthrough specification of the black box into functional constraints
using explicit connections.

• The output ports are explicitly driven by the input ports or by constants.

• The tool ignores the feedthrough specification for the subdesign that is not black-boxed
and issues a warning message.

Assuming subdesigns A and B are black-boxed, the tool verifies the TOP design with
the Tcl script shown in Example 7. The Tcl script shown in Example 7 does not have
feedthrough specification for the black box of subdesigns. The verification result is shown
in Example 9.

Example 9 Verifying Feedthrough Specification for a Black Box of Subdesigns
read… <RTL source for "Top">
set_top r:/WORK/Top
set_reference r:/WORK/Top

read… <netlist for "Top">
set_top i:/WORK/Top
set_implementation i:/WORK/Top

source <tcl file with feedthrough specification>
Info: Converted feedthrough specification for design "r:/WORK/A" into
 functional constraints.
Info: Converted feedthrough specification for design "i:/WORK/B" into
 functional constraints.

<other setup>

verify
…
************************ Verification Results ************************
Verification SUCCEEDED
--
 Reference design: r:/WORK/top
 Implementation design: i:/WORK/top
 167 Passing compare points
 0 Failing compare points
 0 Aborted compare points
 0 Unverified compare points

Formality® User Guide
T-2022.03

187

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Verifying the Design and Interpreting Results
Additional Verification Methods

Feedback

Verification Using Checkpoint Guidance
During the matching step, the Formality tool verifies a checkpoint netlist against the
RTL when a guide_checkpoint command is found in the SVF file. If the verification
succeeds, the tool replaces the reference design with the verified checkpoint netlist for
the subsequent verification of either the next checkpoint netlist or the final implementation
netlist. However, if the checkpoint verification is not successful, the reference design is
retained for the verification of the subsequent netlist. When you use checkpoint guidance,
the match and verification stages show additional information related to the checkpoints.

Controlling the Checkpoint Verification Flow
To prevent the Formality tool from verifying the checkpoint netlists even when a
guide_checkpoint command is found in the SVF file, set the svf_checkpoint variable to
false. By default, the variable is set to true. If the match command is not explicitly used,
ensure that the svf_checkpoint variable is set before running the verify command.

By default, if the checkpoint verification is not successful, the tool continues the
verification. To stop the overall verification if the checkpoint verification not successful, set
the svf_checkpoint_stop_when_rejected variable to true. The default is false.

Investigating a Checkpoint Verification
You can investigate checkpoint verification by restoring a checkpoint session file.

By default, the Formality tool saves sessions of checkpoint verifications only when
they fail. To save the session files of each verification regardless of the result, set the
svf_checkpoint_save_session variable to all. The default is not_passed. The allowed
values are all, none, not_passed, failed, and inconclusive.

The tool saves the session files in a directory named fm_checkpoint_sessions and
displays a message:

Info: Checkpoint session file saved at
 'fm_checkpoint_sessions/ckpt_retime_1234.fss'

To prevent saving session files regardless of the verification status, set the variable to
none.

Any interruptions such as a verification timeout limit, also affect checkpoint
verification. In this case, a session file is only written out if specified by the
svf_checkpoint_save_session variable.

Applying User Setup to Checkpoint Verifications
Applying a setup allows you to control checkpoint verifications. While this is not necessary
in a typical flow, occasionally you need to directly apply the setup to a given checkpoint

Formality® User Guide
T-2022.03

188

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Verifying the Design and Interpreting Results
Additional Verification Methods

Feedback

verification. The Formality tool provides both automatic and manual capabilities to
accomplish this.

Applying User Setup to Checkpoints Commands – Automatic Approach
The Formality tool simplifies checkpoint usage by automatically sharing specific user setup
commands across all checkpoints. The svf_checkpoint_auto_setup_commands variable
controls the user setup types that are automatically shared with checkpoint verifications.

By default, no setup is shared with checkpoints during the preverify stage
unless specified. The following user setup commands are applicable to the
svf_checkpoint_auto_setup_commands variable:

• set_black_box

• set_dont_verify_points

• set_cutpoint

• set_constraint

• set_constant
You can also use the all and none shortcuts.

Note:
Do not change any setup used during preverification after the preverify
command has run. Any constant setup specified before running the preverify
command is shared with checkpoint verification during the preverify stage, for
example:

fm_shell (setup)> set_app_var
 svf_checkpoint_auto_setup_commands set_constant
set_constant

Applying User Setup to Checkpoints Commands – Manual Approach
Applying a setup allows you to control checkpoint verifications. This is achieved using the
following commands, that allow a unique setup to be applied to different checkpoints as
needed:

• set_checkpoint_setup_commands - Applies the user setup to the specified
checkpoint guidance

• remove_checkpoint_setup_commands - Removes previously applied checkpoint
setup commands

• report_checkpoint_setup_commands - Reports the checkpoint setup commands
applied

Formality® User Guide
T-2022.03

189

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Verifying the Design and Interpreting Results
Additional Verification Methods

Feedback

Known Limitations
The Formality tool does not support verification using checkpoint guidance in some cases.
You still need to use the two-step verification flow using user-generated intermediate
netlists in the following cases:

• When you run the create_register_bank command on retimed registers, the tool
does not support the flow that has SVF commands, except guide_environment,
between the guide_retiming_finished and guide_checkpoint commands. In
the Design Compiler tool, if you run an incremental compile or any command that
generates verification guidance between the compile_ultra command and the
create_register_bank command,

◦ Verify the RTL with the premultibit mapping netlist

◦ Verify the premultibit mapping netlist with the postmultibit mapping netlist.

• When retiming is performed multiple times on a design using the following commands:

◦ compile_ultra -retime followed by compile_ultra -incremental -retime

◦ set_optimize_registers and compile_ultra followed by compile_ultra
-retime

Verification Using Breakpoints
Use the load_breakpoint_data command to load a breakpoint data file when you use a
breakpoint design as the reference to perform verification. It provides the data required to
successfully process the SVF file that the tool issues after a breakpoint is generated. You
must use this command before the set_svf command.

Use the svf_breakpoint variable to enable or disable processing of guide_breakpoint
commands and enable the breakpoint verification flow. Valid values are true, false, 0,
and 1.

For more information, see the load_breakpoint_data command and svf_breakpoint
variable man pages.

Identifying Inferred Register Names With Register Mapping
The inferred register names in the RTL might change in SVF guidance during register
optimizations, such as merge, duplication, inversion push, constant optimization, or using
the change_names command. To identify inferred register names in post-SVF guidance,
use the write_register_mapping command to generate a report that maps registers in
the reference design with the matching registers in the implementation design. Use the
-replace option to overwrite the existing file.

Formality® User Guide
T-2022.03

190

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Verifying the Design and Interpreting Results
Additional Verification Methods

Feedback

If the reference design is an RTL, the report is based on the original RTL names as the
inferred register names in the RTL might change because of SVF guidance.

Note:
You must use this command only after using the match or verify commands.

For examples of reports generated by the write_register_mapping command, see the
command man page.

The following rules apply when generating reports with the write_register_mapping
command:

• For register technology cells with multiple output pins, the command reports
information only for the first output pin. The remaining output pins are not reported.

• Unsupported register mappings are reported with the comment (#) symbol. See
Example 10.

• The command cannot track the original name of RTL for

◦ Retimed registers, including pipeline registers in DesignWare parts.

◦ Duplicate registers that undergo multiple optimizations, such as inversion push,
using the change_names command, or banking. The report shows only the post
SVF names for these duplicate registers.

◦ RTL-instantiated multibit logic library cells; however, the original RTL names are
tracked for multibit banking of inferred registers.

◦ Technology cell pin names for matched registers with complex output drivers, such
as nonbuffer or inverter cells. However, polarity is determined from the compare
point match reports.

Example 10 shows the report of technology cell pin names for the matched registers with
complex output drivers and unsupported register mappings with the comment (#) symbol.

Example 10 Reports Technology Cell Pin Names and Unsupported Register Mappings With
the Comment (#) Symbol

#
Register Mapping File
Created using Formality (R) Version L-2016.03 -- Feb 3, 2016
Reference top design : r:/WORK/test
Implementation top design : i:/WORK/test
Timestamp : Wed Feb 3 04:20:19 2016
#
#
ref pos p1
impl pos p1

Formality® User Guide
T-2022.03

191

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Verifying the Design and Interpreting Results
Additional Verification Methods

Feedback

Verifying a Single Compare Point
Single compare point verification is useful when you have trouble verifying a complete
design and you want to debug an isolated compare point in the implementation design.

verificationsingle compare pointcompare pointsverifying singleverifyingsingle compare pointTo verify a single compare point, use the Formality shell or the GUI as shown:

fm_shell GUI

Specify:
commandsverifyverify commandverify [-type type]
objectID_1 objectID_2
-inverted
[-constant0 | -constant1]

1. Click Verify.
2. Select a compare point in the list.
3. Click Verify Selected Point.

When design objects of different types have the same name, change the -type option to
the unique object type.

Besides verifying single compare points between two designs, you can also verify two
points in the same design or verify an inverted relationship between two points. To verify
that a certain output port has the same value as a certain input port in the same design,
use the command

 verify $impl/input_port $impl/output_port

To verify an inverted relationship between two points, use the -inverted switch with the
verify command.

In addition, you can verify a single compare point with a constant 1 or 0. Using either the
-constant0 or -constant1 option of the verify command causes Formality to treat a
point that evaluates to a constant as a special single compare point during verification. You
can access this functionality through the GUI when you are in the Match or Verify steps by
using the Run menu from the main window’s menu bar.

To verify a subset of compare points, see Removing Compare Points From the Verification
Set. For information about interpreting results, see .

Verifying ECO Designs
To verify an ECO design, you need

• An SVF file that describes the changes that were made to the design’s RTL source to
accomplish an ECO.

• A setup file that maps the datapath operator name changes between the original
design and the design for ECO.

Formality® User Guide
T-2022.03

192

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Verifying the Design and Interpreting Results
Additional Verification Methods

Feedback

Modifying the SVF File
The SVF file is generated when the RTL is synthesized. When the RTL is modified for
ECO, the corresponding SVF file is no longer compatible. Using the Formality tool, you
can modify the file automatically to ensure compatibility with the modified RTL.

Object names are derived from the RTL line number and the position in the line where they
appear. The fm_eco_to_svf command accounts for the changes to the modified RTL that
affect object names.

• Inserting, replacing, or deleting lines in the RTL changes the line numbers and affects
the names of the operators on the lines.

• Adding, changing, or moving operators affects the naming of otherwise unedited
operators on the same line.

For example, if a modification removes the first of two adders on line 123 in the RTL, the
name of the second adder changes from add_123_2 to add_123.

Generating the SVF File for ECO
Use the fm_eco_to_svf script to automatically modify the SVF file for the modified RTL.

The script is located in the following directory:

 install_dir/PLATFORM/fm/bin/fm_eco_to_svf

When you use the script, specify the original RTL file and then the modified RTL file.
Alternatively, specify the directories that contain the original and the modified RTL files.
The script finds matching file names and compares the contents to generate the guidance
commands that indicate line changes.

You must run this script for each modified RTL and compile the changes in an SVF file. In
this example, the name of the file is eco_change.svf. The first command creates the file
and the consecutive command appends to the file.

For example, run the script using the following syntax:

fm_eco_to_svf original/my_design.v eco/my_design.v > eco_change.svf
fm_eco_to_svf original/my_design_2.v eco/my_design_2.v >> eco_change.svf

The generated SVF file contains the guide_eco_change commands that describe the
location of each modification to the RTL. Single lines are represented by a single line
number and multiple lines are represented by two line numbers that indicate the first line
and the last line of the modified region.

The following examples show how the line numbers are indicated. The commands identify
the changes to the mydsgn.v design.

The following example indicates that lines 4 and 5 in the modified RTL are inserted.

Formality® User Guide
T-2022.03

193

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Verifying the Design and Interpreting Results
Additional Verification Methods

Feedback

guide_eco_change -file {mydsgn.v} -type {insert} -original {4} -eco {4 5}

The following example indicates that line 7 in the original RTL is deleted.

guide_eco_change -file {mydsgn.v} -type {delete} -original {7} -eco {8}

The following example indicates that lines 12 through 14 in the original RTL are replaced
by lines 13 and 14 in the modified RTL.

guide_eco_change -file {mydsgn.v} -type {replace} -original {12 14} -eco
 {13 14}

Generating the Automated Setup Mapping File
An automated setup mapping file maps datapath operator and general operators from the
original SVF file to the modified SVF file. The mapping is based on the ECO SVF file that
is generated using the fm_eco_to_svf script.

Example 11 shows how to generate the automated setup mapping file using the
generate_eco_map_file command.

Example 11 Generating the Automated Setup Mapping File
fm_shell > set_svf original.svf eco_change.svf
fm_shell > read_container -r design_original.fsc
fm_shell > read_container -i design_eco.fsc
fm_shell > generate_eco_map_file -replace eco_map.svf
The mapping file lists the guide_eco_map commands that specify the design name, the
original operator name, and the ECO operator name. The file also contains the general
operator name changes that are mapped using the guide_eco_map command.

Example 12 shows the contents of an automated setup mapping file.

Example 12 Automated Setup Mapping File
guide
IMPORTANT: Inspect and change the following guide_eco_map commands.
Each "from" operator can be matched to at most one "to" operator,
and vice versa.
Uncomment the correct matches.
INSPECT AND CHANGE THESE LINES
guide_eco_map -design { my_design } -from { add_5 } -to { add_6 }
guide_eco_map -design { my_design } -from { add_5 } -to { add_6_2 }
guide_eco_map -design { my_design } -from { add_5 } -to { add_6_3 }
guide_eco_map -design { my_design } -from { add_5_2 } -to { add_6 }
guide_eco_map -design { my_design } -from { add_5_2 } -to { add_6_2 }
guide_eco_map -design { my_design } -from { add_5_2 } -to { add_6_3 }
guide_eco_map -design { my_design } -from { mult_5 } -to { mult_6 }
setup

Uncomment the required mapping.

Formality® User Guide
T-2022.03

194

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 9: Verifying the Design and Interpreting Results
Additional Verification Methods

Feedback

Verifying a Design Modified for an ECO
To verify an ECO design after generating the ECO SVF files and the mapping file,

1. Read in the SVF files:

set_svf original.svf eco_change.svf eco_map.svf
2. Read in the design files for ECO.

3. Read in the ECO netlist.

4. Run verification using the verify command.

Uninstantiated Designs in Verilog Libraries
In a Verilog library that is read using the read_verilog command, only the cells that
are specified using the set_top command are elaborated. The other library cells are not
elaborated and are empty shells without pins, ports, or content. These cells cannot be
edited and are not available for an ECO implementation.

Using the read_verilog -extra_library_cells command, you can specifically
elaborate the cells that are not elaborated by the set_top command. The syntax is

read_verilog -extra_library_cells cell_list

You can use the read_verilog -extra_library_cells command either before or
after the set_top command. When you run the command before running the set_top
command, the specified cells are elaborated during the set_top command. Note that cells
that are elaborated using the read_verilog -extra_library_cells command overwrite
the cells that are already elaborated by the set_top command.

When you run the read_verilog -extra_library_cells command after running
the set_top command, only the specified cells are elaborated. You can only elaborate
cells that are not elaborated and existing cells are not overwritten. If elaborated cells are
specified in the cell_list, the tool issues an error message.

For more information about the read_verilog command, see the command man page.

Formality® User Guide
T-2022.03

195

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

10
Debugging Verification

This chapter describes when and how to use the various information sources during the
debugging process.

There are two main verification results that require debugging, specifically those with
failing points and those verifications for which Formality did not come to a conclusive result
because of the complexity of the design.

Figure 35 outlines the timing of the debugging step within the design verification process
flow. This chapter focuses on how to debug failing designs in Formality.

Formality® User Guide
T-2022.03

196

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification

Feedback

Figure 35 Debugging in the Design Verification Process Flow

Prior to debugging the specific instances of a failing verification or a hard verification, you
should understand how the general debug process works and what information can be
gleaned from it.

Formality® User Guide
T-2022.03

197

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification

Feedback

Figure 36 shows an overview of the debugging process. The A in the diagram symbolizes
a wire connection. The debugging process for technology library verification is described in
Verifying Technology Logic Libraries.

Figure 36 Debug Process Flow

debuggingstrategieslocatingdesign problemsverificationproblem areas, locatingtroubleshootingproblem areas, locatingdesignslocating problem areasproblem areas, see troubleshootingWhen a troubleshootingdetermining failure causeverification run reports that the designs are not equivalent, failure is due either
to an incorrect setup or to a logical design difference between the two designs. debugginggathering informationtroubleshootinggathering informationFormality

Formality® User Guide
T-2022.03

198

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

provides information that can help you determine the cause of the verification failure. The
following sources provide you with this information:

• transcript windowThe transcript window provides information about verification status, black box
creation, and simulation or synthesis mismatches.

• The formality.log fileFormalitylog filesfilesformality.loglog filesformality.logformality.log file provides a complete list of black boxes in the design, assumptions
made about directions of black box pins, and a list of multiply driven nets.

• reportsReports contain data on every compare point that affects the verification output. These
reports are namedreport_failing, report_passing, and report_aborted.

Debugging a Failing Verification
verificationtroubleshootingtroubleshootingincomplete verificationOccasionally, Formality encounters a design that cannot be verified because it is
particularly complex. For example, asynchronous state-holding loops can cause Formality
to terminate verification if you did not check for their existence before executing the
verify command. For more information, see Asynchronous State-Holding Loops.

The following steps provide a strategy to apply when verification does not finish due to a
design difficulty. Note that these steps are different from those presented in Determining
Failure Causes, which describes what to do when verification finishes but fails.

Note:
Incomplete verifications can occur when Formality reaches a specified number
of failing compare points. This limit causes Formality to stop processing. Use
the verification_failing_point_limit variable to adjust the limit as
needed.

1. If you have both aborted points and failing points, locate and fix the failing compare
points. For strategies about debugging failed compare points, see .

2. Verify the design again. Fixing the failing compare points can sometimes eliminate the
aborted points.

3. After eliminating all failing compare points, isolate the problem in the design to the
smallest possible block.

4. Declare the failing blocks as black boxes by using the set_black_box command. Use
the set_black_box command to specify the designs that you want to black box.

Alternatively, you can insert cutpoint black boxes to simplify hard-to-verify designs, as
described in .

5. Verify the implementation design again. This time the verification should finish.
However, the problem block remains unverified.

Formality® User Guide
T-2022.03

199

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

6. Use an alternative method to prove the functionality of the isolated problem block. For
example, in a multiplier example, use a conventional simulation tool to prove that the
multiplier having the different architecture in the implementation design is functionally
equivalent to the multiplier in the reference design.

At this point, you have proved the problem block to be equivalent and you have proved
the rest of the implementation design equivalent. One proof is accomplished through
a conventional simulation tool, and the other is accomplished through Formality. Both
proofs combined are sufficient to verify the designs as equal.

Establish the existing implementation design as the new reference design. This
substitution follows the incremental verification technique described in Figure 1.

7. Prior to running verification a second time, manually match any equivalent multipliers
that Formality has not automatically matched in the reference and implementation
designs. Manually matching the multipliers aids the solver in successfully matching
remaining multipliers. Use the report_unmatched_points -datapath command to
identify the unmatched multipliers.

8. Preverification might have timed out due to the effort level set in the
verification_datapath_effort_level variable. You can set this limit to a higher
effort level to allow Formality more time to preverify any black box equivalent datapath
blocks successfully.

Finding Potential Cut Points
The find_cutpoint_pins command can be used as a debugging aid when dealing with
hard verifications that can be resolved by adding cuts. One of the best places to add cuts
is on pins of design instances.

The find_cutpoint_pins command finds potential cut points that can be inserted on
all pins matching a specified instance in both the reference and implementation designs.
The cut points can be filtered based on a specified compare point and direction, logic, and
don’t care size. Use wildcard characters to match multiple objects.

The find_cutpoint_pins command includes the following options:

• -type: Use this option to specify the object type of the compare point when using the
-in_fanin_of option.

• -exclude: Use this option to exclude the specified list of pins where cut points need
not be inserted.

• -filter: Use this option to filter cut points based on a specified list of conditions such
as size, direction, fan-in, logic, and so on.

Formality® User Guide
T-2022.03

200

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

Determining Unread Failing Compare Points
To determine if any failing compare points are unread, use the unread_analysis
command. The command does not match the failing compare point and checks whether
verification fails with any downstream points. If the downstream points are not affected
by the unmatched point and verification succeeds, the tool marks the compare point as
unread in the design.

The following example shows the analysis of an unread and a read compare point in the
final summary:

fm_shell> unread_analysis

Analyzing unread compare point: r:/WORK/mychip/myblock/abc/def/keyval_reg
Level 0: UNREAD

Analyzing unread compare point: r:/WORK/mychip/instr_reg
Level 0: 16 potential readers
Level 1: READ, 66 readers

Unread analysis cleanup
New unread points:
r:/WORK/mychip/myblock/abc/def/keyval_reg

Determining Failure Causes
debuggingdetermining failure causestroubleshootingdetermining failure causeTo debug your design, you must first determine whether a failing verification is due to a
setup problem or a logical difference between the designs.

Use the analyze_points commandanalyze_points -failing command to have Formality examine the failing
points and to determine if there is a possible setup problem. After executing this
command, Formality generates a report of possible setup issues. If it is the case that the
verification failed due to a setup problem, you should start the debug process by looking
for obvious problems, such as forgetting to disable scan.

Sometimes you can determine the failure cause by examining the number of failing,
aborted, and unmatched points, as shown in Table 8.

Table 8 Determining Failure Cause

Unmatched Failing Aborted Possible cause

Number of points in each category:

Large - - Compare point matching problem,
or black boxes

Very small Some Small Logical difference

Formality® User Guide
T-2022.03

201

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

Table 8 Determining Failure Cause (Continued)

Unmatched Failing Aborted Possible cause

Very small Some Large Setup problem

Very small None Some Complex circuits, combinational
loops, or limits reached

verificationfailedSetup problems that can cause a failed verification include unmatched primary inputs
and compare points, missing library models and design modules, and incorrect variable
settings.

The following steps describe how to make sure design setup did not cause the verification
failure.

If you determine that your design contains setup errors, skip to Eliminating Setup
Possibilities to help you fix them. You must fix setup problems and then verify the
implementation design before debugging any problems caused by logical differences
between the designs.

1. If you automatically matched compare points with the verify command, look at the
unmatched points report by running the commandsreport_unmatched_inputsreport_unmatched_points command in
fm_shell, or choosing Match > Unmatched in the GUI. The report shows matched
design objects, such as inputs, as well as matched compare points; use the filtering
options included with the command to view only the unmatched compare points.

Use the iterative compare point matching technique described in Match Compare
Points to resolve the unmatched points.

A likely consequence of an unmatched compare point, especially a register, is that
downstream compare points fail due to their unmatched inputs.

2. black boxlocatingblack boxverifyingfindingunmatched black boxeslocatingunmatched black boxestroubleshootingblack boxesreportingblack boxesSpecify the report_black_boxes command in fm_shell or at the Formality GUI prompt
to check for unmatched black boxes. During verification, Formality treats comparable
black boxes as equivalent objects. However, to be considered equivalent, a black box
in the implementation design must map one to one with a black box in the reference
design. In general, use black box models for large macro cells, such as RAMs and
microprocessor cores, or when you are running a bottom-up verification.

Note:
Black boxes that do not match one-to-one result in unmatched compare
points.

Formality® User Guide
T-2022.03

202

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

For more information about black boxes, see Handling Black Boxes.

3. Check for incorrect variable settings, especially for the design transformations listed in
Design Transformations. To view a list of current variable settings, use the printvar
command.

Debugging Using Diagnosis
debuggingusing diagnosisdiagnosisdebugging withverificationusing diagnosistroubleshootingusing diagnosisAt this point, you have fixed all setup problems in your design or determined that no setup
problems exist. Consequently, the failure occurred because Formality found functional
differences between the implementation and reference designs. Use the following steps
to isolate the problem. This section assumes you are working in the GUI. For more
information about the Formality verification and debugging processes, see The Formality
Use Model.

After you have run verification, debug your design by taking the following steps:

1. From the Debug tab, click the Failing Points tab to view the failing points.

2. Run diagnosis on all of the failing points listed in this window by clicking Analyze.

After clicking Analyze, you might get a warning (FM-417) stating that too many distinct
errors caused diagnosis to fail (if the number of distinct errors exceeds five). If this
occurs and you have already verified that no setup problems exist, try selecting a group
of failing points, such as a group of buses with common names, and click Diagnose
Selected Points. If the group diagnosis also fails, select a single failing point and run
selected diagnosis.

After the diagnosis is complete, the Error Candidate window displays a list of error
candidates. An error candidate can have multiple distinct errors associated with it. For
each error, the number of related failing points is reported. There can be alternate error
candidates apart from those shown in this window.

3. Inspect the alternate candidates by using Next and Previous. You can reissue
the error candidate report anytime after running diagnosis by using the
report_error_candidates Tcl command.

4. Select an error with the maximum number of failing points. Right-click that error, and
then choose View Logic Cones. If there are multiple failing points, a list appears from
which you can select a particular failing point to view. Errors are the drivers in the
design whose function can be changed to fix the failing compare point.

The schematic shows the error highlighted in the implementation design along with the
associated matching region of the reference design.

Examine the logic cone for the driver causing the failure. The problem driver is
highlighted in orange. You can select the Isolate Error Candidates Pruning Mode option

Formality® User Guide
T-2022.03

203

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

to view the error region in isolation. You can also prune the associated matching region
of the reference design. To undo the pruning mode, choose Edit > Undo. For more
information about pruning, see Pruning Logic.

Debugging Using Logic Cones
You want to debug the failing point that shows the design difference as quickly and easily
as possible. Start with the primary outputs. You know that the designs are equivalent at
primary outputs, whereas internal points could have different logic cones due to changes
such as boundary optimization or retiming. Pick the smallest cone to debug. Look for a
point that is not part of a vector.

You can open a logic cone view of a debuggingusing logic coneslogic cone, diagnoseverificationusing logic conestroubleshootingusing logic conesfailing compare point to help you debug design
nonequivalencies. Use the following techniques to debug failing points in your design from
the logic cone view:

1. To view the entire set of failing input patterns, choose View > Show Logic Cones > click
the Show Patterns toolbar in the logic cone window.

A pattern view window appears. Click the number above a column to view the pattern
in the logic cone view. For each pattern applied to the inputs, Formality displays logic
values on each pin of every instance in the logic cone.

Check the logic cone for unmatched inputs. Look for unmatched inputs in the columns
in both the reference and implementation designs. For example, two adjacent
unmatched cone inputs (one in the references and one in the implementation design)
have opposite values on all patterns, they should be matched.

Alternatively, you can also specify the report_unmatched_points compare_point
command at the Formality prompt, or check the pattern view window for inputs that
appear in one design but not the other.

There are two types of unmatched inputs:

• Unmatched in cone

This input is not matched to any input in the corresponding cone for the other
design. The logic for this cone might be functionally different. The point might have
been matched incorrectly.

• Globally unmatched

This input is not matched to any input anywhere in the other design. The point might
need to be matched using name-matching techniques. The point might represent
extra logic that is in one design but not in the other.

Unmatched inputs indicate a possible setup problem not previously fixed. For
more information about fixing problems, see Eliminating Setup Possibilities. If you

Formality® User Guide
T-2022.03

204

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

change the setup, you must reverify the implementation design before continuing the
debugging process.

For more information about failing input patterns and the pattern view window, see
Viewing, Editing, and Simulating Patterns.

2. Bring up a logic cone view of your design.

A pattern view window appears. Click the number above a column to view the pattern
in the logic cone view. For each pattern applied to the inputs, Formality displays logic
values on each pin of every instance in the logic cone.

For more information about displaying your design in a logic cone, see Logic Cones.

3. Look for clues in the input patterns. These clues can sometimes indicate that the
implementation design has undergone a transformation of some kind.

For a list of design transformations that require setup before verification, see Design
Transformations.

4. Prune the logic cones and subcones, as needed, better to isolate the problem.

For more information, see Pruning Logic.

After you have isolated the difference between the implementation and reference designs,
change the original design using these procedures and reverify it.

If the problem is in the gate-level design, one-to-one correspondence between the
symbols in the logic cone and the instances in the gate netlist should help you pinpoint
where to make changes in the netlist.

To help you further when debugging designs, click the Zoom Full toolbar option to view
a failing point in the context of the entire design. Return to the previous view by pressing
Shift-a.

Eliminating Setup Possibilities
debuggingeliminating setup possibilitiestroubleshootingeliminating setup possibilitiesAs discussed in the Determining Failure Causes section, you must resolve setup problems
as part of the debugging process. If your design has setup problems, you should check the
areas discussed in the following sections (listed in order of importance):

1. Black Boxes

2. Unmatched Points

3. Design Transformations

Formality® User Guide
T-2022.03

205

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

Black Boxes
black boxdebuggingdebuggingblack boxestroubleshootingblack boxesIf the evidence points to a setup problem, check for black boxes. You can do this by,

• Viewing the transcript

• Checking the formality.log file

• Running the report_unmatched_points -point_type bbox command

• Running the report_black_boxes command in the Formality shell or Formality prompt
from within the GUI

For more information about black boxes, see Handling Black Boxes.

Unmatched Points
compare pointsdebuggingdebuggingcompare pointsAs described in , you might need to match compare points manually by using the
techniques described in this section. Normally, you do this during the compare point
matching process, before running verification.

See Also

• Matching With User-Supplied Names

• Matching With Compare Rules

• Matching With Name Subset

• Renaming User-Supplied Names or Mapping File

Matching With User-Supplied Names
debuggingsetting compare points to matchtroubleshootingsetting compare points to matchYou can force Formality to verify two design objects by setting two compare points to
match. For example, if your reference and implementation designs have comparable
output ports with different names, creating a compare point match that consists of the two
ports forces Formality to match the object names.

Note:
Use caution when matching compare points. Avoid creating a situation where
two design objects not intended to form a match are used as compare points.
Understanding the design and using the reporting feature in Formality can help
you avoid this situation.

Formality® User Guide
T-2022.03

206

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

To force an object in the reference to match an object in the implementation design, use
the Formality shell or the GUI as shown:

fm_shell GUI

Specify:
commandsset_user_matchset_user_match commandset_user_match
[-type ID_type]
[-inverted]
[-noninverted]
object_1 object_2 [...]

1. Click Match > Unmatched Points.
2. Select a point in the reference list.
3. Select a point in the implementation list.
4. Select +, -, or ?.
5. Click the User Match Setup tab to view the
list of user-specified matches.

Sometimes design objects of different types share the same name. If this is the case,
change the -type option to the unique object type.

You can set the -inverted or -noninverted option to handle cases of inverted polarities
of state points. Inverted polarities of state registers can be caused by the style of
design libraries, design optimizations by synthesis, or manually generated designs. The
-inverted option matches the specified objects with inverted polarity; the -noninverted
option matches the specified objects with non inverted polarity. Polarity is indicated in the
GUI with a “+” for noninverted, “-” for inverted, and “?” for unspecified.

The set_user_match command accepts instance-based path names and object IDs.
You can match objects such as black box cells and cell instances, pins on black boxes or
cell instances, registers, and latches. The two objects should be comparable in type and
location.

Along with matching individual points in comparable designs, you can use this command
to match multiple implementation objects to a single reference object (1-to-n matching).
You do this by issuing set_user_match, matching each implementation object to
the reference object. You cannot, however, match multiple reference objects to one
implementation object. Doing so would cause an error. For example, the following
command sets several implementation objects to one reference object, datain[55]:

set_user_match $ref/CORE/RAMBLK/DRAM_64x16/I_TOP/datain[55] \
 $impl/CORE/RAMBLK/DRAM_64x16/I_TOP/datain[55] \
 $impl/CORE/RAMBLK/DRAM_64x16/I_TOP/datain[55]_0 \
 $impl/CORE/RAMBLK/DRAM_64x16/I_TOP/datain[56]_0 \
 $impl/CORE/RAMBLK/DRAM_64x16/I_TOP/datain[59]_0 \
 $impl/CORE/RAMBLK/DRAM_64x16/I_TOP/datain[60]_0

Use the set_user_match command to match an individual point in a design, a useful
technique if you do not see multiple similar mismatches. Note that this command does

Formality® User Guide
T-2022.03

207

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

not change the names in the database. For example, the following design objects are not
matched by the Formality name-matching algorithms:

 reference:/WORK/CORE/carry_in
 implementation:/WORK/CORE/cin

To match these design objects, use the set_user_match command as follows.

fm_shell (verify)> set_user_match ref:/
WORK/CORE/carry_in \ impl:/WORK/
CORE/cin

1. Removing User-Matched Compare Points

To unmatch objects previously matched by the set_user_match command, use the
Formality shell or the GUI as shown:

fm_shell GUI

Specify:
commandsremove_user_matchremove_user_match commandremove_user_match
[-all] [-type type]
instance_path

At the Formality prompt, specify:
remove_user_match
[-all] [-type type]
instance_path

This command accepts instance-based path names and object IDs.

2. Listing User-Matched Compare Points

To generate a list of points matched by the set_user_match command, use the Formality
shell or the GUI as shown:

fm_shell GUI

Specify:
commandsreport_user_matchesreport_user_matches commandreport_user_matches [-inverted |
-noninverted | -unknown]

At the Formality prompt, specify:
report_user_matches [-inverted |
-noninverted | -unknown]

The -inverted option reports only user-specified inverted matches. The -noninverted
option reports only user-specified noninverted matches. The -unknown option reports user
matches with unspecified polarity. The GUI displays polarity of these points using “-” to
indicate inverted user match, “+” to indicate noninverted user match, and “?” to indicate
unspecified user match.

Formality® User Guide
T-2022.03

208

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

See Also

• Matching With Compare Rules

• Matching With Name Subset

• Renaming User-Supplied Names or Mapping File

Matching With Compare Rules
debuggingmatching with compare rulestroubleshootingmatching with compare rulescompare rulesAs described in Matching Compare Points, compare rules are user-defined regular
expressions that Formality uses to translate the names in one design before applying
any name-matching methods. This approach is especially useful if names changed in a
predictable way and many compare points are unmatched as a result.

Note:
Because a single compare rule can map several design object names between
the implementation and reference designs, use caution when defining compare
rules. Regular expressions with loose matching criteria can affect many design
object names.

Defining a compare rule affects many design objects during compare point matching. For
example, if the implementation design uses a register naming scheme where all registers
end in the string _r_0, while the reference design uses a scheme where all registers end
in _reg. One compare rule could successfully map all register names between the two
designs.

Compare rules are applied during the compare point matching step of the verification
process.

1. Defining Compare Rules

To create a compare rule, use the Formality shell or the GUI as shown:

fm_shell GUI

Specify:
commandsset_compare_ruleset_compare_rule commandset_compare_rule
-from search_pattern
-to replace_pattern
designID

1. Click the Match > Compare Rule Setup.
2. Click Set and click the Reference or
Implementation tab.
3. Select an Object Type: any, port, cell or net.
4. Type a Search pattern and a Replace pattern
in the respective fields.
6. Click OK.

Supply “from” and “to” patterns to define a single compare rule, and specify the design ID
to be affected by the compare rule. For the patterns you can supply any regular expression

Formality® User Guide
T-2022.03

209

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

or arithmetic operator. You need to use \(and \) as delimiters for arithmetic expressions,
and you can use +, -, *, /, and % for operators.

The set_compare_rule command does not permanently rename objects; it “virtually”
renames compare points for matching purposes. The report commands are available for
use after compare point matching is completed.

Compare rules are additive in nature so they should be written in such a way that rules do
not overlap. Overlap can cause unwanted changes to object names that can negatively
affect subsequent compare rules. The rules are applied one at a time throughout the
design.

For example, the following registers are unmatched when two designs are verified:

 reference:/WORK/top_mod/cntr_reg0
 .
 reference:/WORK/top_mod/cntr_reg9
 implementation:/WORK/top_mod/cntr0
 .
 implementation:/WORK/top_mod/cntr9

You can use a single set_compare_rule command to match up all these points, as
follows:

 fm_shell (verify)> set_compare_rule ref:/WORK/top_mod \
 -from {_reg\([0-9]*\)$} \
 -to {\1}
In this example, the rule is applied on the reference design. Therefore, all _reg# format
object names in the reference design are transformed to # format during compare point
matching.

In the following example, assume that the registers are unmatched when two designs are
verified:

 RTL:/WORK/P_SCHED/MC_CONTROL/FIFO_reg2[0][0]
 RTL:/WORK/P_SCHED/MC_CONTROL/FIFO_reg2[0][1]
 RTL:/WORK/P_SCHED/MC_CONTROL/FIFO_reg2[1][1]

 GATE:/WORK/P_SCHED/MC_CONTROL/FIFO_reg20_0
 GATE:/WORK/P_SCHED/MC_CONTROL/FIFO_reg20_1
 GATE:/WORK/P_SCHED/MC_CONTROL/FIFO_reg21_1

A single set_compare_rule matches up all these points:

 fm_shell (verify)> set_compare_rule $ref\
 -from {_reg2\[\([0-1]\)\]\[\([0-1]\)\]$}\
 -to {_reg2\1_\2}
This rule transforms all objects in the reference design that follow the format _reg2[#]
[#] to _reg2#_#, where # is restricted to only 0 and 1 values. This rule is applied

Formality® User Guide
T-2022.03

210

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

on the reference design, but it also can be changed so that it can be applied on the
implementation design.

You can use \(and \) as delimiters for arithmetic expressions and then use +, -, *, /, and
% operators inside the delimiters to determine them unambiguously to be arithmetic
operators. For example, to reverse a vector from the reference bus [15:0] to the
implementation bus [0:15] using an arithmetic expression, use the following command:

 fm_shell (verify)> set_compare_rule ref:/WORK/design_name \
 -from {bus\[\([0-9]*\)\]} \
 -to {bus\[\(15-\1\)\]}
The “-” operator in the replace pattern means arithmetic minus.

2. Testing Compare Rules

You can test name translation rules on unmatched points or arbitrary user-defined names
by using the Formality shell or the GUI as shown:

fm_shell GUI

Specify:
commandstest_compare_ruletest_compare_rule commandtest_compare_rule
[-designID | -r | -i]
-from search_pattern
-to replace_pattern
[-substring string]
[-type type]
Or
test_compare_rule
-from search_pattern
-to replace_pattern
-name list_of_names

1. Click Match > Compare Rule Setup.
2. Click Set and click the Reference or

Implementation tab.
3. Select an Object Type and enter values in

the Search pattern and Replace pattern box.
4. Click Test and select Test With Unmatched

Points or Test With Specified Names.- If
you select the Test With Unmatched Points
tab, you can optionally type a substring that
restricts the test to those unmatched points
with the specified substring.- If you select the
Test With Specified Names tab, you must
add a name or list of names in the Enter a
name to test against box and click Add.

5. Click Test.

You can test a single compare rule on a specific design or arbitrary points. You can also
use this command to check the syntactic correctness of your regular and arithmetic
expressions. To do so, you supply “from” and “to” patterns, specify the name to be
mapped, indicate the substring and the point type, and specify the design ID to be affected
by the proposed compare rule. A string that shows the results from applying the compare
point rule is displayed with 0 for failure and 1 for success.

Formality® User Guide
T-2022.03

211

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

3. Removing Compare Rules

To remove all compare rules from a design, use the Formality shell or the GUI as shown:

fm_shell GUI

Specify:
commandsremove_compare_rulesremove_compare_rules commandremove_compare_rules [designID]

1. Click the Match > Compare Rules Setup.
2. Select an Object Type and click Remove.
3. Select a design, and then click OK.

Currently it is not possible to remove a single compare rule.

4. Listing Compare Rules

To track compare rules, you can generate reports that list them by using the Formality
shell or the GUI as shown:

fm_shell GUI

Specify:
commandsreport_compare_rulesreport_compare_rules commandreport_compare_rules [designID]

Click Match > Compare Rules Setup.

Each line of output displays the search value followed by the replace value for the
specified design.

See Also

• Matching With User-Supplied Names

• Matching With Name Subset

• Renaming User-Supplied Names or Mapping File

Matching With Name Subset
debuggingsubset matchingtroubleshootingsubset matchingDuring subset matching, each name is viewed as a series of tokens, separated by
characters in the variablesname_match_filter_charsname_match_filter_chars variablename_match_filter_chars variable. Formality performs a best-match
analysis to match names containing shared tokens. If an object in either design has a
name that is a subset of an object name in the other design, Formality can match those
two objects by using subset-matching algorithms. If multiple potential matches are equally
good, no matching occurs.

Digits are special cases, and mismatches involving digits lead to an immediate string
mismatch. An exception is made if there is a hierarchy difference between the two strings
and that hierarchy name contains digits.

Formality® User Guide
T-2022.03

212

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

Use the variablesname_match_allow_subset_matchname_match_allow_subset_match variablename_match_allow_subset_match variable to specify whether to use a subset
of the token-based name matching method and to specify which particular name to use.
By default, the variable value is set to strict. Strict subset matching should automatically
match many of the uniform name changes that might otherwise require a compare rule.
This is particularly helpful in designs that have extensive, albeit fairly uniform, name
changes resulting in an unreasonably high number of unmatched points for signature
analysis to handle. The strict value ignores the delimiter characters and alphabetic tokens
that appear in at least 90 percent of all names of a given type of object (if doing so does
not cause name collision issues).

If the value of the variablesname_match_use_filtername_match_use_filter variablename_match_use_filter variable is false, subset matching is not
performed regardless of the value of the name_match_allow_subset_match variable.

For example, the following design object pairs are matched by the subset-matching
algorithms:

 reference:/WORK/top/state
 implementation:/WORK/top/state_reg

 reference:/WORK/a/b/c
 implementation:/WORK/a/c

 reference:/WORK/cntr/state2/reg
 implementation:/WORK/cntr/reg

The following design object pairs would not be matched by the subset-matching
algorithms:

 reference:/WORK/top/state_2
 implementation:/WORK/top/statereg_2

 reference:/WORK/cntr/state_2/reg_3
 implementation:/WORK/cntr/state/reg[3]

The first pair fails because state is not separated from statereg with a “/” or “_”. In the
second pair, the presence of digit 2 in state2 causes the mismatch.

See Also

• Matching With User-Supplied Names

• Matching With Compare Rules

• Renaming User-Supplied Names or Mapping File

Renaming User-Supplied Names or Mapping File
renaming design objectsmapping namesdesign objectsdesign objectsrenamingRenaming design objects is generally used for matching primary input and outputs.

Formality® User Guide
T-2022.03

213

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

To rename design objects, use the Formality shell or the GUI as shown:

fm_shell GUI

Specify:
commandsrename_objectrename_object commandrename_object
-file file_name
[-type object_type]
[-shared_lib]
[-container container_name]
[-reverse] objectID
[new_name]

At the Formality prompt, specify:
rename_object
-file file_name
[-type object_type]
[-shared_lib]
[-container container_name]
[-reverse] objectID
[new_name]

debuggingrenaming objectstroubleshootingrenaming objectsThis command permanently renames any object in the database. The new name is used
by all subsequent commands and operations, including all name-matching methods.
Supply a file whose format matches that of the report_names command in Design
Compiler.

Note:
To rename multiple design objects from a file, specify the -file option. The file
format should match that of the report_names command in Design Compiler.

Use the rename_object command to rename design objects that are not verification
compare points. For example, you can use this command to rename the input ports of a
design so that they match the input port names in the other design. Input ports must be
matched to obtain a successful verification. This command supplies exact name pairs so
you know the exact change that is going to take place.

For example, the following rename_object command renames a port called clk_in to
clockin to match the primary inputs:

 commandsrename_objectrename_object commandfm_shell (verify)> rename_object impl:/*/am2910/clk_in clockin
You can use the rename_object command to change the name of a hierarchical cell,
possibly benefiting the automatic compare point matching algorithms. In addition, you can
use it on primary ports to make a verification succeed where the ports have been renamed
(possibly inadvertently).

You can also use the commandschange_nameschange_names commandchange_names command in Design Compiler to change the names
in the gate-level netlist. However, depending on the complexity of name changes,
Formality might match the compare points successfully when verifying two designs
(one before and one after the use of the change_names command). To work around
this problem, obtain the changed-names report from Design Compiler and supply it to
Formality with the rename_object command for compare point matching.

Formality® User Guide
T-2022.03

214

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

For example, the following rename_object command uses a file to rename objects in a
design:

 fm_shell (verify)> rename_object -file names.rpt \
 -container impl -reverse

See Also

• Matching With User-Supplied Names

• Matching With Compare Rules

• Matching With Name Subset

Design Transformations
Various combinational and sequential transformations can cause problems if you do
not perform the proper setup before verification. Setup requirements are discussed in
Performing Setup, for the following common design transformations:

• Internal scan insertion in Combinational Design Changes.

• Boundary scan in Combinational Design Changes.

• Clock tree buffering in Managing Clock Tree Buffering.

• Asynchronous bypass logic in Asynchronous Bypass Logic.

• Clock gating in Setting Clock Gating.

• Inversion push in Enabling an Inversion Push.

• Re-encoded finite state machines in Re-Encoded Finite State Machines.

• Retimed designs in Handling Retimed Designs.

Design Objects
This topic illustrates the various objects in the design cone and schematic views of the
tool.

Figure 37 represents a design input port.

Formality® User Guide
T-2022.03

215

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

Figure 37 Input Port

Figure 38 represents a design output port.

Figure 38 Output Port

Figure 39 represents a design I/O port.

Figure 39 I/O Port

Figure 40 shows a hierarchy separator for the input port. This object denotes the input
boundary between two hierarchies. This object is available only in the cone view.

Figure 40 Hierarchy separator for input port

Figure 41 shows a hierarchy separator for the output port. This object denotes the output
boundary between two hierarchies. This object is available only in the cone view.

Formality® User Guide
T-2022.03

216

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

Figure 41 Hierarchy separator for output port

Figure 42 shows a hierarchy separator for the I/O port. This object denotes the input and
output boundaries between two hierarchies. This object is available only in the cone view.

Figure 42 Hierarchy separator for IO port

Figure 43 represents undriven logic. The connected signal is not driven by any logic.

Figure 43 Undriven logic

Figure 44 shows an unread object. This object shows a signal which is not driven by any
logic.

Figure 44 Unread object

Formality® User Guide
T-2022.03

217

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

Figure 45 shows an object tied to logic 0. The object represents the signal connection to 0
state.

Figure 45 Logic 0

Figure 46 shows an object tied to logic 1. The object represents the signal connection to 1
state.

Figure 46 Logic 1

Figure 47 shows an input logic cone. This object represents the block of combinational
logic that drives the current compare point.

Figure 47 Input logic cone

Figure 48 shows an output logic cone. This object represents the block of combinational
logic driven by the current compare points.

Formality® User Guide
T-2022.03

218

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

Figure 48 Output logic cone

Figure 49 shows a 2-input OR gate.

Figure 49 OR gate

Figure 50 shows a 2-input NOR gate.

Figure 50 NOR gate

Figure 51 shows a 2-input NAND gate.

Figure 51 NAND gate

Figure 52 shows a 2-input XOR gate.

Formality® User Guide
T-2022.03

219

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

Figure 52 XOR gate

Figure 53 shows a NOT gate or inverter.

Figure 53 Inverter

Figure 54 shows a buffer.

Figure 54 Buffer

Figure 55 shows a 2-input AND gate.

Figure 55 2-Input AND gate

Figure 56 shows a cell which is the power version of a NAND gate with a primary supply
on top, primary ground at the bottom, and a bias pin at the bottom.

Formality® User Guide
T-2022.03

220

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

Figure 56 Power version of NAND gate

Figure 57 shows a don’t care cell that represents the don’t care (X) condition in the circuit.

Figure 57 Don't care cell

Figure 58 shows a cut point. This object is available only in the logic cone view.

Figure 58 Cut point

Figure 59 shows a black box, an object whose internal function is unknown.

Figure 59 Black box

Formality® User Guide
T-2022.03

221

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

Figure 60 shows the primitive representation of a SEQ latch.

Figure 60 SEQ latch

Figure 61 shows a RTL register.

Figure 61 RTL register

Figure 62 shows a register with pin name, annotated simulation value, and instance name.

Figure 62 Register representation

Figure 63 shows the primitive form of the sequential (SEQ) register, which has AS, AC, SD,
SL, and CLK pin names.

Formality® User Guide
T-2022.03

222

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

Figure 63 SEQ register

Figure 64 shows a 2x1 MUX or selector.

Figure 64 MUX selector

Figure 65 shows a RTL MUX.

Formality® User Guide
T-2022.03

223

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

Figure 65 RTL MUX

Figure 66 shows an equality operator.

Figure 66 Equality operator

Figure 67 shows a multiplier.

Formality® User Guide
T-2022.03

224

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

Figure 67 Multiplier

Figure 68 shows an adder.

Figure 68 Adder

Figure 69 shows a subtractor.

Figure 69 Subtractor

Figure 70 shows the an unknown object hardware.

Formality® User Guide
T-2022.03

225

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

Figure 70 Unknown object

Schematics
Viewing cells and other design objects in the context of the overall design can help you
locate and understand failing areas of the design. This section describes how to use
schematics to help you debug failing compare points. It pertains to the GUI only.

Viewing Schematics
In any type of report window, you can view a schematic for any object described in
the report. This feature lets you quickly find the area in your design related to an item
described in the report.

To generate a schematic view,

• In any of the following tabs,

Click Verify > click the desired tab.

Click Match > Unmatched Points or Matched Points. Click Debug > Failing Points,
Passing Points, or Aborted Points

• Select either an object or all objects.

• Choose View > View Reference Object or View Implementation Object.

After you perform these steps, a GUIschematic view windowschematic view window shows the selected object. The
object is highlighted and centered in the schematic view window. To expand and view an
additional level, double-click the cone symbol:

Double-click this symbol in the schematic to expand one level of the schematic.
Hold down the Shift key and double-click the cone to expand the complete
branch.

You can also choose Edit > Prune/Restore > Expand Schematic to view the complete
schematic.

Formality® User Guide
T-2022.03

226

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

From the schematic view window, you can zoom in and out of a view, print schematics,
and search for objects. hierarchical designstraversingtraversing hierarchical designsYou can also use the schematic view window menus to move up
and down through the design hierarchy of the design.

To change the text size in a schematic, choose View > Increase Font Size or Decrease
Font Size. Increasing or decreasing the font size changes the menu and window text but
not the text in the schematic. Schematic text automatically increases or decreases as you
zoom in or out.

schematic view windowexampleexamplesschematic view windowFigure 71 shows a schematic view window.console windowtoolbartoolbar, console window

Figure 71 Schematic View Window

Formality® User Guide
T-2022.03

227

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

The toolbar contains shortcuts to some menu selections. The schematic viewer supports
the following tool options:

Set Select Mode (Esc): Click to select particular sections of the design.

Zoom In Tool: Click to increase the magnification applied to the schematic area
by two times (2X).

Zoom Out Tool: Click to decrease the magnification applied to the schematic
area by approximately 2X.

Zoom Full (F) - Click to redraw the displayed schematic sheet so that all logic is
viewable.

Zoom In (I): Click to increase the magnification of the selected object.

Zoom Out (O): Click to decrease the magnification of the selected object.

Zoom Fit Selection (T): Click to fit the selected objects in the schematic area.

Back (Shift+A): Click to go to the previous view.

Forward (A): Click to go to the next view.

Push Design (P): Click to push into the selected level of hierarchy.

Pop Design (Shift+P): Click to pop out of the current level of hierarchy.

Find Net Driver (D): Click to find the driver for the selected net.

Find Net Load (L): Click to find the load on the selected net.

Formality® User Guide
T-2022.03

228

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

Skip Crossings: Click to skip hierarchical crossings of the selected net.

Find Initial Object (H): Click to find the initial object of the selected net.

Find By Name (F3): Click to display the object finder dialog box to find an object
by name in the schematic.

Color Selected (Ctrl+=): Click to select the color to apply on the selected objects.

Clear Selected (Ctrl+-): Click to remove highlighting from the selected objects.

Clear Current Color: Click to clear highlighting from all objects that are
highlighted with the current color.

Clear All (C): Click to clear highlighting from all objects.

Remove Fan-In (F6): Click to remove the fan-in from the selected net.

Remove Fan-Out (Shift+F6): Click to remove the fanout from the selected net.

Isolate Fan-In (F7): Click to isolate the fan-in from the selected net.

Isolate Fan-Out (Shift+F7): Click to isolate the fanout from the select net.

Return Fan-InOut (Ctrl+F6): Click to revert the fan-in or fanout cone changes
made on the selected net.

Undo Last (Z): Click to undo the last edit of fan-in or fanout operation.

Revert (Shift+Z): Click to revert to the original fan-in or fan-out cone before
editing operations.

Formality® User Guide
T-2022.03

229

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

color-codingerror candidatescolor-codingschematic areaerror candidatescolor-codingThe schematic area displays a digital logic schematic of the design. You can select an
object in the design by clicking it. To select multiple objects, hold down the Shift key.
Selected objects are highlighted in yellow.

Traversing Design Hierarchy
From a schematic view window, you can move freely through a design’s hierarchy.

You can use either of these methods to traverse a design’s hierarchy:

• To move down the hierarchy, select a cell and then click the Push Design toolbar
option. Formality displays the schematic for the selected instance. This option is
dimmed when there is nothing inside the selected cell.

• To move up the hierarchy, select a cell and then click the Pop Design toolbar option.
Formality displays the design containing the instance of the current design, selects that
instance in the new schematic, and zooms in on it.

To retain selection of a port, pin, or net when traversing hierarchy, use the following
method:

• To move down the hierarchy, select both the desired pin or net and the corresponding
cell, using Ctrl+click. Next, click the Push Design toolbar option.

• To move up the hierarchy, select a port or corresponding net, and then click the Pop
Design toolbar option.

Finding an Object
To find an object in the displayed design,

1. In the schematic view window, choose Edit > Find > Find By Name. The Find By Name
dialog box appears, which lists the objects in the design.

2. From the By Name list, select Cells, Ports, Nets, or Hier Crossings. Objects of the
selected type are displayed in the list box.

3. Select an object from the list.

To choose multiple objects sequentially, press the Shift key and select multiple objects.
To choose multiple objects individually, press the Ctrl key and click multiple object
names.

4. To choose the color to highlight the selected objects, choose a color from the color
palette.

5. Click Highlight to highlight the objects or click Select to select the objects for further
operations.

Formality® User Guide
T-2022.03

230

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

6. Click Close.

Formality displays the object at the center of the view.

Figure 72 shows the multiple objects displayed in Find By Name Object Finder.

Figure 72 Find By Name Object Finder

Generating Lists
Using the object finder, you can interact with a schematic through dynamic lists of drivers,
loads, nets, cells, and ports. Click Find Net Driver, Find Net Load, Find Initial Object, or
click the Find By Name toolbar, or choose the corresponding item from the menu to open
the dialog box that you use to generate your preferred list.

For example, to get a list of loads for a net, follow these steps:

1. Click to select the required net in your schematic.

2. Choose Edit > Find > Find Net Load.

The Object Finder dialog box appears with a list of loads for the net you selected.

Note:
If the net has a single load and you click Find Net Load, the GUI takes you
directly to the load without bringing up the dialog box. It is the same when
you are using Find Net Driver.

Formality® User Guide
T-2022.03

231

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

3. Click one of the loads from the list.

Notice that the schematic has centered on and highlighted that cell.

You can also switch to a list of drivers from that cell by using Find Driver and selecting a
driver from the list provided. Likewise, you can switch to a list of all cells, nets, or ports,
and select one of those instead.

Zooming In and Out of a View
zooming in and outschematic view windowzoomingThe schematic view window provides three tools that allow you quickly to size the logic in
the window: Zoom In, Zoom Out, and Zoom Full.

Formality tracks each schematic view window’s display history beginning with creation
of the window. You can use Back and Forward to view the changes made in the same
window.

To display the entire design, use the Zoom Full tool as follows:

• Choose View > Zoom Full.

• Right-click in the schematic window and choose Zoom Full.

• Click the Zoom Full toolbar.

• Press f on the keyboard.

Similarly, to zoom in or zoom out, choose View > Zoom In or Zoom Out, and click where
you want the new view to be centered.

To zoom into a design repeatedly, do the following:

1. Place the pointer in the schematic area.

2. Press the equal sign key (=) to activate the Zoom In tool. The pointer changes to a
magnifying glass icon with a plus symbol as if you had clicked the Zoom In Tool toolbar
option.

3. Place the pointer where you want to zoom in and click.

4. Keep clicking as needed to zoom in further.

To zoom out of a design repeatedly, follow the same steps used to zoom into a design,
except press the minus ( – ) key to activate the Zoom Out tool.

To zoom in on a small area quickly, invoke the Zoom In tool to display the magnifying glass
pointer. Hold down the left mouse button and drag a box around the area of interest.

printingschematicsschematicsprintingYou can print the schematic from a schematic view window or a report from a report
window.

Formality® User Guide
T-2022.03

232

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

To print a schematic, do the following:

1. In the schematic window, choose Schematic > Print. Make sure the schematic appears
as you want it to print. You can use the Zoom In and Zoom Out toolbar buttons to get
different views of the schematic.

2. In the Setup Printer dialog box, select the print options as required, and then click OK.
If you print to a file, you are asked to specify the file name.

After spooling the job to the printer, Formality restores the schematic view.

The procedure is the same for printing a schematic from a schematic window or a report
from a report window. Use File > Print.

Viewing RTL Source Files in the Design Browser
From the hierarchical design browser, you can select an object and view its corresponding
RTL or netlist source file.

To view the RTL source file:

1. Select a design object, such as a net.

2. Right-click and choose View > View Source.

Formality links and displays the RTL source file for the selected object. You can browse
the selected object using the previous and next buttons.

In a report window, right-click a design object and choose View > View Reference Source
or View Implementation Source.

The RTL source file display is not supported

• If the source is encrypted or created using DesignWare components

• If the cells are replaced during datapath optimization

Hierarchical Design Browser
This section explains how to view objects of hierarchical designs.

Formality® User Guide
T-2022.03

233

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

Listing Design Objects

By default, the design objects are hidden. To view the design objects from the hierarchical
browser,

• Click the Designs menu.

The Designs Menu shows either Reference Design or Implementation Design based on
the design used.

• Deselect the relevant boxes in the Hide Object panel to display the objects in the
browser.

Figure 73 Hierarchical Design Browser With Design Objects

Searching for Design Objects

To search for design objects from the search panel,

• Choose either design name or instance name.

• Enter the design object or the instance name.

• Click Search.

To hide the search results, click Hide.

Formality® User Guide
T-2022.03

234

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

Viewing Schematics

To view schematics from the browser,

• Select a design object or an instance from the browser.

• Choose View > View Instance, View Design, or View Object. You can also right-click
the design object or instance name and choose View Object or View Design.

Viewing the RTL Source

To view the RTL source from the browser,

• Select a design object or an instance.

• From the View menu, choose View Instance Source, View Design Source, or View
Source. You can also right-click the design object or an instance and choose View
Instance Source or View Design Source.

The RTL source is displayed in a text editor window. You can edit and save the source.

Performing Setup Tasks in the Design Browser

To setup the design from the browser,

• Select a design object or an instance.

• From the Setup menu, choose the setup operation that you want to perform. You can
also right-click the design object or instance and choose the setup operation from the
menu that appears.

• Click the Design Libraries or Technology Libraries tab to view the relevant libraries.

Queuing Setup Commands
When you are in the match or verify mode and issue setup commands, the tool queues
them for execution later. These setup commands are displayed in the Command Queue
window. The tool runs them when you revert to the setup mode.

You can also click the Execute Queue button in the Command Queue window to run the
queued setup commands.

When you click the Execute Queue button, Formality

• Removes the results of match and verify.

• Reverts to the Setup mode.

• Executes the queued commands.

Formality® User Guide
T-2022.03

235

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

Logic Cones
As described in step 2 of Debugging Using Logic Cones, you can view the logic cone of a
failing compare point to help you debug design non-equivalence.

To open a logic cone view,GUIlogic cone view window

1. Select a design object in a report window (passing points, failing points, aborted points,
or verified points).

2. schematicsviewing logic coneslogic conesviewingviewing logic conesRight-click and click Show Logic Cones.

A logic cone window appears, as shown in Figure 74.logic cone view windowoverviewGUIlogic cone view windowlogic conesviewing

Figure 74 Logic Cone View Window

Formality® User Guide
T-2022.03

236

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

In the Logic Cone View window, the toolbar contains buttons that act as shortcuts to some
menu selections. Some of the toolbar buttons that are common in Schematic and Logic
view windows are listed in Figure 71. The schematic viewer supports the following buttons:

Find X Sources (X): Click to find all net sources of the selected net with logic
value X.

Find Compare Point (.): Click to find and zoom to the compare point in the
schematic.

Find Matching Object (M): Click to find point in opposing window to match
selected point in double-cone schematic.

Set Probe: Click to set probe points on objects.

Set Inverted Probe: Click to set inverted probe points on objects.

Set Verify Probe: Click to verify probe points.

Hide/Show Supply Nets: Click to hide or show supply nets.

Remove Non-Controlling (F5): Click to find point in opposing window to match
selected point in double-cone schematic.

Remove Equal Valued CP Inputs (Ctrl+F5): Click to remove failing points from
input cones with matching values for all patterns.

Remove Subcone(F6): Click to remove the subcone of the selected net.

Isolate Subcone(F7): Click to isolate the subcone of the selected net.

Formality® User Guide
T-2022.03

237

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

Isolate Error Candidates (F8): Click to prune logic and isolate error candidates.

Return Subcone (Ctrl+F6): Click to return the logic of the selected subcone.

Group All by Parent (Ctrl+G): Click to group all cells into their highest level of
hierarchy.

Group Selected by Parent (G): Click to group the selected cell and its siblings
into the next highest level of hierarchy.

Ungroup Selected (U): Click to ungroup the selected hierarchy.

Undo Last (Z): Click to undo the last edit cone operation.

Revert (Shift+Z): Click to revert to the original cone before editing operations.

Show Logic Cones: Click to view logic cone schematics.

Show Matching Tool: Click to bring up the matching analysis tool for this
compare point.

Show Patterns: Click to open the patterns viewer window to show all patterns for
current compare point.

Previous Pattern: Click to show the previous pattern values on the schematic.

Next Pattern: Click to show the next pattern values on the schematic.

Formality® User Guide
T-2022.03

238

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

Most Required Inputs: Click to sort rows by the most required inputs.

Least Required Inputs: Click to sort rows by the least required inputs.

Show/Hide Compare Point Info: Click to toggle for viewing compare point
simulation results.

Find Report.. (Ctrl+F): Click to find values in the report.

In the Logic Cone View window, the two schematics display the logic cones, one each for
the reference and implementation designs. The logic areas display object symbols, object
names, object connections, applied states, and port names. To obtain information about an
object in the logic area, place the pointer on it.

Formality displays the wire connections in different colors to represent the different coverage

percentageerror candidatescoverage percentagefailing patternscoverage percentagecoverage percentages of the error candidates. Nets and registers highlighted in magenta
denote objects set with user-defined constants. The constant value is annotated next to
the object. The following annotations are displayed next to failed registers:

• Failure Cause Data: One register loads a 0 while the other loads a 1.

• Failure Cause Clock: One clock is triggered by a signal change, while the other is not.

• Failure Cause Asynch: One asynchronous reset line is high, while the other is low.

To view the logic cone schematic for any object,

1. Select an object from the cone schematic window.

2. Right-click and choose View Logic Cone from the context menu.

Viewing Combinational Feedback Loops
Highlighting combinational feedback loops in a design helps in debugging a failed
verification or in resolving an inconclusive verification that might have occurred because of
the loops. You can highlight the combinational feedback loops after match.

To highlight the combinational feedback loops,

1. In the Debug tab, click the Get Loop Data button.

The Get Loop Data button generates a report for the loop regions in the design.

Formality® User Guide
T-2022.03

239

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

2. In the loop report, select a compare point or an object.

3. Click the representative link.

The schematic of the design is displayed and the combinational loop is highlighted.

You can also highlight the combinational loops in the logic cone schematic window by
choosing Hide/Show Loops from the Edit menu.

To display only the combinational loops instead of highlighting them in a design,

1. Choose Edit > Prune/Restore in the Cone Schematics window.

2. Choose Isolate Loop Regions.

Pruning Logic
Logic pruning reduces the complexity of a schematic so that you can better isolate circuitry
pertinent to the failure. You generally prune logic toward the end of the debugging process,
as noted in step 4 in Debugging Using Diagnosis.

To change the logic cone view to show only the logic that controls the output results,
click the Remove Non-Controlling toolbar option. This command prunes away logic that
does not have an effect on the output for the current input pattern, thus simplifying the
schematic for analysis. Logic that has been pruned away is replaced with a cone symbol
to indicate the change. To filter the pruned cone inputs, select the Filter pruned cone
schematic inputs check box. You can see the filtered cone inputs in the Pattern window.

To aid in finding differences in the full schematic, remove the noncontrolling logic from the
reference or implementation schematic and keep the full view in the other schematic.

To restore the full logic cone view, click the Undo last cone edit or Revert to original toolbar
option, as applicable. The Undo button undoes the last change, while the Revert button
restores the original logic cone view. It is also possible to restore a single subcone. Select
the cone symbol of the subcone you want to restore, and click the “Return Selected Cone”
toolbar option.

Sometimes looking at part of a logic cone is useful. Within Formality, a part of a cone is
called a subcone. When you view logic in the logic area, you might be interested only in a
particular subcone. You can remove and restore individual subcones in the display area.

To remove a subcone,subconesremovingsubcones

1. In the schematic window, click the net from which you want the subcone removed. The
selected net is highlighted in yellow.

2. Click the “Remove Subcone of selected net or pin” toolbar option.

Formality redraws the logic without the subcone leading up to the selected net. The
removed logic is replaced with a cone symbol.

Formality® User Guide
T-2022.03

240

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

To isolate a subcone,subconesisolatingsubcones

1. Click the net whose logic cone you want to isolate. The selected net is highlighted in
white.

2. Click the “Isolate subcone of selected pin or net” toolbar option.

Formality redraws the logic with only the subcone of the selected net visible. The logic
for the subcones that are removed are replaced with cone symbols.

To return a subcone,subconesreturningsubcones

1. Click the cone symbol for the subcone you want to restore. The selected subcone is
highlighted in white.

2. Click the “Return selected cone” toolbar option.

Grouping Hierarchy in a Logic Cone
Logic Conegrouping hierarchylogic coneGrouping hierarchy within a logic cone is another method to reduce complexity in a
schematic to aid in debugging. To change the logic cone view to group all cells into their
highest level of hierarchy, click the “Group All By Parent” toolbar option. This command
examines the hierarchy of all cells in the logic cone and replaces cells in a common level
of hierarchy with a block.

During debugging, you might find that it would be helpful to group a single level of
hierarchy. To do this, select a cell and click the “Group Selected By Parent” toolbar option.
This command examines the selected cell for its next highest level of hierarchy, find all
other cells in the logic cone belonging to the same hierarchical level, and replace them
with a single block.

To return logic that has been grouped, first select the hierarchical block you want to
ungroup. Then click the “Ungroup Selected” toolbar option. This restores the logic that is
replaced with the hierarchical block.

Setting Probe Points
The probing feature facilitates easier debugging of failing or hard verifications by allowing
you to select two nets in a logic cone called Probe pointsprobe points (one from the reference design
and one from the implementation design) and determine if the logic is equivalent up to
those probe points.

This probing feature introduces probe compare points that are kept separate from the
existing set of compare points. Setting probe points can be done anytime in Formality after
both designs have been read-in and linked. You can specify one or many probe points.
However, the verification of probe points is available only in the Formality verify mode.

Probe verification is performed using the existing matching information and does not
change the existing set of compare point matches. It is also important to note that probe

Formality® User Guide
T-2022.03

241

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

compare points do not terminate the cones of their downstream compare points. They are
compared like normal compare points but are never considered as input points of a logic
cone.

In the GUI, click the GUIProbe Points tabProbe Points tab under the Debug tab to display all known probe point
pairs and their verification status. Use this tab to verify probe points or to remove them
selectively from the list.

You can create Probe Points while viewing the logic cones of either failing compare points,
passing compare points, aborted compare point, unverified compare points, or even other
probe points. Simply highlight the appropriate reference and implementation nets while
viewing the logic cone of a compare point. Then, right click and choose Set Probe from the
menu that appears. You can also create the probe points by clicking the Set Probe Point
icon in the logic cone window. The selected nets appear in a list under the Probe Points
tab. The appropriate command also appears in the transcript window. You can specify
probe points that include one reference net that matches several implementation nets.

In shell mode, the applicable commands and options for this feature are as follows:

set_probe_points commandset_probe_points ref_net impl_net
report_probe_points
remove_probe_points net | -all
report_probe_status
verify -probe
To specify that a pair of probe points has an inverted relationship, use the
set_probe_points -inverted command with the following syntax:

fm_shell (verify)> set_probe_points -inverted \
 reference_net implementation_net

To filter the probe report based on probe verification status, use the
report_probe_status -status command with the following syntax:

report_probe_status -status pass | fail | abort | notrun
Alternatively, you can issue the shell commands interactively in the command window of
the GUI.

Multicolor Highlighting
To change the color of objects within the logic cone design, you can use the GUIhighlighting toolbarhighlighting
toolbar options. To make a highlight, first select the objects you want to highlight. Then
click the “Highlight Selected” toolbar option. This changes the color of the selected objects
to the current color shown in toolbar.

Formality® User Guide
T-2022.03

242

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

To change the current color, click the “Next Color” toolbar option. This changes the current
color to the next color in the list. To choose a specific color from the list, click the pull-
down menu next to the “Next Color” toolbar option and select one of the eleven colors. To
cycle the colors automatically with each highlight, click the pull-down menu and choose
“Auto Cycle Colors.” Each time you click the “Highlight Selected” button, the current color
automatically changes to the next color in the list.

To remove highlighting from selected objects, click the “Clear Selected” toolbar option.

To remove highlighting of objects that are highlighted the current color, click the “Clear
Current Color” toolbar option.

To remove all highlighting, click the “Clear All” toolbar option.

Cell Coloring
There are two modes of cell coloring in a cone schematic. In the menu bar, select one of
the following modes:

Mode Description

Standard Standard coloring colors all cells green, except the
compare point which is colored red.

power domain, cell coloringPower Domain When Power Domain coloring is selected, all cells are
colored according to their power domain, except the
compare point which is colored red.

Viewing, Editing, and Simulating Patterns
The Pattern view window allows you to view, edit, and simulate patterns to perform what-
if analysis. You can also see the matched cone inputs and their values and the next state
value at the compare point in a concise table format.

The tool automatically applies the pattern to both the implementation and reference
designs and displays the state values associated with the logic cones.

From the main window, open the Pattern view window for a matched compare point as
follows.

1. Select a compare point from one of the reports.

2. Click View > Show Patterns or right-click on a compare point and click Show Patterns.

Or, in the logic cone view window, click the Show Patterns toolbar option as shown in
Figure 74.

Figure 75 shows an example of the Pattern View window.

Formality® User Guide
T-2022.03

243

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

The reference and implementation columns list the inputs to the logic cone for each
design. The patterns are shown to the right of the cone inputs. The top portion of the
window shows the values at the reference and implementation compare points for the
currently selected pattern.

For any given pattern, the values in red are required to make that pattern show the
failure.

In the Pattern View window, the toolbar contains buttons that act as shortcuts to some
menu selections that are listed in Logic Cones.

Figure 75 Pattern View Window

Note:
Names shown in red indicate that a constant 0 is applied to those inputs.
Names shown in orange indicate that a constant 1 is applied to those inputs.
You see the same color indicators in the cone schematic when you set the net
coloring mode to view constants.

Patterns generated by the tool are indicated by an asterisk (*) in the column
header.

Formality® User Guide
T-2022.03

244

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Failing Verification

Feedback

Checking the Filter matched points check box in the logic cone Patterns window makes
the tool display only the unmatched cone inputs after filtering out the matched cone inputs
as shown in the following figure:

Figure 76 Logic Cone Patterns Window

In addition to viewing, if you have a Formality Ultra license you can also edit and simulate
the input patterns.

To edit and simulate the patterns,

1. Right-click a pattern and select Copy and Edit Pattern from the menu.

A new column is created, and the values of the selected pattern are copied.

2. Select a new value for each input.

3. Click Apply.

The pattern is committed and simulated. The results of the simulation are displayed
when you view the schematic of the cone. You can edit a tool- generated pattern
repeatedly without having to copy it each time.

Formality® User Guide
T-2022.03

245

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Hard Verification

Feedback

Debugging a Hard Verification
A verification is considered hard when,

• The Formality tool cannot completely verify all compare points

• The transcript shows no apparent progress for a long period of time

• The verification terminates due to design complexity

Usually this involves datapath intensive designs, but sometimes could involve nondatapath
causes, such as cyclic redundancy check (CRC), parity generators, XOR trees, or simply
very large cones of logic.

The following transcript example shows a hard verification due to the tool being hung or
stuck:

*********************** Matching Results ****************************
32 Compare points matched by name
0 Compare points matched by signature analysis
0 Compare points matched by topology
96 Matched primary inputs, black box outputs
0(0) Unmatched reference(implementation) compare points
0(0) Unmatched reference(implementation) primary inputs, black box
outputs
15(0) Unmatched reference(implementation) unread points
**

Status: Verifying

Status: Matching Hierarchy

Status: Verifying...

........ 0F/0A/3P/29U (9%) 04/14/09 04:17 417MB/1747.02sec
........ 0F/0A/3P/29U (9%) 04/14/09 04:47 417MB/3528.72sec
........ 0F/0A/3P/29U (9%) 04/14/09 05:17 417MB/5665.33sec
........ 0F/0A/3P/29U (9%) 04/14/09 05:47 417MB/7379.30sec

From reading the transcript example you can see that there are unverified compare points
if the verification is interrupted.

The next transcript example extract shows a hard verification because the tool is
terminating because of complexity:

 Compare point mix[23] is aborted
 Compare point mix[24] is aborted
 Compare point mix[25] is aborted
 Compare point mix[26] is aborted
 Compare point mix[27] is aborted
 Compare point mix[28] is aborted
 Compare point mix[29] is aborted

Formality® User Guide
T-2022.03

246

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Hard Verification

Feedback

 Compare point mix[30] is aborted
 Compare point mix[31] is aborted

************************** Verification Results *************************
Verification INCONCLUSIVE
(Equivalence checking aborted due to complexity)
--
 Reference design: r:/WORK/test
 Implementation design: i:/WORK/test
 3 Passing compare points
 29 Aborted compare points
 0 Unverified compare points
--
Matched Compare Points BBPin Loop BBNet Cut Port DFF LAT TOTAL
--
Passing (equivalent) 0 0 0 3 0 0 3
Failing (not equivalent)0 0 0 0 0 0 0 0
Aborted Hard (too complex)0 0 0 0 29 0 0 29

The basic hard verification debugging flow involves examining the transcript for obvious
problems, creating a list of hard points, finding the cause of hard points, and finally
attempting to resolve the hard points.

In the extract of the transcript, you can see that verification was attempted on all compare
points and that there were 29 aborted compare points causing the hard verification failure
due to complexity.

Checking the Guidance Summary
First look at the guidance summaryguidance summary, which is displayed in the transcript. Note that it is also
available on demand using the report_guidance -summary command.

Initially, you should look for any high-level issue. For instance, the guidance summary that
follows shows that all guide datapath commands were rejected, due to the architectural
netlist command being rejected. This is a good indication of a global issue that needs to be
addressed.

*************************** Guidance Summary ***************************
 Status
Command Accepted Rejected Unsupported Unprocessed Total

architecture_netlist: 0 1 0 0 1
datapath : 0 87 0 0 87

The guidance summary does not show a global issue, as illustrated in the following
example extract:

**************************Guidance Summary*******************************
 Status

Formality® User Guide
T-2022.03

247

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Hard Verification

Feedback

Command Accepted Rejected Unsupported Unprocessed Total

architecture_netlist: 1 0 0 0
 1
datapath : 79 22 0 0
 101
environment : 1 0 0 0
 1
instance_map : 93 0 0 0
 93
merge : 87 14 0 0
 73
multiplier : 2 0 0 0
 2
replace : 758 0 0 0
 758
scan_input : 2 0 0 0
 2
uniquify : 2 0 0 0
 2
ununiquify : 2 0 0 0
 2

Some or all of these rejections can contribute to the resulting hard verification. You need
to investigate only those rejections that might have lead to the hard verification. To do this,
you must first investigate the hard points.

Creating a List of Hard Points
There are two Formality report commands which are used to determine your current hard
points in the verification.

• report_unverified_points

• report_aborted_points
An example of this is shown as follows:

 fm_shell (verify) > report_unverified_points

 21 unverified compare points:
 21 unverified because of interrupt or timeout
 0 unverified because failing point limit reached
 0 affected by matching changes
 Ref DFF r:/WORK/dp/angle_reg[10]
 Impl DFF i:/WORK/dp/angle_reg[10]

 Ref DFF r:/WORK/dp/angle_reg[11]
 Impl DFF i:/WORK/dp/angle_reg[11]
…

Formality® User Guide
T-2022.03

248

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Hard Verification

Feedback

Determining the Cause of Hard Points
Use the -aborted and -unverified options of the analyze_points commandanalyze_points command to
examine the aborted and unverified points, respectively. The command also identifies and
diagnoses different sources of don’t-cares for failing, hard, and unverified compare points.
The command displays messages that might help you resolve this issue.

The analyze_points command identifies don’t-care (X) sources on the fan-in of the
selected failing, hard, and unverified compare points. It displays the RTL source line
number responsible for the X source in the compare point and the type of RTL X source.
The following example shows an analysis report generated using the analyze_points
command.

fm_shell (verify)> analyze_points -aborted
Found 1 RTL Source of X

An X Source is caused due to direct assignment by the following
line in the RTL code
Over-indexing in
 /u/test/test_a/test.v:37

reorder.v:147
Propagates 'X' to the ref compare point in the cones for 2 compare
 point(s):
r:/WORK/top/out[2]
r:/WORK/top/out[9]

Analysis Completed

Compare points that are aborted or unverified (due to X sources) may
 potentially be resolved by re-writing the RTL constructs by eliminating
 the X sources.

For additional information, use the report_svf_operation commandreport_svf_operation command to determine if
there is any relevant rejected datapath guidance in the cones of the hard points. Always
start with the -summary option to get a higher level view of what is contained in the cone.

fm_shell (verify) > report_svf_operation \
 -summary r:/WORK/dp/angle_reg[10]

Operation Line Command Status
--
 6 55 replace accepted
 7 72 replace rejected
 8 91 transformation_merge rejected
 10 164 boundary accepted
 11 440 constraints accepted
 13 453 datapath accepted
 15 462 replace accepted
 16 515 boundary accepted

Formality® User Guide
T-2022.03

249

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Hard Verification

Feedback

 17 865 constraints accepted
 19 878 datapath accepted

Often, guide commands are dependent upon the acceptance of previous guide
commands; in this example, the rejection of the guide_replace command is investigated
first.

For more detailed report about the two guide commands, use the -status rejected
option without the -summary option, or use the report_svf_operation command to
report based on the specific guide command number.

Analyzing Fan-in Logic Cones of a Hard Compare Point
Fan-in logic cones can be analyzed by specifying objects using the analyze_cones
command. This command can be used only in the match or verify mode.

An inconclusive verification can occur from a single or combination of factors. The
analyze_cones command helps in debugging inconclusive compare points by identifying
the following potential causes:

• Datapath instances

• Don’t-care sources

• Large XOR trees

• Unisolated power domain crossing

• Ungrouped design instances and datapath instances

The analyze_cones command generates

• Statistical information for the specified fan-in cone objects in the design

• Information about the logic that drives the compare point

• Multicone reports with information about shared logic between hard compare points

The analyze_cones command reports

• Size of the fan-in cone and the distribution of logic across hierarchies

• Operators in the fan-in cone

• Sources of don't-care cells and their location in the RTL files

• Power domains in the fan-in cone and their fan-in cone sizes

• Pins of a specified instance in the fan-in cone (helps in identifying potential cut points)

Formality® User Guide
T-2022.03

250

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Hard Verification

Feedback

The analyze_cones command performs the following tasks:

• Analyzes specified objects

The objects can be specified using the following options.

◦ Use the -type option to specify objects from either the reference or implementation
design. The objects can be cells, nets, pins, and ports. You can use wildcard (*)
characters to specify these objects.

analyze_cones -filter logic -percent 1 -type <objects>
◦ Use the -unverified, -aborted, or -failing option with the -r or -i option to

specify unverified, aborted, or failing objects respectively. The tool issues an error
message if you use the -r and -i options together.

These options can be used only after verifying. The -unverified, -aborted, and
-failing are mutually exclusive options.

• Limits the number of objects to be analyzed

You can limit analyzing the number of objects

◦ By restricting the maximum number of objects for analysis

The analyze_cones command stops analyzing the objects based on the value
set for the -max_objects option. The following command analyzes the first 20
unverified objects and stops the analysis:

analyze_cones -filter logic -percent 1 -unverified -i -max_objects
 20

◦ By comparing only a few compare points

The analyze_cones command compares only one object out of the specified
number of objects that is set with the -reduction_factor option. The following
command selects 1 out of every 100 (1, 1001, 2001,..., 9001) points from the list of
failing objects:

analyze_cones -filter logic -percent 1 -failing -r -reduction_factor
 1000

◦ With different set of compare points

The command randomly analyzes a different set of compare points based
on the value set for the -start_object option. The default is 0. This option
avoids analyzing the same set of compare points that was used by the
-reduction_factor option. The -start_object option must be used with the
-reduction_factor option.

Formality® User Guide
T-2022.03

251

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Hard Verification

Feedback

The following command selects 1 out of 100 (501, 1501, 2501,..., 9501) points
from the list of failing objects. This is done to analyze a random set of objects when
issues exist after analyzing objects using the -reduction_factor option.

analyze_cones -filter logic -percent 1 -failing -r -start_object 500
 -reduction_factor 1000

• Generates subtype, multicone, and summary reports

The -multicone option generates a combined report for all the specified objects
(Example 15). The -summary option reports only the cone size of specified objects
(Example 14). The -multicone and -summary options are mutual exclusive.

The -filter option (Example 13) generates subtype reports using the following
objects:

◦ datapath

◦ dontcare

◦ logic

◦ pin

◦ powerdomain

◦ ungroup

Example 13 Report Using the -filter Option
fm_shell (match)> analyze_cones -filter logic -percent 20
 r:/WORK/st_at/fit_b/slice_3*/pit_bit/pdout_reg
**
Report : cone_analysis
 -filter logic
 -percent 20
 r:/WORK/st_at/fit_b/slice_3*/pit_bit/pdout_reg

Reference : r:/WORK/st_at
Implementation : i:/WORK/st_at
Version : N-2017.09
Date : Tue Jul 18 14:50:42 2017
**
Analyzing r:/WORK/st_at/fit_b/slice_3*/pit_bit/pdout_reg
Logic XOR SEQ SIZE Percent Level Instance (Design)
 39 0 5 44 100.00% 1 st_at (st_at)
 35 0 5 40 90.91% 2 fit_b
 (st_top)
 33 0 5 38 86.36% 3 slice_0
 (fit_slice)
 29 0 3 32 72.73% 4 pit_bit
 (pit)

Formality® User Guide
T-2022.03

252

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Debugging a Hard Verification

Feedback

 14 0 2 16 36.36% 5 pdout_reg
 (UPF_RET_SEQ_AACC_0_0_0_1...)

Analysis Completed

• Limits the output of the report

You can determine what to view in the report by

◦ Specifying the cutoff size with the -size option

◦ Specifying the cutoff percent with the -percent option

◦ Specifying the cutoff level with the -level option

◦ Generating the summary report

Example 14 Report Using the -summary Option
fm_shell (match)> analyze_cones -filter logic -summary
 r:/WORK/st_at/fit_b/slice_3*/pit_bit/pdout_reg
44 r:/WORK/st_at/fit_b/slice_3/pit_bit/pdout_reg
44 r:/WORK/st_at/fit_b/slice_30/pit_bit/pdout_reg
44 r:/WORK/st_at/fit_b/slice_31/pit_bit/pdout_reg
44 r:/WORK/st_at/fit_b/slice_35/pit_bit/pdout_reg
44 r:/WORK/st_at/fit_b/slice_38/pit_bit/pdout_reg

◦ Generating the multicone report

Example 15 Report Using the -multicone Option
fm_shell (match)> analyze_cones -filter logic -size 12 -multicone
 r:/WORK/st_at/fit_b/slice_3*/pit_bit/pdout_reg
**
Report : cone_analysis
 -filter logic
 -size 12
 -multicone
 r:/WORK/st_at/fit_b/slice_3*/pit_bit/pdout_reg

Reference : r:/WORK/st_at
Implementation : i:/WORK/st_at
Version : N-2017.09
Date : Tue Jul 18 14:53:17 2017
**
Analyzing r:/WORK/st_at/fit_b/slice_3*/pit_bit/pdout_reg
Analyzing r:/WORK/st_at/fit_b/slice_3*/pit_bit/pdout_reg
Analyzing r:/WORK/st_at/fit_b/slice_3*/pit_bit/pdout_reg
Analyzed 3 points
 #Points Percent Level Instance (Design)
 3 100.00% 1 st_at (st_at)
 3 100.00% 2 fit_b (st_top)
 1 33.33% 3 slice_3 (st_slice)
 1 33.33% 4 pit_bit (pit)

Formality® User Guide
T-2022.03

253

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Using Alternate Strategies to Resolve Hard Verifications

Feedback

 1 33.33% 5 pdout_reg
 (UPF_RET_SEQ_AACC_0_0_0_1...)
 1 33.33% 3 slice_30 (st_slice)
 1 33.33% 4 pit_bit (pit)
 1 33.33% 5 pdout_reg
 (UPF_RET_SEQ_AACC_0_0_0_1...)
 1 33.33% 3 slice_31 (st_slice)
 1 33.33% 4 pit_bit (pit)
 1 33.33% 5 pdout_reg
 (UPF_RET_SEQ_AACC_0_0_0_1...)
**
**
Analysis Completed

Using Alternate Strategies to Resolve Hard Verifications
When equivalence checking is inconclusive, and results in one or more unverified or
aborted compare points, run the following command to check for rejected datapath-related
SVF guidance such as merge, datapath, and multiplier in the inconclusive logic cones, or
any other recommendations that might be reported.

analyze_points -unverified | -aborted

When rejected SVF guidance is reported for datapath logic, debug the reason for the
rejections, and possibly fix or work around them. When no pertinent SVF rejections are
reported, the run is considered a solver-related hard verification. That is, verification of the
inconclusive compare points cannot be completed using the default solver settings.

Verifying Designs Using Alternate Strategies
Alternate strategies modify solver parameters and enable solvers that are turned off
by default. They provide alternate verification methodologies that might resolve hard
verifications.

To use alternate strategies for verifying designs:

1. Run the normal verification.

2. Save the session file if the verification does not complete or runs for a long time without
completing.

3. Use the session file as the starting point to use alternate strategies to incrementally
verify the unverified points.

You might need to use the verification_timeout_limit variable to stop the tool if it
makes no progress during verification.

Formality® User Guide
T-2022.03

254

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Using Alternate Strategies to Resolve Hard Verifications

Feedback

Incremental verification with alternate strategies saves runtime as compared to rerunning
the complete verification.

The verification_alternate_strategy_names variable lists the names of all alternate
strategies and the recommended order of using an alternate strategy.

You can use the following methods to perform verifications using alternate strategies. The
recommended method is the automated parallel deployment of alternate strategies.

• Verifying Designs Using an Alternate Strategy Manually

• Verifying Designs by Automated Parallel Deployment of Alternate Strategies

Verifying Designs Using an Alternate Strategy Manually
You can perform verifications

• Using an Alternate Strategy in the Existing Run

• Using Alternate Strategies With Linux Bourne Shell Scripts

The Linux Bourne shell scripts provide the capability of using alternate strategies to run
verifications either in series or in parallel. Using alternate strategies to run in parallel is the
quickest method when you have sufficient compute resources and multiple licenses.

Using an Alternate Strategy in the Existing Run

In the existing run, you can run alternate strategies only sequentially. Set an alternate
strategy using the verification_alternate_strategy variable. The default is none.

prompt> set_app_var verification_alternate_strategy strategy_name
Note:

The order of alternate strategies specified using the
verification_alternate_strategy variable is the order followed by the
Formality tool to run each alternate strategy sequentially. Some of the alternate
strategies are mutually exclusive.

The point at which you enable the alternate strategies during verification affects the
verification result. The tool deploys solvers during matching as well as during verification.
Some alternate strategies affect the solvers deployed during matching, affecting
preverification of data path blocks, these alternate strategies help resolving hard
verifications. Enabling the alternate strategies during setup mode can affect both matching
and verification. If enabled only during verification, the solver settings affect only the
current set of unverified compare points. There are strategies that are only effective if
you use them from setup mode, and the tool allows them to be specified only in the setup
mode.

Formality® User Guide
T-2022.03

255

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Using Alternate Strategies to Resolve Hard Verifications

Feedback

Note:
Avoid overusing an alternate strategy that results in a successful verification
for one design. The nondefault solver settings can negatively affect the runtime
on other designs. The default verification provides the optimum results. Use
alternate strategies only when the default flow is not sufficient for a specific
verification. Do not apply the successful strategy setting to other designs,
unless those designs are also found to require a nondefault strategy.

Changes to the design might affect the ability of the verification_alternate_strategy
settings used previously to complete the verification. It is recommended to try a
default verification after making any significant design revisions, by removing the
verification_alternate_strategy variable setting.

For more information, see the verification_alternate_strategy_names and
verification_alternate_strategy variable man pages.

Using Alternate Strategies With Linux Bourne Shell Scripts

The examples of Linux Bourne shell scripts are provided for each strategy as follows:

path_to_fm/auxx/fm/strategy/strategy_name.sh

You can use the scripts as is or modify them for your environment. If you modify a script,
specify either a session file or a Formality Tcl file as an argument as follows:

% strategy_name.sh -s post_verify.fss

Verifying Designs by Automated Parallel Deployment of Alternate
Strategies
To use alternate strategies manually for verification, you must specify each strategy,
monitor the progress of each alternate strategy, and terminate remaining verifications
when one of the alternate strategies successfully completes the verification. You can
automate this process by using the run_alternate_strategies command. This
command

• Automatically uses all alternate strategies to run in parallel using your GRD or LSF
environment

• Monitors and reports the progress of verification with each alternate strategy

• Automatically terminates all strategies when one of the alternate strategy successfully
completes verification

Formality® User Guide
T-2022.03

256

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Using Alternate Strategies to Resolve Hard Verifications

Feedback

To perform verification by automated parallel deployment of alternate strategies,

1. Run the normal verification.

2. Save the session file if the verification does not complete or runs for a long time without
completing.

You might need to use the verification_timeout_limit variable to stop the tool if it
makes no progress during verification.

3. Start the Formality shell (fm_shell) on the master shell, as follows.

% fm_shell -f master.tcl | tee master.log

Note:
Before starting the Formality shell, you must edit the master.tcl file to
configure the set_run_alternate_strategies_options command and
the run_alternate_strategies command options to deploy automated
alternate strategy worker processes.

When you use the master script, it performs the following flow. See Example 16.

• It restores the saved session.

You can also use the -tclfile option with the run_alternate_strategies
command to specify a Tcl file, instead of a session file.

The run is now in the blocked state, and you cannot execute any new commands at
the fm-shell prompt.

• It writes out intermediate verification status for each log in separate directories. For
example, run_alternate_strategies/m1/m1.log, run_alternate_strategies/
s1/s1.log, and so on.

• By default, the master shell terminates all other strategies when one of the alternate
strategy reports “Verification Succeeded”.

To disable the default behavior, use the -run_all option with the
run_alternate_strategies command.

• It completes running all specified strategies and reports their results.

Example 16 A master.tcl File
set verification_timeout_limit 24:0:0

set_run_alternate_strategies_options -max_cores 4 -protocol SGE \
 -submit_command "qsub -P bnormal -V -l arch=glinux" \
-num_processes 16

run_alternate_strategies -session mysession.fss

Formality® User Guide
T-2022.03

257

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Using Alternate Strategies to Resolve Hard Verifications

Feedback

In Example 16,

• The master script deploys all 16 alternate strategies to run in parallel.

• Each worker process times out in 24 hours.

• Each worker process uses 4 cores

• All worker processes restore the saved session from the session file,
mysession.fss, before running the alternate strategies.

The set_run_alternate_strategies_options command specifies

• The following protocols with the -protocol option

◦ Grid engine (SGE)

◦ Load sharing Facility (LSF)

◦ Portable Batch System (PBS)

◦ Runtime Design Automation Network Computer (RTDA)

◦ Netbatch Compute Farm (NetBatch)

◦ Custom Farm (job scripts specified by users)

• The number of cores with the -max_cores option to use with each worker process

• The number of worker processes to be deployed with the -num_processes option

Each worker process runs one alternate strategy and consumes one Formality
license that can use up to 4 cores

In Example 17, the master script starts the verification using the saved session file,
fm.tcl.session.verify.fss. Eight worker sessions run in parallel. Each worker session
times out in 12 hours and uses 4 cores. This verification consumes 8 Formality
licenses, one license for each worker session. Each license supports up to 4 cores.

Example 17 Verifying a Design by Parallel Deployment of Alternate Strategies
master.tcl:

set verification_timeout_limit 12:0:0
set_run_alternate_strategies_options -max_cores 4
 -protocol SGE -submit_command "qsub -V -P bnormal -cwd -l
 arch=glinux,os_bit=64,mem_free=10G -pe mt 4" -num_processes 8
run_alternate_strategies -session fm.tcl.session.verify.fss
exit

dg:302 /users/testing_alternate_strategies/mytest> fm_shell -f
 master.tcl |tee -i master.log

Formality® User Guide
T-2022.03

258

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Using Alternate Strategies to Resolve Hard Verifications

Feedback

 Formality (R)
 Version N-2017.09 for linux64 - Aug 07, 2017
 Copyright (c) 1988 - 2017 Synopsys, Inc.

 This software and the associated documentation are proprietary to
 Synopsys,Inc. This software may only be used in accordance with the
 terms and conditions of a written license agreement with Synopsys,
 Inc. All other use, reproduction, or distribution of this software is
 strictly prohibited.

Loading db file '/u/formal/nightly/synopsys/libraries/syn/gtech.db'

set verification_timeout_limit 12:0:0
12:0:0

set_run_alternate_strategies_options -protocol SGE -submit_command
 "qsub -V -P bnormal -cwd -l arch=glinux,qsc=m,os_bit=64,mem_free=10G
 -pe mt 4" -num_processes 8

run_alternate_strategies -session fm.tcl.session.verify.fss
Job created, status 0
Current time: Tue Aug 8 11:31:26 2017
===
 Strategy Job State Verification Status
===
 k1 Not Run Not Available
 s2 Not Run Not Available
 s3 Not Run Not Available
 l3 Not Run Not Available
 s8 Not Run Not Available
Current time: Tue Aug 8 11:33:26 2017

==
 Strategy Job State Verification Status
==
 k1 Running Not Available
 s2 Running Not Available
 s3 Running Not Available
 l3 Not Run Not Available
 s8 Not Run Not Available
Current time: Tue Aug 8 11:37:26 2017

==
 Strategy Job State Verification Status
==
 k1 Running 0F/0A/7304P/529U (93%)
 08/8/17 11:36 2084MB/726.55sec
 s2 Running 0F/0A/7080P/753U (90%)
 08/8/17 11:36 2003MB/725.77sec
 s3 Running 0F/0A/7491P/342U (95%)
 08/8/17 11:36 1502MB/636.89sec
 l3 Not Run Not Available

Formality® User Guide
T-2022.03

259

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 10: Debugging Verification
Using Alternate Strategies to Resolve Hard Verifications

Feedback

 s8 Not Run Not Available
Current time: Tue Aug 8 11:38:26 2017

==
 Strategy Job State Verification Status
==
 k1 Running 0F/0A/7609P/224U (97%)
 08/8/17 11:37 1299MB/854.86sec
 s2 Running 0F/0A/7108P/725U (90%)
 08/8/17 11:37 2058MB/974.38sec
 s3 Completed 0F/0A/7833P/0U (100%)
 08/8/17 11:37 1299MB/692.62sec
 l3 Not Run Not Available
 s8 Not Run Not Available
Current time: Tue Aug 8 11:38:26 2017

==
 Strategy Job State Verification Status
==
 k1 Killed Matched
 (0F/0A/7609P/224U (97%) 08/8/17 11:37 1299MB/854.86sec)
 s2 Killed Matched
 (0F/0A/7108P/725U (90%) 08/8/17 11:37 2058MB/974.38sec)
 s3 Completed Succeeded
 (0F/0A/7833P/0U (100%) 08/8/17 11:37 1299MB/692.62sec)
 l3 Killed Not Available
 s8 Killed Not Available

Alternate strategies run completed successfully.
exit

The following list shows the recommended order of strategies to attempt when solving
an inconclusive verification:

verification_alternate_strategy_names = "none s2 s3 s1 s6 o2 l1 l3 s8
 s4 o4 o3 q1 q2 s5 k1 k2 s7 s9 o1 s10 l2"

The run_alternate_strategies command creates a formality_alternate_strategy
subdirectory where it creates and runs scripts using each alternate strategy:

dg:331 /
users/testing_alternate_strategies/mytest/formality_alternate_strategy
> ls
./ ../ commlogs/ k1/ k2/ l1/ l2/ l3/ o2 s1/ s10/ s2/ s3/
 s4/ s5/ s6/ s7/ s8/ s9/

Formality® User Guide
T-2022.03

260

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

11
Using DPX

Formality distributed processing (DPX) is an extension to the Formality equivalence-
checking solution. The DPX feature is based on the Common Distributed Processing
Library (CDPL) framework used by many Synopsys applications.

The configuration options available within Formality are similar to other CDPL based
applications. The distributed parallelization of tasks with multiple solver strategies per
partition in DPX shortens the equivalence checking turnaround time (TAT) with a higher
probability of conclusive results.

Note:
To use Formality DPX features, you must have a single Formality license and
at least one Formality-DPX license.

This chapter describes how to use the Formality DPX tool in the following sections:

See Also

• The Formality DPX Flow

• Configuring DPX

• Managing DPX Workers

• DPX Status Messages

The Formality DPX Flow
DPX allows more partitions to be verified in parallel compared to the standard Formality
equivalence checking solution.

Formality® User Guide
T-2022.03

261

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Using DPX
The Formality DPX Flow

Feedback

Figure 77 Formality flow versus Formality DPX flow

The DPX Manager (the main Formality process you interact with) saves a session file that
contains the entire design space and verification context. Each worker process reads the
session file and accepts tasks from the manager that consists of instructions to verify a
partition using a specific solver strategy.

Formality® User Guide
T-2022.03

262

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Using DPX
The Formality DPX Flow

Feedback

Figure 78 DPX partitions

A strategy is a specific combination of solver settings. Workers can accept one task per
core and therefore, can run multiple tasks in parallel. When a task completes, it report its
results to the DPX Manager. A task might also send back partial results earlier as they
become available.

Formality® User Guide
T-2022.03

263

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Using DPX
The Formality DPX Flow

Feedback

Figure 79 Where DPX fits in the Formality flow

DPX is applicable to two stages of the Formality tool:

• Verify, where the tool determines if designs are logically equivalent

• Process SVF for the preverification of non-design based checkpoints

DPX is built on the Synopsys Common Distributed Processing Library (CDPL), which is
used in several Synopsys tools. CDPL setups for other tools relate closely to Formality
DPX.

To enable distributed processing, use the set_dpx_options command. Not only does
the command itself enable DPX, but it also has options for defining how the workers are
configured. Here is an example:

set_dpx_options -protocol SGE -submit_command "qsub -P bnormal -l
 minslotcpu=4 -l minslotmem=30G" -max_workers 8 -max_cores 4

The set_dpx_options command has the following options:

• -protocol - Specifies your farm protocol

• -submit_command - Specifies the farm-specific command to access resources
appropriately, enclosed in double quotation marks

Formality® User Guide
T-2022.03

264

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Using DPX
The Formality DPX Flow

Feedback

• -max_workers - Specifies the number of machines (workers)

• -max_cores - Specifies the number of parallel tasks allowed for each worker

• -max_memory - Specifies the amount of RAM each worker can use (in GB)

• -hosts - Use optionally instead of the -protocol or -submit_command option
to specify a CDPL compatible host file which describes the set up for distributed
processing

The Formality DPX manager (the main Formality process you invoke and interact with)
divides the design under test into different partitions. It can start one or more workers
in the DPX Flow. Each worker is typically run on a separate machine and is a separate
Formality process.

The Formality manager and each worker might run on entirely different machines. The
set_dpx_options -max_workers command is used to define the number of workers. The
manager sends tasks to the workers. Each worker works on multiple tasks at a given time.
Each task is a unit of work.

In DPX, the unit of work is the verification of a specific partition. The set_dpx_options
-max_cores command is used to define the number of tasks per DPX worker.

When you use the -max_memory option, DPX keeps each worker’s memory usage at
or below the specified limit. This involves stopping tasks using too much memory and
temporarily scaling back the number of tasks the worker can process in parallel.

Each Formality-DPX license lets you run up to 32 parallel DPX Tasks.

The number of parallel DPX tasks is the product of the number of workers and the number
of cores per worker:

Distributed Parallel Tasks = (DPX max_workers * DPX max_cores)

For example, the following commands specify 32 parallel tasks and therefore require just a
single Formality-DPX license:

set_dpx_options -max_workers 8 -max_cores 4 …
set_dpx_options -max_workers 16 -max_cores 2 …
set_dpx_options -max_workers 32 -max_cores 1 …

Note:
To use your licenses optimally, configure the number of tasks in multiples of 32.
For instance, the tool uses an entire DPX license when you run it with 6 workers
or 4 cores, whereas you could have utilized more tasks for the same license by
using 8 workers or 4 cores. If you use 10 workers or 4 cores, that is 40 tasks,
and consume 2 licenses, the second license is used only for 8 additional tasks,
which is inefficient.

Formality® User Guide
T-2022.03

265

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Using DPX
Configuring DPX

Feedback

Configuring DPX
When enabled, DPX is applied to the verification phase and also by default to the
preverification of guide checkpoints found in the SVF file. If you do not want use DPX
with checkpoint verification, set the dpx_enable_checkpoint_verification variable to
false as follows:

set dpx_enable_checkpoint_verification false

There are two methods to configure DPX:

• Using the -protocol and -submit_command options in Submissions to Farm or Local
Machines

• Using the -hosts option in Submission to Specific Machines

For more information about testing the DPX setup, see Testing and Reporting the DPX
Setup.

Submissions to Farm or Local Machines
For submissions to your farm or local machine, use the -protocol and -submit_command
options:

set_dpx_options -protocol SGE -submit_command "qsub -P bnormal -l
 minslotcpu=4 -l minslotmem=30G" -max_workers 8 -max_cores 4

Use these options to define the protocol for launching worker processes on remote or local
machines. The -protocol option corresponds to the type of compute farm manager you
are submitting to or to the method used to access the compute hosts when not using a
compute farm manager.

CDPL uses the following information to choose the right set of commands to query and
stop jobs:

RSH | SH | SSH | SGE | UGE | LSF | PBS | RTDA | Netbatch | SLURM | CUSTOM

All types are directly supported, with CUSTOM representing a farm type unknown to CDPL.

The CUSTOM protocol allows for submissions to farms unknown to CDPL.

Note:
If CUSTOM is used, CDPL does not query or stop jobs proactively. Rather, it
simply relies on the farm to clean up when the submission process goes away.

Use the -submit_command option command string to start up processes in the target
environment The command string is highly specific to your environment when using

Formality® User Guide
T-2022.03

266

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Using DPX
Configuring DPX

Feedback

a compute farm protocol. Consult with the local farm manager or administrator for
information on how to submit to your farm.

It is important to specify the CPU (core) and memory requirements for the workers
using the terminology unique to your farm environment. This is neither inherited from
the Formality manager nor the -max_cores option. If not adequately specified, the farm
management can flag your run as using more resources than requested.

The following examples show some common usages of the set_dpx_options command:

set_dpx_options -protocol SGE -submit_command "qsub -P bnormal -l
 minslotcpu=4 -l minslotmem=30G" -max_workers 8 -max_cores 4
set_dpx_options -protocol SGE -submit_command "qsub -P batch –pe mt 4 -l
 mem_free=30G" -max_workers 8 -max_cores 4
set_dpx_options -protocol RTDA -submit_command “nc run –e SNAPSHOT -r+
 CPUS/4 -r+ RAM/30000" -max_workers 8 -max_cores 4
set_dpx_options -protocol LSF -submit_command {bsub –q batch -n 4 -R
 "rusage[mem=30G]"} -max_workers 8 -max_cores 4

Note:
For the RTDA protocol, add the -e SNAPSHOT option with the nc run command
to start the DPX workers using the appropriate environment settings.

Submission to Specific Machines
For submitting to a specific machine or group of machines, use the -hosts option method
which uses a CDPL user-specified file:

set_dpx_options -hosts my.cdpl -max_workers 8 -max_cores 4

Specify a text hosts information file that contains the compute farm access information.

You can use it in the following scenarios:

• Multiple people or projects share the same farm setup

◦ All point to the same host_options file

◦ Multiple Synopsys tools could use the same –hosts file

• Specify specific machines when using SSH or RSH protocols

◦ Each line defines a specific machine to use as a resource

The hosts information file is an ASCII file. Single line comments are allowed and must be
prefixed with ‘#’. Every line in the file has the following format:

<Flag>|<Hostname>|<Slots>|<tmpDir>|<Protocol>|<Command>

Formality® User Guide
T-2022.03

267

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Using DPX
Configuring DPX

Feedback

The following table defines the various flags in the host file information line:

Table 9 Hosts Information File

Flag Integer 0 or 1 0 indicates host cannot be used. 1 indicates
usable worker machine.

Host name String, valid host name Host name of valid worker machine
Empty for SGE, LSF, PBS, RTDA, NETBATCH,
SLURM, CUSTOM
Ignored for SH

Slots Integer Donates number of worker slots available
on the host or farm. -1 denotes unlimited.
In unlimited case, CDPL creates as many
workers as it needs for a job.

tmpDir String, valid writable directory Traditionally, this directory is used for storing
worker’s local data if needed

Protocol String The command mode used to connect to the
worker machine

Command String The actual command used to connect to the
worker machine

The following examples show the contents of a hosts information file:

Example 18 RSH Infrastructure With Two Host Machines Allowing 10 Worker Slots in Total
host file for RSH
1|engr_lab-x9|4|/remote/users/tmp |RSH| rsh
1|engr_lab-x2|6|/remote/users/tmp |RSH| rsh

There are four slots on one machine and six on the other.

Example 19 SSH Infrastructure With Two Machines Allowing 12 Worker Slots in Total
host file for SSH
1|engr_lab-x15|4|/remote/users/tmp |SSH| ssh
1|engr_lab-x21|8|/remote/users/tmp |SSH| ssh

This environment requires login without passwords.

Example 20 SGE Compute Farm
host file for SGE
1| |-1| |SGE| qsub -cwd -V -P bnormal -l mem_free=1G

The hostname field is empty for SGE farms.

Formality® User Guide
T-2022.03

268

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Using DPX
Configuring DPX

Feedback

Example 21 SGE Compute Farm With Launched Jobs Limited to Three and a Directory
Specified for Temporary Files

host file for SGE
1| |3| /remote/users/tmp |SGE| qsub -cwd -V -P bnormal arch=glinux

Testing and Reporting the DPX Setup
To quickly test the DPX setup, follow these steps:

1. Invoke the Formality tool. There is no need to read in any design files.

2. Use the set_dpx_options command followed by the check_dpx_options command.
This command tests whether the options to the set_dpx_options command are
set properly for your specific environment so that DPX workers can be successfully
obtained

fm_shell (setup)> set_dpx_options -protocol SGE -submit_command "qsub
 -P bnormal -l minslotcpu= -l minslotmem=30G" -max_workers 4
-max_cores 4
fm_shell (setup)> check_dpx_options
Info: License check for DPX verification successful.
Adding Host "SGE"
Info: Starting 1 worker. Each worker can process 4 tasks at a time.
Starting DPX worker: /path/FM_DPX_WORK/crew/C2
Checking for live worker...
........
No live worker seen in the past 2 minutes
........
No live worker seen in the past 4 minutes
.......
 Info: 1 live worker detected.
Stopping DPX worker
 set_dpx_options is working properly in your environment

Use the check_dpx_options command to test the set_dpx_options command
settings whenever you run distributed processing for the first time in a new
environment. If this command does not complete successfully, do not use the given
set_dpx_options command options command to attempt a full distributed verification
run as it does not work. In this case, determine the reason for the failure and adjust the
options specified for the set_dpx_options command or run the tool without enabling
distributed processing.

To report all the user specified DPX options active within the Formality tool, use the
report_dpx_options command:

fm_shell (setup)> report_dpx_options
**
Report : dpx_options
Reference : <None>
Implementation : <None>

Formality® User Guide
T-2022.03

269

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Using DPX
Managing DPX Workers

Feedback

Version : S-2021.06
Date : Thu Apr 15 15:23:48 2021
**
Communication protocol or grid type : SGE
Worker submit command : qsub -P bnormal -l minslotcpu= -l
 minslotmem=30G
Max concurrent workers : 8
Max cores available per worker : 4

Managing DPX Workers
DPX Workers can be initiated when the DPX manager requires them (during the
verification phase, for instance). Sometimes, farms experience a latency between worker
machine requests and acquisitions.

To alleviate this, you can request workers before they are required as follows:

fm_shell (setup)> set_dpx_options -protocol SGE -submit_command "qsub -P
 bnormal -l minslotcpu= -l minslotmem=30G" -max_workers 8 -max_cores 4
fm_shell (setup)> start_dpx_workers
Info: Starting 8 workers. Each worker can process 4 tasks at a time.
Starting DPX workers: /u/testcase_path/FM_DPX_WORK/crew/C1
fm_shell (setup)> match
fm_shell (setup)> verify

The stop_dpx_workers command shuts down and releases any distributed processing
workers currently in use. It also cancels any request for workers that are not fulfilled by the
compute farm.

The following example shows how to use the stop_dpx_workers command:

fm_shell (setup)> get_dpx_workers
chin213:4 rock075:4 white073:4 black104:4
fm_shell (setup)> stop_dpx_workers
Stopping DPX workers
fm_shell (setup)> get_dpx_workers
fm_shell (setup)>

The get_dpx_workers command returns a Tcl list of the distributed processing workers
that are acquired and are ready to accept tasks.

Each worker in the list is identified by <hostname>:<cores>, where

• <hostname>: Name of compute host on which the worker is running

• <cores>: Number of cores that the worker runs on

Note:
The get_dpx_workers command returns an empty list when no workers have
been acquired.

Formality® User Guide
T-2022.03

270

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Using DPX
Managing DPX Workers

Feedback

The DPX Manager keeps workers alive at the end of one phase of DPX to the beginning
of another. This helps to avoid any latency that might occur if it takes a long time for a farm
resource to be provisioned.

The dpx_keep_workers_alive variable is true by default:

fm_shell (setup)> printvar dpx_keep_workers_alive
dpx_keep_workers_alive = "true"

Between distributed processing stages there could be long periods of inactivity for the
workers. By setting the dpx_keep_workers_alive variable to false, DPX can release the
workers after each stage freeing up compute resources.

To specify the maximum waiting time allowed for the preverify, match, and verify
commands, use the dpx_worker_acquisition_timeout variable. These commands must
wait for the initial worker acquisition and readiness to accept distributed tasks.

The preverify, match, and verify commands run to completion or stop when the value
of the dpx_worker_acquisition_timeout variable is reached without getting any worker.
The default is unlimited. If the specified time limit is reached, the tool interrupts the
current state of verification:

Enter positive integers for hours and minutes. To specify no time restriction (the default),
enter none or 0 or 0:0:0.

A distributed verification task is a combination of a partition to be verified and a verification
strategy to be run. A given partition can be verified using many different verification
strategies, each part of a different task.

The default of the dpx_verification_strategies variable is empty. The Formality tool
uses several strategies and combinations of strategies for each of the tasks.

The dpx_verification_strategies variable controls the strategies and the
combinations of strategies used for distributed processing:

set dpx_verification_strategies {none s4 {s1 s4} s3 {s3 s8}}

The dpx_verification_strategies variable also controls the order in which those
strategies are deployed. Set it to a list of strategies you want to prioritize. DPX then runs
these prioritized strategies first before attempting other strategies.

If you set the verification_alternate_strategy variable to some alternate strategy,
DPX considers the specified alternate strategy second regardless of the order of the
dpx_verification_strategies variable.

Use the dpx_ignored_strategies variable to control how certain strategies and
combination strategies need not be used for distributed processing. If certain strategies

Formality® User Guide
T-2022.03

271

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Using DPX
DPX Status Messages

Feedback

are ineffective in verifying designs, those strategies can be controlled to not appear in the
list of strategies to be run by DPX, as shown in the following example:

set dpx_ignored_strategies {l1 q1}

DPX Status Messages
The following example shows DPX status update messages in the transcript:

Status: Verifying...
 Info: Start of DPX Distributed Verification.
 Info: Starting 8 workers. Each worker can process 4 tasks at a time.
 Info: Distributed Verification
 directory: /u/testcase_path/FM_RUN7/FM_DPX_WORK/phase/P1.
.............................. 0F/0A/107732P/8225U (92% Verification
 completed) 04/26/21 12:32 7691MB/1524sec (35.4 hrs until timeout)
DPX Status: Workers (8 Active, 0 Pending), Tasks (32 Active, 90 Complete)

The Formality tool issues the DPX status whenever the standard verification status is
updated:

• Workers

◦ Active – Communicating with the manager and accomplishing necessary tasks

◦ Pending – Not yet allocated by the farm resource

• Tasks

◦ Active - Performing verification of partition with a given strategy

◦ Complete – Verification complete or stopped as instructed by a worker

Note:
Toward the end of verification, the active number of tasks might be less than the
maximum number that could be running. This is because there are not enough
remaining partitions or strategies left to fill all the task resources available.

DPX worker latency is the time taken from when workers are requested to when they
become available. Ideally, you want a latency of zero. However, it depends on the
responsiveness of your farm.

An information message indicates the current latency in obtaining the workers as follows:

 0F/0A/129P/564U (18% Verification
 completed) 07/19/21 21:15 868MB/
73sec (32.0 hrs until timeout)
DPX Status: Workers (0 Active, 8 Pending), Tasks (0 Active, 0 Complete)
........

Formality® User Guide
T-2022.03

272

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 11: Using DPX
DPX Status Messages

Feedback

Info: 4 of 8 DPX workers are now available. Worker latency is 251
 minutes.

Formality® User Guide
T-2022.03

273

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

12
Creating and Verifying Logic ECOs Manually

The Formality tool provides interactive commands for analysis, modification, and
verification of an implementation design during the ECO cycle. The tool allows you to
implement functional ECO changes with minimum effect on timing and layout.

After modifying the implementation design, you can verify only the modified parts of the
design using the Formality tool, and rapidly iterate through the edit-reverify cycle.

This chapter describes how to use the Formality Ultra tool in the following sections:

• Manual Logic ECO Flow

• Analyzing Differences Between the RTL and the Netlist

• Modifying the Implementation Design

• Verifying ECO Modifications

• Exporting ECO Modifications

• Integration With Verdi nECO

• Integration With the IC Compiler Tool

• RTL Cross-Probing

Manual Logic ECO Flow
When an ECO is introduced into a design, the RTL is modified for the functional design
changes. The modifications must be verified through simulation and then applied to the
netlist and layout. To minimize the reprocessing effort, you do not want to resynthesize
the RTL and rerun the entire design steps to re-create the layout. You want to be able to
introduce changes directly into the existing netlist and bypass the processing steps.

The Formality tool enables you to analyze the differences in the existing netlist that were
introduced by the ECO, to capture the modifications, and to verify the netlist changes
directly in Formality. You can also create an ECO file that can be used by the IC Compiler
tool to introduce the changes into the layout.

Formality® User Guide
T-2022.03

274

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Creating and Verifying Logic ECOs Manually
Manual Logic ECO Flow

Feedback

Note:
Before you use the Formality tool to verify the changes made to the RTL,
modify the existing SVF file to account for the RTL changes introduced in the
ECO. For information about modifying the SVF file, see Verifying ECO Designs.

Figure 80 illustrates the manual logic ECO flow. In the example, RTL' refers to a modified
RTL and SVF' to an SVF file that is modified correspondingly.

Formality® User Guide
T-2022.03

275

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Creating and Verifying Logic ECOs Manually
Manual Logic ECO Flow

Feedback

Figure 80 Manual Logic ECO Flow

Formality® User Guide
T-2022.03

276

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Creating and Verifying Logic ECOs Manually
Analyzing Differences Between the RTL and the Netlist

Feedback

Analyzing Differences Between the RTL and the Netlist
To understand the effect of your RTL changes, inspect and analyze areas in your design
using any of the fol lowing methods:

• Comparing versions of the RTL using the Linux diff command

• Using the Formality GUI to view the design schematics

• Analyzing the failing points from the ECO verification of the modified RTL against the
original netlist

After locating areas in your design where RTL changes have introduced functional
differences, use the find_equivalent_nets command to find the corresponding areas in
the implementation netlist.

Note:
Automated setup, performed during match, modifies the RTL reference design
based on optimizations and name changes made by the Design Compiler tool.
The modifications to the RTL might change the name of the signal from the
original RTL value.

You must manually translate names between original RTL files and the modified
reference design.

Generating a List of Failing Points
You can use the failing points to identify the parts of the netlist to modify. To generate a list
of failing points, verify the modified RTL against the original netlist.

Example 22 is a script that verifies the modified RTL against the original netlist. In this
script, the verification_effort_level variable is set to low to find the expected
failures due to ECO modifications.

In Example 22, the verification_failing_point_limit variable is set to 0 to find all
failures. In most cases, the failing points are found using a low effort level. Inconclusive or
unverified compare points are usually resolved when the variable is set to a higher effort
level.

Example 22 Verification of a Design With an ECO
ECO RTL vs original gates

Use the modified SVF file
set_svf timer.svf eco_change.svf

Formality® User Guide
T-2022.03

277

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Creating and Verifying Logic ECOs Manually
Analyzing Differences Between the RTL and the Netlist

Feedback

Read designs into Formality
read_db library.db
read_verilog -r rtl_new/timer.v
set_top timer

read_ddc -i timer.ddc
set_top timer

Find all failures and use low effort to run faster
set verification_failing_point_limit 0
set verification_effort_level low
verify

Save information for later use
report_failing_points –list > failing_points.rpt
save_session initial_ECO

Finding Equivalent Nets
The find_equivalent_netsfind_equivalent_nets command identifies nets in the netlist that are lfindingequivalent netsfindingequivalent netsogically
equivalent to the specified nets in the RTL. This might be useful to find the location of ECO
regions in the implementation netlist. The find_equivalent_nets command can be run
only after the match command.

The find_equivalent_nets command finds equivalent nets of both polarities:
noninverted and inverted equivalences.

Example 23 shows how to use the find_equivalent_nets command to report nets in the
netlist that are equivalent to r:/WORK/core/u_crcval/ready[0]. The equivalent nets in the
implementation design have inverted equivalences (-).

Example 23 Finding Equivalent Nets
fm_shell > find_equivalent_nets r:/WORK/core/u_crcval/ready[0]
--- Equivalent Nets:
 Ref Net + r:/WORK/core/u_crcval/ready[0]
 Impl Net - i:/WORK/core/u_crcval_crc_out_reg_1_/D
 Impl Net - i:/WORK/core/U66/X
 Impl Net - i:/WORK/core/n4

By default, the find_equivalent_nets command finds equivalent nets in all logic cones.
To find equivalent nets in a specific logic cone,

find_equivalent_nets -nets [find_region_of_nets compare_point] nets

To search for equivalent nets in the fan-in of a net, use the -fanin option. When an
equivalent net is not found, this option can find other nets in the fan-in that might help in
creating an equivalent net.

Formality® User Guide
T-2022.03

278

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Creating and Verifying Logic ECOs Manually
Analyzing Differences Between the RTL and the Netlist

Feedback

Example 24 shows how to find equivalent nets in the fan-in of the stall_date[3] net and
limit the search to the nets of the r:/WORK/core/state[0] compare point.

Example 24 Finding Equivalent Nets in the Fan-In of a Net
fm_shell > find_equivalent_nets -fanin -nets \
[find_region_of_nets r:/WORK/core/state[0]] stall_data[3]
For more information about the find_equivalent_nets and find_region_of_nets
commands, see the command man pages.

Using the GUI to Find Equivalent Nets
You can also use the Formality GUI to identify nets in the netlist that are logically
equivalent to specific nets in the RTL.

To find an equivalent net in the netlist,

• In the logic cone view, select a reference signal.

• Choose ECO > Find Equivalent Nets. The Find Equivalent Nets Browser is displayed
as shown in Figure 81.

Figure 81 Find Equivalent Nets Browser

You can also find equivalent nets in a specific logic cone and in the fan-in of a net by
choosing various options of the ECO menu.

Formality® User Guide
T-2022.03

279

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Creating and Verifying Logic ECOs Manually
Modifying the Implementation Design

Feedback

Modifying the Implementation Design
The Formality tool enables y implementation designmodifyingou to modify the implementation design using Tcl based
editing commands. Modify the design in the setup, match, or verify modes using the edit
commands. The edit commands allow you to change the behavior of a design by creating,
removing, connecting, or disconnecting design objects. The commands are compatible
with the Design Compiler and IC Compiler commands of the same name. In Formality,
these commands are extended to allow easier capture of ECO intent. See Using High-
Level Editing Commands.

The Formality tool can also highlight the modifications in the implementation design
schematics to enable you to check if they are modified as intended.

Use the following commands to edit the implementation design. The edit commands are
available in the preverify, match, and verify modes only for designs created with the
edit_design command.

• create_cellcreate_cell [cell_list] ref_name [-connections pin_connection_list]

• create_netcreate_net [net_list] [-power | -ground] [-pins pin_list]

• create_portcreate_port [port_list] [-direction in|out|inout]

• create_primitivecreate_primitive [cell_list] type [-size size]
[-connections pin_connection_list]

• remove_cellremove_cell cell_list | -all

• remove_netremove_net [-hier] net_list | -all

• remove_portremove_port port_list

• connect_netconnect_net net pin_list

• connect_pin -from pin_or_port -to pin_or_port_list

• disconnect_netdisconnect_net net pin_list | -all

• change_linkchange_link cell_list design_name [-force]
For more information about the commands, see the man pages.

The Formality tool uses the following commands to define the design context:

• current_designcurrent_design [container:/library/design]

• current_instancecurrent_instance [instanceID]
For more information about the commands, see the man pages.

Formality® User Guide
T-2022.03

280

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Creating and Verifying Logic ECOs Manually
Modifying the Implementation Design

Feedback

When you edit a design, the tool creates a backup of the unedited implementation design.
You can view the backup design by selecting the View Backup Design GUI command in
the menu of the edited design schematic window.

After the design is edited, match and verify the ECO modifications in the implementation
design. If the verification is not successful or if the edits affect an unintended section of
the design, you can undo the edits. If the verification is successful, export the edits to a
Tcl file. If further modifications are required, commit the edits so that future undo_editsundo_edits
commands do not undo the required edits.

For information about how to match and verify the modifications, see Verifying ECO
Modifications. For information about how to export the edits to a Tcl file, see Exporting
ECO Modifications.

Editing a Design in Match or Verify Modes
In the Formality tool, editing an implementation design for an ECO in match or verify
modes enables you to view the logic cones of the failing points during editing. To edit an
implementation design in verify or match modes,

• Verify the ECO RTL against the original netlist. This results in a failed verification,
which is expected.

• In match or verify modes, use the edit_design command.

The command copies the original implementation design library to a design library
named FM_EDIT_WORK and sets it as the current design. You can edit multiple
designs in a session. The following example shows how to use the edit_design
command.

(verify)> edit_design i:/WORK/timer
(verify)> current_design
i:/FM_EDIT_WORK/timer

• Edit the design using the edit commands.

When editing the design in the FM_EDIT_WORK library, the tool creates a backup
library named FM_BACKUP_FM_EDIT_WORK.

The undo_edits command copies the design in the FM_BACKUP_FM_EDIT_WORK
library to the FM_EDIT_WORK library.

Note:
Edits to the FM_EDIT_WORK library are not exported using the
write_edits or report_edits commands. Only the edits that are
committed in the FM_WORK library are exported.

Formality® User Guide
T-2022.03

281

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Creating and Verifying Logic ECOs Manually
Modifying the Implementation Design

Feedback

For more information about editing commands, see Using High-Level Editing
Commands.

• Perform multipoint verification using the verify_edits command.

Verify the edits using the verify_edits [-all] command. The command copies the
edited designs created by the edit_design command into the original design library,
returns to setup mode, and verifies the compare points that are affected by the edits.
This verification checks that the previously passing points affected by the edits are still
passing and are unaffected by the design edits. You can specify additional compare
points to verify using the set_verify_points command.

If the verification is successful, return to setup mode and verify the complete design, as
shown in the following example:

$ setup
$ remove_verify_points –all
$ verify

Applying Edits

The apply_edits command moves the contents of the FM_EDIT_WORK library to the
FM_WORK library. The FM_EDIT_WORK library remains unchanged. This command is
only used in setup mode.

The commit_edits command deletes the FM_BACKUP_FM_EDIT_WORK library and
applies the edits to the design in the FM_EDIT_WORK library.

Discarding Edits

The discard_edits command removes all copies of the design created by the
edit_design command. The edits that are not applied using the apply_edits command
are also discarded. This command is available in setup, match, and verify modes.

Note:
Using the apply_edits or verify_edits commands copies the
FM_EDIT_WORK library back to the WORK library but retains the
FM_EDIT_WORK library.

Displaying Edits

You can verify the applied edits by highlighting them in the design schematics. To display
the designs that are edited using the edit_design command, select the original design
in the hierarchy browser and then choose ECO > View Edit Design. The tool displays the
edited copy of the original design. Choose ECO > Color Edits to highlight the changes to
the implementation design.

Formality® User Guide
T-2022.03

282

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Creating and Verifying Logic ECOs Manually
Modifying the Implementation Design

Feedback

Using High-Level Editing Commands
When performing ECO changes, there are commonly encountered scenarios that require
repetitive, verbose connections using the basic commands. In the Formality tool, the
basic commands are extended to ease implementation of these commonly performed
edits. These extensions differ from the IC Compiler and Design Compiler edit commands.
However, they are converted to compatible commands when post-processed by the
Formality tool.

This section describes how to use the high-level editing commands to insert modifications
using the tool.

Example 25 adds a new AND gate to the current design using basic commands. You can
use the high-level commands instead of the commands in Example 25 to achieve the
same goal. The high-level commands are shown in the examples in the following sections.

Example 25 Adding an AND Gate to a Design
Set the current design
current_design i:/WORK/mCntrl_test_1

Create an AND gate
create_cell eco_andgate an02d2

Disconnect original fanout pin from its driver
disconnect_net n10 U59/a2

Create a new net
create_net new_net

Reconnect it to the output of the AND gate
connect_net new_net {eco_andgate/z U59/a2}

Connect AND gate to original net driver
connect_net n10 eco_andgate/a1

Connect AND gate to new control signal
connect_net Op[5] eco_andgate/a2

Figure 82 shows the original design and the net to be changed is highlighted.

Formality® User Guide
T-2022.03

283

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Creating and Verifying Logic ECOs Manually
Modifying the Implementation Design

Feedback

Figure 82 The Unedited Design

Figure 83 shows the modified design with a new AND gate.

Figure 83 Edited Design to Add an AND Gate

Disconnecting Pins Automatically
The Formality connect_netconnect_net command automatically disconnects a pin that is connected
to a net. This eliminates the need to use the disconnect_net command to specifically
disconnect the net before reconnecting it. Example 26 shows the modified Example 25
with the redundant disconnect_netdisconnect_net command removed.

Example 26 Remove disconnect_net Command
current_design i:/WORK/mCntrl_test_1
create_cell eco_andgate an02d2
disconnect_net n10 U59/a2
create_net new_net
connect_net new_net {eco_andgate/z U59/a2}
connect_net n10 eco_andgate/a1
connect_net Op[5] eco_andgate/a2

Formality® User Guide
T-2022.03

284

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Creating and Verifying Logic ECOs Manually
Modifying the Implementation Design

Feedback

Connecting Pins When Creating Cells
The pins of a new cell have to be connected to a net. The create_cell command
connects pins when a cell is created. Example 27 shows the modified Example 26 with the
connect_net commands replaced with the create_cell -connections command.

Example 27 Using the create_cell Command to Connect Nets
current_design i:/WORK/mCntrl_test_1
create_cell eco_andgate an02d2
create_net new_net
create_cell eco_andgate an02d2 –connections { \
 a1=n10 \
 a2=Op[5] \
 z=new_net \
}
connect_net new_net {U59/a2}
connect_net n10 eco_andgate/a1
connect_net Op[5] eco_andgate/a2

Note:
Do not use spaces between the pin name, the “=” delimiter, and the net name.

Using High-Level Commands With Hierarchical Designs
When working with objects that span a hierarchy, it is often necessary to reference an
object that is at a higher hierarchical level. Actions occurring in the current design cannot
refer to objects at a higher level of hierarchy because the hierarchical context is not
specified.

The Formality Ultra current_instance command defines the current context as an
instance path at a lower hierarchical level than the current design. Example 28 shows how
to set the current context to the b design below the top design, and connect to a net above
the b design.

Example 28 Setting the Current Context
Top design that can be referenced
current_design i:/WORK/top

Relative to top design
current_instance m/b

create_cell myAndGate AND3 –connections { \
 IN0=net1_in_bot \
 IN1=net2_in_bot \
 OUT=../net_in_design_mid \
}

Formality® User Guide
T-2022.03

285

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Creating and Verifying Logic ECOs Manually
Modifying the Implementation Design

Feedback

Objects in the Formality editing commands can be referred to using the instance path
name such as i:/WORK/top/m/b/myAndGate, or a relative path name such as myAndGate.
When the instance path name is not specified, the tool uses the current_design and
current_instance commands to create the full path name:

[current_instance]/relative_object_pathname

Note:
Not all Formality commands support current_instance.

When you set the current_design command to a design name, the current instance
is set to the current design. For example, if the current_design command is set to i:/
WORK/mid, the current instance is also i:/WORK/mid.

When you set the current_instance command to a full path name, the current
design is set to the top-level design in the instance path name. For example, if the
current_instance command is set to i:/WORK/top/m/b, the current design is i:/WORK/
top.

The current instance can be set to a path name relative to the existing current instance.
Setting the current_instance command to a relative path does not affect the existing
current design. For example, if the current instance is i:/WORK/top/m/b, and the
current_instance command is called with the relative path "..", the current instance is
set to i:/WORK/top/m.

Port Punching Across Hierarchies
Often new connections span several levels of design hierarchy. To connect design objects
across hierarchies using basic commands, you must create ports and pins, and connect
them to nets.

The connect_net and disconnect_net commands allow the specification of objects
across hierarchies, as shown in Example 29.

In Example 29, the net net1 is in cell m, one level below the top design. The connect_net
command connects the net1 net to the gate1/IN gate at the top level and to the gate2/
OUT gate, one level below the m cell in the b cell by creating the necessary ports and net
segments.

Example 29 Connecting Nets Across Hierarchical Levels
connect_net i:/WORK/top/m/net1 { \
 i:/WORK/top/gate1/IN \
 i:/WORK/top/m/b/gate2/OUT \
}

Formality autonaming ensures that the names of the created objects are unique.

Formality® User Guide
T-2022.03

286

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Creating and Verifying Logic ECOs Manually
Modifying the Implementation Design

Feedback

Default Names for Nets, Cells, and Ports
If an instance name is not specified when you use the create_cell, create_net,
and create_port commands, the commands generate an unique instance name. The
Formality create commands return the names of the created objects, including the full
path name.

The generated names are of the following form:

prefix_type_number

• prefix is controlled by the current_prefix command. The default is FM.

• type is CELL, PORT, or NET depending on the command used to create the name.

• number is the lowest integer to ensure that the name is unique.

Example 30 creates a net without a user-specified name. The message indicates that the
a2 pin is disconnected from the original n10 net. The name of the new net is FM_NET_1.

Example 30 Generating a Name for a New Net
fm_shell (setup)> create_net -pins U59/a2
Info: Disconnecting pin 'a2' from net 'n10'.
i:/WORK/mCntrl_test_1/FM_NET_1

This is convenient because the return value of the create commands can be used where
the object name is needed.

High-Level Commands to Add an AND Gate
Using the high-level editing commands, Example 27 is updated to the commands in
Example 31.

In Example 31, the n10 net is automatically disconnected from U59/a2 when it is
connected to the new net. The new net is not user-specified. The output of the
create_net command is used directly for the connection of the new eco_andgate/z pin to
U59/a2.

Example 31 High-Level Editing Commands to Add an AND Gate
current_design i:/WORK/mCntrl_test_1
create_cell eco_andgate an02d2 –connections [list \
 a1=n10 \
 a2=Op[5] \
 z=[create_net –pins U59/a2] \
]

Formality® User Guide
T-2022.03

287

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Creating and Verifying Logic ECOs Manually
Modifying the Implementation Design

Feedback

Using Edit Files
Tcl editing commands can be directly entered at the command line. However, it is
convenient to save the commands that are used to edit a design in a file, and then
source the file. To change the edits, you can then edit the file and source it again. The
undo_edits command reverts the changes made to the design. The commit_edits
command commits the changes and you can proceed with a new set of edits. Future
undo_edits commands do not undo commands saved by the previous commit_edits
command.

This section describes how to create and load edit files. It also describes how you can
undo, commit, and report the modifications to a netlist.

Creating an Edit File
To create an edit file, define a text file that contains Tcl editing commands.

Example 32 shows the contents of an edit file that creates and inserts an XOR cell into the
design named core.

Example 32 Contents of an Edit File
current_instance i:/WORK/core
create_cell ECO2 XOR -connections [list \
 A=n1446 \
 B=input[15] \
 Z=[create_net -pins crc_reg_1_/D] \
]

Loading Edit Files
Use the source command to load an edit file. The command loads the edits in the file
and creates a backup copy of the affected designs. The edits are temporary and can be
undone unless the edits are committed to the design using the commit_edits command.
The syntax is source filename. The filename argument specifies an edit file.

Note:
In the Formality GUI, this is the load_edits command.

Undoing Edits
Use the undo_edits command to undo the edits or modifications to the implementation
design. The command reverts the edit commands used to modify the design. The design
is reverted to the start of editing or to the previous commit_edits command.

Formality® User Guide
T-2022.03

288

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Creating and Verifying Logic ECOs Manually
Modifying the Implementation Design

Feedback

Note:
Individual edit commands cannot be undone; you can only undo the entire
collection of edit commands performed since the last commit_edits command.

Committing the Edits to the Design
Use the commit_edits command to save modifications to a part of the implementation
design before proceeding to edit another part. After running the commit_edits command,
the previous edits cannot be undone.

After committing edits, you can start a new round of ECO editing. The future undo_edits
commands do not undo the committed modifications.

Reporting the Edits
Use the report_edits command to report the edit commands that are used to modify
the implementation design. The command reports the edit commands used in the current
session. Use the record_edits command to enable and disable recording of the edit
commands in a session. All edit commands are reported except those that are used when
recording was disabled or those that are reverted using the undo_edits command.

Displaying Modifications to the Design
Use the compare_edits command to list the parts of a netlist that are changed by the edit
commands. The compare_edits command reports the pins, ports, nets, and cells that are
added, removed, or changed using the edit commands.

Example 33 shows an example report.

Example 33 Comparing Edits
fm_shell (setup)> compare_edits
ADDED elements:
 NETS
 i:/WORK/bot/new
REMOVED elements:
 PINS
 i:/FM_BACKUP_WORK/mid/b1/bo1
 i:/FM_BACKUP_WORK/mid/b2/bo1
 PORTS
 i:/FM_BACKUP_WORK/bot/bo1
CHANGED elements:
 NETS
 i:/FM_BACKUP_WORK/bot/bo1
 i:/FM_BACKUP_WORK/mid/mo1
 i:/FM_BACKUP_WORK/mid/mo2
 i:/WORK/bot/bo1

Formality® User Guide
T-2022.03

289

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Creating and Verifying Logic ECOs Manually
Modifying the Implementation Design

Feedback

 i:/WORK/mid/mo1
 i:/WORK/mid/mo2
 CELLS
 i:/FM_BACKUP_WORK/mid/b1
 i:/FM_BACKUP_WORK/mid/b2
 i:/WORK/mid/b1
 i:/WORK/mid/b2

Using the GUI to Display and Highlight Edits
Using the Formality GUI, you can highlight the modifications to a design to check that
the design is edited as intended. Highlighting the GUI schematic pages is a visual
representation of modifications to the implementation design.

You can view both the original and the modified designs. Choose the ECO > View Backup
Design to display the backup design. If either design is displayed, choose the ECO > Color
Edits to highlight the edits.

The modifications to nets whose connectivity has changed are highlighted in yellow,
objects from the original design that are deleted are highlighted in red, and objects added
to the modified design are highlighted in orange.

You can also access the load_edits, commit_edits, and undo_edits commands from
the ECO menu. The GUI load_edits command is the source command in the script file.
For more information about the commands, see the man pages.

Reporting Connectivity Errors
To check the connectivity of objects that are edited, use the report_electrical_checksreport_electrical_checks
command. The command reports connectivity errors that might have occurred during
editing.

By default, the report_electrical_checks command reports the following errors:

• Unconnected ports

• Unconnected pins

• Output pins tied to constants

• Multiply driven pins

• Multiply driven ports

• Unread nets

• Undriven nets

• Unreachable cells

• Uninstantiated designs

Formality® User Guide
T-2022.03

290

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Creating and Verifying Logic ECOs Manually
Verifying ECO Modifications

Feedback

However, you can report specific errors using the report_electrical_checks command
options. You can also specify a list of designs to be checked.

Example 34 shows how to create a flip-flop in the netlist. Note that the input D is not listed
in the connections.

Example 34 Editing the Netlist to Add a Flip-Flop
create_cell all_stop_clocked_reg STN_FDPQ_1 -connections \
 [list CK=clock Q=[create_net -pins U32/B1]]
Example 35 shows how to use the report_electrical_checks command to report the
unconnected input D.

Example 35 Reporting Connectivity Errors
report_electrical_checks -edits
Processing design: i:/WORK/timer
Unconnected pins on cells in design: i:/WORK/timer
 in i:/WORK/timer/all_stop_clocked_reg/D

For more information about the report_electrical_checks command, see the
command man page.

Verifying ECO Modifications
To verify ECO modifications, follow these steps:

1. Edit the implementation design.

2. Verify the edited implementation design against the modified RTL.

Note:
Make sure you use the modified SVF file for verification.

3. Use the verify_edits command to verify the compare points affected by the edits.

Note:
Verify only the compare points without verifying the complete design.

You can specify additional compare points using the set_verify_points command
and then use the verify_edits command to verify all compare points.

To list the compare points that are relevant to the modifications, use the
find_compare_points command. This command returns a list of downstream
compare points affected by the modified design objects. Use this command also to
generate a list of compare points that are affected by ECO modifications.

Formality® User Guide
T-2022.03

291

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Creating and Verifying Logic ECOs Manually
Verifying ECO Modifications

Feedback

For more information about the verify_edits, set_verify_points,
find_compare_points, and restore_session commands, see the command man
pages.

Example 36 shows how to verify the ECO modifications.

Example 36 Verifying ECO Modifications
Start from restored session of RTL with ECO to original design
restore_session initial_ECO

Modify design and match compare points
setup
source edits.tcl

Add additional compare points using the set_verify_points command

verify_edits

If all failing points are fixed, and the verification is successful,
remove all verify points and do a full verification
if [string equal $verification_status "SUCCEEDED"] {
 remove_verify_points -all
 verify
}

After verifying the specified compared points, the tool

• Displays the following message:

ATTENTION: Only a subset of the compare points will be verified. Use
remove_verify_points -all to do a full verification.

• Reports a summary of the verification, which includes the number of compare points
that are specified for verification. Example 37 shows a summary report of a multiple
point verification.

Example 37 Summary Report of Verification
********************** Verification Results*****************************
Verification SUCCEEDED
 ATTENTION: Only a subset of the compare points were verified.
 Use remove_verify_points -all to do a full verification.
 ATTENTION: synopsys_auto_setup mode was enabled.
 See Synopsys Auto Setup Summary for details.
 ATTENTION: RTL interpretation messages were produced during link
 of reference design.
 Verification results may disagree with a logic simulator.

Reference design: r:/WORK/top
Implementation design: i:/WORK/top
3 Passing compare points

Formality® User Guide
T-2022.03

292

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Creating and Verifying Logic ECOs Manually
Verifying ECO Modifications

Feedback

--
Matched Compare Points BBPin Loop BBNet Cut Port DFF
 LAT TOTAL

--
Passing (equivalent) 0 0 0 0 3 0 0 3
Failing (not equivalent) 0 0 0 0 0 0 0 0
Unverified 0 0 0 0 0 0 0 0
Not Compared
 Don't verify 0 0 0 0 1 0 0 1
 Not targeted points 0 0 0 0 108 0 0 108

**

The tool does not verify compare points that are specified using the
set_dont_verify_pointsset_dont_verify_points command, even if they are specified using the
set_verify_points command.

For information about the set_dont_verify_points and set_verify_points
commands, see the command man pages.

Editing designs for ECO often requires multiple iterations of using the edit, match, and
verify_edits commands.

Verifying ECO Modifications to Designs With UPF

When you apply ECO modifications to designs with UPF, changes to the RTL and netlists
require corresponding modifications to the UPF files.

The ECO edits that modify components of the circuit that are referenced, modified, or
created by UPF might not be visible or might not have the same names in the IC Compiler
tool view of the circuit.

Verifying ECO Modifications to Retimed Designs

Retiming is the only automated setup operation that modifies the implementation design.
You can verify retimed designs, unless retiming has flattened part of the hierarchy.

Verification of retimed designs might result in some flattening of the hierarchy in the
implementation design. Edit commands in these areas of the design might not translate
to the unflattened design in IC Compiler. Edits to the netlist in the vicinity of retiming
optimizations might not be compatible with the IC Compiler netlist.

Reporting Verify Points
Use the report_verify_pointsreport_verify_points command to report the compare points specified using
the set_verify_points command.

Formality® User Guide
T-2022.03

293

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Creating and Verifying Logic ECOs Manually
Exporting ECO Modifications

Feedback

Removing Verify Points
After verifying the specified compare points in the ECO modification, use the
remove_verify_pointsremove_verify_points command to remove specific compare points in the list.

Use the remove_verify_points -all command and verify the complete design.

Exporting ECO Modifications
After verifying the ECO modifications to a netlist, you can export the edit commands to
a Tcl file. Use the Tcl file to apply modifications to the design in the Design Compiler and
IC Compiler tools.

To write a Tcl file containing the edit commands, use the write_edits command. The
command writes the edits into a Tcl script that is compatible with the Design Compiler and
IC Compiler tools. By default, the name of the Tcl script file is default_edits.tcl.

Note:
All edit commands are written to the file except those that are used while
recording is turned off or those that are reverted using the undo_edits
command.

By default, the Formality tool records the edit commands that are used to modify
the implementation design for an ECO. You can disable the recording using the

record_editsrecord_edits command.

When you use the -off option with the record_edits command, the edit commands are
not included in the output of the write_edits command.

For more information about these commands, see the command man page.

In the output edit script, you can use the following Tcl variables for controlling edit
commands. The Tcl variables are grouped based on the tool running the edit script. The
Tcl variables are defined and used only in the edit script to run in

• The Formality, Design Compiler, IC Compiler, and IC Compiler II tools

◦ fm_edit_enable_warnings: Controls warnings to be omitted or ignored.

• The Formality tool only

◦ fm_edit_substitute_container: Allows you to apply edits made in one container
to another container and controls how the edits work. When you make edits in the
container “i” and you run the tool, the edit script uses the variable to change the
container (impl) for which the edit applies when reading the design.

Formality® User Guide
T-2022.03

294

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Creating and Verifying Logic ECOs Manually
Exporting ECO Modifications

Feedback

◦ fm_edit_echo_commands: Prints the edit commands from the edit script instead of
executing the commands.

◦ fm_edit_use_edit_libraries: Controls where to make edits, either in the design
(designs created with the edit_design command) or in an edit library .

Note:
You can make edits only in the setup mode. In designs created with the
edit_design command, you can make edits in setup, preverify, match,
and verify modes.

• The Design Compiler and IC Compiler tools

◦ fm_edit_substitute_library: Allows you to change the library name used for
referencing library cells. The Formality tool names libraries differently from the
other Synopsys tools, so use the variable to rename the library for the edit script to
handle library names. For example, use an asterisk (*) to match any library.

• The IC Compiler and IC Compiler II tools

◦ fm_edit_root_path: Allows the edit script to adjust object names and other paths
when the current_instance command in the IC Compiler or IC Compiler II tool
is not relative to the top-level design but is relative to a path lower in the design
hierarchy.

In Example 38, the Design Compiler tool uses the fm_edit_substitute_library
variable for changing the technology library used in the Formality tool. The IC Compiler
and IC Compiler tools use the same variable (fm_edit_substitute_library) as the
Design Compiler tool along with the fm_edit_root_path variable to specify the root path.

Example 38 Edit Script
##
You can 'source' this file in the Formality (R), Design Compiler (R),
IC Compiler (TM), or IC Compiler (TM) II tool.
##
Set fm_edit_enable_warnings to 1 to print warnings, or set it to 0 to
hide warnings.

global fm_edit_enable_warnings
set fm_edit_enable_warnings 1

if { $synopsys_program_name eq "fm_shell" } {
 # Set fm_edit_substitute_container to apply edit commands from
 # one container to another container. For example, set to "i" to
 # make all edit commands apply to the "i" container.

 global fm_edit_substitute_container
 # set fm_edit_substitute_container "i"

Formality® User Guide
T-2022.03

295

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Creating and Verifying Logic ECOs Manually
Exporting ECO Modifications

Feedback

 # Use fm_edit_echo_commands to echo ECO commands to stdout (if 1)
 # or execute ECO commands (if 0 or not set)

 global fm_edit_echo_commands
 # set fm_edit_echo_commands 1

 # Use fm_edit_use_edit_libraries to do the edits in edit
 # libraries (if set to 1), or directly in the main (non-edit)
 # libraries (if 0 or not set)

 global fm_edit_use_edit_libraries
 # set fm_edit_use_edit_libraries 1
}

if { $synopsys_program_name eq "dc_shell" } {
 # Set fm_edit_substitute_library to apply edit commands from
 # one library to another library. For example, set to "*" to
 # make all edit commands use a wildcard for the library name.

 global fm_edit_substitute_library
 # set fm_edit_substitute_library "*"
}

if { $synopsys_program_name eq "icc_shell" } {
 # Set fm_edit_substitute_library to apply edit commands from
 # one library to another library. For example, set to "*" to
 # make all edit commands use a wildcard for the library name.

 global fm_edit_substitute_library
 # set fm_edit_substitute_library "*"

 # Set fm_edit_root_path to the top of the design hierarchy that is
 # being worked on. Use this if you are working on a part of the
 # overall design. Leave unset if you are working on the entire
 # design.

 global fm_edit_root_path
 # set fm_edit_root_path "top/cell1/cell2"
}

if { $synopsys_program_name eq "icc2_shell" } {
 # Set fm_edit_substitute_library to apply edit commands from
 # one library to another library. For example, set to "*" to
 # make all edit commands use a wildcard for the library name.

 global fm_edit_substitute_library
 # set fm_edit_substitute_library "*"

 # Set fm_edit_root_path to the top of the design hierarchy that is
 # being worked on. Use this if you are working on a part of the
 # overall design. Leave unset if you are working on the entire
 # design.

Formality® User Guide
T-2022.03

296

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Creating and Verifying Logic ECOs Manually
Integration With Verdi nECO

Feedback

 global fm_edit_root_path
 # set fm_edit_root_path "top/cell1/cell2"
}

Integration With Verdi nECO
The Formality tool integrates the manual ECO implementation functionality with the
schematic editing functionality of the Verdi nECO tool. The integration enables you to

• Start the Verdi nECO tool from the Formality GUI

• Pass design schematics from the Formality tool to the Verdi nECO tool

• Highlight schematic nets and gates across the tools

• Apply ECO edits in the Verdi nECO tool and import the edits to the Formality tool for
verification

Starting the Verdi nECO Tool From the Formality GUI
To start the Verdi nECO tool from the Formality GUI,

1. Add the following line to the Formality script:

set fm_verdi_executable path-to-executable

This command specifies the Verdi nECO executable to use and is not required if the
Verdi nECO executable is defined in the user specified path.

2. Choose Verdi nECO from the ECO > nECO menu.

The Verdi nECO tool starts, and the Formality tool establishes a socket connection to it.
The default time to establish the socket connection is one minute. When the Formality
tool cannot establish a socket connection with the Verdi nECO tool, choose Connect to
nECO from the ECO > nECO menu to try and establish the socket connection.

Transferring Design Schematics From Formality to Verdi nECO
After starting the Verdi nECO GUI from the Formality tool, you can specify the gates and
nets to transfer from the Formality tool and open in the Verdi nECO tool.

1. Select a gate or net in the Formality design schematics window. Shift-click to select
multiple gates and nets.

2. Choose Add to nECO from the ECO > nECO menu.

The Verdi nECO tool opens the schematic.

Formality® User Guide
T-2022.03

297

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Creating and Verifying Logic ECOs Manually
Integration With the IC Compiler Tool

Feedback

Highlighting Design Objects Across Tools
You can highlight nets and gates across the Formality and Verdi nECO schematics. You
can use cross-highlighting to find equivalent nets for an ECO or for general navigation of
the schematics across the tools.

• To cross-highlight a gate or net selected in the Formality schematics onto the Verdi
nECO schematics, choose ECO > nECO > Highlight from FM.

• To cross-highlight a gate or net selected in the Verdi nECO schematics onto the
Formality schematics, choose ECO > nECO > Highlight from nECO.

Note:
The design schematics must be displayed in the Formality GUI before
highlighting.

• To retain cross-highlights, choose Accumulate Highlights from the ECO > nECO menu.
When this option is disabled, previous cross-highlights are cleared with each cross-
highlighting command. If this option is enabled, the tool retains the previous cross-
highlights and displays the specified design objects.

For information about schematic editing in the Verdi nECO environment, see the Verdi
nECO documentation.

Importing Edits to the Formality Tool
To import the edits created in the Verdi nECO session back to the Formality tool for
verification,

• Choose Import Changes from the ECO > nECO menu.

Formality schematic windows are closed to make the changes to the edited designs.
This also returns the Formality tool to setup mode.

• To display the edits in the modified design, choose Color Edits from the ECO menu.

After you import the edits to the Formality tool, use the verify_edits command to
verify the compare points that are affected by the edits. This improves the performance
of the verification of the complete design because the matching information is reused
resulting in faster multiple-point verification.

Integration With the IC Compiler Tool
The Formality tool integrates the manual ECO implementation functionality with the IC
Compiler tool. Obtaining the layout information of nets and cells from the IC Compiler tool
helps in determining which net or cell to use in manual ECO modifications.

Formality® User Guide
T-2022.03

298

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Creating and Verifying Logic ECOs Manually
Integration With the IC Compiler Tool

Feedback

Integrating Formality with the IC Compiler tool enables you to

• Connect the Formality tool to an existing IC Compiler session

• Highlight schematic nets, gates, and pin information across the tools

Connecting the Formality Tool With the IC Compiler Tool
The Formality tool generates a script which you can read into the IC Compiler tool and
configure for communication with the Formality tool.

1. In the Formality GUI, choose ECO > ICC > Write ICC Script.

The tool generates the fm_icc_script.tcl script in the current directory. The complete
path to the script is displayed in the Formality Console.

2. In the IC Compiler tool, source the generated script. The script establishes the
connection with the Formality Ultra tool.

3. In the Formality GUI, choose ECO > ICC > Connect to ICC.

Highlighting Design Objects Across Tools
You can highlight nets and gates across the Formality and IC Compiler layout. You can
use cross-highlighting to find equivalent nets for an ECO or for general navigation of the
schematics across the tools.

• To cross-highlight a gate or net selected in the Formality schematics onto the IC
Compiler layout, choose ECO > ICC > Highlight from FM.

• To cross-highlight a gate or net selected in the IC Compiler layout onto the Formality
schematics, choose ECO > ICC > Highlight from ICC.

All instances of a specified Formality design object are highlighted in the IC Compiler
layout and in the visible Formality logic cone schematic.

If you specify an object in a Formality logic cone schematic or in the IC Compiler layout,
the Formality tool highlights a specified object and its parent modules in all appropriate
design schematics. This is useful for traversing the design hierarchy and identifying the
design containing the specified object.

For example, if a specified object is a cell i:/WORK/a/b/c/d/e and design schematic
i:/WORK/a is visible, the tool highlights cell b in the schematic. If the visible design
schematic design is i:/WORK/a/b, the tool regenerates the highlighting and highlights cell
c.

The objects are highlighted using the color specified in the highlight menu in Formality.
The highlighted objects and their color are displayed in the Formality Console.

Formality® User Guide
T-2022.03

299

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Creating and Verifying Logic ECOs Manually
RTL Cross-Probing

Feedback

To retain cross-highlights, choose Accumulate Highlights from the ECO > ICC menu.
When this is disabled, previous cross-highlights are cleared with each new cross-
highlighting command. If this is enabled, the previous cross-highlights are retained.

Note:
The Formality tool does not support cross-highlighting of cell pins or design
ports.

RTL Cross-Probing
The Formality tool offers cross-probing capabilities in the GUI to check your RTL design
in the RTL browser. You can cross-probe cells, pins, or ports in a design from the design
or cone schematic view and examine the corresponding RTL file. You can also open an
RTL file and cross-probe to objects associated with a line in the RTL file. This allows you
to determine the cause of a failed verification.

Note:
To use the RTL cross-probing capabilities, you must have an elaborated design
from Formality version J-2014.09-SP2 or later.

To view the RTL source of designs, ports, and cells,

1. In the design or cone schematic view, right-click an object.

2. Choose View Source.

The tool displays the RTL file and highlights the corresponding lines.

To view the schematic of an object in the RTL file,

1. In the Formality Console, right-click an RTL file in the list of files that are currently
loaded.

2. Choose View File.

The tool displays the RTL source file in the RTL Browser. Lines in the RTL file that
correspond to objects are highlighted in green if the file is opened in the native browser.

3. Right-click a highlighted line and choose Select Objects of Highlighted Line.

The tool displays the list of objects, and instances of the objects, in the Global Object
Finder.

4. Select and object and choose View > View Object.

The tool displays the schematic of the selected object. If the design or cone schematic
window is already open, the object is highlighted in white.

Formality® User Guide
T-2022.03

300

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 12: Creating and Verifying Logic ECOs Manually
RTL Cross-Probing

Feedback

The tool does not allow you to

• Cross-probe from various design views to the UPF file

• Select nets as cross-probing objects

For more information about the Global Object Finder, see Finding a Design Object in a
Collection.

Formality® User Guide
T-2022.03

301

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

13
Verifying Technology Logic Libraries

You can use library verificationcelllibrary verificationtechnology librariesverifyingverificationcell librariesverificationtechnology librariesFormality to verify a reference design with an implementation design in the
process described in Chapters 3 through 10. There are, however, some procedures in
Formality which do not necessarily fall in the standard flow of operation.

This chapter assumes that you understand Formality concepts and the general process
for Formality design verification. From here, it discusses compare technology (or cell)
libraries.

The process flow for library verification mode is broadly similar to that of Formality itself.
Figure 84 shows the library verificationprocess flowoverviewlibrary verificationgeneral flow for verifying two technology libraries. This chapter
describes all the steps in the library verification process.

Formality® User Guide
T-2022.03

302

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Verifying Technology Logic Libraries

Feedback

Figure 84 Technology Library Verification Process Flow

Formality® User Guide
T-2022.03

303

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Verifying Technology Logic Libraries
Library Verification Mode

Feedback

During technology library verification, Formality compares all the cells in a reference library
to all the cells in an implementation library. library verificationsupported formatsYou can use the process to compare Verilog
simulation and Synopsys (.db) synthesis libraries.

library verificationversus design verificationLibrary verification is similar to design verification in that you must load both a reference
library and an implementation library. The principle difference is that, because the
specified libraries contain multiple designs (cells), Formality must first match the cells
to be verified from each library. This matching occurs when you load the reference and
implementation designs. Formality then performs compare point matching and verification
one cell-pair at a time.

This chapter includes the following sections:

• Library Verification Mode

• Loading the Reference Library

• Loading the Implementation Library

• Listing the Cells

• Specifying a Customized Cell List

• Elaborating Library Cells

• Performing Library Verification

• Reporting and Interpreting Verification Results

• Debugging Failed Library Cells

Library Verification Mode
library verificationinitializingcommandslibrary_verificationlibrary_verification commandTo verify two libraries, the tool must be in the library_verification mode. If the tool
is in one of the other modes (setup, match, verify, or debug mode), you must switch to
the library_verification mode. Library verification is a command-line-driven process.
Each time you enter (or leave) the library verification mode, Formality empties the contents
of the r and i containers in readiness for a new library (or design) verification session.

To enter library verification mode, specify the library_verification command,

fm_shell (setup)> library_verification argument
You can specify one of the following options for argument:

• verilog_verilog

• db_db

• verilog_db

Formality® User Guide
T-2022.03

304

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Verifying Technology Logic Libraries
Loading the Reference Library

Feedback

• db_verilog

• verilog_pwrdb

• pwrdb_verilog

• none

The first design type in the preceding examples defines the reference library; the second
type defines the implementation library. If you specify none, Formality returns to setup
mode.

The fm_shell prompt changes to

fm_shell (library_setup)>

When you set this mode, the Formality tool sets the following variable

set_app_var verification_passing_mode equality

When you exit library verification mode, Formality sets the variable back to its default,
consistency.

Note:
Unsupported synthesis library formats must be translated by Library Compiler
before being read into Formality.

For more information, see the library_verification command man page.

Loading the Reference Library
reference librarieslibrary verificationreference libraryAs with the design verification process described in Tutorial, you must specify the
reference library before the implementation library.

To specify the reference library, use one of the following read commands, depending on
the library format:

fm_shell (library_setup)> read_db -r file_listcommandsread_dbread_db command

fm_shell (library_setup)> read_verilog -r \
 [-technology_library] file_listcommandsread_verilogread_verilog command

The read_db and read_verilog commands have several options that do not apply to
library verification. Use the read_verilog -technology_library command if you have
a UDP file.

Formality loads the reference library into the r container. You cannot rename this
container.

Formality® User Guide
T-2022.03

305

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Verifying Technology Logic Libraries
Loading the Implementation Library

Feedback

In the Formality shell, you represent the design hierarchy by using the designID
argument. The designID argument is a path name whose elements indicate the container
(r or i), library, and design name.

library verificationversus design verificationUnlike with the design verification process, you do not specify the set_top command
because multiple top cells are available.

Loading the Implementation Library
implementation librarieslibrary verificationimplementation librarySpecify the implementation library as described in the previous section, with the exception
of the -r argument. Instead, use the -i argument as follows:

fm_shell (library_setup)> commandsread_dbread_db commandread_db -i file_list
fm_shell (library_setup)> read_verilog -i [-technology_library]\
 file_list

Formality loads the implementation library into the i container. You cannot rename this
container.

After you read in the implementation library, Formality performs cell matching to generate
the list of cells that are verified. Cells and ports must match by name. The cell list consists
of single cell names, and each cell on it is expected to be found in the reference library. If
not, it is a nonmatching cell and remains unverified.

Listing the Cells
library verificationreporting library cellsreportslibrary cellsBy default, Formality verifies all library cells that match by name. You can query the default
cell list before verification to confirm the matched and unmatched cells.

Specify the following command to print a list of library cells.

 fm_shell (library_setup)> commandsreport_cell_listreport_cell_list commandreport_cell_list -r | \
 -i | -verify | -matched | -unmatched | \
 -filter wildcard

You must specify one of the following options:

Option Description

-r Prints the cells contained in the reference library.

-i Prints the cells contained in the implementation library.

-verify Prints the current list of cells to be verified, which could differ
from the default cell list if you specified the select_cell_list
command. For more information, see Specifying a Customized
Cell List.

Formality® User Guide
T-2022.03

306

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Verifying Technology Logic Libraries
Specifying a Customized Cell List

Feedback

Option Description

-matched Prints a list of reference and implementation cells that match by
name.

-unmatched Prints the names of cells that did not match in the reference and
implementation containers. This option is dynamic depending on
the select_cell_list command specification.

-filter wildcard Filters the report to include cells that match the specified
wildcard. Always specify this option in conjunction with one of
the preceding options.

In the rare case that the libraries contain no matching cells, follow these steps:

1. Return to setup mode by entering the library_verification none command.

2. Edit the cell names so they match.

3. Return to library verification mode by entering the library_verification mode
command.

4. Reload the updated library by using the applicable read command.

Specifying a Customized Cell List
library verificationspecifying the cells to verifyWhen you load the libraries by using read commands, Formality elaborates all
matched cells in preparation for verification. After reporting the matched cells with the
report_cell_list command, you can refine the default cell list as necessary.

To customize the default cell list, specify the following command:

fm_shell (library_setup)> commandsselect_cell_listselect_cell_list commandselect_cell_list [-file filename] \
 [-add cell_names] [-clear] [-remove cell_names] cell_names

You can use the following options as needed:

Option Description

-file filename Specifies a file that contains a list of cells to be verified.

-add cell_names Adds the specified cells to the cell list.

-clear Clears the cell list.

-remove cell_names Removes the specified cells from the cell list.

Formality® User Guide
T-2022.03

307

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Verifying Technology Logic Libraries
Elaborating Library Cells

Feedback

This command supports wildcard characters for cell names. Enclose lists of cells in
braces. For example,

 fm_shell (library_setup)> select_cell_list {AND5 OR2 JFKLP}
 fm_shell (library_setup)> select_cell_list ra*
library verificationdebugging processAs part of the debugging process, use this command to specify only those cells that
previously failed verification.

Elaborating Library Cells
Formality automatically elaborates your library cells when running the verify command.
You might want to elaborate your library cells before verification to apply constraints
to specific cells. To elaborate these library cells, run the commandselaborate_library_cellselaborate_library_cells commandelaborate_library_cells
command.

If you do not want to apply constraints to individual library cells, proceed directly to
verification.

Performing Library Verification
library verificationverifying the librariesProceed to verification after refining your cell list. As with the design verification process,
specify the verify command:

 fm_shell (library_setup)> commandsverifyverify commandverify
library verificationversus design verificationFormality performs compare point matching and verification for each cell-pair as described
in Performing Compare Point Matching and Verifying the Design and Interpreting Results.”
However, because Formality assumes that all cell and ports match by name, compare
point matching errors do not occur; for this reason, the optional match command does not
apply to library verification.

As described in the man page, the verify command has additional options that do not
apply to library verification.

After verification, Formality outputs a summary transcript of the passing, failing, and
aborted cell counts.

library verificationexample Tcl scriptThe following script performs library verification. This script sets
hdlin_unresolved_modules to ‘black box’ as a precaution; generally technology libraries
should not contain unresolved modules. These are not required settings. Remember that
the verification_passing_mode and verification_inversion_push variables are set
automatically.

 #---
 # Sets the directories where Formality will search for files
 #---

Formality® User Guide
T-2022.03

308

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Verifying Technology Logic Libraries
Performing Library Verification

Feedback

 set search_path "./db ./verilog/cells ./verilog_udp"
 #---
 # Sets variables
 #---

 set_app_var hdlin_unresolved_modules black_box
 library_verification VERILOG_DB

 #---
 # Reads into container 'r'
 #---
 # Read UDP using -technology_library

 read_verilog -r -technology_library {
 UDP_encodecod.v
 UDP_mux2.v
 UDP_mux2_1.v
 UDP_mux2_1_I.v
 UDP_mux2_2.v
 }

 # Read library cells

 read_verilog -r {
 and2A.v
 and2B.v
 and2C.v
 ao11A.v
 ao11C.v
 ao12A.v
 bufferA.v
 bufferAE.v
 bufferAF.v
 delay1.v
 encode3A.v
 xor1A.v
 xor1B.v
 xor1C.v
 full_add1AA.v
 half_add1A.v
 mux21HA.v
 mux31HA.v
 mux41HA.v
 mux61HA.v
 mux81HA.v
 mux21LA.v
 notA.v
 notAD.v
 notAE.v
 nand2A.v
 nand2B.v
 nand2C.v

Formality® User Guide
T-2022.03

309

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Verifying Technology Logic Libraries
Reporting and Interpreting Verification Results

Feedback

 nor2A.v
 nor2B.v
 nor2C.v
 nxor3A.v
 or_and21A.v
 or2A.v
 }
 #---
 # Reads into container 'i'
 #---

 read_db -i synth_lib.db

 #
 # Report which library cells will be verified
 #

 report_cell_list -verify
 report_cell_list -matched
 report_cell_list -unmatched

 #---
 # Verifies libraries
 #---

 verify

 #---
 # Reports on passing and failing cells
 #---

 report_status -pass
 report_status -fail
 report_status -abort

 #---
 # Exits
 #---

 exit

Reporting and Interpreting Verification Results
reportslibrary verification resultslibrary verificationreporting statusUse the following command to report the verification results:

fm_shell (library_setup)> commandsreport_statusreport_status commandreport_status [-pass] \
 [-fail] [-abort]

Formality® User Guide
T-2022.03

310

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Verifying Technology Logic Libraries
Debugging Failed Library Cells

Feedback

If you do not specify arguments, the Formality tool reports the passing, failing, and aborted
cell counts. The following table describes the use of the three options, along with an
explanation of the type of status message assigned to each one during verification:

Option Description Status Message for Library Cell-Pairs

-pass Returns a list of
cells that passed
verification.

A passing library cell-pair has all its compare points
functionally equivalent.

-fail Returns a list of
cells that failed
verification.

A failing library cell-pair has at least one compare
point that is not functionally equivalent.

-abort Returns a list of
aborted cells.

Verification stops. This occurs when Formality
reaches a user-defined failing limit. For example,
Formality halts verification on a cell after 20 failing
points have been found in the cell.In addition, any
cells that fail elaboration are terminated, and a cell
is terminated if Formality cannot determine whether
one of its compare points passes or fails. Aborted
points occur when Formality is interrupted during
the verification process.

Debugging Failed Library Cells
Use the following procedure to debug failed library cells:debugginglibrary cellslibrary verificationdebugging process

1. Choose a failing cell from the status report and specify the following command:

fm_shell (library_setup)> commandsdebug_library_celldebug_library_cell commanddebug_library_cell cell_name
Formality reports the failing cells but retains the verification results from the last cell
verified (which could be a passing cell). This command repopulates Formality with the
verification data for the specified cell, which enables you to debug the cell in the current
Formality session. You can specify the name of only one unique cell.

2. reportstruth tableslibrary verificationtruth tablesSpecify the following command to view the failed cell’s logic:

fm_shell (library_setup)> commandsreport_truth_tablereport_truth_table commandreport_truth_table signal \
 [-fanin signal_list] [-constraint signal_list=[0|1]] \
 [-display_fanin] [-nb_lines number] \
 [-max_line length]

Formality® User Guide
T-2022.03

311

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Verifying Technology Logic Libraries
Debugging Failed Library Cells

Feedback

truth tableThis command generates a Boolean logic truth table that you can use to check the
failed cell’s output signals. Often, this is sufficient information to fix the failed cell. Use
the arguments as follows:

Argument Description

-signal Specifies the signal you want to check. For
example, specify the path name as follows:
r:/lib/NAND/z

-fanin signal_list Filters the truth table for the specified fan-in
signals, where the list is enclosed in braces
({ }).

-constraint signal_list=[0|1] Applies the specified constraint value (0 or 1)
at the input and displays the output values on
the truth table.

-display_fanin Returns the fan-in signals for the specified
signal.

-nb_lines_number Specifies the maximum number of lines
allowed for the truth table.

-max_line length Specifies the maximum length for each table
line.

After fixing the cell, include only the fixed cells in the cell list and run the verify
command again.

3. If further investigation is required to fix a failed cell, specify the following command:

fm_shell (library_setup)> commandswrite_library_debug_scriptswrite_library_debug_scripts commandwrite_library_debug_scripts \
 [-dir filename]

This command generates individual Tcl scripts for each failed cell and places them
in the DEBUG directory unless you specify the -dir option. The DEBUG directory is
located in the current working directory.

If you attempt to view library cells in the Formality GUI, you see only a black box. As
shown in the following example, the Tcl scripts direct Formality to treat the library cells
as designs and perform traditional verification. You can then investigate the failure
results with the Formality GUI.

 ## --This is a run script generated by Formality library
 verification mode --
 set_app_var verification_passing_mode Equality
 set_app_var verification_inversion_push true
 set search_path "DEBUG"
 read_container -r lib_ref.fsc

Formality® User Guide
T-2022.03

312

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Chapter 13: Verifying Technology Logic Libraries
Debugging Failed Library Cells

Feedback

 read_container -i lib_impl.fsc
 set_reference_design r:/*/mux21
 set_implementation_design i:/*/mux21
 verify

4. Run one of the Tcl scripts and specify the start_gui command to view the results.
When you have fixed the cell, go to each of the scripts until you have debugged them
all. For information about using the GUI for debugging, see the following sections:

• Debugging Using Diagnosis

• Schematics

• Logic Cones on page 235

• Viewing, Editing, and Simulating Patterns

5. Reverify cells that you fixed from within the GUI. You must begin a new session
by reinitializing the library verification mode and reloading the reference and
implementation libraries.

Formality® User Guide
T-2022.03

313

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

A
Functional Safety Verification

The Formality tool verifies designs modified through the Function Safety (FuSa) flow,
specifically fail-safe finite state machines and triple mode redundancy.

Fail-Safe Finite State Machine Support
When using the fail-safe finite state machine mapping in the Synopsys functional safety
verification (FuSa) flow, the synthesis tool inserts additional guidance into the SVF file
which describes the state vector registers and the state machine type (Hamming2 or
Hamming3) along with required parity and error-checking registers.

The parity or error-checking registers and logic do not exist in the RTL. Therefore, the
Formality tool uses the guide_safety_fsm and guide_safety_reg_group commands
during the preverify stage (SVF processing) to identify the state machine vector
and independently create appropriate error checking registers and logic to allow the
implementation to be properly verified.

Note:
This feature requires the Formality-FuSa license key. If the license key does
not exist, the guidance commands are rejected and the subsequent verification
fails.

Triple Modular Redundancy
The triple modular redundancy (TMR) feature in the Formality tool provides robustness
in the presence of transient register faults by replacing a single susceptible register with
three registers and voting logic. The tool must account for this extra logic while performing
verification using TMR in the Synopsys FuSa flow.

In flows where TMR is already present in the reference RTL or gates, there are no
additional considerations required; the reference design has the registers and voting logic
needed for Formality to catch any errors in the implementation design in both TMR and
non TMR logic. In flows where TMR is performed during synthesis, the synthesis tool
inserts additional guidance into the SVF. When no TMR registers and voting logic exist
in the RTL during the preverify stage (SVF processing), the Formality tool uses the

Formality® User Guide
T-2022.03

314

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Functional Safety Verification
Triple Modular Redundancy

Feedback

guide_safety_reg_group command to identify and create appropriate TMR registers and
voting logic to allow the implementation design to be properly verified.

The syntax of the guide_safety_reg_group SVF command looks like the following:

guide_safety_reg_group \
-design { des } \
-from { R_reg } \
-to { R_reg R_tmrA R_tmrB }

The guide_safety_reg_group command supports error signals both for TMR and dual
modular redundancy (DMR).

To distinguish between TMR and DMR, use the -type option:

-type { svfRegGrpTypeDMR | svfRegGrpTypeTMR }

To specify the initial connection point for the generated error signal, use the
-use_error_signal_at option:

-use_error_signal_at { svfObjectPort portName | svfObjectPin cellName
 pinName }

This option is optional for TMR, but required for DMR. If the specified point (pin or port)
does not exist, it is created. If the specified point (pin or port) exists and is already driven,
then an OR gate is inserted by combining the existing and new connections.

In flows where redundancy is added to the netlist after synthesis by a third-party
tool, there is no SVF guidance available. The tool supports these flows using the
replicate_safety_register command. Add these commands to the Formality script
(after the preverify command and before the match commands) to apply TMR to the
registers in the reference design. The arguments to the command use regular expression
syntax to specify how to name the replicas.

To replicate the r:/WORK/top/run_reg register, use the following command:

fm_shell (setup)> replicate_safety_register \
-from {\(.*\)_reg} -to { {\1_reg} {\1_Areg} {\1_Breg} } r:/WORK/top/
run_reg

More than one capture group might appear in regexp as follows:

fm_shell (setup)> set regs [get_cells {r:/WORK/cpu/state_reg[*]}]
fm_shell (setup)> replicate_safety_register \
-from {\(.*\)_reg\(.*\)} -to { {\1_A\2} {\1_B\2} {\1_C\2} } $regs

The tool also includes the verification_tmr_suppress_during_seu variable
to support TMR. Use this variable to control whether to perform single event
upset (SEU) suppression when TMR is present in the reference design. When the
verification_tmr_suppress_during_seu variable is set to true (the default), and the

Formality® User Guide
T-2022.03

315

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix A: Functional Safety Verification
Triple Modular Redundancy

Feedback

verification_passing_mode variable is set to Consistency, the Formality tool performs
SEU suppression for TMR registers.

To prevent SEU suppression, use the following command:

prompt> set_app_var verification_tmr_suppress_during_seu false
Note:

The verification_tmr_suppress_during_seu variable can only be changed
in the setup mode.

TMR features require the Formality-FuSa license key. If the license key does not exist,
the guidance commands are rejected, and the subsequent verification fails.

Formality® User Guide
T-2022.03

316

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

B
Querying Design Objects and Collections

Synopsys applications build an internal design database of objects and attributes that are
applied to them. These databases consist of several classes of objects including designs,
libraries, ports, cells, nets, pins, clocks, and so on. Most commands operate on these
objects.

By definition, a collection is a group of objects exported to the Tcl user interface.
Collections have an internal representation (the objects) and, sometimes, a string
representation. The string representation is generally used only for error messages.

The set of commands to create and manipulate collections is described in the following
sections.

• Lifetime of a Collection

• Iteration

• Managing Collections Using Commands

• Filtering

• Sorting Collections

• Implicit Query of Collections

• The Collections Manager GUI

Lifetime of a Collection
Collections are active only if they are referenced. Typically, a collection is referenced
when a variable is set to the result of a command that creates it or when it is used as an
argument to a command or a procedure. For example, you can save a collection of design
ports by setting a variable to the result of the get_ports command:

fm_shell> set ports [get_ports *]

Either of the following commands deletes the collection referenced by the ports variable:

fm_shell> unset ports
fm_shell> set ports "value"

Formality® User Guide
T-2022.03

317

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Querying Design Objects and Collections
Iteration

Feedback

Collections can be implicitly deleted when they go out of scope. Collections go out of
scope for various reasons. An example would be when the parent (or other antecedent)
of the objects within the collection is deleted. For example, if a collection of ports is owned
by a design, it is implicitly deleted when the design that owns the ports is deleted. When a
collection is implicitly deleted, the variable that referenced the collection still holds a string
representation of the collection. However, this value is useless because the collection is
gone, as shown in the following example:

fm_shell> current_design r:/WORK/top
r:/WORK/top

fm_shell> set ports [get_ports in*]
{r:/WORK/top/in0 r:/WORK/top/in1}

fm_shell> remove_design r:/WORK/top
Removed design '/WORK/top' from container 'r'

fm_shell> query_objects $ports
Error: No such collection '_sel26' (SEL-001)

Iteration
To iterate over the objects in a collection, use the foreach_in_collection command.
You cannot use the Tcl-supplied foreach command iterator to iterate over the objects in
a collection, because the foreach command requires a list, and a collection is not a list.
However, if you use the foreach command on a collection, it destroys the collection.

The arguments of the foreach_in_collection command are similar to those of foreach:
an iterator variable, the collection over which to iterate, and the command body to apply at
each iteration.

Note:
Unlike the foreach command, the foreach_in_collection command does
not accept a list of iterator variables.

The following example iterates through a collection to print the names of the objects it
contains.

 fm_shell> foreach_in_collection s1 $collection \
 {echo [get_attribute $s1 full_name]}

Managing Collections Using Commands
There are two categories of collection commands: those that create collections of objects
for use by another command, and those that query objects for viewing. The result of a
command that creates a collection is a Tcl object that can be passed along to another

Formality® User Guide
T-2022.03

318

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Querying Design Objects and Collections
Filtering

Feedback

command. For a query command, although the visible output looks like a list of objects,
the result is an empty string.

You can use the following commands to work with collections. In some cases, a command
might not operate on a collection of a specific type.

• add_to_collection - This command creates a new collection by adding a list of
element names or collections to a base collection. The base collection can be the
empty collection. The result is a new collection. In addition, the add_to_collection
command allows you to remove duplicate objects from the resulting collection by using
the -unique option.

• append_to_collection - This command appends a set of objects (specified by
name or collection) to an existing collection. The base collection is passed as a
variable name, and the base collection is modified directly. It is similar in function to
the add_to_collection command, except that it modifies the collection in place;
therefore, it is much faster than the add_to_collection command when appending.

• remove_from_collection - This command removes a list of element names or
collections from an existing collection. The first argument is the collection to process
and the second argument is the specification of the objects to remove. The result of the
command is a new collection, for example,

fm_shell> set dports \
[remove_from_collection [all_inputs] CLK]
{r:/WORK/top/in0 r:/WORK/top/in1 r:/WORK/top/in3}

• compare_collections - This command verifies whether two collections contain
the same objects (optionally, in the same order). The command returns "0" if the
comparison succeeds.

• copy_collection - This command creates a new collection containing the same
objects in the same order as a given collection. Not all collections can be copied.

• index_collection - This command extracts a single object from a collection and
creates a new collection containing that object. The index operation is done in constant
time - it is independent of the size of the collection or the specified index value. Not all
collections can be indexed.

• sizeof_collection - This command returns the number of objects in a collection.

Filtering
To filter any collection, use the filter_collection command. This command takes a
base collection and creates a new collection that includes only those objects that match an
expression.

Formality® User Guide
T-2022.03

319

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Querying Design Objects and Collections
Filtering

Feedback

Many commands that return collections have a -filter option that filters objects on the
fly before adding them to the collection result. This is more efficient than obtaining the
entire set of objects, and then applying the filter_collection command. The following
examples filter out all leaf cells using both methods:

 fm_shell> filter_collection \
 [get_cells *] "is_hierarchical == true"]
 {r:/WORK/top/i1 r:/WORK/top/i2}

 fm_shell> get_cells * -filter "is_hierarchical == true"
 {r:/WORK/top/i1 r:/WORK/top/i2}

The basic form of a filter expression is a series of relations joined together with AND
and OR operators. Parentheses are also supported. The basic relation compares an
attribute name with a value through a relational operator. In the previous example,
is_hierarchical is the attribute, == is the relational operator, and true is the value.

The relational operators are

== Equal

!= Not equal

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

=~ Matches pattern

!~ Does not match pattern

The basic relational rules are as follows:

• String attributes can be compared with any operator.

• Numeric attributes cannot be compared with pattern match operators.

• Boolean attributes can be compared only with == and !=. The value can be only true
or false.

Additionally, existence relations determine if an attribute is defined or not defined for the
object, for example,

 (direction == in) and defined(is_pi)

The existence operators are: defined and undefined.

Formality® User Guide
T-2022.03

320

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Querying Design Objects and Collections
Sorting Collections

Feedback

Existence operators apply to any attribute if it is valid for the object class. See the
collection man page for more information.

Sorting Collections
To sort a collection, use the sort_collection command. It takes a base collection and a
list of attributes as sort keys. The result is a copy of the base collection sorted by the given
keys. Sorting is ascending, by default, and descending when you specify the -descending
option. In the following example, the command sorts the ports by direction and then by full
name.

 fm_shell> sort_collection [get_ports *] \
 {direction full_name} {r:/WORK/top/in1 r:/WORK/top/in2
 r:/WORK/top/out1 r:/WORK/top/out2}

Implicit Query of Collections
Commands that create collections implicitly query the collection to display the results when
the command is used at the command line. The query commands are available in setup,
preverify, match, and verify modes.

In setup mode after setting the top-level design, the commands enable you to explore a
single design without having to load both a reference and an implementation design.

• In setup mode, the Formality design database has a uniquified hierarchy - there is only
one copy for each hierarchical design. Multiple instances of the design can reference
the same parent design.

• In preverify, match, or verify modes, the database has a ununiquified hierarchy - there
is a unique copy for each instance of a hierarchical design object.

The design object query commands return lib, lib_cell, lib_pin, design, port, cell, pin, and
net classes of objects in collections.

For library and design classes, a collection object represents the library or design. For
other classes, a collection object represents a path to the circuit object.

The query commands create collections of multiple objects with paths starting from any
design:

fm_shell> current_design mid
fm_shell> get_nets */n3
{r:/WORK/mid/B1/n3 r:/WORK/mid/B2/n3}

Formality® User Guide
T-2022.03

321

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Querying Design Objects and Collections
Implicit Query of Collections

Feedback

To find all instances of a specific object in the hierarchy, search from the top-level design
as shown in the following example:

fm_shell> current_design top
fm_shell> get_nets -hierarchical n3
{r:/WORK/top/M1/n3
 r:/WORK/top/M2/n3
 r:/WORK/top/M1/B1/n3
 r:/WORK/top/M1/B2/n3
 r:/WORK/top/M2/B1/n3
 r:/WORK/top/M2/B2/n3}

In the following example, the get_ports command creates a collection of ports that is
passed to the set_constant command. This collection is not the result of the primary
command (set_constant), and when the primary command completes, the collection is
destroyed.

fm_shell> set_constant [get_ports se*] 0
1

The following example shows how a command that creates a collection automatically
queries the collection when it is used as interactively on the command line.

fm_shell> get_ports in*
{r:/WORK/top/in0 r:/WORK/top/in1 r:/WORK/top/in2}

The following example shows the verbose feature of the query_objects command, which
is not available with an implicit query.

fm_shell> query_objects -verbose [get_ports in*]
{{port r:/WORK/top/in0} {port r:/WORK/top/in1} {port r:/WORK/top/in1}}

The following example sets the iports variable to the result of the get_ports command.
The collection persists to future commands until the iports variable is overwritten, unset,
or goes out of scope.

fm_shell> set iports [get_ports in*]
{r:/WORK/top/in0 r:/WORK/top/in1 r:/WORK/top/in2}

Use the following commands to access information about the attributes of design objects:

• get_attribute

• list_attributes

• help_attributes

Formality® User Guide
T-2022.03

322

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Querying Design Objects and Collections
Implicit Query of Collections

Feedback

The following attributes are supported for all classes:

Attribute Type Example

object_class string cell

type string synonym for object_class

name string B1

full_name string r:/WORK/top/M1/B1

container_name string r

library_name string WORK

path_name string {top M1 B1} {top M1 B2}

The following attributes are supported for all classes except lib, design, and lib_cell:

Attribute Type Example

parent_name string r:/WORK/mid

The following attributes are currently defined for specific classes:

Attribute Type Example

cell:

ref_name string bot

cell_type

is_techlib string true

is_register string true

pin:

direction string in

is_pi string true

is_inverted string true

port:

direction string inout

Formality® User Guide
T-2022.03

323

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Querying Design Objects and Collections
The Collections Manager GUI

Feedback

Attribute Type Example

is_pi string true

lib_pin:

direction string inout

design:

is_unique string true

The Collections Manager GUI
The Collections Manager GUI enables you to capture collections of objects, perform
operations on these collections, and display them in the design schematics. The
Collections Manager visualizes the schematic representation of the designs and helps in
debugging. This section describes the following topics:

• Creating Collections

• Filtering Collections

• Operating on Collections

• Finding a Design Object in a Collection

Creating Collections
You can create collections by selecting design objects in the GUI or by using the get_*
commands.

To create collections, select design objects in the Schematics window that you want to
create a collection of and then do either of the following:

• In the Schematics window, choose Edit > Create Collection > FM Selected.

Or

• In the Formality console, choose Edit > Open Collections Manager.

• Choose Create > FM Selected.

Formality® User Guide
T-2022.03

324

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Querying Design Objects and Collections
The Collections Manager GUI

Feedback

Figure 85 shows how to create a collection in the Schematics window.

Figure 85 Creating Collections in the Schematics Window

By default, the get_* commands return a collection. The collections are visible in the
Collections Manager by setting them to a variable. For example, create and display a
collection of design ports by setting a variable to the result of the get_ports command:

fm_shell> set from_fm_1 [get_ports *]
The collection from_fm_1 is displayed in the Collections Manager.

Figure 86 shows the Collections Manager.

Figure 86 The Collections Manager

Formality® User Guide
T-2022.03

325

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Querying Design Objects and Collections
The Collections Manager GUI

Feedback

To display the contents of a collection,

• In the Collections Manager, select a collection.

• Choose View > View Collection Contents.

The tool displays the contents of the selected collection in the Global Object Finder
window.

You can also right-click on a collection and choose View Contents.

For more information about the Global Object Finder, see Finding a Design Object in a
Collection.

You can specify a prefix to apply to newly generated collection name by entering a prefix
in the Collection Prefix box. The name of a new collection is prefixed with the name.
The prefix you enter is valid for the current Formality session. However, the name of the
collection with the prefix is retained.

You can specify the color of a collection displayed in the schematic. To specify a color,

• In the Collections Manager window, select a collection.

• Choose a color from the color palette.

• Click Update Color.

Figure 87 shows how to choose a color from the color palette.

Figure 87 Updating the Color Representing a Collection

You can also control the highlighting in the schematic by using the Append Highlight,
Highlight, and Clear buttons. Appending a highlight adds to what is already highlighted.

Formality® User Guide
T-2022.03

326

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Querying Design Objects and Collections
The Collections Manager GUI

Feedback

Highlighting replaces the color of the highlight with the new selection. Clearing removes
highlights in the schematic.

Filtering Collections
The Collections Manager displays the number of nets, cells, pins, ports, designs, library
cells, and library pins in each collection. Filters create a new collection of the following
types of objects, which are a subset of the selected collection:

Choose: To filter the following type of objects from the
selected collection:

Cells > All Cells All cells

Cells > Primitives >All Primitive cells

Cells > Primitives > And/Or/Inv/Buf And/or/inv/buf primitive cells

Cells > Primitives > Xor XOR primitive cells

Cells > Primitives > DC Don’t-care primitive cells

Cells > Primitives > TRI Tristate primitive cells

Cells > Primitives > SEQ SEQ register primitive cells

Cells > Hier Hierarchical cells

Cells > TechCell Technology cells

Nets Nets

Ports Ports

Pins Pins

Designs Designs

Lib Cells Library cells

Lib Pins Library pins

Name Objects with names that match the specified string.
When you select this filter, the tool displays a dialog box
where you can enter the text string. A text string can
include glob characters, for example "OUT[*]" to match
"OUT[0]". You can also perform an inverse match to
create a collection containing objects that do not match
the specified string.

Formality® User Guide
T-2022.03

327

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Querying Design Objects and Collections
The Collections Manager GUI

Feedback

For example, to create a new collection of only the cells in an existing collection,

• In the Collections Manager, select a collection.

• Choose Filter > Cells > type of cell.

The Collections Manager creates a new collection consisting of only the specified type
of cells.

Figure 88 shows how to use the filters.

Figure 88 Using Filters

Operating on Collections
There are several Operate commands, which allow for actions to be taken directly on one
or more collections.

You can perform the following operations on collections:

• Union: Creates a new collection with objects that are in at least one of the selected
collections (“OR”)

• Intersection: Creates a new collection with objects that are in all the selected
collections (“AND”)

• Difference: Creates a new collection with objects that are in the first collection but are
not in the subsequent collections (“AND NOT”)

• Fan-in: Creates a new collection with objects that are in the fan-in of objects in the
selected collections

Formality® User Guide
T-2022.03

328

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Querying Design Objects and Collections
The Collections Manager GUI

Feedback

• Fanout: Creates a new collection with objects that are in the fanout of objects in the
selected collections

• Parents: Creates a new collection with objects that are the hierarchical parents of
objects in the selected collections

• Instances: Creates a new collection with objects that are instances of the non-instance
objects in the selected collections

• Translations: Creates a new collection with objects that are non-instance objects of the
instance-based objects in the selected collections

• Net Segments: Creates a new collection with nets that are directly connected, via
hierarchical crossings, to nets in the selected collections

For example, to find the difference between two collections, from_fm_1 and cells_1,

• Select both collections using Shift+Click.

The order of your selection is represented in the first column using numbers.

• Choose Operate > Differences.

The Collections Manager creates a new collection that consists of the differences
between the two selected collections. The second collection you select is removed
from the first collection to create a new collection.

Figure 89 shows how to list the differences between two collections.

Figure 89 Operating on a Collection

The default name generated for a new collection is based on the action taken to create it.

Formality® User Guide
T-2022.03

329

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix B: Querying Design Objects and Collections
The Collections Manager GUI

Feedback

Finding a Design Object in a Collection
To find an object in the schematic view,

• In the Collections Manager, select a collection.

• Choose View > View Collection Contents. The Global Object Finder dialog box is
displayed, which lists the objects in the collection.

You can also right-click a collection and choose View Contents.

• In the Name drop-down list, choose Cells, Nets, Pins, or Designs. Objects of the
selected type are displayed. The path of the design objects are also displayed.

• Select an object from the list.

To choose multiple objects sequentially, press Shift and select multiple objects. To
choose multiple objects, press Ctrl and click the object names.

• To choose the color used to highlight the selected objects, choose a color from the
color palette.

• Click Highlight to highlight the objects or click Select to select the objects for further
operations.

Figure 90 shows the Global Object Finder displaying a list of design objects in a collection.

Figure 90 Global Object Finder

Formality® User Guide
T-2022.03

330

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Feedback

C
Tcl Syntax as Applied to Formality Shell
Commands

This appendix describes the characteristics of Tcl syntax as applied to Formality shell
commands. For instructions about using the Formality shell, see Invoking the Formality
Shell.

TcloverviewcommandsTcl syntaxTcl has a straightforward language syntax. Every Tcl script is a series of commands
separated by a new-line character or semicolon. Each command consists of a command
name and a series of arguments.

This appendix includes the following sections:

• Using Application Commands

• Quoting Values

• Using Built-In Commands

• Using Procedures

• Using Lists

• Using Other Tcl Utilities

• Using Environment Variables

• Nesting Commands

• Evaluating Expressions

• Using Control Flow Commands

• Creating Procedures

Using Application Commands
application commandsfm_shell commandsyntaxcommandsapplication, usingApplication commands are specific to Formality. You can abbreviate all application
command names, but you cannot abbreviate most built-in commands or procedures.
Formality commands have the following syntax:

command_name -option1 arg1 -option2 arg2 parg1 parg2

Formality® User Guide
T-2022.03

331

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Tcl Syntax as Applied to Formality Shell Commands
Using Application Commands

Feedback

command_name

Names the application command.

-option1 arg1 -option2 arg2

Specifies options and their respective arguments.

parg1 parg2

Specifies positional arguments.

Summary of the Command Syntax
syntaxfm_shell commandsTable 10 summarizes the components of the syntax.positional arguments with, commandscommandspositional argumentsargumentspositional

Table 10 Command Components

Component Description

command names, syntaxCommand name If you enter an ambiguous command, Formality attempts to find the correct
command.
fm_shell> report_p
Error: ambiguous command “report_p” matched two commands:
(report_parameters, report_passing_points) (CMD-006)
Formality lists up to three ambiguous commands in its warning.
To list the commands that match the ambiguous abbreviation, use the help
function with a wildcard pattern.
fm_shell> help report_p*

options, syntaxOptions Many Formality commands use options. A hyphen (-) precedes an option.
Some options require a value argument. For example, in the following
command my_lib is a value argument of the -libname option.
fm_shell> read_db -libname my_lib
Other options, such as -help, are Boolean options without arguments. You
can abbreviate an option name to the shortest unambiguous (unique) string.
For example, you can abbreviate -libname to -lib.

Positional arguments Some Formality commands have positional (or unswitched) arguments.
For example, in the set_user_match command, the object1 and object2
arguments are positional.
fm_shell> set_user_match object1 object2

Using Special Characters
commandsspecial charactersspecial charactersTclTclspecial charactersThe characters in Table 11 have special meaning for Tcl in certain contexts.commenting commandscommandscommenting

Formality® User Guide
T-2022.03

332

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Tcl Syntax as Applied to Formality Shell Commands
Using Application Commands

Feedback

Table 11 Special Characters

Character Meaning

$ variablesdereferencingdereferencing variablesDereferences a Tcl variable.

() expressionsgroupinggrouping expressionsGroups expressions.

[] commandsnestingnesting commandsDenotes a nested command.

\ escape quotingIndicates escape quoting.

“ ” weak quotingDenotes weak quoting. Nested commands and variable
substitutions occur.

{ } rigid quotingDenotes rigid quoting. There are no substitutions.

; Ends a command.

Begins a comment.

Using Return Types
command results, returningreturning shell command resultsFormality commands have a single return type that is a string. Commands return a result.
With nested commands, the result can be used as any of the following:

• Conditional statement in a control structure

• Argument to a procedure

• Value to which a variable is set

Here is an example of a return type:

 if {[verify -nolink]!=1} {
 diagnose
 report_failing_points
 save_session ./failed_run
 }

Formality® User Guide
T-2022.03

333

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Tcl Syntax as Applied to Formality Shell Commands
Quoting Values

Feedback

Quoting Values
Tclquoting valuesvalues, quotingquotation marks, usingYou can surround values in quotation marks in several ways:

• Escape individual special characters by using the backslash character (\) so that the
characters are interpreted literally.

• Tclgrouping wordsgrouping words, Tcl commandsquotation marks, usingGroup a set of words separated by spaces by using double quotation marks (“ ”). This
syntax is referred to as weak quoting because variable, command, and backslash
substitutions can occur.

• Enclose a set of words that are separated by spaces by using braces ({ }). This
technique is called rigid quoting. Variable, command, and backslash substitutions do
not occur within rigid quoting.

The following commands are valid but yield different results. Assuming that variable a is
set to 5, Formality yields the following:

 fm_shell> set s “temp = data[$a]”
 temp = data[5]

 fm_shell> set s {temp = data[$a]}
 temp = data[$a]

Using Built-In Commands
built-in commandscommandsbuilt-inMost built-in commands are intrinsic to Tcl. Their arguments do not necessarily conform
to the Formality argument syntax. For example, many Tcl commands have options that do
not begin with a hyphen, yet the commands use a value argument.

Formality adds semantics to certain Tcl built-in commands and imposes restrictions on
some elements of the language. Generally, Formality implements all of the Tcl intrinsic
commands and is compatible with them.

The Tcl string command has a compare option that is used like this:

 string compare string1 string2

Using Procedures
proceduresdefaultcommandsprocedurescommandshelphelpcommandFormality comes with several procedures that are created through the /usr/synopsys/
admin/setup/.synopsys_fm.setup file during installation. You can see what procedures are
included with Formality by entering the help command:

The help command returns a list of procedures, built-in commands, and application
commands.

Formality® User Guide
T-2022.03

334

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Tcl Syntax as Applied to Formality Shell Commands
Using Lists

Feedback

Procedures are user-defined commands that work like built-in commands. You can create
your own procedures for Formality by following the instructions in “Create Procedures” on
page A-12.

syntaxproceduresProcedures follow the same general syntax as application commands

 command_name -option1 arg1 -option2 arg2 parg1 parg2
For a description of the syntax, see Using Application Commands.

Using Lists
Tcllistslists in TclLists are an important part of Tcl. Lists represent collections of items and provide a
convenient way to distribute the collections. Tcl list elements can consist of strings or other
lists.

Tclcommands that support listsThe Tcl commands you can use with lists are:

• list

• concat

• join

• lappend

• lindex

• linsert

• llength

• lrange

• lreplace

• lsearch

• lsort

• split
While most publications about Tcl contain extensive discussions about lists and the
commands that operate on lists, these Tcl commands highlight two important concepts:

• Because command arguments and results are represented as strings, lists are also
represented as strings, but with a specific structure.

• Lists are typically entered by enclosing a string in braces, as follows

 {a b c d}

Formality® User Guide
T-2022.03

335

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Tcl Syntax as Applied to Formality Shell Commands
Using Other Tcl Utilities

Feedback

separating list items, Tcl commandsTclseparating list itemsIn this example, however, the string inside the braces is equivalent to the command [list
a b c d].

Note:
Do not use commas to separate list items, as you do in Design Compiler.

If you are attempting to perform command or variable substitution, the form with braces
does not work. For example, this command sets the variable a to 5.

 fm_shell> set a 5
 5

These next two commands yield different results because the command surrounded
by braces does not expand the variable, whereas the command surrounded by square
brackets (the second command) does.

fm_shell> set b {c d $a [list $a z]}
 c d $a [list $a z]

fm_shell> set b [list c d $a [list $a z]]
 c d 5 {5 z}

Lists can be nested, as shown in the previous example. You can use the concat
command (or other Tcl commands) to concatenate lists.

Using Other Tcl Utilities
Tcl contains several other commands that handle

• Strings and regular expressions (such as format, regexp, regsub, scan, and string)

• File operations (such as file, open, and close)

• Launching system sub processes (such as exec)

Using Environment Variables
Tcluser-defined variablesuser-definedvariables, TclFormality supports any number of user-defined variables. Variables are either scalar or
arrays. The syntax of an array reference is

array_name (element_name)

Table 12 summarizes several ways for using variables.

Formality® User Guide
T-2022.03

336

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Tcl Syntax as Applied to Formality Shell Commands
Nesting Commands

Feedback

Table 12 Examples of Using Variables

Task Description

Setting variables Use the set command to set variables. For
compatibility with dc_shell and pt_shell, fm_shell also
supports a limited version of the a = b syntax. For
example,
set x 27 or x = 27
set y $x or y = $x

Removing variables Use the unset command to remove variables.

Referencing variables Substitute the value of a variable into a command by
dereferencing it with the dollar sign ($), as in echo $flag.
In some cases, however, you must use the name of a
value, such as unset flag, instead of the dollar sign.

The following commands show how variables are set and referenced:

 fm_shell> set search_path ". /usr/synopsys/libraries"
 . /usr/synopsys/libraries
 fm_shell> adir = "/usr/local/lib"
 /usr/local/lib
 fm_shell> set my_path "$adir $search_path"
 /usr/local/lib . /usr/synopsys/libraries
 fm_shell> unset adir
 fm_shell> unset my_path
Note:

You can also set and unset environment variables in the GUI by entering them
into the command bar or selecting File > Environment from the console window.

Nesting Commands
Tclnesting commandsnesting commandsYou can nest commands within other commands (also known as command substitution) by
enclosing the nested commands within square brackets ([]). Tcl imposes a depth limit of
1,000 for command nesting.

The following examples show different ways of nesting a command.

 fm_shell> set index [lsearch [set aSort \ [lsort $l1]] $aValue]
 fm_shell> set title "Gone With The Wind" Gone With The Wind
 fm_shell> set lc_title [string tolower $title] gone with the wind

Formality makes one exception to the use of command nesting with square brackets so
that it can recognize netlist objects with bus references. Formality accepts a string, such
as data[63], as a name rather than as the word data followed by the result of command 63.

Formality® User Guide
T-2022.03

337

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Tcl Syntax as Applied to Formality Shell Commands
Evaluating Expressions

Feedback

Without this exception, data[63] must either be rigidly quoted with the use of braces, as in
{data[63]}, or the square brackets have to be escaped, as in data\[63\].

Evaluating Expressions
expressionsevaluation, TclTclexpression evaluationTcl supports expressions. However, the base Tcl language syntax does not support
arithmetic operators. Instead, the expr command evaluates expressions.

The following examples show the right and wrong ways to use expressions:

 set a (12 * $p) ;# Wrong.
 set a [expr (12*$p)] ;# Right!

The expr command can also evaluate logical and relational expressions.

Using Control Flow Commands
Control flow commands (if, while, for, foreach, break, continue, and switch)
determine the order of other commands. You can use fm_shell commands in a control
flow command, including other control flow commands.

The following sections briefly describe the use of the control flow commands.

Using the if Command
commandsflow control, Tclif command, Tcl flow controlAn if command has a minimum of two arguments:

• An expression to evaluate

• A script to start conditionally based on the result of the expression

You can extend the if command to contain an unlimited number of elseif clauses
and one else clause. An elseif argument to the if command requires two additional
arguments: an expression and a script. An else argument requires only a script.

The following example shows the correct way to specify elseif and else clauses:

 if {$x == 0} {
 echo "Equal"
 } elseif {$x > 0} {
 echo "Greater"
 } else {
 echo "Less"
 }

In this example, notice that the else and elseif clauses appear on the same line with the
closing brace (}). This syntax is required because a new line indicates a new command.

Formality® User Guide
T-2022.03

338

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Tcl Syntax as Applied to Formality Shell Commands
Using Control Flow Commands

Feedback

Thus, if the elseif clause is on a separate line, it is treated as a command, although it is
not one.

Using while and for Loops
Tclwhile commandloops, TclTclwhile commandloops, TclThe while and for commands are similar to the same constructs in the C language.

Using while Loops
The while command has two arguments:

• An expression

• A script

The following while command prints squared values from 0 to 10:

 set p 0
 while {$p <= 10} {
 echo "$p squared is: [expr $p * $p]"
 incr p
 }

Using for Loops
The for command uses four arguments:

• An initialization script

• A loop-termination expression

• An iterator script

• An actual working script

The following example shows how the while loop in the previous section is rewritten as a
for loop:

 for {set p 0} {$p <= 10} {incr p} {
 echo "$p squared is: [expr $p * $p]"
 }

Formality® User Guide
T-2022.03

339

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Tcl Syntax as Applied to Formality Shell Commands
Using Control Flow Commands

Feedback

Iterating Over a List: foreach
Tclforeach commandforeach command, Tcl flow controlThe foreach command is similar to the same construct in the C language. This command
iterates over the elements in a list. The foreach command has three arguments:

• An iterator variable

• A list

• A script to start (the script references the iterator’s variable)

To print an array, enter

 foreach el [lsort [array names a]] {
 echo "a\($el\) = $a($el)"
 }

To search in the search path for several files and then report whether or not the files are
directories, enter

 foreach f [which {t1 t2 t3}] {
 echo -n "File $f is "
 if { [file isdirectory $f] == 0 } {
 echo -n "NOT "
 }
 echo "a directory"
 }

Terminating a Loop: break and continue
Tclbreak commandTclcontinue commandterminating loops, TclThe break and continue commands terminate a loop before the termination condition
has been reached. The break command causes the innermost loop to terminate. The
continue command causes the current iteration of the innermost loop to terminate.

Using the switch Command
Tclswitch commandswitch command, Tcl flow controlThe switch command is equivalent to an if tree that compares a variable with a number of
values. One of a number of scripts is run, based on the value of the variable:

 switch $x {
 a {incr t1}
 b {incr t2}
 c {incr t3}
 }

The switch command has other forms and several complex options. For more examples
of the switch command, consult your Tcl documentation.

Formality® User Guide
T-2022.03

340

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Tcl Syntax as Applied to Formality Shell Commands
Creating Procedures

Feedback

Creating Procedures
procedurescreatingcreatingproceduresThe Formality tool has the ability to write reusable Tcl procedures. With this powerful
function, you can extend the command language. You can write new commands that can
use an unlimited number of arguments. The arguments can contain the defaults. You can
also use a varying number of arguments.

For example, the following procedure prints the contents of an array:

 proc array_print {arr} {
 upvar $arr a
 foreach el [lsort [array names a]] {
 echo "$arr\($el) = $a($el)"
 }
 }

Procedures can use any of the Formality commands or other defined procedures.
Procedures can even be recursive. Procedures can contain local variables and reference
variables outside of their scope. Arguments to procedures can be passed by value or by
reference.

Books on the Tcl language offer additional information about writing procedures.

Setting Defaults for Arguments
argumentsprogramming default valuesargumentsprogramming default valuesTo set up a default for an argument, you must locate the argument in a sublist that
contains two elements: the name of the argument and the default.

For example, the following procedure reads a favorite library by default, but reads a
specific library if given:

 proc read_lib { {lname favorite.db} } {
 read_db $lname
 }

Specifying a Varying Number of Arguments
argumentsvarying the number ofTclarguments, varying the number ofYou can specify a varying number of arguments by using the args argument. Enforce
that at least some arguments are passed into a procedure, and handle the remaining
arguments appropriately.

For example, to report the square of at least one number, use the following procedure:

 proc squares {num args} {
 set nlist $num
 append nlist " "
 append nlist $args
 foreach n $nlist {

Formality® User Guide
T-2022.03

341

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

Appendix C: Tcl Syntax as Applied to Formality Shell Commands
Creating Procedures

Feedback

 echo "Square of $n is [expr $n*$n]"
 }
 }

Formality® User Guide
T-2022.03

342

mailto:docfeedback1@synopsys.com?subject=Documentation%20Feedback%20on%20Formality%C2%AE%20User%20Guide&body=Version%20information:%20T-2022.03,%20March%202022%0A%0A(Enter%20your%20comments%20for%20Technical%20Publications%20here.%20Please%20include%20the%20topic%20heading%20and%20PDF%20page%20number%20to%20make%20it%20easier%20to%20locate%20the%20information.)%0A%0A

	Contents
	About This User Guide
	New in This Release
	Related Products, Publications, and Trademarks
	Conventions
	Customer Support
	Accessing SolvNetPlus
	Contacting Customer Support

	1 Introduction to Formality
	Formality Tool Overview
	An Introduction to Formal Verification

	General Verification Process
	Individual Verification
	ASIC Verification Flow

	Verifying Designs by Equivalence Checking
	Reading and Elaborating Designs
	Concept of Reference and Implementation Designs
	Concept of Logic Cones

	Setting Up Designs to Preempt Differences
	Concept of Guidance
	Concept of Black Boxes
	Concept of Constraints

	Matching
	Concept of Compare Points
	Concept of Name-Based and Non Name-Based Matching
	Concept of User Matches

	Verification
	Concept of Consistency and Equality

	Interpreting Results

	2 The Formality Use Model
	Formality Verification Flow
	Start Formality
	Load Guidance
	Load Designs
	Perform Setup
	Match Compare Points
	Verify and Interpret Results
	Debug

	3 Invoking Formality
	Setting Up the Linux Environment
	Specifying the Executable File Location
	Specifying the License Environment Variable

	Invoking the Shell and GUI Environments
	Invoking the Formality Shell
	Synopsys Setup File
	Redirecting Standard Output

	Invoking the Formality GUI
	Viewing CPU Statistics
	Getting Help

	Using the Shell and GUI Environments
	Commands
	Entering Commands
	Argument Lists
	Editing From the Command Line
	History
	Recalling Commands

	Aliasing
	Using the alias Command
	Using the unalias Command

	Redirecting
	Command Log Files

	GUI Environment
	Windows
	Prompt
	Copying Text
	Saving the Transcript

	Script Files
	Messages
	Controlling Message Types
	Set Thresholds

	Output Files
	Control File Names Generated by Formality

	4 Tutorial
	Before You Start
	Creating Tutorial Directories
	Tutorial Directory Contents
	Invoking the Formality Shell

	Verifying fifo.vg Against fifo.v
	Loading the SVF File
	Specifying the Reference Design
	Specifying the Implementation Design
	Setting Up the Design
	Matching Compare Points
	Verifying the Designs
	Debugging
	Graphical User Interface
	Main GUI Session Window
	Debugging Using the GUI

	Verifying fifo_with_scan.v Against fifo_mod.vg
	Verifying fifo_jtag.v Against fifo_with_scan.v
	Debugging Using Diagnosis

	Reference Topics

	5 Loading Guidance
	Guidance Overview
	Creating Guidance Files
	Creating an SVF File
	Using the Automated Setup Mode
	Reading the SVF File into Formality
	Generating Formality Verification Setup Scripts
	Understanding the Guidance Summary

	Guidance File Details
	Guidance Directory and File Structure
	Guidance Reports
	SVF File Diagnostic Messages
	Reading in Multiple Guidance Files
	Checkpoint Guidance

	6 Loading Designs
	Setting Up the Designs
	Design Loading Steps
	Loading the Reference Design
	Reading Technology Libraries
	Reading Synopsys (.db) Format

	Reading Designs
	Reading Verilog and SystemVerilog Designs
	Reading VHDL Designs
	Reading .ddc Format Designs
	Reading Milkyway Designs
	Reading Block Abstractions
	Reading .db Format Designs
	Reading NDM Design Libraries

	Setting the Top-Level Design

	Loading the Implementation Design

	Reading Technology Cell Libraries
	Using the 'celldefine Verilog Attribute
	Reading SystemVerilog, Verilog, and VHDL Cell Definitions
	Verilog Simulation Data
	Library Loading Order
	Single-Source Packaging
	Multiple-Source Packaging

	IEEE Std 1735-2014 Encryption of RTL Files

	Setting the Top-Level Design
	Setting Parameters on the Top-Level Design
	Generating Simulation or Synthesis Mismatch Report
	Linking the Top-Level Design Automatically

	Setting Up and Managing Containers
	Variables Controlled by the SVF Guidance Flow
	Variables to Control Bus Names
	Variables to Control Parameter Names
	Variables to Control Case Behavior

	7 Performing Setup
	Common Operations
	Handling Black Boxes
	Loading Design Interfaces
	Marking a Design as a Black Box for Verification
	Reporting Black Boxes
	Performing Identity Checks
	Setting Pin and Port Directions for Unresolved Black Boxes

	Specifying Constants
	Defining Constants
	Removing User-Defined Constants
	Listing User-Defined Constants
	Reporting Setup Status

	Specifying External Constraints
	Defining an External Constraint
	Creating a Constraint Type
	Removing an External Constraint
	Removing a Constraint Type
	Reporting Constraint Information
	Reporting Information About Constraint Types

	Combinational Design Changes
	Disabling Scan Logic
	Disabling Boundary Scan in Your Designs
	Managing Clock Tree Buffering

	Sequential Design Changes
	Reverse Clock Gating
	Setting Clock Gating
	Other Clock-Gating Verification Solutions
	Combinational Gate Clocking
	Latch-Based Clock Gating

	Enabling an Inversion Push
	Instance-Based Inversion Push
	Environmental Inversion Push

	Handling Retimed Designs
	Low-Power Designs
	Loading the UPF File
	Controlling the Interpretation of UPF Files
	Verifying the Design With the UPF File
	Reporting Over-Constrained Supply Nets
	Merging Parallel Switch Cells
	Verifying Hierarchical Designs Using Power-Aware Black Boxes
	Verifying Hierarchical Designs Using Power Models
	Golden UPF Flow

	Less Common Operations
	Asynchronous Bypass Logic
	Asynchronous State-Holding Loops
	Re-Encoded Finite State Machines
	SVF file for FSM Re-Encoding
	Reading a User-Supplied FSM State File
	Defining FSM States Individually
	Multiple Re-Encoded FSMs in a Single Module
	Listing State Encoding Information
	FSMs Re-Encoded in Design Compiler

	Hierarchical Designs
	Setting the Flattened Hierarchy Separator Character
	Propagating Constants

	Nets With Multiple Drivers
	Retention Registers Outside Low-Power Design Flow
	Register Initialization Mode
	Single State Holding Elements
	Multiplier Architectures
	Setting the Multiplier Architecture
	Setting the Multiplier Architecture on an Entire Design
	Setting the Multiplier Architecture on a Specific Cell Instance
	Setting the Multiplier Architecture by Using Compiler Directives

	Reporting Your Multiplier Architecture

	Multibit Library Cells
	Preverification

	8 Performing Compare Point Matching
	Matching and Reporting Compare Points
	Matching Compare Points
	Reporting Unmatched Points
	Debugging Unmatched Points
	Undo Matched Points
	How Formality Matches Compare Points
	Exact-Name Matching
	Name Filtering
	Reversing the Bit Order in Multibit Registers
	Topological Equivalence
	Signature Analysis
	Compare Point Matching Based on Net Names
	Commands and Variables That Cannot be Changed in Match Mode

	9 Verifying the Design and Interpreting Results
	Verifying a Design
	Reporting and Interpreting Results
	Interrupting Verification
	Saving the Session Information for Later Analysis
	Setting a Threshold to Save Session Files

	Additional Verification Methods
	Verification Using Multicore Processing
	Controlling Verification Runtimes
	Using Batch Jobs
	Starting Verification Using Batch Jobs
	Controlling Verification During Batch Jobs
	Verification Progress Reporting for Batch Jobs

	Removing Compare Points From the Verification Set
	Performing Hierarchical Verification
	Verifying Feedthroughs in Hierarchical Subdesigns
	Subdesigns
	Black Box of Subdesign

	Verification Using Checkpoint Guidance
	Controlling the Checkpoint Verification Flow
	Investigating a Checkpoint Verification
	Applying User Setup to Checkpoint Verifications
	Applying User Setup to Checkpoints Commands – Automatic Approach
	Applying User Setup to Checkpoints Commands – Manual Approach

	Known Limitations

	Verification Using Breakpoints
	Identifying Inferred Register Names With Register Mapping
	Verifying a Single Compare Point
	Verifying ECO Designs
	Modifying the SVF File
	Generating the SVF File for ECO
	Generating the Automated Setup Mapping File
	Verifying a Design Modified for an ECO

	Uninstantiated Designs in Verilog Libraries

	10 Debugging Verification
	Debugging a Failing Verification
	Finding Potential Cut Points
	Determining Unread Failing Compare Points
	Determining Failure Causes
	Debugging Using Diagnosis
	Debugging Using Logic Cones
	Eliminating Setup Possibilities
	Black Boxes
	Unmatched Points
	Matching With User-Supplied Names
	Matching With Compare Rules
	Matching With Name Subset
	Renaming User-Supplied Names or Mapping File

	Design Transformations

	Design Objects
	Schematics
	Viewing Schematics
	Traversing Design Hierarchy
	Finding an Object
	Generating Lists
	Zooming In and Out of a View
	Viewing RTL Source Files in the Design Browser

	Hierarchical Design Browser
	Queuing Setup Commands

	Logic Cones
	Viewing Combinational Feedback Loops
	Pruning Logic
	Grouping Hierarchy in a Logic Cone
	Setting Probe Points
	Multicolor Highlighting
	Cell Coloring

	Viewing, Editing, and Simulating Patterns

	Debugging a Hard Verification
	Checking the Guidance Summary
	Creating a List of Hard Points
	Determining the Cause of Hard Points
	Analyzing Fan-in Logic Cones of a Hard Compare Point

	Using Alternate Strategies to Resolve Hard Verifications
	Verifying Designs Using Alternate Strategies
	Verifying Designs Using an Alternate Strategy Manually
	Verifying Designs by Automated Parallel Deployment of Alternate Strategies

	11 Using DPX
	The Formality DPX Flow
	Configuring DPX
	Submissions to Farm or Local Machines
	Submission to Specific Machines
	Testing and Reporting the DPX Setup

	Managing DPX Workers
	DPX Status Messages

	12 Creating and Verifying Logic ECOs Manually
	Manual Logic ECO Flow
	Analyzing Differences Between the RTL and the Netlist
	Generating a List of Failing Points
	Finding Equivalent Nets
	Using the GUI to Find Equivalent Nets

	Modifying the Implementation Design
	Editing a Design in Match or Verify Modes
	Using High-Level Editing Commands
	Disconnecting Pins Automatically
	Connecting Pins When Creating Cells
	Using High-Level Commands With Hierarchical Designs
	Port Punching Across Hierarchies

	Default Names for Nets, Cells, and Ports
	High-Level Commands to Add an AND Gate

	Using Edit Files
	Creating an Edit File
	Loading Edit Files
	Undoing Edits
	Committing the Edits to the Design
	Reporting the Edits

	Displaying Modifications to the Design
	Using the GUI to Display and Highlight Edits
	Reporting Connectivity Errors

	Verifying ECO Modifications
	Reporting Verify Points
	Removing Verify Points

	Exporting ECO Modifications
	Integration With Verdi nECO
	Starting the Verdi nECO Tool From the Formality GUI
	Transferring Design Schematics From Formality to Verdi nECO
	Highlighting Design Objects Across Tools
	Importing Edits to the Formality Tool

	Integration With the IC Compiler Tool
	Connecting the Formality Tool With the IC Compiler Tool
	Highlighting Design Objects Across Tools

	RTL Cross-Probing

	13 Verifying Technology Logic Libraries
	Library Verification Mode
	Loading the Reference Library
	Loading the Implementation Library
	Listing the Cells
	Specifying a Customized Cell List
	Elaborating Library Cells
	Performing Library Verification
	Reporting and Interpreting Verification Results
	Debugging Failed Library Cells

	A Functional Safety Verification
	Fail-Safe Finite State Machine Support
	Triple Modular Redundancy

	B Querying Design Objects and Collections
	Lifetime of a Collection
	Iteration
	Managing Collections Using Commands
	Filtering
	Sorting Collections
	Implicit Query of Collections
	The Collections Manager GUI
	Creating Collections
	Filtering Collections
	Operating on Collections
	Finding a Design Object in a Collection

	C Tcl Syntax as Applied to Formality Shell Commands
	Using Application Commands
	Summary of the Command Syntax
	Using Special Characters
	Using Return Types

	Quoting Values
	Using Built-In Commands
	Using Procedures
	Using Lists
	Using Other Tcl Utilities
	Using Environment Variables
	Nesting Commands
	Evaluating Expressions
	Using Control Flow Commands
	Using the if Command
	Using while and for Loops
	Using while Loops
	Using for Loops

	Iterating Over a List: foreach
	Terminating a Loop: break and continue
	Using the switch Command

	Creating Procedures
	Setting Defaults for Arguments
	Specifying a Varying Number of Arguments

